JP2019034994A - Hygroscopic antibacterial resin composition and molded body - Google Patents

Hygroscopic antibacterial resin composition and molded body Download PDF

Info

Publication number
JP2019034994A
JP2019034994A JP2017155530A JP2017155530A JP2019034994A JP 2019034994 A JP2019034994 A JP 2019034994A JP 2017155530 A JP2017155530 A JP 2017155530A JP 2017155530 A JP2017155530 A JP 2017155530A JP 2019034994 A JP2019034994 A JP 2019034994A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
shell
calcium
antibacterial
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017155530A
Other languages
Japanese (ja)
Other versions
JP6992319B2 (en
Inventor
啓介 増子
Keisuke Masuko
啓介 増子
健 西中
Takeshi Nishinaka
健 西中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2017155530A priority Critical patent/JP6992319B2/en
Publication of JP2019034994A publication Critical patent/JP2019034994A/en
Application granted granted Critical
Publication of JP6992319B2 publication Critical patent/JP6992319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bag Frames (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide a moisture absorbing antibacterial resin composition capable of molding a molded body having antibacterial effect at a low addition amount since deterioration of a substrate resin is low and dispersibility of antibacterial agent is good, and the molded body.SOLUTION: The above described problem is solved by a moisture absorbing antibacterial resin composition containing shell burning calcium (A) having average particle diameter of 3 to 20 μm and time till moisture absorbing amount reaches equilibration under temperature of 23°C, humidity 50%RH environment of 65 to 130 hrs, and a thermoplastic resin (B), and a molded body by molding the moisture absorbing antibacterial resin composition.SELECTED DRAWING: None

Description

本発明は、臭気および菌の増殖を抑制できる成形体に使用できる吸湿性抗菌樹脂組成物に関する。   The present invention relates to a hygroscopic antibacterial resin composition that can be used in a molded product that can suppress odor and bacterial growth.

日本では大腸菌O−157やMRSAの発生を機に、衛生面に対する意識と関心がより一層強まり、食品衛生分野、メディカル分野において抗菌製品に対する注目が集まっている。プラスチック成形体に抗菌機能を付与するには、抗菌剤を、プラスチックへの練り混む方法等が用いられており、多くの抗菌剤が使用されている。抗菌剤には有機系、無機系が存在し、有機系抗菌剤は無機系抗菌剤に比べて即効性に優れ、加工がし易く低コストであるが、持続性に劣る。一方、無機系抗菌剤は有機系抗菌剤に比べて即効性には劣るが、持続性に優れ、人体に与える影響度が低い。そのため、食品に関する製品や、人体に触れる製品には、無機系抗菌剤が多く用いられている。   In Japan, the emergence of Escherichia coli O-157 and MRSA has further enhanced awareness and interest in hygiene, and attention has been focused on antibacterial products in the food hygiene and medical fields. In order to impart an antibacterial function to a plastic molded body, a method of kneading an antibacterial agent into plastic is used, and many antibacterial agents are used. There are organic and inorganic antibacterial agents, and organic antibacterial agents are more effective than inorganic antibacterial agents, are easy to process and cost less, but are less durable. On the other hand, an inorganic antibacterial agent is inferior in immediate effect to an organic antibacterial agent, but is excellent in sustainability and has a low influence on the human body. Therefore, many inorganic antibacterial agents are used in food-related products and products that come into contact with the human body.

上記無機系抗菌剤には、抗菌性を持つ銀、銅、亜鉛等の金属をゼオライト、シリカアルミナ等の無機担体に担持させた担持型抗菌剤や、水酸化カルシウム、酸化カルシウム等がある(特許文献1、2)。担持型抗菌剤は安全性、持続性の観点から広く使用されているが、樹脂練り混み時に金属イオンと樹脂中の触媒残渣、酸化防止剤、帯電防止剤等の添加剤と反応して、褐色に変色することがある。そのため、プラスチック成形体中の配合により、予期せぬ問題が発生する。一方、水酸化カルシウムや酸化カルシウムは添加剤との反応による変色は見られないものの、高い塩基性による基材樹脂の劣化促進や難分散による添加量の増加を必要し、物性低下をもたらす。そこで、特許文献3では、貝殻を高温焼成して得られた酸化カルシウムを主成分とする焼成粉体を分散した合成樹脂成形体が開示されている。   Examples of the inorganic antibacterial agents include supported antibacterial agents in which metals such as silver, copper, and zinc having antibacterial properties are supported on an inorganic carrier such as zeolite and silica alumina, and calcium hydroxide and calcium oxide (patents) References 1, 2). Supported antibacterial agents are widely used from the viewpoint of safety and durability, but they react with additives such as metal ions and catalyst residues in the resin, antioxidants, antistatic agents, etc. May change color. Therefore, an unexpected problem occurs due to the blending in the plastic molded body. On the other hand, although calcium hydroxide and calcium oxide do not show discoloration due to the reaction with the additive, they require deterioration promotion of the base resin due to high basicity and increase in the amount added due to difficult dispersion, resulting in a decrease in physical properties. Therefore, Patent Document 3 discloses a synthetic resin molded product in which a calcined powder mainly composed of calcium oxide obtained by calcining shells at a high temperature is dispersed.

特開2008−001557号公報JP 2008-001557 A 特開2017−030842号公報JP 2017-030842 A 特開2010−195013号公報JP 2010-195013 A

酸化カルシウムは水と反応して水酸化カルシウムとなることで抗菌性を発現するが、樹脂との練り混みの際、一部、供給機内で吸湿し、押出加工時の高温下によって樹脂の劣化を誘発する。また、一部、酸化カルシウムが水和した状態にある場合、押出加工がなされても、酸化カルシウム同士が凝集するため、効果を得るために添加量が多くなる。そのため、物性低下の問題があった。   Calcium oxide reacts with water to become calcium hydroxide and exhibits antibacterial properties.However, when kneaded with resin, it partially absorbs moisture in the feeder, and the resin deteriorates due to high temperature during extrusion. Trigger. In addition, when calcium oxide is partially hydrated, calcium oxide aggregates even if extrusion is performed, so that the amount added is increased in order to obtain an effect. Therefore, there has been a problem of deterioration of physical properties.

本発明は、持続性の高い抗菌効果を有し、基材樹脂の劣化が少なく、抗菌剤の分散性が良好な成形体を成形できる吸湿性抗菌樹脂組成物および成形体の提供を目的とする。   An object of the present invention is to provide a hygroscopic antibacterial resin composition and a molded article that can form a molded article having a highly durable antibacterial effect, little deterioration of the base resin, and good dispersibility of the antibacterial agent. .

