JP2018163299A - 電子機器、撮像装置、及び制御方法、並びにプログラム - Google Patents

電子機器、撮像装置、及び制御方法、並びにプログラム Download PDF

Info

Publication number
JP2018163299A
JP2018163299A JP2017061112A JP2017061112A JP2018163299A JP 2018163299 A JP2018163299 A JP 2018163299A JP 2017061112 A JP2017061112 A JP 2017061112A JP 2017061112 A JP2017061112 A JP 2017061112A JP 2018163299 A JP2018163299 A JP 2018163299A
Authority
JP
Japan
Prior art keywords
module
imaging
smart device
imaging modules
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017061112A
Other languages
English (en)
Other versions
JP6906995B2 (ja
Inventor
敏弘 小川
Toshihiro Ogawa
敏弘 小川
日塔 潔
Kiyoshi Nitsuto
潔 日塔
陽介 深井
Yosuke Fukai
陽介 深井
潤一郎 岩松
Junichiro Iwamatsu
潤一郎 岩松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017061112A priority Critical patent/JP6906995B2/ja
Priority to US15/928,638 priority patent/US10848736B2/en
Publication of JP2018163299A publication Critical patent/JP2018163299A/ja
Application granted granted Critical
Publication of JP6906995B2 publication Critical patent/JP6906995B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/167Synchronising or controlling image signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/593Depth or shape recovery from multiple images from stereo images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/634Warning indications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0081Depth or disparity estimation from stereoscopic image signals

Abstract

【課題】 複数の撮像モジュールについて、任意のタイミングで任意のスロットへの挿し換えを行っても、常に正しい基線長を得ることができる電子機器、撮像装置、及び制御方法、並びにプログラムを提供する。【解決手段】スマートデバイス50の複数のスロットのいずれかに装着された撮像モジュール500,600を用いて複眼カメラの機能を実現する場合、スマートデバイス50に状態変化があり状態変化フラグがONであるときは、撮像モジュール500,600から取得した、撮像モジュール500,600それぞれの光軸の座標情報と、スマートデバイス50の本体のメモリ114に記憶される各スロットの位置情報とを取得して基線長を計算する。【選択図】 図10

