JP2018172570A - Hollow molded body - Google Patents

Hollow molded body Download PDF

Info

Publication number
JP2018172570A
JP2018172570A JP2017072408A JP2017072408A JP2018172570A JP 2018172570 A JP2018172570 A JP 2018172570A JP 2017072408 A JP2017072408 A JP 2017072408A JP 2017072408 A JP2017072408 A JP 2017072408A JP 2018172570 A JP2018172570 A JP 2018172570A
Authority
JP
Japan
Prior art keywords
resin
hollow molded
thermoplastic resin
formula
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017072408A
Other languages
Japanese (ja)
Other versions
JP6944266B2 (en
Inventor
利豪 小松
Toshihide Komatsu
利豪 小松
良太 本岡
Ryota Motooka
良太 本岡
美緒 土谷
Mio Tsuchiya
美緒 土谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueno Fine Chemicals Industry Ltd
Original Assignee
Ueno Fine Chemicals Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueno Fine Chemicals Industry Ltd filed Critical Ueno Fine Chemicals Industry Ltd
Priority to JP2017072408A priority Critical patent/JP6944266B2/en
Publication of JP2018172570A publication Critical patent/JP2018172570A/en
Application granted granted Critical
Publication of JP6944266B2 publication Critical patent/JP6944266B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow molded body that has excellent safety and antibacterial properties, and includes an antibacterial agent uniformly dispersed therein.SOLUTION: A hollow molded body comprises a molten mixture of a resin composition containing a thermoplastic resin (A) and a compound represented by formula (1), and a thermoplastic resin (B) (Ris a hydrogen atom or an alkali metal, Ris a C1 to 10 alkyl group or an aryl group).SELECTED DRAWING: None

Description

本発明は、パラベン類を含有する樹脂組成物と熱可塑性樹脂との溶融混練物から構成される中空成形体に関する。   The present invention relates to a hollow molded body composed of a melt-kneaded product of a resin composition containing parabens and a thermoplastic resin.

近年、抗菌機能を備えた樹脂からなる抗菌加工の中空成形体が増加しており、一般家庭においても広く使用されている。抗菌加工の中空成形体として、例えば、抗菌機能が高く安全性の高い銀系抗菌剤や亜鉛系抗菌剤等の無機系抗菌剤を混在させた樹脂からなる容器やチューブが提案されている(特許文献1、特許文献2、特許文献3)。   In recent years, hollow molded articles of antibacterial processing made of a resin having an antibacterial function have increased and are widely used in general households. As a hollow molded body for antibacterial processing, for example, containers and tubes made of a resin mixed with inorganic antibacterial agents such as silver antibacterial agents and zinc antibacterial agents having high antibacterial functions and high safety have been proposed (patents) Literature 1, Patent Literature 2, Patent Literature 3).

しかし、無機系抗菌剤を樹脂に混在させる場合、抗菌剤は無機物固体であるため、熱可塑性の有機物の樹脂中では分散性が劣る。そこで、従来の樹脂中への混練手段としては、製品素材の樹脂と同一の樹脂に、一旦抗菌剤を高濃度で混在させ、粒状に形成した抗菌マスターバッチを形成し、製品成形時の樹脂素材中に前記の抗菌マスターバッチを所定量混合する方法が提案されている(特許文献4)。しかしながら、抗菌マスターバッチを用いた場合においても、無機系抗菌剤の分散性が必ずしも十分であるといえず、抗菌性にばらつきが生じたり、また、光による無機系抗菌剤の変色や白濁を招く等の問題があり、無機系抗菌剤を混在させた樹脂は中空成形体には適さないものであった。   However, when an inorganic antibacterial agent is mixed in the resin, the antibacterial agent is an inorganic solid, and therefore dispersibility is poor in a thermoplastic organic resin. Therefore, as a conventional kneading method into the resin, the antibacterial masterbatch formed into a granular form once mixed with the antibacterial agent at a high concentration in the same resin as the resin of the product material, the resin material at the time of product molding A method of mixing a predetermined amount of the antibacterial masterbatch therein has been proposed (Patent Document 4). However, even when the antibacterial masterbatch is used, it cannot be said that the dispersibility of the inorganic antibacterial agent is sufficient, and the antibacterial property varies, and the inorganic antibacterial agent is discolored or clouded by light. However, a resin mixed with an inorganic antibacterial agent is not suitable for a hollow molded body.

一方、有機系抗菌剤を表面塗布又は混練した場合は、抗菌剤が容器等の基材から揮発、脱離、分離しやすく、有機系抗菌剤の種類によっては、安全性に問題が生じる。そのため、ポリマー素材に有機系抗菌剤をイオン結合又は共有結合で結合した不溶性で毒性を示さない固定化抗菌剤等が提案されている(特許文献5、特許文献6、特許文献7)。しかしながら、この方法では、カルボン酸基やスルホン酸基等の酸性基とイオン結合した4級アンモニウム塩基あるいはホスホニウム塩基を樹脂に固定化する必要があり、ポリオレフィンのような官能基を有していない樹脂には抗菌剤の固定化が困難であった。   On the other hand, when the organic antibacterial agent is coated or kneaded on the surface, the antibacterial agent is easily volatilized, desorbed and separated from the substrate such as a container, and depending on the type of the organic antibacterial agent, a safety problem arises. Therefore, an insoluble immobilized antibacterial agent that does not exhibit toxicity and has been proposed in which an organic antibacterial agent is bound to a polymer material by an ionic bond or a covalent bond (Patent Document 5, Patent Document 6, Patent Document 7). However, in this method, it is necessary to immobilize a quaternary ammonium base or phosphonium base ionically bonded to an acidic group such as a carboxylic acid group or a sulfonic acid group, and the resin does not have a functional group such as polyolefin. It was difficult to fix the antibacterial agent.

そのため、使用可能な樹脂の制限がなく、かつ、安全性および抗菌性に優れ、抗菌剤が均一に分散された中空成形体が求められていた。   Therefore, there has been a demand for a hollow molded article that is free from restrictions on resins that can be used, is excellent in safety and antibacterial properties, and in which an antibacterial agent is uniformly dispersed.

特開平09−002537号公報JP 09-002537 A 特開平09−118373号公報JP 09-118373 A 特開2002−331028号公報JP 2002-331028 A 特開2004−250032号公報JP 2004-250032 A 特開昭54−086584号公報Japanese Patent Laid-Open No. 54-086584 特開平04−266912号公報Japanese Patent Laid-Open No. 04-266912 特開平05−310820号公報JP 05-310820 A

本発明の目的は、安全性および抗菌性に優れ、抗菌剤が均一に分散された中空成形体を提供することにある。   An object of the present invention is to provide a hollow molded article that is excellent in safety and antibacterial properties and in which an antibacterial agent is uniformly dispersed.

本発明者らは、中空成形体について鋭意検討した結果、パラベン(パラヒドロキシ安息香酸エステル)類を含むマスターバッチを用いることにより、安全性および抗菌性に優れ、抗菌剤が均一に分散された中空成形体が得られることを見出し、本発明を完成するに至った。
すなわち本発明は、熱可塑性樹脂(A)および式(1)で表される化合物を含有する樹脂組成物と、熱可塑性樹脂(B)との溶融混練物から構成される中空成形体を提供する。
(Rは水素原子またはアルカリ金属、Rは炭素原子数1〜10のアルキル基またはアリール基を示す。)
As a result of intensive studies on the hollow molded article, the inventors of the present invention have achieved excellent safety and antibacterial properties by using a masterbatch containing parabens (parahydroxybenzoate esters), and a hollow in which an antibacterial agent is uniformly dispersed. The present inventors have found that a molded body can be obtained and have completed the present invention.
That is, this invention provides the hollow molded object comprised from the melt-kneaded material of the resin composition containing the compound represented by a thermoplastic resin (A) and Formula (1), and a thermoplastic resin (B). .
(R 1 represents a hydrogen atom or an alkali metal, and R 2 represents an alkyl group or an aryl group having 1 to 10 carbon atoms.)