本発明者らは、前記諸問題を解決するために鋭意研究を重ねた結果、特定の貝殻焼成カルシウムと、熱可塑性樹脂とを用いることにより、上記課題を解決することが可能であることを見出し、この知見に基づいて本発明をなしたものである。   As a result of intensive studies in order to solve the above problems, the present inventors have found that the above-described problems can be solved by using a specific shell-shell calcined calcium and a thermoplastic resin. The present invention has been made based on this finding.

すなわち、本発明は、平均粒子径3〜20μm、かつ温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間が60〜130時間である貝殻焼成カルシウム(A)と、熱可塑性樹脂(B)とを含む吸湿性抗菌樹脂組成物であることを特徴とする。   That is, the present invention relates to shell calcined calcium (A) having an average particle diameter of 3 to 20 μm, a temperature of 23 ° C., and a humidity of 50% RH in which the time until moisture absorption reaches equilibrium is 60 to 130 hours, It is a hygroscopic antibacterial resin composition containing a plastic resin (B).

上記の本発明によれば、平均粒子径3〜20μm、かつ温度23℃、湿度50%RH環境で吸湿量が平衡に達するまでの時間が60〜130時間である貝殻焼成カルシウム(A)により加工時における水和反応を抑制することができ、凝集、基材樹脂の劣化を抑制できたことに加え、少量で抗菌性が向上した。これにより吸湿性抗菌樹脂組成物を使用した成形体は、基材の物性を保持したまま、高い抗菌性を有する効果が得られた。   According to the present invention described above, processing is performed with calcined shell calcium (A) having an average particle size of 3 to 20 μm, a temperature of 23 ° C., and a humidity of 50% RH in which the time until moisture absorption reaches equilibrium is 60 to 130 hours. In addition to being able to suppress hydration reaction at the time, and to suppress aggregation and deterioration of the base resin, antibacterial properties were improved in a small amount. As a result, the molded article using the hygroscopic antibacterial resin composition has an effect of having high antibacterial properties while maintaining the physical properties of the substrate.

本発明により、基材樹脂の劣化が少なく、抗菌剤の分散性が良好なため、低添加量で抗菌効果を有する成形体を成形できる吸湿性抗菌樹脂組成物および成形体を提供できる。   According to the present invention, since the base resin is hardly deteriorated and the dispersibility of the antibacterial agent is good, it is possible to provide a hygroscopic antibacterial resin composition and a molded body that can form a molded body having an antibacterial effect with a low addition amount.

本発明の吸湿性抗菌樹脂組成物は、平均粒子径3〜20μmかつ温度23℃、湿度50%RH環境で吸湿量が平衡に達するまでの時間が60〜130時間である貝殻焼成カルシウム(A)と、熱可塑性樹脂(B)とを含む樹脂組成物である。この吸湿性抗菌樹脂組成物は、押出成形、射出成形等により成形体を得ることができる。この成形体は、食品用包装材、フィルム、医療用フィルム等に使用することが好ましい。   The hygroscopic antibacterial resin composition of the present invention has an average particle size of 3 to 20 μm, a temperature of 23 ° C., and a humidity of 50% RH. And a thermoplastic resin (B). With this hygroscopic antibacterial resin composition, a molded body can be obtained by extrusion molding, injection molding or the like. This molded body is preferably used for food packaging materials, films, medical films and the like.

本発明において貝殻焼成カルシウムは大腸菌、サルモネラ菌、緑膿菌黄色ブドウ球菌、MRSA、O−157、腸炎ビブリオ菌、レジオネラ菌、白癬菌、ノロウイルス等の菌に対して効果のある抗菌剤である。また、硫化水素、イソ吉草酸等の酸性臭い物質に対する消臭効果もある。貝殻焼成カルシウムは牡蠣、ホタテ、サザエ、ハマグリ等の貝殻を高温で焼成して得られるが、その中でも、ホタテ貝殻は主成分が炭酸カルシウムであり、組成の90%以上を占める。また、ホタテ貝殻の主成分は石灰石や工業用炭酸カルシウムと似た比率を示し、水銀やカドミニウムのような有害な物質は認められない。さらに、廃棄量が年間数十万トンに達するため、リサイクルの観点からも好適である。本発明の抗菌剤は貝殻を焼成した貝殻焼成カルシウムであり、焼成することで貝殻の主成分である炭酸カルシウムから二酸化炭素が放出され酸化カルシウムとなったものである。成形体中の酸化カルシウムは水と反応して水酸化カルシウムとなり、水酸化カルシウムの塩基性により抗菌性を発現する。さらに、水と反応した際にラジカルが発生し、強い反応性が細菌の細胞壁を攻撃し、より強い抗菌性を発揮するものと考えられている。貝殻焼成カルシウム(A)は、鉱物由来の酸化カルシウムと比較し、水との反応に大きな違いがある。鉱物系は激しく反応して300℃近傍まで発熱するが、一方、貝殻焼成カルシウムは水との反応がマイルドであり、90℃くらいまでしか発熱しない。そのため、基材樹脂の劣化が少なく、かつ安全な抗菌剤として使用する事ができる。   In the present invention, calcined calcium shell is an antibacterial agent effective against bacteria such as Escherichia coli, Salmonella, Pseudomonas aureus, MRSA, O-157, Vibrio parahaemolyticus, Legionella, Trichophyton, and Norovirus. It also has a deodorizing effect on acidic odorous substances such as hydrogen sulfide and isovaleric acid. Shell-calcined calcium is obtained by baking shells such as oysters, scallops, turban shells, and clams at high temperatures. Among them, scallop shells are mainly composed of calcium carbonate, accounting for 90% or more of the composition. The main component of scallop shells is similar to limestone and industrial calcium carbonate, and no harmful substances such as mercury and cadmium are found. Furthermore, since the amount of waste reaches several hundred thousand tons per year, it is preferable from the viewpoint of recycling. The antibacterial agent of the present invention is shell calcined calcium obtained by calcining a shell, and by calcining, carbon dioxide is released from calcium carbonate which is the main component of the shell and becomes calcium oxide. Calcium oxide in the molded body reacts with water to form calcium hydroxide, and exhibits antibacterial properties due to the basicity of calcium hydroxide. Furthermore, radicals are generated when reacting with water, and it is thought that strong reactivity attacks the cell walls of bacteria and exerts stronger antibacterial properties. Shell-calcined calcium (A) has a large difference in reaction with water compared to mineral-derived calcium oxide. The mineral system reacts violently and generates heat up to around 300 ° C., whereas the shell calcined calcium reacts mildly with water and generates heat only up to about 90 ° C. Therefore, the base resin is less deteriorated and can be used as a safe antibacterial agent.