Description

本発明は、電子機器、撮像装置、及び制御方法、並びにプログラムに関し、特にモジュールとしての撮像装置を着脱可能な電子機器、撮像装置、及び制御方法、並びにプログラムに関する。
機能単位でまとまりを持たせたモジュールをブロックの様に組み合わせることで、所望する様々な機能を実現させたスマートデバイスと呼ばれる電子機器が公知となっている。こうしたスマートデバイスは、複数のスロットが形成された本体と、異なる機能を持った複数のモジュールとで構成されており、これらの多種多様なモジュールは、それぞれ自由な組み合わせで本体のスロットに着脱される。このとき、例えば撮影機能を有するモジュール(撮像モジュール)を本体のスロットに装着すれば、OS上にインストールされたアプリケーションプログラムの動作によって、撮影機能を利用することが可能となる。
こうしたスマートデバイスに対応する撮像モジュール自体もまた多種多様である。本体への着脱手段や通信手段など一定の規格を満足するものであれば、例えば光学レンズの焦点距離や撮像センサのサイズが異なっていても良い。更に、これらの撮像モジュールを設計するメーカーが特定の企業に限定される必要はなく、カメラメーカーや電機メーカーなど複数存在しても構わない。また撮像モジュール内において、どこにどの構成部品を配置するかといった制約が少なく、設計の自由度は高い。そのため、撮像モジュールをそれぞれの仕様やメーカーにとって都合のよい、最適なレイアウトで設計することができる。
更に前述のように、モジュールの組み合わせが比較的自由であるため、例えば複数の撮像モジュールをそれぞれ異なるスロットに装着することもできる。この場合、複眼カメラ機能を動作させるアプリケーションプログラムを装着した複数の撮像モジュールに対して実行することにより、所謂、複眼カメラの機能として公知な画像の合成機能や測定機能が利用可能となる。
複眼カメラに期待される画像の合成機能としては、立体視モード、パノラマモード、パンフォーカスモード、ダイナミックレンジ拡大モード、シャローフォーカスモード、マルチズーム(高解像度)モードなどが公知である(例えば特許文献1参照)。これらの機能は、それぞれの撮像モジュールにおける撮影条件を一致もしくは異ならせて同時撮影を行い、得られた複数の画像データから1枚の画像を合成するものである。また他にも、複眼カメラを使った測定機能として測距技術が挙げられる(例えば特許文献2参照)。この機能は、左右2つのカメラで被写体を同時に撮影し、得られたステレオ画像を処理することで、被写体を三次元的に認識したり、被写体までの距離を計測したりするものである。
こうした複眼カメラによる画像の合成機能や測定機能は、少なくとも2つの撮像モジュールの視差情報に基づいて処理されるため、お互いの撮像モジュールにおける光軸間の距離、つまり基線長を得ることが重要となる。そこで特許文献1では、本体側に設けた複数の接続部のうち、どの接続部が撮像モジュールを電気的に検出するかによって、撮像モジュールの位置と姿勢とを特定する構成となっている。またそれと同時に、2種類ある撮像モジュールのうち、どちらの型式の撮像モジュールが接続されているか、検出した信号から判別することで基線長を得ることができる。
一方の特許文献2では、左右2つのカメラが平行に所定の間隔で配置されており、使用する過程において経年変化などによって基線長にずれが生じた場合は、撮影した1組の画像データをステレオ画像処理装置で補正する制御となっている。この制御では、2つのカメラで撮像した画像を、予め画像間のずれに応じて設定した変換値で幾何学的に変換する。それと共に、変換された画像に対して線形補間を行うことで、基線長を正しく調整したのと同等の画像を得ることができるものである。
特許第4448844号公報 特開3792832号公報
ところで、特許文献1に記載された構成では、撮像モジュールの型式やモジュール内における光軸の位置などの情報が、本体側に内蔵されたメモリに予め登録されていなければならない。しかしながら前述のスマートデバイスでは、異なる種類の撮像モジュールにおいて、それぞれ最適となる光軸の位置は異なっている可能性がある。それだけでなく、メーカーもまた不特定多数であることから、撮像モジュールの情報の全てを事前に本体側のメモリに登録しておくのは困難である。例えばユーザが、既に所有しているスマートデバイスに対して、別の異なる種類の撮像モジュールを新しく後から購入した場合では、アップデートなど何らかの手段を用いて、撮像モジュールの情報を本体側のメモリに新規登録する作業が必要となってしまう。
また特許文献2に記載された制御は、あくまで経年変化などで生じる比較的微小なズレを想定したものである。これに対して前述のスマートデバイスでは、撮像モジュールを装着するスロットを変更した場合、それに伴って光軸の位置も移動することになり、基線長の変化量は比較的大きなものとなる。そのため、それぞれの画像データから一致点を検出して、正しい視差情報を得るのは容易でない。例えば、基線長の変化量が補正可能範囲を超えてしまうと、正しい変換処理が行われず、測距結果の信頼性が損なわれる恐れがある。もし仮に、比較的大きな変化量に合わせて補正可能範囲を拡大したとしても、多くのメモリ容量が必要となる他、2つの画像から一致点を検出する計算が大規模になり、計算時間が長くなることで、合焦や露光開始までにタイムラグを生じさせてしまう。
このような課題を鑑みて本発明は、複数の撮像モジュールについて、任意のタイミングで任意のスロットへの挿し換えを行っても、常に正しい基線長を得ることができる電子機器、撮像装置、及び制御方法、並びにプログラムを提供することを目的とする。