本発明の中空成形体は安全性および抗菌性に優れるため、人体と接触する製品にも使用することができる。また、本発明の中空成形体は抗菌剤が均一に分散されているため、部位による抗菌力の偏りが少ない。   Since the hollow molded body of the present invention is excellent in safety and antibacterial properties, it can also be used for products that come into contact with the human body. In addition, since the antibacterial agent is uniformly dispersed in the hollow molded body of the present invention, there is little bias in antibacterial power depending on the site.

実施例1で得た樹脂成形体の表面の走査電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of a resin molded body obtained in Example 1. FIG. 実施例5で得た樹脂成形体の表面の走査電子顕微鏡写真である。6 is a scanning electron micrograph of the surface of a resin molded body obtained in Example 5. FIG. 比較例3で得た樹脂成形体の表面の走査電子顕微鏡写真である。4 is a scanning electron micrograph of the surface of a resin molded body obtained in Comparative Example 3. 実施例1で得た容器を示す図である。1 is a view showing a container obtained in Example 1. FIG.

本発明における中空成形体とは、開口した空間部を有する成形体であり、タンクやボトル、カップやトレイ、ボウル等の容器、および袋等のように一端が開口した成形体や、チューブ、ホース、パイプ等のように両端が開口した成形体も含まれる。   The hollow molded body in the present invention is a molded body having an open space, a molded body having one end opened, such as a container such as a tank, a bottle, a cup, a tray, or a bowl, and a bag, a tube, or a hose. Further, a molded body having both ends opened like a pipe or the like is also included.

本発明に使用する熱可塑性樹脂(A)および熱可塑性樹脂(B)としては、ポリプロピレン、ポリエチレン、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリ塩化ビニル、アクリロニトリル−ブタジエン−スチレン共重合樹脂(ABS樹脂)、アクリロニトリル−スチレン共重合樹脂(AS樹脂)、ポリエステルおよび熱可塑性エラストマーからなる群から選択される1種以上の樹脂またはその共重合樹脂が挙げられ、中でも式(1)で表される化合物との相溶性に優れる点で、ポリプロピレンまたはポリエチレンが好ましい。   Examples of the thermoplastic resin (A) and the thermoplastic resin (B) used in the present invention include polypropylene, polyethylene, polyoxymethylene, polyamide, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), One or more resins selected from the group consisting of acrylonitrile-styrene copolymer resin (AS resin), polyester, and thermoplastic elastomer, or a copolymer resin thereof may be mentioned, and in particular, a phase with a compound represented by the formula (1) From the viewpoint of excellent solubility, polypropylene or polyethylene is preferred.

式(1)で表される化合物において、Rは、好ましくは水素原子またはナトリウム、カリウムであり、より好ましくは水素原子である。 In the compound represented by the formula (1), R 1 is preferably a hydrogen atom or sodium or potassium, more preferably a hydrogen atom.

式(1)で表される化合物において、Rは、好ましくは炭素原子数1〜6のアルキル基またはアリール基であり、より好ましくはメチル基、エチル基、プロピル基、ブチル基、ヘキシル基またはベンジル基であり、さらに好ましくはブチル基またはヘキシル基である。 In the compound represented by the formula (1), R 2 is preferably an alkyl group having 1 to 6 carbon atoms or an aryl group, more preferably a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group or A benzyl group, more preferably a butyl group or a hexyl group.

本発明に使用する式(1)で表される化合物としては、4−ヒドロキシ安息香酸メチル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸プロピル、4−ヒドロキシ安息香酸ブチル、4−ヒドロキシ安息香酸ヘキシルおよび4−ヒドロキシ安息香酸ベンジルからなる群から選択される1種以上が挙げられ、抗菌性が高く、難昇華性であることから4−ヒドロキシ安息香酸ブチルおよび4−ヒドロキシ安息香酸ヘキシルが好ましい。   Examples of the compound represented by the formula (1) used in the present invention include methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, and 4-hydroxybenzoic acid. One or more selected from the group consisting of hexyl and benzyl 4-hydroxybenzoate can be mentioned, and butyl 4-hydroxybenzoate and hexyl 4-hydroxybenzoate are preferred because they have high antibacterial properties and are hardly sublimable.

本発明における樹脂組成物は、熱可塑性樹脂(A)100質量部に対して式(1)で表される化合物を1〜30質量部含有するのが好ましく、3〜20質量部含有するのがより好ましく、5〜15質量部含有するのがさらに好ましい。   It is preferable that the resin composition in this invention contains 1-30 mass parts of compounds represented by Formula (1) with respect to 100 mass parts of thermoplastic resins (A), and contains 3-20 mass parts. More preferably, it is more preferably 5 to 15 parts by mass.

式(1)で表される化合物を得る方法は特に限定されないが、市販されているものでもよく、あるいは、触媒の存在下、4−ヒドロキシ安息香酸と炭素原子数1〜10の脂肪族アルコールまたはアリールアルコールとの反応によって得られたものを用いてもよい。   The method for obtaining the compound represented by the formula (1) is not particularly limited, but may be a commercially available one, or 4-hydroxybenzoic acid and an aliphatic alcohol having 1 to 10 carbon atoms in the presence of a catalyst. You may use what was obtained by reaction with aryl alcohol.

本発明における樹脂組成物中の式(1)で表される化合物の含有量が、熱可塑性樹脂(A)100質量部に対して1質量部未満である場合、樹脂組成物のマスターバッチとしての使用が困難になる傾向があり、式(1)で表される化合物が熱可塑性樹脂(A)100質量部に対して30質量部超である場合、式(1)で表される化合物が中空成形体中で沈殿や凝集するおそれがある。   When the content of the compound represented by the formula (1) in the resin composition in the present invention is less than 1 part by mass with respect to 100 parts by mass of the thermoplastic resin (A), as a master batch of the resin composition When the compound represented by the formula (1) is more than 30 parts by mass with respect to 100 parts by mass of the thermoplastic resin (A), the compound represented by the formula (1) is hollow. There is a risk of precipitation or aggregation in the molded body.

本発明における樹脂組成物は、熱可塑性樹脂(A)および式(1)で表される化合物を混合することによって製造することができる。混合は、熱可塑性樹脂と式(1)で表される化合物を溶融混合させることによって行ってもよく、式(1)で表される化合物を溶媒に溶解させた状態で、加熱溶融させた樹脂と混合し、溶融樹脂から溶媒を気体の状態で除去することによって行ってもよい。   The resin composition in the present invention can be produced by mixing the thermoplastic resin (A) and the compound represented by the formula (1). The mixing may be performed by melt-mixing the thermoplastic resin and the compound represented by formula (1), and the resin melted by heating in a state where the compound represented by formula (1) is dissolved in a solvent. And the solvent may be removed from the molten resin in a gaseous state.

熱可塑性樹脂(A)と式(1)で表される化合物を溶融混合する場合、例えばタンブラーブレンダー、ヘンシェルミキサー又はスーパーミキサーのような混合機で予め均一に混合した後、単軸押出機や多軸押出機で溶融混練し、押出されたストランドをカッター等で切断して造粒する方法や、ニーダーやバンバリーミキサー等で溶融混練した後に押出機を用いて造粒する方法等が挙げられる。   When the thermoplastic resin (A) and the compound represented by the formula (1) are melt-mixed, they are mixed uniformly in advance with a mixer such as a tumbler blender, a Henschel mixer or a super mixer, Examples thereof include a method of melt-kneading with a shaft extruder, cutting the extruded strand with a cutter, etc., granulating, a method of melt-kneading with a kneader, Banbury mixer, etc., and granulating with an extruder.