本発明において貝殻焼成カルシウム(A)の平均粒子径は、3〜20μmである。平均粒子径が、3〜20μm、かつ温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間が60〜130時間の範囲にあることで、成形体作製前の吸湿による組成の変化およびそれに伴う凝集を抑制できる。さらに、抗菌効果の即効性も期待できる。好ましくは3〜15μm、より好ましくは5〜15μmである。また、吸湿量が平衡に達するまでの時間は好ましくは70〜120時間、より好ましくは70〜110時間である。
なお、平均粒子径は、走査電子顕微鏡の拡大画像(例えば千倍〜一万倍)から観察できる粒子径(例えば20個程度)を平均したものである。貝殻焼成カルシウム(A)の粒子形状は、球状、楕円体状等公知の粒子形状を使用できる。貝殻焼成カルシウム(A)の粒子がアスペクト比(長径/短径)を有する場合の平均粒子径は、長径を平均する。
また、温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間の判断は、基点となる時間から24時間後に重量の変化が1.0%以下の場合を平衡に達したものとする。
In the present invention, the average particle size of the calcined shell calcium (A) is 3 to 20 μm. Composition by absorption of moisture before forming a molded product by having a mean particle size of 3 to 20 μm, a temperature of 23 ° C. and a humidity of 50% RH in a range of 60 to 130 hours until the amount of moisture absorption reaches equilibrium. And the accompanying aggregation can be suppressed. Furthermore, immediate effect of antibacterial effect can be expected. Preferably it is 3-15 micrometers, More preferably, it is 5-15 micrometers. In addition, the time until the moisture absorption reaches equilibrium is preferably 70 to 120 hours, more preferably 70 to 110 hours.
In addition, an average particle diameter averages the particle diameter (for example, about 20 particles) which can be observed from the enlarged image (for example, 1000 times-10,000 times) of a scanning electron microscope. A known particle shape such as a spherical shape or an ellipsoid shape can be used as the particle shape of the shell-fired calcium (A). The average particle diameter in the case where the shell calcined calcium (A) particles have an aspect ratio (major axis / minor axis) averages the major axis.
In addition, the determination of the time until the amount of moisture absorption reaches equilibrium under a temperature of 23 ° C. and a humidity of 50% RH has reached equilibrium when the change in weight is 1.0% or less after 24 hours from the base time. Shall.

貝殻焼成カルシウム(A)の焼成温度は、900℃以上で1時間以上が好ましく、より好ましくは900℃以上で2時間以上である。900℃未満では完全に焼成が完了せず、一部炭酸カルシウムが残存する恐れがある。   The calcining temperature of the shell calcined calcium (A) is preferably 900 ° C. or higher and 1 hour or longer, more preferably 900 ° C. or higher and 2 hours or longer. If it is less than 900 degreeC, baking will not be completed completely and there exists a possibility that a calcium carbonate may remain partially.

本発明の熱可塑性樹脂(B)は、従来既知の熱可塑性樹脂を用いることができる。
具体的にはポリエチレン、ポリプロピレン、塩化ビニル樹脂、エチレン酢酸ビニル共重合体、ABS等が挙げられる。これらの中でも加工性、機械物性の観点からポリエチレン、ポリプロピレン、ABSが好ましい。
熱可塑性樹脂(B)の融点は、100〜170℃であることが好ましく、110℃から150℃がより好ましい。この範囲にあることで、押出加工時に過度な熱履歴をかけることなく、樹脂が有する水分を脱気しやすく、貝殻焼成カルシウムの水和反応を抑制するため、樹脂劣化を低減することができる。
A conventionally known thermoplastic resin can be used for the thermoplastic resin (B) of the present invention.
Specific examples include polyethylene, polypropylene, vinyl chloride resin, ethylene vinyl acetate copolymer, ABS and the like. Among these, polyethylene, polypropylene, and ABS are preferable from the viewpoint of processability and mechanical properties.
The melting point of the thermoplastic resin (B) is preferably 100 to 170 ° C, and more preferably 110 to 150 ° C. By being in this range, the resin can be easily degassed without applying an excessive heat history during extrusion processing, and the hydration reaction of the calcined shell shell calcium is suppressed, so that resin degradation can be reduced.

また、本発明の吸湿性樹脂組成物は、主成分である熱可塑性樹脂(B1)の表面に、貝殻焼成カルシウム(A)と、熱可塑性樹脂(B1)とは異なる熱可塑性樹脂(B2)とを共に90〜140℃で物理的吸着させた後、溶融混錬してなる、吸湿性樹脂組成物であることが好ましい。
すなわち、主成分である熱可塑性樹脂(B1)の表面に、平均粒子径が3〜20μm、かつ温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間が60〜130時間である貝殻焼成カルシウム(A)と、熱可塑性樹脂(B1)とは異なる熱可塑性樹脂(B2)とを、共に90〜140℃で物理的吸着後、さらに溶融混錬する、吸湿性樹脂組成物の製造方法であることが好ましい。
ここで、主成分とは、樹脂組成物を構成する樹脂の中で、最も含有量が多い樹脂のことをいい、例えば、2種類の樹脂を含有する場合には、樹脂組成物を形成するために用いる樹脂成分の全量(100重量%)中、50重量%以上含有する樹脂をいうものであり、好ましくは70重量%以上含有する樹脂をいうものである。
Further, the hygroscopic resin composition of the present invention has a surface of the thermoplastic resin (B1) as a main component, shell calcined calcium (A), and a thermoplastic resin (B2) different from the thermoplastic resin (B1). Both of these are preferably a hygroscopic resin composition obtained by physical adsorption at 90 to 140 ° C. and then melt-kneading.
That is, the time until the amount of moisture absorption reaches equilibrium in the environment of an average particle diameter of 3 to 20 μm, a temperature of 23 ° C., and a humidity of 50% RH on the surface of the thermoplastic resin (B1) as the main component is 60 to 130 hours. A hygroscopic resin composition in which the calcined shell calcium (A) and the thermoplastic resin (B2) different from the thermoplastic resin (B1) are both physically adsorbed at 90 to 140 ° C. and further melt-kneaded. It is preferable that it is a manufacturing method.
Here, the main component means a resin having the largest content among the resins constituting the resin composition. For example, when two kinds of resins are contained, the resin composition is formed. In the total amount (100% by weight) of the resin component used in the above, it means a resin containing 50% by weight or more, preferably a resin containing 70% by weight or more.

このとき、主成分である熱可塑性樹脂(B1)は、融点が100〜170℃である熱可塑性樹脂であることが好ましい。また、主成分となる熱可塑性樹脂(B1)とは異なる熱可塑性樹脂(B2)は、既知の熱可塑性樹脂を用いることができるが、低分子量のポリエチレン、ポリプロピレンが好ましく、2000〜10000程度の分子量(MW)を有する熱可塑性樹脂であることがより好ましい。また、熱可塑性樹脂(B1)よりも、融点が5〜30℃低いことが好ましい。それにより、予備撹拌時に主成分となる熱可塑性樹脂(B1)を溶融させることなく、熱可塑性樹脂(B2)のみを溶融させることで、熱可塑性樹脂(B1)の表面に貝殻焼成カルシウムと共に物理吸着がより進み、貝殻焼成カルシウムの分散性が増す。   At this time, it is preferable that the thermoplastic resin (B1) as the main component is a thermoplastic resin having a melting point of 100 to 170 ° C. Further, as the thermoplastic resin (B2) different from the thermoplastic resin (B1) as the main component, a known thermoplastic resin can be used, but low molecular weight polyethylene and polypropylene are preferable, and a molecular weight of about 2000 to 10000 is preferred. A thermoplastic resin having (MW) is more preferable. Moreover, it is preferable that melting | fusing point is 5-30 degreeC lower than a thermoplastic resin (B1). As a result, only the thermoplastic resin (B2) is melted without melting the thermoplastic resin (B1) as a main component at the time of pre-stirring, so that physical adsorption with the shell calcined calcium is performed on the surface of the thermoplastic resin (B1). The more dispersible the calcined shell calcium is.

なお、熱可塑性樹脂(B2)の配合量は、均一な表面コーティングの観点から、熱可塑性樹脂(B1)100重量部に対して、5〜20重量部が好ましい。より好ましくは5〜15重量部である。   In addition, the blending amount of the thermoplastic resin (B2) is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the thermoplastic resin (B1) from the viewpoint of uniform surface coating. More preferably, it is 5 to 15 parts by weight.

本発明において、貝殻焼成カルシウム(A)の平均粒子径(D)と成形体厚み(d)は、式(1)1/2D≦d≦50Dを満たすことが好ましい。消臭、抗菌効果は貝殻焼成カルシウムの水和によって得られる水酸化カルシウムのアルカリ性によるものである。そのため、効果は樹脂中の貝殻焼成カルシウムが水和した後、菌や臭い物質との接触によって得られる。それゆえ平均粒子径と成形体厚みが近い場合、水和、接触が起こりやすく、より消臭、抗菌効果が得られやすい。しかしながら、成形体の厚みが平均粒子径よりも薄すぎる場合、機械物性の低下を招く恐れがあるため、より好ましくはD≦d≦30D、さらに好ましくは2D≦d≦20Dである。貝殻焼成カルシウムの水和、接触の観点から成形体厚みの好ましい範囲は5〜300μm、より好ましくは5〜200μmである。   In the present invention, the average particle diameter (D) and the molded body thickness (d) of the calcined shell calcium (A) preferably satisfy the formula (1) 1 / 2D ≦ d ≦ 50D. The deodorant and antibacterial effects are due to the alkalinity of calcium hydroxide obtained by hydration of shell calcined calcium. Therefore, after the shell calcined calcium in the resin is hydrated, the effect is obtained by contact with bacteria or odorous substances. Therefore, when the average particle diameter is close to the molded body thickness, hydration and contact are likely to occur, and deodorization and antibacterial effects are more likely to be obtained. However, if the thickness of the molded body is too thin than the average particle diameter, the mechanical properties may be deteriorated. Therefore, D ≦ d ≦ 30D is more preferable, and 2D ≦ d ≦ 20D is more preferable. From the viewpoint of hydration and contact of the calcined calcium shell, a preferable range of the molded body thickness is 5 to 300 μm, more preferably 5 to 200 μm.

本発明の成形体は、上記の通り吸湿性抗菌樹脂組成物を成形することで作製することができる。
成形体が含む貝殻焼成カルシウムと熱可塑性樹脂の配合量は、用途、成形体厚みによって異なるが、熱可塑性樹脂(B)100重量部に対して、貝殻焼成カルシウム(A)を0.5〜5重量部配合するのが好ましく、より好ましくは0.5〜3重量部であり、特に好ましくは、1.0〜3重量部である。
The molded article of the present invention can be produced by molding a hygroscopic antibacterial resin composition as described above.
The compounding amount of the calcined shell shell calcium and the thermoplastic resin contained in the molded body varies depending on the use and the thickness of the molded body, but the calcined shell calcium (A) is 0.5 to 5 with respect to 100 parts by weight of the thermoplastic resin (B). It is preferable to mix | blend a weight part, More preferably, it is 0.5-3 weight part, Especially preferably, it is 1.0-3 weight part.

本発明の吸湿性樹脂組成物の製造方法は、貝殻焼成カルシウム(A)を高濃度で配合したペレット状のマスターバッチとして製造することが好ましい。マスターバッチは、貝殻焼成カルシウム(A)と熱可塑性樹脂(B)を溶融混練し、さらにペレット状に成形することで製造でき、貝殻焼成カルシウムの凝集及び、溶融混練前の吸湿を防ぐ観点から、貝殻焼成カルシウム(A)を熱可塑性樹脂(B)の表面に熱可塑性樹脂(B)とは異なる熱可塑性樹脂と共に90〜140℃で物理的吸着させた後、溶融混錬して吸湿性抗菌樹脂組成物を得ることが好ましい。ここで、溶融混練前の物理的吸着方法は、高速せん断型混合機であるヘンシェルミキサー、スーパーミキサー等が好ましい。貝殻焼成カルシウム(A)は、成形体が含む相当量を成形時に配合するよりも、一旦、マスターバッチとして吸湿性抗菌樹脂組成物中に予備分散した後に、希釈樹脂の熱可塑性樹脂と配合(溶融混錬)して所望の成形体を製造すると、貝殻焼成カルシウム(A)を成形体内に均一に分散しやすくなる。具体的には、マスターバッチは、熱可塑性樹脂(B)100重量部に対して、貝殻焼成カルシウム(A)を20〜120重量部配合することが好ましい。また、溶融混練は、例えば単軸混練押出機、二軸混練押出機、またはタンデム式二軸混練押出機等を用いるのが好ましい。また、溶融混錬温度は、熱可塑性樹脂(B)の種類により異なるが通常150〜250℃程度である。   The method for producing the hygroscopic resin composition of the present invention is preferably produced as a pellet-shaped master batch in which shell calcined calcium (A) is blended at a high concentration. Master batch can be manufactured by melt-kneading shell calcined calcium (A) and thermoplastic resin (B) and further forming into pellets, from the viewpoint of preventing aggregation of shell calcined calcium and moisture absorption before melt kneading, The calcined calcium (A) is physically adsorbed on the surface of the thermoplastic resin (B) together with a thermoplastic resin different from the thermoplastic resin (B) at 90 to 140 ° C., and then melt-kneaded to absorb the hygroscopic antibacterial resin. It is preferred to obtain a composition. Here, the physical adsorption method before melt-kneading is preferably a high-speed shear mixer, such as a Henschel mixer or a super mixer. The calcined shell calcium (A) is preliminarily dispersed in the hygroscopic antibacterial resin composition as a master batch, and then blended (melted) with a diluted resin rather than blending a considerable amount contained in the molded body at the time of molding. When a desired molded body is manufactured by kneading, it becomes easy to uniformly disperse the shell calcined calcium (A) in the molded body. Specifically, the masterbatch preferably contains 20 to 120 parts by weight of calcined shell calcium (A) per 100 parts by weight of the thermoplastic resin (B). The melt-kneading is preferably performed using, for example, a single-screw kneading extruder, a twin-screw kneading extruder, or a tandem twin-screw kneading extruder. Moreover, although the melt kneading temperature changes with kinds of thermoplastic resin (B), it is about 150-250 degreeC normally.