加熱条件は、用いる熱可塑性樹脂(A)や式(1)で表される化合物、添加剤の種類や配合量、或いは用いる混合機の条件等によっても相違するので、一概には規定できないが、用いる熱可塑性樹脂の結晶融解温度以上、劣化温度未満の温度で1〜600秒加熱されることが望ましい。   The heating conditions vary depending on the thermoplastic resin (A) and the compound represented by the formula (1), the type and amount of additives, or the conditions of the mixer to be used. It is desirable to heat for 1 to 600 seconds at a temperature not lower than the crystal melting temperature of the thermoplastic resin used and lower than the deterioration temperature.

式(1)で表される化合物を溶媒に溶解させた状態で、加熱溶融させた樹脂と混合する場合、溶媒としては、式(1)で表される化合物を溶解させるものであれば特に限定されないが、有機溶剤、例えばメタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール、トルエン、キシレン、メシチレン、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジフェニルエーテル、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N−メチルピロリドン、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等が挙げられる。   In the case where the compound represented by the formula (1) is dissolved in a solvent and mixed with the heat-melted resin, the solvent is particularly limited as long as it dissolves the compound represented by the formula (1). Organic solvents such as methanol, ethanol, propanol, isopropanol, ethylene glycol, propylene glycol, toluene, xylene, mesitylene, diethyl ether, tetrahydrofuran, dioxane, diphenyl ether, dimethyl sulfoxide, N, N-dimethylformamide, N-methylpyrrolidone , Dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride and the like.

式(1)で表される化合物を溶媒に溶解させる温度としては特に限定されないが、例えば10〜80℃であってよい。また、式(1)で表される化合物は、溶媒100質量部に対し、例えば10〜200質量部の範囲の量で溶解させることができる。   Although it does not specifically limit as temperature which dissolves the compound represented by Formula (1) in a solvent, For example, you may be 10-80 degreeC. Moreover, the compound represented by Formula (1) can be dissolved in the quantity of the range of 10-200 mass parts with respect to 100 mass parts of solvents, for example.

混合された式(1)で表される化合物は熱可塑性樹脂(A)中に粒子径が5μm以下の粒子として分散した状態、すなわち、粒子径が5μmを超える粒子がない状態が好ましい。熱可塑性樹脂中(A)の式(1)で表される化合物の粒子径が5μmを超えると、十分な抗菌性が得られ難くなる傾向がある。熱可塑性樹脂中の式(1)で表される化合物は、熱可塑性樹脂中において好ましくは粒子径が2.5μm以下の粒子として分散した状態、より好ましくは粒子径が1μm以下の粒子として分散した状態、さらに好ましくは粒子径が0.1μm以下の粒子として分散した状態である。粒子の状態は、走査電子顕微鏡(SEM)で観察して確認することができる。粒子径の測定は、走査電子顕微鏡像において、一つの粒子について最大寸法となる2点間距離を測定する画像解析法により行った。樹脂組成物中の式(1)で表される化合物の粒子径は、中空成形体の製造過程を経ても変化し難い傾向がある。したがって、樹脂組成物中における式(1)で表される化合物の粒子径と、その樹脂組成物を用いて製造した中空成形体中における式(1)で表される化合物の粒子径とは、ほぼ同一となる。   The mixed compound represented by the formula (1) is preferably dispersed in the thermoplastic resin (A) as particles having a particle diameter of 5 μm or less, that is, a state in which there are no particles having a particle diameter exceeding 5 μm. When the particle diameter of the compound represented by the formula (1) in the thermoplastic resin (A) exceeds 5 μm, sufficient antibacterial properties tend to be hardly obtained. The compound represented by the formula (1) in the thermoplastic resin is preferably dispersed as particles having a particle size of 2.5 μm or less in the thermoplastic resin, more preferably as particles having a particle size of 1 μm or less. More preferably, the particle is dispersed as particles having a particle diameter of 0.1 μm or less. The state of the particles can be confirmed by observing with a scanning electron microscope (SEM). The particle diameter was measured by an image analysis method for measuring the distance between two points which is the maximum dimension for one particle in a scanning electron microscope image. The particle size of the compound represented by the formula (1) in the resin composition tends to hardly change even after undergoing the manufacturing process of the hollow molded body. Therefore, the particle diameter of the compound represented by the formula (1) in the resin composition and the particle diameter of the compound represented by the formula (1) in the hollow molded body produced using the resin composition are: It becomes almost the same.

本発明において、樹脂組成物はペレットの形状であることが好ましい。本発明における樹脂組成物のペレットの製造方法としては、特に限定されないが、例えば、式(1)で表される化合物を含有させた樹脂組成物を押出成形によりシート状に成形し、この得られたシート状成形物をカッター等により適度な大きさに切断してペレットに加工する方法等を用いることができる。   In the present invention, the resin composition is preferably in the form of pellets. The method for producing pellets of the resin composition in the present invention is not particularly limited. For example, the resin composition containing the compound represented by the formula (1) is molded into a sheet by extrusion molding, and this is obtained. For example, a method of cutting a sheet-like molded product into an appropriate size by a cutter or the like and processing it into a pellet can be used.

ペレットの形状としては、特に限定されるものではなく、例えば、角柱状、球状等とすることができる。ペレットの大きさとしては、角柱状の場合は最大辺の長さが1〜20mmであることが好ましく、球状の場合は粒子径が1〜20mmであることが好ましい。ペレットの大きさが上記範囲内にあることで、取扱性が向上し、ペレットの包装作業等が容易になる。   The shape of the pellet is not particularly limited, and may be, for example, a prismatic shape or a spherical shape. As the size of the pellet, the length of the maximum side is preferably 1 to 20 mm in the case of a prismatic shape, and the particle diameter is preferably 1 to 20 mm in the case of a spherical shape. When the size of the pellet is within the above range, the handleability is improved, and the pellet packaging operation and the like are facilitated.

本発明の樹脂組成物はマスターバッチとして使用される。本発明において、マスターバッチとは、式(1)で表される化合物を熱可塑性樹脂(A)100質量部に対して1質量部以上の高濃度に含有した樹脂ペレットのことをいい、ベース樹脂としての熱可塑性樹脂(B)に混合され、熱可塑性樹脂(B)と共に溶融混練物を成形する。マスターバッチを用いると、式(1)で表される化合物を直接熱可塑性樹脂(B)に添加して成形することと比較して、材料の取り扱い性が容易で秤量精度も向上する。また、マスターバッチを用いると、汎用の成形機を用いて、式(1)で表される化合物の微粒子を含有する成形体を製造できるという利点も有する。   The resin composition of the present invention is used as a master batch. In the present invention, the master batch refers to a resin pellet containing the compound represented by the formula (1) at a high concentration of 1 part by mass or more with respect to 100 parts by mass of the thermoplastic resin (A). Are mixed with the thermoplastic resin (B), and a melt-kneaded product is formed together with the thermoplastic resin (B). When the master batch is used, the material is easy to handle and the weighing accuracy is improved as compared with the case where the compound represented by the formula (1) is directly added to the thermoplastic resin (B) and molded. Moreover, when a masterbatch is used, there also exists an advantage that the molded object containing the microparticles | fine-particles of the compound represented by Formula (1) can be manufactured using a general purpose molding machine.

溶融混練物は、マスターバッチとしての樹脂組成物とベース樹脂とを溶融状態で混練することにより得られるものである。本発明における溶融混練物は、溶融状態、固体状態またはそれらの混合状態であってよい。   The melt-kneaded product is obtained by kneading a resin composition as a master batch and a base resin in a molten state. The melt-kneaded product in the present invention may be in a molten state, a solid state, or a mixed state thereof.