本発明の吸湿性抗菌樹脂組成物は、貝殻焼成カルシウム(A)および熱可塑性樹脂(B)以外の任意成分として、酸化防止剤、光安定剤、分散剤等を含むことができる。   The hygroscopic antibacterial resin composition of the present invention can contain an antioxidant, a light stabilizer, a dispersant and the like as optional components other than the calcined shell shell calcium (A) and the thermoplastic resin (B).

本発明の吸湿性抗菌樹脂組成物は、フィルムまたはシート等の成形体として使用することができる。これら成形体はT−ダイフィルム成形機、インフレーションフィルム成形機、カレンダーロール成形機等を使用して成形できる。   The hygroscopic antibacterial resin composition of the present invention can be used as a molded article such as a film or a sheet. These molded products can be molded using a T-die film molding machine, an inflation film molding machine, a calender roll molding machine or the like.

本発明の吸湿性抗菌樹脂組成物は、例えば、食品用フィルム、食品用袋、調理用手袋、医療用フィルムが好ましい。   The hygroscopic antibacterial resin composition of the present invention is preferably, for example, a food film, a food bag, a cooking glove, or a medical film.

次に、本発明を具体的に実施例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下、部は重量部、%は重量%を意味する。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. Hereinafter, “part” means “part by weight” and “%” means “% by weight”.

また、貝殻焼成カルシウムの平均粒子径、および吸湿性の測定方法は、以下の通りである。   Moreover, the average particle diameter of shell-calcined calcium and the measuring method of hygroscopicity are as follows.

<貝殻焼成カルシウムの平均粒子径>
平均粒子径は、走査電子顕微鏡の拡大画像千倍により、20個の粒子を平均したものである。また、貝殻焼成カルシウム(A)の粒子形状がアスペクト比(長径/短径)を有する場合の平均粒子径は、長径を平均した。
<Average particle size of calcined shell calcium>
The average particle diameter is an average of 20 particles by a magnified image of 1,000 times with a scanning electron microscope. Further, the average particle diameter when the particle shape of the calcined shell calcium (A) has an aspect ratio (major axis / minor axis) is the average of the major axis.

<貝殻焼成カルシウムの吸湿性>
温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間を下記の方法で測定した。
温度23℃、湿度50%RH環境下で貝殻焼成カルシウムをシャーレ(φ100mm)に約3g薄く平らになるように秤量し、一定時間毎に重量を測定した。重量測定後、24時間たった時点で重量の変化が1.0%以下であった場合、平衡に達したものとした。
<Hygroscopicity of calcined calcium shells>
The time until the amount of moisture absorption reached equilibrium in a temperature 23 ° C., humidity 50% RH environment was measured by the following method.
Under a temperature of 23 ° C. and a humidity of 50% RH, shell calcined calcium was weighed so as to be approximately 3 g thin and flat in a petri dish (φ100 mm), and the weight was measured at regular intervals. If the change in weight was 1.0% or less after 24 hours from the weight measurement, the equilibrium was reached.

実施例および比較例に用いる原料を以下に示す。貝殻焼成カルシウムの製造方法の例を以下に示すが、製造方法は、下記方法に限定されないことは言うまでも無い。   The raw material used for an Example and a comparative example is shown below. Although the example of the manufacturing method of calcination shell calcium is shown below, it cannot be overemphasized that a manufacturing method is not limited to the following method.

[貝殻焼成カルシウムの製造例1]
貝殻を水洗いし乾燥させた後、粗粉砕装置を用いて粒径10mm程度の貝殻粗粉砕物を得た。次いで、貝殻粗粉砕物を陶製容器に充填し、焼成装置により1000℃で2時間焼成した後、焼成物を微粉砕装置により、平均粒子径5μmの貝殻焼成カルシウム(A−1)を得た。
[Production Example 1 of calcined shell shell calcium]
After the shell was washed with water and dried, a coarsely crushed shell with a particle size of about 10 mm was obtained using a coarse pulverizer. Next, the coarsely crushed shell was filled in a ceramic container and baked at 1000 ° C. for 2 hours with a baking device, and then the baked product was obtained with a fine pulverization device to obtain shell-calcined calcium (A-1) having an average particle diameter of 5 μm.

上記貝殻焼成カルシウム(A−1)の焼成条件を変更して貝殻焼成カルシウムを得、粉砕条件を変えることで、表1に示す平均粒子径を有する貝殻焼成カルシウム(A−2)〜(A−8)を製造した。   By changing the baking conditions of the shell-calcined calcium (A-1) to obtain shell-calcined calcium and changing the pulverization conditions, the shell-calcined calcium (A-2) to (A-) having the average particle diameters shown in Table 1 are obtained. 8) was produced.

貝殻焼成カルシウムの平均粒子径および吸湿量が平衡に達するまでの時間を表1に示す。   Table 1 shows the time until the average particle size and moisture absorption of the calcined shell calcium reached equilibrium.

Figure 2019034994
Figure 2019034994

<熱可塑性樹脂>
(B−1)ポリエチレン(サンテックLD 2270 融点113℃、旭化成ケミカルズ
社製)
(B−2)ポリプロピレン(プライムポリプロ J226T 融点141℃、プライムポリマー社製)
(B−3)低分子量ポリオレフィン(ハイワックスNL800 融点103℃、三井化学社製)
(B−4)低分子量ポリオレフィン(ハイワックスNP056 融点132℃、三井化学社製)
<Thermoplastic resin>
(B-1) Polyethylene (Suntech LD 2270, melting point 113 ° C., manufactured by Asahi Kasei Chemicals Corporation)
(B-2) Polypropylene (Prime Polypro J226T melting point 141 ° C., manufactured by Prime Polymer Co., Ltd.)
(B-3) Low molecular weight polyolefin (high wax NL800, melting point 103 ° C., manufactured by Mitsui Chemicals)
(B-4) Low molecular weight polyolefin (high wax NP056 melting point 132 ° C., manufactured by Mitsui Chemicals, Inc.)