熱可塑性樹脂(B)としては、マスターバッチに含有される熱可塑性樹脂(A)として上で例示した熱可塑性樹脂が挙げられる。熱可塑性樹脂(B)は、熱可塑性樹脂(A)と同一または異なっていてもよく、マスターバッチに含有される熱可塑性樹脂(A)と相溶性の高いものが好ましく、マスターバッチに含有される熱可塑性樹脂(A)と同一の熱可塑性樹脂がより好ましい。   As a thermoplastic resin (B), the thermoplastic resin illustrated above as a thermoplastic resin (A) contained in a masterbatch is mentioned. The thermoplastic resin (B) may be the same as or different from the thermoplastic resin (A), and is preferably highly compatible with the thermoplastic resin (A) contained in the masterbatch. The same thermoplastic resin as the thermoplastic resin (A) is more preferable.

本発明における溶融混練物は熱可塑性樹脂(B)100質量部に対して上記樹脂組成物を1〜40質量部含有するのが好ましく、10〜30質量部含有するのがより好ましく、15〜25質量部含有するのがさらに好ましい。   The melt-kneaded product in the present invention preferably contains 1 to 40 parts by mass, more preferably 10 to 30 parts by mass of the resin composition, with respect to 100 parts by mass of the thermoplastic resin (B). More preferably, it is contained in parts by mass.

溶融混練物は、熱可塑性樹脂(B)100質量部に対して式(1)で示される化合物を好ましくは0.01質量部以上、より好ましくは0.3質量部以上、さらに好ましくは0.75質量部以上含有するのが好ましい。また、溶融混練物は、熱可塑性樹脂(B)100質量部に対して式(1)で示される化合物を好ましくは12質量部以下、より好ましくは6質量部以下、さらに好ましくは3.75質量部以下、より好ましくは1質量部以下、特に好ましくは1質量部未満含有する。   In the melt-kneaded product, the compound represented by the formula (1) is preferably 0.01 parts by mass or more, more preferably 0.3 parts by mass or more, still more preferably 0.00 parts by mass with respect to 100 parts by mass of the thermoplastic resin (B). It is preferable to contain 75 parts by mass or more. The melt-kneaded product is preferably 12 parts by mass or less, more preferably 6 parts by mass or less, and still more preferably 3.75 parts by mass of the compound represented by the formula (1) with respect to 100 parts by mass of the thermoplastic resin (B). Part or less, more preferably 1 part by weight or less, particularly preferably less than 1 part by weight.

また、溶融混練物において、式(1)で表される化合物は、粒子径5μm以下の粒子として、より好ましくは粒子径2.5μm以下の粒子として、さらに好ましくは粒子径1μm以下の粒子として分散されている。   In the melt-kneaded product, the compound represented by formula (1) is dispersed as particles having a particle size of 5 μm or less, more preferably as particles having a particle size of 2.5 μm or less, and even more preferably as particles having a particle size of 1 μm or less. Has been.

本発明における溶融混練物中の樹脂組成物が、熱可塑性樹脂(B)100質量部に対して1質量部未満である場合、本発明の中空成形体の抗菌性が低下する傾向があり、樹脂組成物が熱可塑性樹脂(B)100質量部に対して40質量部超である場合、樹脂組成物のマスターバッチとしての利用価値が低下し、生産コストが高くなる傾向がある。   When the resin composition in the melt-kneaded product in the present invention is less than 1 part by mass with respect to 100 parts by mass of the thermoplastic resin (B), the antibacterial property of the hollow molded body of the present invention tends to be reduced, and the resin When a composition is more than 40 mass parts with respect to 100 mass parts of thermoplastic resins (B), the utility value as a masterbatch of a resin composition falls and there exists a tendency for production cost to become high.

本発明の中空成形体は、式(1)で表される化合物が、好ましくは粒子径が5μm以下の粒子として、より好ましくは粒子径が2.5μm以下の粒子として、さらに好ましくは粒子径が1μm以下の粒子として熱可塑性樹脂(A)および(B)中に分散されている。式(1)で表される化合物の粒子径が5μm以下である場合、中空成形体において十分な抗菌性が発揮され易くなる傾向がある。粒子径は、上述の走査電子顕微鏡を用いた画像解析法により行うことができる。   In the hollow molded body of the present invention, the compound represented by the formula (1) is preferably a particle having a particle size of 5 μm or less, more preferably a particle having a particle size of 2.5 μm or less, and further preferably a particle size. Dispersed in the thermoplastic resins (A) and (B) as particles of 1 μm or less. When the particle size of the compound represented by the formula (1) is 5 μm or less, sufficient antibacterial properties tend to be exhibited in the hollow molded body. The particle diameter can be determined by an image analysis method using the above-described scanning electron microscope.

本発明の中空成形体の抗菌活性値は2.0以上であるのが好ましく、2.5以上であるのがより好ましく、3.0以上であるのがさらに好ましい。尚、本発明における抗菌活性値はJIS Z 2801 : 2010に準拠して測定したものである。   The antibacterial activity value of the hollow molded article of the present invention is preferably 2.0 or more, more preferably 2.5 or more, and further preferably 3.0 or more. In addition, the antibacterial activity value in this invention is measured based on JISZ2801: 2010.

本発明の中空成形体は上記式(1)で表される化合物および熱可塑性樹脂以外にも、添加剤を含有していてもよく、添加剤としては、着色剤、難燃剤、熱安定剤、可塑剤、光安定剤(紫外線吸収剤等)、帯電防止剤、分散剤、離型剤等の各種添加剤、強化剤および粉末増量剤等の充填剤からなる群から選択される一種以上が挙げられる。   The hollow molded body of the present invention may contain additives in addition to the compound represented by the above formula (1) and the thermoplastic resin. Examples of the additives include colorants, flame retardants, heat stabilizers, One or more selected from the group consisting of plasticizers, light stabilizers (ultraviolet absorbers, etc.), various additives such as antistatic agents, dispersants, mold release agents, fillers such as reinforcing agents and powder extenders. It is done.

本発明の中空成形体は、熱可塑性樹脂(A)および式(1)で表される化合物を含有する樹脂組成物と、熱可塑性樹脂(B)とを溶融混練する工程、および、得られた溶融混練物を中空状に成形する工程によって製造される。   A hollow molded article of the present invention was obtained by melt-kneading a thermoplastic resin (A) and a resin composition containing a compound represented by the formula (1) and a thermoplastic resin (B), and obtained. It is manufactured by a step of forming a melt-kneaded product into a hollow shape.

溶融混練する工程は、樹脂組成物と熱可塑性樹脂(B)とをタンブラーブレンダー、ヘンシェルミキサーまたはスーパーミキサーのような混合機で予め均一に混合した後、単軸押出機や多軸押出機中で溶融混練する方法により行うことができる。   In the melt-kneading step, the resin composition and the thermoplastic resin (B) are uniformly mixed in advance by a mixer such as a tumbler blender, a Henschel mixer or a super mixer, and then in a single-screw extruder or a multi-screw extruder. It can be performed by a melt kneading method.

溶融混練は、添加剤の種類や配合量、或いは用いる混合機の条件等によっても相違するので、一概には規定できないが、用いる熱可塑性樹脂の結晶融解温度以上、劣化温度未満の温度で加熱しながら1〜600秒行うことが望ましい。   Melt-kneading differs depending on the type and blending amount of the additive or the conditions of the mixer to be used. Therefore, it cannot be generally specified, but it is heated at a temperature higher than the crystal melting temperature of the thermoplastic resin used and lower than the deterioration temperature. However, it is desirable to carry out for 1 to 600 seconds.