[実施例1]
熱可塑性樹脂(B−1)60重量部と貝殻焼成カルシウム(A−1)40重量部とを別々の供給口から単軸押出機(池貝社製)に投入し、190℃で溶融混練した上で、ペレタイザーを使用してペレット状の吸湿性抗菌樹脂組成物(マスターバッチ)を得た。
[Example 1]
60 parts by weight of thermoplastic resin (B-1) and 40 parts by weight of calcined shell shell calcium (A-1) are put into a single screw extruder (manufactured by Ikekai Co., Ltd.) through separate supply ports and melt-kneaded at 190 ° C. A pellet-like hygroscopic antibacterial resin composition (masterbatch) was obtained using a pelletizer.

得られたマスターバッチ3.1重量部と熱可塑性樹脂(B−1)100重量部とを溶融混錬し、Tダイフィルム成形機(東洋精機社製)を使用して温度210℃にてフィルム成形を行い、抗菌フィルムである成形体を得た。   3.1 parts by weight of the obtained master batch and 100 parts by weight of the thermoplastic resin (B-1) are melt-kneaded, and a film is formed at a temperature of 210 ° C. using a T-die film forming machine (manufactured by Toyo Seiki Co., Ltd.). Molding was performed to obtain a molded body as an antibacterial film.

[実施例2〜7]
実施例1の原料および配合量を表2に記載されたように変更した以外は、実施例1と同様に行うことで抗菌フィルムを得た。
[Examples 2 to 7]
An antibacterial film was obtained by carrying out in the same manner as in Example 1 except that the raw materials and blending amounts of Example 1 were changed as described in Table 2.

[実施例8]
熱可塑性樹脂(B−1)50重量部と熱可塑性樹脂(B−3)10重量部と貝殻焼成カルシウム(A−2)40重量部とを高速撹拌機にて105℃で5分間混合した後、得られた予備混合物を単軸押出機(池貝社製)に投入し190℃で溶融混練した後、ペレタイザーを使用してペレット状の吸湿性抗菌樹脂組成物(マスターバッチ)を得た。
[Example 8]
After mixing 50 parts by weight of thermoplastic resin (B-1), 10 parts by weight of thermoplastic resin (B-3) and 40 parts by weight of calcined calcium shell (A-2) at 105 ° C. for 5 minutes with a high-speed stirrer. The obtained preliminary mixture was put into a single screw extruder (manufactured by Ikegai Co., Ltd.) and melt kneaded at 190 ° C., and a pellet-like hygroscopic antibacterial resin composition (master batch) was obtained using a pelletizer.

得られたマスターバッチ3重量部と熱可塑性樹脂(B−1)97重量部とを溶融混錬し、Tダイフィルム成形機(東洋精機社製)を使用して温度210℃にてフィルム成形を行い、抗菌フィルムを得た。   3 parts by weight of the obtained master batch and 97 parts by weight of the thermoplastic resin (B-1) are melt-kneaded, and film forming is performed at a temperature of 210 ° C. using a T-die film forming machine (manufactured by Toyo Seiki Co., Ltd.). To obtain an antibacterial film.

[実施例9〜11]
実施例9〜11の原料および配合量を表2に記載されたように変更した以外は、実施例8と同様にして、抗菌フィルムを得た。
[Examples 9 to 11]
An antibacterial film was obtained in the same manner as in Example 8, except that the raw materials and blending amounts of Examples 9 to 11 were changed as described in Table 2.

Figure 2019034994
Figure 2019034994

[比較例1〜6]
実施例1の貝殻焼成カルシウム(A−1)、および熱可塑性樹脂(B)を、表3に記載した組成及び配合量(重量部)に変更した以外は実施例1と同様にして、それぞれ比較例1〜6の抗菌フィルムを得た。
[Comparative Examples 1-6]
Comparison was made in the same manner as in Example 1 except that the calcined shell calcium (A-1) and the thermoplastic resin (B) of Example 1 were changed to the compositions and blending amounts (parts by weight) shown in Table 3. The antimicrobial film of Examples 1-6 was obtained.

[比較例7]
貝殻焼成カルシウム(A−2)を予め水和させて、水酸化カルシウムにした貝殻焼成カルシウム(AC−1)とし、、表3に記載した組成及び配合量(重量部)に変更した以外は実施例1と同様にして、抗菌フィルムを得た。
[Comparative Example 7]
Except that the calcined shell calcium (A-2) was hydrated in advance to obtain calcium calcined shell shell calcium (AC-1), and the composition and blending amount (parts by weight) shown in Table 3 were changed. In the same manner as in Example 1, an antibacterial film was obtained.

[参考例1、2]
実施例1の貝殻焼成カルシウム(A−1)、および熱可塑性樹脂(B)を、表3に記載した組成及び配合量(重量部)に変更した以外は実施例1と同様にして、それぞれ参考例1、2の抗菌フィルムを得た。
[Reference Examples 1 and 2]
Reference was made in the same manner as in Example 1 except that the calcined shell calcium (A-1) and the thermoplastic resin (B) of Example 1 were changed to the compositions and blending amounts (parts by weight) shown in Table 3. The antimicrobial films of Examples 1 and 2 were obtained.

[参考例3]
抗菌剤を使用せず、表3に記載した熱可塑性樹脂(B)のみで、Tダイフィルム成形機(東洋精機社製)を使用して温度210℃にてフィルム成形を行い、フィルムを得た。
[Reference Example 3]
Without using an antibacterial agent, only the thermoplastic resin (B) listed in Table 3 was used to form a film at a temperature of 210 ° C. using a T-die film molding machine (manufactured by Toyo Seiki Co., Ltd.) to obtain a film. .

Figure 2019034994
Figure 2019034994

得られた抗菌フィルムまたは吸湿性抗菌樹脂組成物を以下の基準で評価した。評価結果を表4に示す。   The obtained antimicrobial film or hygroscopic antimicrobial resin composition was evaluated according to the following criteria. The evaluation results are shown in Table 4.

<抗菌性>
得られた抗菌フィルムを用いてJIS Z 2801:2010「抗菌加工製品―抗菌性試験方法・抗菌効果」に準拠して評価した。5cm角に切ったフィルム表面に試験菌液(黄色ぶどう球菌または大腸菌)を接種し、被覆フィルムをのせて密着させる。これを35℃で24時間保存し、検体1cm当たりの生菌数を測定した。
<Antimicrobial properties>
The obtained antibacterial film was evaluated in accordance with JIS Z 2801: 2010 “Antimicrobial processed product—antibacterial test method / antibacterial effect”. A test bacterial solution (Staphylococcus aureus or Escherichia coli) is inoculated on the surface of the film cut into 5 cm squares, and the coated film is placed on the surface to be adhered. This was stored at 35 ° C. for 24 hours, and the number of viable bacteria per 1 cm 2 of the specimen was measured.