溶融混練物を中空状に成形する方法としては、特に制限されず、中空成形体の用途と形状に応じて最適な方法を選ぶことができる。成形方法の例としては、射出成形、真空あるいは加圧によるプレス成形、ブロー成形、インフレーション成形、押出成形等が挙げられる。これらの中でも射出成形は、熱可塑性樹脂の成形に広く用いられており、複雑な形状の成形体の作製に適している。この際、射出成形時の温度は180〜280℃が好ましく、更に好ましくは190〜250℃である。射出成形時の温度を180℃以上とすることにより、溶融粘度が低くなり射出成形性が向上する。また、射出成形時の温度を280℃以下にすることにより、熱可塑性樹脂の熱分解が抑制される。   The method for forming the melt-kneaded product into a hollow shape is not particularly limited, and an optimum method can be selected according to the use and shape of the hollow molded body. Examples of the molding method include injection molding, press molding by vacuum or pressure, blow molding, inflation molding, extrusion molding, and the like. Among these, injection molding is widely used for molding thermoplastic resins, and is suitable for producing a molded body having a complicated shape. At this time, the temperature during injection molding is preferably 180 to 280 ° C, more preferably 190 to 250 ° C. By setting the temperature at the time of injection molding to 180 ° C. or higher, the melt viscosity is lowered and the injection moldability is improved. Moreover, the thermal decomposition of a thermoplastic resin is suppressed by making the temperature at the time of injection molding into 280 degrees C or less.

溶融混練する工程と溶融混練物を中空状に成形する工程は、連続的に行ってよく、または分けて行ってもよい。   The step of melt-kneading and the step of forming the melt-kneaded product into a hollow shape may be performed continuously or separately.

本発明の中空成形体は必要に応じて積層体とし、本発明の効果を損なわない範囲において、滑り性を付与した層や、酸素などの気体や水蒸気のバリア層、遮光層、酸素吸収層、接着層、着色層、導電性層、再生樹脂含有層、紫外線遮断層、保護層、帯電防止層、反射防止層、防汚層、印刷層等を設けてもよい。   The hollow molded body of the present invention is a laminate as necessary, and in a range not impairing the effects of the present invention, a layer imparted with slipperiness, a barrier layer of gas such as oxygen or water vapor, a light shielding layer, an oxygen absorbing layer, An adhesive layer, a colored layer, a conductive layer, a recycled resin-containing layer, an ultraviolet blocking layer, a protective layer, an antistatic layer, an antireflection layer, an antifouling layer, a printed layer, and the like may be provided.

積層体を成形するためには、例えば、溶融させた樹脂を成形体部品の金型に射出し、固化させることにより成形した樹脂層上に、溶融させた他の樹脂を射出し、固化させることを繰り返すことにより成形する方法により行うことができる。ただし、上記射出成形法を用いた場合には、成形後金型を取り除かなければならないため、一度に中空成形体を作成することはできず、幾つかの部品に分けて成形し、その後、熱融着、接着等の手段によって一体に接合することにより、所望の中空成形体を得ることができる。
また、本発明の中空成形体は、上記溶融混練物と他の溶融樹脂とを共押出し、次いでプレス成形することにより積層体として得ることもできる。
他の樹脂としては、マスターバッチに含有される熱可塑性樹脂(A)として上で例示した熱可塑性樹脂が挙げられる。
In order to mold the laminated body, for example, the molten resin is injected into the mold of the molded part and solidified by injecting the molten other resin onto the molded resin layer and solidifying. It can carry out by the method of shape | molding by repeating. However, when the above injection molding method is used, the mold must be removed after molding, so it is not possible to create a hollow molded body at the same time. A desired hollow molded body can be obtained by integrally bonding by means such as fusion and adhesion.
The hollow molded body of the present invention can also be obtained as a laminate by co-extrusion of the melt-kneaded product and other molten resin, followed by press molding.
As other resin, the thermoplastic resin illustrated above as a thermoplastic resin (A) contained in a masterbatch is mentioned.

また、本発明において中空成形体を上記積層体とする場合、熱可塑性樹脂(A)および式(1)で表される化合物を含有する樹脂組成物と、熱可塑性樹脂(B)との溶融混練物から構成される層が、必ず最内層かあるいは最外層の少なくとも一方に位置することを必須とする。   In the present invention, when the hollow molded body is the above laminate, melt kneading of the thermoplastic resin (A) and the resin composition containing the compound represented by the formula (1) with the thermoplastic resin (B). It is essential that the layer composed of the object is located in at least one of the innermost layer and the outermost layer.

本発明の中空成形体としては、容器、ボトル、タンク、袋、チューブ、ホースおよびパイプからなる群から選択される1種以上が挙げられ、用途に応じて任意の形状とすることができる。   As a hollow molded object of this invention, 1 or more types selected from the group which consists of a container, a bottle, a tank, a bag, a tube, a hose, and a pipe is mentioned, It can be set as arbitrary shapes according to a use.

本発明の中空成形体の用途は、特に限定されるものではないが、例えば、食品保存用や医療用として用いられる。本発明の中空成形体の内容物として、例えば、しょうゆ、ソース、味噌、マヨネーズ、ケチャップ、焼肉のたれ、練りからし、練りわさび、擂ったにんにく、ミネラルウォーター、清涼飲料水、お茶、食用油、流動食、スープなどの食品;シャンプー、リンス、ハンドソープ、ボディソープ、洗濯洗剤、柔軟剤、台所洗剤などの界面活性剤類;内服薬、点眼薬、点滴薬、浣腸薬などの医薬品;機械の作動油、潤滑油などの油類;写真現像液、洗浄液、クーラント、殺菌剤、漂白剤などの化学薬品類;農薬;飼料などが挙げられる。   Although the use of the hollow molded object of this invention is not specifically limited, For example, it is used for food preservation or medical use. The contents of the hollow molded body of the present invention include, for example, soy sauce, sauce, miso, mayonnaise, ketchup, grilled meat, kneaded meat, kneaded wasabi, garlic garlic, mineral water, soft drink, tea, edible oil , Shampoos, rinses, hand soaps, body soaps, laundry detergents, softeners, kitchen detergents, and other surfactants; pharmaceuticals such as internal medicines, eye drops, drops, enemas, etc. Oils such as hydraulic oils and lubricating oils; chemicals such as photographic developers, cleaning liquids, coolants, bactericides and bleaches; agricultural chemicals; feeds and the like.

以下、実施例により本発明を詳述するが、本発明はこれに限定されるものではない。   Hereinafter, although an example explains the present invention in detail, the present invention is not limited to this.

実施例および比較例に用いた抗菌剤A〜D、ならびに各測定方法を以下に示す。
≪抗菌剤A≫
4−ヒドロキシ安息香酸ブチルエステル(4−ヒドロキシ安息香酸とブチルアルコールとを触媒の存在下で反応させることにより得た)
≪抗菌剤B≫
4−ヒドロキシ安息香酸ヘキシルエステル(4−ヒドロキシ安息香酸とヘキシルアルコールとを触媒の存在下で反応させることにより得た)
≪抗菌剤C≫
ゼオライト銀(富士ケミカル社製、商品名:バクテライト、品番:MP−102SVC13)
≪抗菌剤D≫
ベヘン酸銀(東京化成工業社製)
Antibacterial agents A to D used in Examples and Comparative Examples, and measurement methods are shown below.
≪Antimicrobial agent A≫
4-hydroxybenzoic acid butyl ester (obtained by reacting 4-hydroxybenzoic acid and butyl alcohol in the presence of a catalyst)
≪Antimicrobial agent B≫
4-Hydroxybenzoic acid hexyl ester (obtained by reacting 4-hydroxybenzoic acid with hexyl alcohol in the presence of a catalyst)
≪Antimicrobial agent C≫
Zeolite silver (manufactured by Fuji Chemical Co., Ltd., trade name: bacterite, product number: MP-102SVC13)
≪Antimicrobial agent D≫
Silver behenate (manufactured by Tokyo Chemical Industry Co., Ltd.)

(測定方法)
(1)抗菌性試験
試験方法:JIS Z 2801 : 2010
試験菌株:大腸菌 Escherichia coli NBRC 3972
試験菌株:黄色ブドウ球菌 Staphylococcus aureus NBRC 12732
(Measuring method)
(1) Antibacterial test method: JIS Z 2801: 2010
Test strain: E. coli Escherichia coli NBRC 3972
Test strain: Staphylococcus aureus Staphylococcus aureus NBRC 12732

容器表面に、大腸菌および黄色ブドウ球菌をそれぞれ含む菌液を滴下し、その上からポリエチレン製フィルムを密着させ、温度35℃、湿度90%の条件下で24時間培養した。培養後、ポリエチレン製フィルムおよび試験片に付着している菌体をSCDLP培地で洗いだした液(VmL)を1mL取り、希釈(D倍希釈)した液1mLをシャーレに移して、SPC培地約20mLを加え、混合させる。培地が固まった後、温度35℃、湿度90%の条件下で40〜48時間培養した後、大腸菌および黄色ブドウ球菌の生菌数をそれぞれカウントした。評価の基準は、抗菌ペレットを含まないポリプロピレン製無加工樹脂成形体(以下、無加工樹脂成形体ともいう)を用いた。試験はそれぞれ3連で行った。   A bacterial solution containing Escherichia coli and Staphylococcus aureus was dropped onto the surface of the container, and a polyethylene film was adhered to the solution. The cells were cultured under conditions of a temperature of 35 ° C. and a humidity of 90% for 24 hours. After culturing, 1 mL of the liquid (VmL) obtained by washing the bacterial cells adhering to the polyethylene film and the test piece with SCDLP medium is taken, and 1 mL of the diluted (D-fold diluted) liquid is transferred to a petri dish, and about 20 mL of SPC medium is obtained. Add and mix. After the medium had solidified, the cells were cultured for 40 to 48 hours under conditions of a temperature of 35 ° C. and a humidity of 90%, and then the viable counts of Escherichia coli and Staphylococcus aureus were counted. As a standard for evaluation, a polypropylene non-processed resin molded body (hereinafter also referred to as a non-processed resin molded body) containing no antibacterial pellets was used. Each test was performed in triplicate.

抗菌試験の評価は以下の方法により算出した。
N=(C×D×V)/A
N:生菌数(試験片1cmあたり)
C:集落数(採用した2枚のシャーレの集落数平均値)
D:希釈倍数(採用したシャーレに分注した希釈液の希釈倍率)
V:洗い出しに用いたSCDLP培地の液量(mL)
A:被覆フィルムの表面積(cm
ただし、Cが<1の場合はCを1として生菌数を算出する。
たとえば、V=10mL、A=16cm、D=1の場合、N<0.63と表示する。
R=(U−U)−(A−U)=U−A
R :抗菌活性値
:無加工樹脂成形体の接種直後の生菌数の対数値の平均値
:無加工樹脂成形体の24時間後の生菌数の対数値の平均値
:抗菌ペレットを含む樹脂成型体の24時間後の生菌数の対数値の平均値
抗菌活性評価:抗菌活性値Rが3.0以上を◎、2.0以上3.0未満を○、1.5以上2.0未満を△、1.5未満を×とした。
The antibacterial test was calculated by the following method.
N = (C × D × V) / A
N: Number of viable bacteria (per 1 cm 2 test piece)
C: Number of villages (average number of villages of the two petri dishes adopted)
D: Dilution factor (dilution ratio of the diluted solution dispensed to the adopted petri dish)
V: Volume of SCDLP medium used for washing out (mL)
A: Surface area of the coated film (cm 2 )
However, when C is <1, C is set to 1 and the viable cell count is calculated.
For example, when V = 10 mL, A = 16 cm 2 , and D = 1, N <0.63 is displayed.
R = (U t −U 0 ) − (A t −U 0 ) = U t −A t
R: antibacterial activity value U 0: No machining mean value of number of living bacteria logarithmic value immediately after inoculation of the resin molded body U t: mean A t logarithm of the number of viable bacteria after 24 hours of non-processed resin molding : Average value of logarithm of the number of viable bacteria after 24 hours of molded resin containing antibacterial pellets Antibacterial activity evaluation: 抗菌 when the antibacterial activity value R is 3.0 or more, 2.0 or more and less than 3.0 .5 or more and less than 2.0 was rated as Δ, and less than 1.5 as x.

(2)抗菌剤粒子の観察
実施例および比較例において得られた試験検体表面を走査電子顕微鏡(SEM)倍率は適宜設定して観察し、次の基準で判定を行った。
○:粒子径1μmを超える粒子が観測されなかった。
△:粒子径1μm超え5μm以下の粒子が観測された。
×:粒子径5μmを超える粒子が観測された。
(2) Observation of antibacterial agent particles The surface of the test specimen obtained in the examples and comparative examples was observed with the scanning electron microscope (SEM) magnification set as appropriate, and judged according to the following criteria.
○: Particles having a particle diameter exceeding 1 μm were not observed.
Δ: Particles having a particle diameter of more than 1 μm and not more than 5 μm were observed.
X: Particles having a particle diameter exceeding 5 μm were observed.

[実施例1]
(樹脂組成物の作製)
抗菌剤A100gを150gに50℃にて溶解した。ポリプロピレン樹脂(株式会社プライムポリマー製、J105G)100質量部に対して、抗菌剤Aが11質量部配合されることとなるように、メタノールに溶解した抗菌剤Aと、200℃の温度で溶融したポリプロピレン樹脂とを二軸押出機(株式会社池貝社製、PCM−30)に供給し、溶融混練し、メタノールを気体の状態で除去することにより得たものをペレット化し、樹脂組成物を得た。
[Example 1]
(Preparation of resin composition)
100 g of antibacterial agent A was dissolved in 150 g at 50 ° C. The antibacterial agent A dissolved in methanol was melted at a temperature of 200 ° C. so that 11 parts by weight of the antibacterial agent A was mixed with 100 parts by weight of the polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G). Polypropylene resin was supplied to a twin screw extruder (Ikegai Co., Ltd., PCM-30), melt-kneaded, and methanol was removed in a gaseous state to pelletize the resin composition to obtain a resin composition. .

(容器の作製)
得られた樹脂組成物とポリプロピレン樹脂(株式会社プライムポリマー製、J105G)を表1に記載の比率にて混合し、射出成形機(日精樹脂工業(株)製UH−1000−110)にて射出成形し、図4に示す厚さ3mm、容量25mLの容器を作製した。作製した容器について、抗菌性試験の評価を行った。結果を表1に示す。
(Production of container)
The obtained resin composition and polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G) were mixed at the ratio shown in Table 1, and injected with an injection molding machine (Nissei Plastic Industries, Ltd. UH-1000-110). Molded to prepare a container having a thickness of 3 mm and a capacity of 25 mL shown in FIG. The produced container was evaluated for an antibacterial test. The results are shown in Table 1.

(樹脂成形体の作製)
得られた樹脂組成物とポリプロピレン樹脂(株式会社プライムポリマー製、J105G)を容器と同様の比率にて混合し、射出成形機(日精樹脂工業(株)製UH−1000−110)を用いて射出成形し、樹脂成形体を得た。得られた樹脂成形体の表面を走査電子顕微鏡(SEM)を用い10000倍に拡大して観察したところ、粒子は観察されなかった。走査電子顕微鏡写真を図1に示す。
(Production of resin molding)
The obtained resin composition and polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G) are mixed in the same ratio as the container and injected using an injection molding machine (UH-1000-110 manufactured by Nissei Plastic Industry Co., Ltd.). Molded to obtain a resin molded body. When the surface of the obtained resin molded body was observed at a magnification of 10,000 times using a scanning electron microscope (SEM), no particles were observed. A scanning electron micrograph is shown in FIG.