<引張強度>
得られたマスターバッチを用いて210℃でプレスシートを作製し、プレスシートから2号ダンベル引張試験片を作製した(厚さ1mm)。その後、温度23℃、湿度50%RH環境下に24時間静置し、引張試験機で破断点強度を測定した。
比較として、それぞれ貝殻焼成カルシウム等を含有しない得られたマスターバッチと同じ樹脂のみの2号ダンベル引張試験片を作製し、破断点強度を測定した。なお、破断点強度は下記の基準で評価した。
保持率が高いほど、樹脂の劣化が少ないといえる。

◎:貝殻焼成カルシウムを配合していない熱可塑性樹脂のみの引張破断点強度と比較し、
保持率80%以上
○:貝殻焼成カルシウムを配合していない熱可塑性樹脂のみの引張破断点強度と比較し、
保持率70〜80%未満
△:貝殻焼成カルシウムを配合していない熱可塑性樹脂のみの引張破断点強度と比較し、
保持率40〜70%未満
×:貝殻焼成カルシウムを配合していない熱可塑性樹脂のみの引張破断点強度と比較し、
保持率40%未満
<Tensile strength>
A press sheet was produced at 210 ° C. using the obtained master batch, and a No. 2 dumbbell tensile test piece was produced from the press sheet (thickness 1 mm). Then, it left still for 24 hours in temperature 23 degreeC and humidity 50% RH environment, and measured the breaking strength with the tensile tester.
As a comparison, No. 2 dumbbell tensile test pieces made of only the same resin as the obtained masterbatch, each containing no shell calcined calcium or the like, were prepared, and the strength at break was measured. The breaking strength was evaluated according to the following criteria.
It can be said that the higher the retention rate, the less the resin deteriorates.

A: Compared to the tensile strength at break of only thermoplastic resin not containing calcined shell calcium,
Retention rate 80% or more ○: Compared to the tensile strength at break of only thermoplastic resin not containing calcined shell calcium,
Retention ratio 70 to less than 80% Δ: Compared to the tensile strength at break of only a thermoplastic resin not containing calcined shell shell calcium,
Retention rate 40 to less than 70% x: Compared to the tensile strength at break of only a thermoplastic resin not containing calcined shell shell calcium,
Retention rate less than 40%

<分散性>
吸湿性抗菌樹脂組成物を、貝殻焼成カルシウム量で1kgとなるように単軸押出機で通過させ、押出機での樹脂圧上昇により分散性を評価した。樹脂圧は単軸押出機先端に設置した金網(目開き130μm)に貝殻焼成カルシウムが付着することで上昇するため、樹脂圧上昇が少ないほど分散性が良好と判断でき、下記の基準で評価した。

◎:樹脂圧上昇が2MPa以下
○:樹脂圧上昇が2MPaを超え、5MPa以下
△:樹脂圧上昇が5MPaを超え、15MPa以下
×:樹脂圧上昇が15MPaを超える
<Dispersibility>
The hygroscopic antibacterial resin composition was passed through a single screw extruder so that the amount of calcined shell calcium was 1 kg, and the dispersibility was evaluated by increasing the resin pressure in the extruder. Since the resin pressure rises due to the adhesion of calcined calcium shells to the wire mesh (mesh size 130 μm) installed at the tip of the single screw extruder, the smaller the resin pressure rise, the better the dispersibility, and the evaluation was based on the following criteria: .

A: Resin pressure rise is 2 MPa or less B: Resin pressure rise exceeds 2 MPa, 5 MPa or less Δ: Resin pressure rise exceeds 5 MPa, 15 MPa or less X: Resin pressure rise exceeds 15 MPa

Figure 2019034994
Figure 2019034994

表4の結果より、実施例1〜11は、全ての評価項目において優れた抗菌性、引張強度および分散性が得られた。本発明では、平均粒子径が3〜20μmかつ温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間が60〜130時間である貝殻焼成カルシウムを用いることで、それ以外の酸化カルシウムまたは水酸化カルシウム等と比較して抗菌性、引張強度及び分散性のいずれにも優れる結果が得られた。   From the results of Table 4, Examples 1 to 11 obtained excellent antibacterial properties, tensile strength, and dispersibility in all evaluation items. In the present invention, by using shell calcined calcium having an average particle size of 3 to 20 μm, a temperature of 23 ° C., and a humidity of 50% RH in an environment where the amount of moisture absorption reaches equilibrium is 60 to 130 hours. Results superior in antibacterial properties, tensile strength and dispersibility were obtained compared with calcium oxide or calcium hydroxide.

Claims (4)

平均粒子径が3〜20μm、かつ温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間が60〜130時間である貝殻焼成カルシウム(A)と、熱可塑性樹脂(B)とを含む吸湿性抗菌樹脂組成物。   Calcined shell shell calcium (A) having a mean particle size of 3 to 20 μm, a temperature of 23 ° C., and a humidity of 50% RH in an amount of 60 to 130 hours until the moisture absorption reaches equilibrium, and a thermoplastic resin (B) A hygroscopic antibacterial resin composition comprising: 前記熱可塑性樹脂(B)の融点が、100〜170℃であることを特徴とする請求項1記載の吸湿性抗菌樹脂組成物。   2. The hygroscopic antibacterial resin composition according to claim 1, wherein the thermoplastic resin (B) has a melting point of 100 to 170 ° C. 3. 貝殻焼成カルシウム(A)と、熱可塑性樹脂(B)とを含む吸湿性抗菌樹脂組成物の製造方法であって、
熱可塑性樹脂(B)は、熱可塑性樹脂(B1)と熱可塑性樹脂(B2)とを含み、
主成分である熱可塑性樹脂(B1)の表面に、平均粒子径が3〜20μm、かつ温度23℃、湿度50%RH環境下で吸湿量が平衡に達するまでの時間が60〜130時間である貝殻焼成カルシウム(A)と、熱可塑性樹脂(B1)とは異なる熱可塑性樹脂(B2)とを、共に90〜140℃で物理的吸着させた後、溶融混錬する、吸湿性樹脂組成物の製造方法。
A method for producing a hygroscopic antibacterial resin composition comprising shell calcined calcium (A) and a thermoplastic resin (B),
The thermoplastic resin (B) includes a thermoplastic resin (B1) and a thermoplastic resin (B2),
On the surface of the thermoplastic resin (B1) as the main component, the time until the moisture absorption reaches equilibrium in an environment with an average particle diameter of 3 to 20 μm, a temperature of 23 ° C., and a humidity of 50% RH is 60 to 130 hours. A hygroscopic resin composition in which shell calcined calcium (A) and a thermoplastic resin (B2) different from the thermoplastic resin (B1) are both physically adsorbed at 90 to 140 ° C. and then melt-kneaded. Production method.
貝殻焼成カルシウム(A)の平均粒子径(D)と成形体の厚み(d)が、下記式(1)を満たし、かつ熱可塑性樹脂(B)100重量部に対して、貝殻焼成カルシウム(A)を0.5〜5重量部含むことを特徴とする請求項1または2記載の吸湿性抗菌樹脂組成物を成形してなる成形体。