[実施例2〜4]
樹脂組成物とポリプロピレンの混合比を表1に示すように変更した以外は、実施例1と同様にして樹脂組成物、容器および樹脂成形体を作製した。得られた樹脂成形体の表面を走査電子顕微鏡にて有機系抗菌剤粒子の観察を行った。また、作製した容器について、抗菌性試験の評価を行った。結果を表1に示す。
[Examples 2 to 4]
A resin composition, a container, and a resin molded body were produced in the same manner as in Example 1 except that the mixing ratio of the resin composition and polypropylene was changed as shown in Table 1. The surface of the obtained resin molding was observed for organic antibacterial agent particles with a scanning electron microscope. Moreover, the antimicrobial test was evaluated about the produced container. The results are shown in Table 1.

[実施例5〜8]
(樹脂組成物の作製)
抗菌剤の種類、および樹脂組成物とポリプロピレンの混合比を表1に示すように変更した以外は、実施例1と同様にして樹脂組成物容器、および樹脂成形体を得た。樹脂成形体の表面を走査電子顕微鏡を用い、10000倍に拡大して観察したところ、粒子は観察されなかった。実施例5の樹脂成形体の走査電子顕微鏡写真を図2に示す。また、得られた容器について抗菌性試験の評価を行った。結果を表1に示す。
[Examples 5 to 8]
(Preparation of resin composition)
A resin composition container and a resin molded body were obtained in the same manner as in Example 1 except that the type of antibacterial agent and the mixing ratio of the resin composition and polypropylene were changed as shown in Table 1. When the surface of the resin molded body was observed at a magnification of 10000 using a scanning electron microscope, no particles were observed. A scanning electron micrograph of the resin molding of Example 5 is shown in FIG. Moreover, the antimicrobial test was evaluated about the obtained container. The results are shown in Table 1.

[実施例9〜10]
(樹脂組成物の作製)
抗菌剤Aの比率を表1に示すように変更した以外は、実施例1と同様にして樹脂組成物を得た。
[Examples 9 to 10]
(Preparation of resin composition)
A resin composition was obtained in the same manner as in Example 1 except that the ratio of the antibacterial agent A was changed as shown in Table 1.

(容器の作製)
得られた樹脂組成物とポリプロピレン樹脂(株式会社プライムポリマー製、J105G)を表1に記載の比率にて混合し、実施例1と同様にして容器を作製した。作製した容器について、抗菌性試験の評価を行った。結果を表1に示す。
(Production of container)
The obtained resin composition and polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G) were mixed at the ratio shown in Table 1, and a container was produced in the same manner as in Example 1. The produced container was evaluated for an antibacterial test. The results are shown in Table 1.

(樹脂成形体の作製)
得られた樹脂組成物とポリプロピレン樹脂(株式会社プライムポリマー製、J105G)を容器と同様の比率にて混合し、射出成形機(日精樹脂工業(株)製UH−1000−110)を用いて射出成形し、樹脂成形体を得た。樹脂成形体の表面を走査電子顕微鏡を用い、10000倍に拡大して有機系抗菌剤粒子の観察を行った。結果を表1に示す。
(Production of resin molding)
The obtained resin composition and polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G) are mixed in the same ratio as the container and injected using an injection molding machine (UH-1000-110 manufactured by Nissei Plastic Industry Co., Ltd.). Molded to obtain a resin molded body. The surface of the resin molding was magnified 10,000 times using a scanning electron microscope, and the organic antibacterial agent particles were observed. The results are shown in Table 1.

[比較例1〜2]
抗菌剤を表1に示すように変更した以外は、実施例1と同様にして樹脂組成物を得た後、容器および樹脂成形体を作製した。得られた樹脂成形体の表面を走査電子顕微鏡にて抗菌剤粒子の観察を行った。また、作製した各容器について、抗菌性試験を行った。結果を表1に示す。
[Comparative Examples 1-2]
Except that the antibacterial agent was changed as shown in Table 1, a resin composition was obtained in the same manner as in Example 1, and then a container and a resin molded body were produced. Antibacterial agent particles were observed on the surface of the obtained resin molding with a scanning electron microscope. Moreover, the antibacterial property test was done about each produced container. The results are shown in Table 1.

[比較例3]
(容器の作製)
抗菌剤Aとポリプロピレン樹脂(株式会社プライムポリマー製、J105G)を表1に記載の比率にて溶融せず混合し、樹脂組成物を得た。また、この樹脂組成物を用いて実施例1と同様にして容器および樹脂成形体を作製した。得られた樹脂成形体の表面を走査電子顕微鏡(SEM)を用い3000倍に拡大して観察したところ、粒子径5μmを超える粒子が観察された。走査電子顕微鏡写真を図3に示す。また、作製した容器について、抗菌性試験を行った。結果を表1に示す。
[Comparative Example 3]
(Production of container)
Antibacterial agent A and polypropylene resin (manufactured by Prime Polymer Co., Ltd., J105G) were mixed without melting at the ratios shown in Table 1 to obtain a resin composition. Moreover, the container and the resin molding were produced like Example 1 using this resin composition. When the surface of the obtained resin molding was observed by magnifying it 3000 times using a scanning electron microscope (SEM), particles having a particle diameter exceeding 5 μm were observed. A scanning electron micrograph is shown in FIG. Moreover, the antimicrobial test was done about the produced container. The results are shown in Table 1.

表1に示される通り、実施例1〜10において、熱可塑性樹脂(A)および抗菌剤として式(1)で表される化合物を含有する樹脂組成物をマスターバッチとして用いた実施例1〜10では、樹脂成形体において抗菌剤の粒子が観察されず、中空成形体としたときに十分な抗菌活性を示すことが分かる。これに対し、無機抗菌剤を用いた比較例1及び2では、樹脂組成物において抗菌剤が均一に分散されておらず、繊維製品としたときに抗菌活性が十分に得られないことが分かる。また、マスターバッチを用いない比較例3では、樹脂組成物において抗菌剤が均一に分散されておらず、中空成形品としたときに抗菌活性が十分に発揮されていないことが分かる。したがって、本発明の中空成形体は、抗菌性が要求される分野において好適に用いることができることが理解される。   As shown in Table 1, in Examples 1 to 10, Examples 1 to 10 using a thermoplastic resin (A) and a resin composition containing a compound represented by Formula (1) as an antibacterial agent as a master batch. Thus, it can be seen that no antibacterial agent particles are observed in the resin molded body, and that sufficient antibacterial activity is exhibited when a hollow molded body is formed. On the other hand, in Comparative Examples 1 and 2 using the inorganic antibacterial agent, it is understood that the antibacterial agent is not uniformly dispersed in the resin composition, and the antibacterial activity is not sufficiently obtained when the fiber product is used. Moreover, in the comparative example 3 which does not use a masterbatch, it turns out that an antibacterial agent is not disperse | distributed uniformly in a resin composition, but when a hollow molded article is used, antibacterial activity is not fully exhibited. Therefore, it is understood that the hollow molded body of the present invention can be suitably used in a field where antibacterial properties are required.

Claims (10)

熱可塑性樹脂(A)および式(1)で表される化合物を含有する樹脂組成物と、熱可塑性樹脂(B)との溶融混練物から構成される中空成形体。
(Rは水素原子またはアルカリ金属、Rは炭素原子数1〜10のアルキル基またはアリール基を示す。)
A hollow molded article comprising a melt-kneaded product of a thermoplastic resin (A) and a resin composition containing a compound represented by formula (1) and a thermoplastic resin (B).
(R 1 represents a hydrogen atom or an alkali metal, and R 2 represents an alkyl group or an aryl group having 1 to 10 carbon atoms.)
熱可塑性樹脂(A)および熱可塑性樹脂(B)がそれぞれ独立して、ポリプロピレン、ポリエチレン、ポリオキシメチレン、ポリアミド、ポリカーボネート、ポリ塩化ビニル、アクリロニトリル−ブタジエン−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリエステルおよび熱可塑性エラストマーからなる群から選択される1種以上である、請求項1に記載の中空成形体。   The thermoplastic resin (A) and the thermoplastic resin (B) are each independently polypropylene, polyethylene, polyoxymethylene, polyamide, polycarbonate, polyvinyl chloride, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin. The hollow molded article according to claim 1, which is at least one selected from the group consisting of polyester and thermoplastic elastomer. 熱可塑性樹脂(A)および熱可塑性樹脂(B)がそれぞれ独立して、ポリプロピレンまたはポリエチレンである、請求項1または2に記載の中空成形体。   The hollow molded body according to claim 1 or 2, wherein the thermoplastic resin (A) and the thermoplastic resin (B) are each independently polypropylene or polyethylene. 式(1)で表される化合物が4−ヒドロキシ安息香酸メチル、4−ヒドロキシ安息香酸エチル、4−ヒドロキシ安息香酸プロピル、4−ヒドロキシ安息香酸ブチル、4−ヒドロキシ安息香酸ヘキシルおよび4−ヒドロキシ安息香酸ベンジルからなる群から選択される1種以上である、請求項1〜3のいずれかに記載の中空成形体。   The compound represented by formula (1) is methyl 4-hydroxybenzoate, ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, hexyl 4-hydroxybenzoate and 4-hydroxybenzoic acid. The hollow molded object according to any one of claims 1 to 3, which is at least one selected from the group consisting of benzyl. 式(1)で表される化合物が4−ヒドロキシ安息香酸ブチルまたは4−ヒドロキシ安息香酸ヘキシルである、請求項1〜4のいずれかに記載の中空成形体。   The hollow molded object in any one of Claims 1-4 whose compound represented by Formula (1) is 4-hydroxybenzoate butyl or 4-hydroxybenzoate hexyl. 樹脂組成物が熱可塑性樹脂(A)100質量部に対して式(1)で表される化合物を1〜30質量部含有する、請求項1〜5のいずれかに記載の中空成形体。   The hollow molded object in any one of Claims 1-5 in which the resin composition contains 1-30 mass parts of compounds represented by Formula (1) with respect to 100 mass parts of thermoplastic resins (A). 熱可塑性樹脂(B)100質量部および樹脂組成物1〜40質量部の溶融混練物から構成される、請求項1〜6のいずれかに記載の中空成形体。   The hollow molded object in any one of Claims 1-6 comprised from 100 mass parts of thermoplastic resins (B) and the melt-kneaded material of 1-40 mass parts of resin compositions. 式(1)で表される化合物が、熱可塑性樹脂中に粒子径5μm以下の粒子として分散した、請求項1〜7のいずれかに記載の中空成形体。   The hollow molded object in any one of Claims 1-7 in which the compound represented by Formula (1) disperse | distributed as a particle | grain with a particle diameter of 5 micrometers or less in a thermoplastic resin. 中空成形体が容器、ボトル、タンク、袋、チューブ、ホースおよびパイプからなる群から選択される1種以上である、請求項1〜8のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 8, wherein the hollow molded body is at least one selected from the group consisting of a container, a bottle, a tank, a bag, a tube, a hose and a pipe. 熱可塑性樹脂(A)と式(1)で表される化合物を含有する樹脂組成物と、熱可塑性樹脂(B)とを溶融混練する工程、および、
得られた溶融混練物を中空状に成形する工程
を含む、請求項1〜9のいずれかに記載の中空成形体の製造方法。
A step of melt-kneading the thermoplastic resin (A) and a resin composition containing the compound represented by the formula (1) and the thermoplastic resin (B); and
The manufacturing method of the hollow molded object in any one of Claims 1-9 including the process of shape | molding the obtained melt-kneaded material in hollow shape.
JP2017072408A 2017-03-31 2017-03-31 Hollow molded body Active JP6944266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072408A JP6944266B2 (en) 2017-03-31 2017-03-31 Hollow molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072408A JP6944266B2 (en) 2017-03-31 2017-03-31 Hollow molded body

Publications (2)

Publication Number Publication Date
JP2018172570A true JP2018172570A (en) 2018-11-08
JP6944266B2 JP6944266B2 (en) 2021-10-06

Family

ID=64107067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072408A Active JP6944266B2 (en) 2017-03-31 2017-03-31 Hollow molded body

Country Status (1)

Country Link
JP (1) JP6944266B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139937A (en) * 1986-12-03 1988-06-11 Mitsubishi Petrochem Co Ltd Propylene polymer composition
JPH1121400A (en) * 1997-07-04 1999-01-26 Otsuka Chem Co Ltd Antibacterial or antifungal resin composition and its use
JP2003160728A (en) * 2001-11-28 2003-06-06 Mitsubishi Engineering Plastics Corp Polyamide resin composition and sheet-form extrusion- molded article
JP2005126520A (en) * 2003-10-22 2005-05-19 Ueno Seiyaku Oyo Kenkyusho:Kk Liquid crystal polyester resin composition, and molding made of the same
WO2007010787A1 (en) * 2005-07-15 2007-01-25 Sanc Salaam Corporation Sustained-release thermoplastic polymer composition and product comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139937A (en) * 1986-12-03 1988-06-11 Mitsubishi Petrochem Co Ltd Propylene polymer composition
JPH1121400A (en) * 1997-07-04 1999-01-26 Otsuka Chem Co Ltd Antibacterial or antifungal resin composition and its use
JP2003160728A (en) * 2001-11-28 2003-06-06 Mitsubishi Engineering Plastics Corp Polyamide resin composition and sheet-form extrusion- molded article
JP2005126520A (en) * 2003-10-22 2005-05-19 Ueno Seiyaku Oyo Kenkyusho:Kk Liquid crystal polyester resin composition, and molding made of the same
WO2007010787A1 (en) * 2005-07-15 2007-01-25 Sanc Salaam Corporation Sustained-release thermoplastic polymer composition and product comprising the same

Also Published As

Publication number Publication date
JP6944266B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
US9523160B2 (en) Method of preparing antimicrobial 3D-printing filament
EP2285892B1 (en) Polymeric compositions and articles comprising polylactic acid and polyolefin
JP2004525227A (en) Hexahydrophthalic acid metal salts as nucleation additives for crystalline thermoplastic polymers
CN106103583B (en) Resin combination, multilayer structure making and bag in box inner pressurd vessel
CN102449059A (en) Polymer compositions, articles made from such compositions, and methods for molding such compositions
JP6448273B2 (en) Thermoformed container and manufacturing method thereof
WO2002077094A1 (en) Diacetal composition, nucleating agent containing the composition for polyolefin, polyolefin resin composition containing the diacetal composition, process for producing the resin composition, and molded object
JP6864522B2 (en) pellet
CN109679187A (en) A kind of high-efficiency antimicrobial antistatic degradable environmental protection stone plastic film material and preparation method thereof
JP6944265B2 (en) the film
JP6346305B2 (en) Manufacturing method of additive for granular resin, additive for granular resin, thermoplastic resin composition, and molded product obtained by the manufacturing method
CN107107435A (en) Cleaning agent
JP2018172570A (en) Hollow molded body
JP2008239882A (en) Anti-bacterial fluororesin composition
JP6892572B2 (en) Method for manufacturing injection foam molded product of carbon fiber reinforced / modified polyester resin
JP2016060909A (en) Antifogging agent for thermoplastic resin and thermoplastic resin composition containing the same
JP7202114B2 (en) Master Badge
EP3177685A1 (en) Masterbatch containing heat-sensitive functional additive
CN110382616A (en) Resin combination and the moulding material and multilayer structure making being made of it
JP2004035625A (en) 4-methyl-1-pentene-based polymer resin composition
US20180319978A1 (en) Elevated glass-transition temperature polymeric polylactic acid and methods of making same
JP2018172348A (en) Fiber product
KR100431423B1 (en) Drug-containing resin composition and molded article
JP2006213831A (en) Resin composition and molded article thereof
JPH09217091A (en) Thermoplastic resin composition for purging

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210910

R150 Certificate of patent or registration of utility model

Ref document number: 6944266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150