式(1) 1/2D≦d≦50D
The average particle size (D) of the shell-calcined calcium (A) and the thickness (d) of the molded body satisfy the following formula (1) and 100 parts by weight of the thermoplastic resin (B), The molded article formed by molding the hygroscopic antibacterial resin composition according to claim 1 or 2, wherein

Formula (1) 1 / 2D <= d <= 50D
JP2017155530A 2017-08-10 2017-08-10 Hygroscopic antibacterial resin composition and molded product Active JP6992319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155530A JP6992319B2 (en) 2017-08-10 2017-08-10 Hygroscopic antibacterial resin composition and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155530A JP6992319B2 (en) 2017-08-10 2017-08-10 Hygroscopic antibacterial resin composition and molded product

Publications (2)

Publication Number Publication Date
JP2019034994A true JP2019034994A (en) 2019-03-07
JP6992319B2 JP6992319B2 (en) 2022-01-13

Family

ID=65637022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155530A Active JP6992319B2 (en) 2017-08-10 2017-08-10 Hygroscopic antibacterial resin composition and molded product

Country Status (1)

Country Link
JP (1) JP6992319B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080763A (en) * 2020-12-07 2022-06-15 주식회사 그린티어 A composition for a highly elastic antibacterial film, a manufacturing method thereof, a highly elastic antibacterial film using the same, a beauty pack comprising the highly elastic antibacterial film
KR102544739B1 (en) * 2022-10-27 2023-06-20 주식회사 에쓰큐씨 Plastic Composition Comprising Using Calcium Carbonate From the Shell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699020A (en) * 1992-08-20 1994-04-12 San Nori:Kk Production of drying agent having various moisture absorbing property from shell
JP2002220227A (en) * 2001-01-16 2002-08-09 Idemitsu Technofine Co Ltd Fine powdered shell, method for manufacturing fine powdered shell, synthetic resin composition containing fine powdered shell, building materials, and feed for livestock
JP2003306447A (en) * 2002-04-16 2003-10-28 Fancl Corp Powder hygroscopic active ingredient-containing solid preparation
WO2004089092A1 (en) * 2003-04-09 2004-10-21 Idemitsu Technofine Co., Ltd. Deodorant antibacterial powder preparation, process for producing the same and product using the powder preparation
WO2007064000A1 (en) * 2005-11-30 2007-06-07 Nippon Natural Resource Co. Ltd. Antifungal/antibacterial agent comprising two-step baked shell powder
JP2010195013A (en) * 2009-02-27 2010-09-09 Yoshino Kogyosho Co Ltd Antibacterial synthetic resin molding
JP2015074462A (en) * 2013-10-08 2015-04-20 昭和電工パッケージング株式会社 Antibacterial lid material for food container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699020A (en) * 1992-08-20 1994-04-12 San Nori:Kk Production of drying agent having various moisture absorbing property from shell
JP2002220227A (en) * 2001-01-16 2002-08-09 Idemitsu Technofine Co Ltd Fine powdered shell, method for manufacturing fine powdered shell, synthetic resin composition containing fine powdered shell, building materials, and feed for livestock
JP2003306447A (en) * 2002-04-16 2003-10-28 Fancl Corp Powder hygroscopic active ingredient-containing solid preparation
WO2004089092A1 (en) * 2003-04-09 2004-10-21 Idemitsu Technofine Co., Ltd. Deodorant antibacterial powder preparation, process for producing the same and product using the powder preparation
WO2007064000A1 (en) * 2005-11-30 2007-06-07 Nippon Natural Resource Co. Ltd. Antifungal/antibacterial agent comprising two-step baked shell powder
JP2010195013A (en) * 2009-02-27 2010-09-09 Yoshino Kogyosho Co Ltd Antibacterial synthetic resin molding
JP2015074462A (en) * 2013-10-08 2015-04-20 昭和電工パッケージング株式会社 Antibacterial lid material for food container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220080763A (en) * 2020-12-07 2022-06-15 주식회사 그린티어 A composition for a highly elastic antibacterial film, a manufacturing method thereof, a highly elastic antibacterial film using the same, a beauty pack comprising the highly elastic antibacterial film
KR102482665B1 (en) * 2020-12-07 2023-01-03 주식회사 그린티어 A composition for a highly elastic antibacterial film, a manufacturing method thereof, a highly elastic antibacterial film using the same, a beauty pack comprising the highly elastic antibacterial film
KR102544739B1 (en) * 2022-10-27 2023-06-20 주식회사 에쓰큐씨 Plastic Composition Comprising Using Calcium Carbonate From the Shell

Also Published As

Publication number Publication date
JP6992319B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
KR101334283B1 (en) Material for antimicrobial plastic, antimicrobial plastic, masterbatch for manufacturing antimicrobial plastic, and manufacturing method of antimicrobial plastic
JP3197458B2 (en) Cold-resistant, halogen-free flame-retardant polyolefin resin composition
JP6992319B2 (en) Hygroscopic antibacterial resin composition and molded product
US8921452B2 (en) Resin composition containing ultrafine silver particles
JP2023174772A (en) Method for producing filler granulated product
CN105440621B (en) PLA noctilucence master batch and preparation method thereof
JP2008222735A (en) Antistatic agent for thermoplastic resin and utilization of the same
KR102262187B1 (en) Composition for biodegradability and antibacterial loess masterbatch, plastic product using the same, and manufacturing method thereof
JP4528181B2 (en) Colored resin composition and molded body thereof
JP2010047703A (en) Flame-retardant resin composition
CN105017597A (en) Compound additive for improving transparency of polyolefin and preparation method and application thereof
JP6404594B2 (en) Method for producing flame retardant propylene resin composition
JP6893832B2 (en) Antistatic agents for thermoplastic resins and their use
JPH02212532A (en) Polypropylene composite material reinforced with granulated fibrous magnesium oxysulfate
WO2015182790A1 (en) Liquid stabilizer and resin composition containing said liquid stabilizer
JP2019019318A (en) Polypropylene resin composition and molded body
JP7178754B1 (en) Resin composition and molded article
KR101824189B1 (en) Manufacturing method of hydrate of zinc carboxylate, hydrate of zinc carboxylate manufactured therefrom and material for antimicrobial plastic comprising the hydrate of zinc carboxylate
JPH0721091B2 (en) Antibacterial polyolefin composition
JP2013000441A (en) Antimicrobial blown container for cosmetic
JPS59174638A (en) Antifungal-containing polyolefin composition
JP3841155B2 (en) Negative ion generation sheet
JP2007246591A (en) Polyester resin composition
JP2023032658A (en) Filler granulated substance
JP2023032657A (en) Filler granulated substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210915

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210924

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R151 Written notification of patent or utility model registration

Ref document number: 6992319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350