本発明の請求項1に係る電子機器は、第1及び第2の撮像モジュールを複数の取り付け領域のいずれかにそれぞれ装着する電子機器において、複眼モードで撮影を行う撮影手段と、前記第1及び第2の撮像モジュールからそれぞれの光軸の座標情報を取得する取得手段と、前記複数の取り付け領域の位置情報を記憶する記憶手段と、前記第1及び第2の撮像モジュールと前記電子機器の本体のいずれかで状態変化があった場合、前記光軸の座標情報と、前記取り付け領域の位置情報とを取得して基線長を計算する計算手段とを備えることを特徴とする。
本発明によれば、複数の撮像モジュールについて、任意のタイミングで任意のスロットへの挿し換えを行っても、常に正しい基線長を得ることができる。
実施例1に係る電子機器としてのスマートデバイスの外観図である。 スマートデバイスの本体に取り付けられるモジュールの外観図である。 スマートデバイスの本体にモジュールを取り付ける方法を示す説明図である。 スマートデバイスの本体に設けられたEPMとモジュールに設けられた磁性体との磁力による結合を示す説明図である。 複数のモジュール及びこれらが装着されたスマートデバイスの本体のハードウェア構成を示すブロック図である。 アプリケーションプログラム制御モジュールにより実行される、複数のモジュールが装着されたスマートデバイスの動作制御処理の手順を示すフローチャートである。 図6のステップS1107のリリース処理の詳細な手順を示すフローチャートである。 図6のステップS1109の装着処理の詳細な手順を示すフローチャートである。 図6のステップS1111のアプリケーションプログラム実行処理の一例である撮影アプリケーションプログラム実行処理の詳細な手順を示すフローチャートである。 図9のステップS1405の撮影実行処理の手順を示すフローチャートである。 図10のステップS1509の複眼撮影実行処理の手順を示すフローチャートである。 図11のステップS1601の測距処理の手順を示すフローチャートである。 図10のステップS1506において実行される実施例1に係る基線長の算出方法を示した説明図である。 実施例1にかかる撮像モジュールのスマートデバイスの本体に対する光軸の傾きを示す説明図である。 図10のステップS1506において実行される実施例2に係る基線長の算出方法を示した説明図である。
以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。
(実施例1)
図1は、実施例1に係る電子機器のとしてのスマートデバイス50の外観図である。
図1(a)は、スマートデバイス50の本体を正面側から見た外観図と、背面側から見た外観図である。
図1(a)に示すように、スマートデバイス50の本体の正面側には、複数のリブ101a〜cが形成されている。また、スマートデバイス50の本体の背面側には、複数のリブ101a,c〜hが形成されると共に、スマートデバイス50の本体を左右の領域に分割するスパイン102が形成されている。リブ101a〜hとスパイン102(ガイド部)とは、モジュールを取り付ける際のガイド機能と装着後のモジュールを保持する保持機能とを兼ね備えていると共に、スマートデバイス50の本体の剛性を高める機能も有している。以下、リブ101a〜hとスパイン102とを合わせてフレーム構造と称する。スマートデバイス50の本体の正面側と背面側とは、リブ101a〜hとスパイン102とによって、複数のモジュールの取り付け領域に分割されている。以下、これらの複数のモジュールの取り付け領域を、スロット1000,1100,1200,1300,1400,1500,1600,1700,1800,1900と称する。
各スロット1000〜1900には、電磁着脱機構を司るエレクトロパーマネントマグネット(EPM)160〜169が設けられている。尚、EPM160〜169については、詳しくは後述する。各EPM160〜169近傍には、これらと対となる、スマートデバイス50の本体と各モジュールとがデータの送受信をするための本体側非接触通信手段(以下、本体側CMCと称する)140〜149が備えられている。つまり、各スロット1000〜1900には、EPM160〜169と本体側CMC140〜149とが、それぞれ少なくとも一対設けられていることになる。尚、図1(a)に示すように、EPM160〜169と本体側CMC140〜149とは、各スロット1000〜1900の大きさに応じて複数設けられても良い。
スマートデバイス50の本体の正面側には、紙面向かって左側の端部付近にEPM160,163が配置されており、そのEPM160,163の右側に本体側CMC140,143が配置されている。スマートデバイス50の本体の背面側には、スパイン102に隣接するようにEPM161,162a,162b,164a,164b,165a,165b,166〜169が配置されている。紙面に向かってスパイン102の左側の領域には、EPM165a,165b,167a,167b,168,169が設けられ、更にその左側に本体側CMC145a,145b,147a,147b,148,149が配置されている。またスパイン102の右側の領域には、EPM161,162a,162b,164a,164b,166が設けられ、更にその右側に本体側CMC141、142a,142b,144a,144b,146が配置されている。
図1(b)は、スマートデバイス50の本体にモジュールを取り付けた状態を正面側から見た外観図と、背面側から見た外観図である。
図1(b)に示すように、スマートデバイス50の本体の正面側及び背面側には、各機能を備えたモジュール150,200,300,350,400,500,600,700,800,900が取り付けられる。スマートデバイス50の本体の正面側の下部のスロット1300には、略全面にタッチ検知機能を有したLCDパネル312から成るモジュール(以下、表示操作モジュールと称する)300が装着されている。表示操作モジュール300の右側面には、スマートデバイス50の電源のONとOFFとを切り替える電源ボタン314aが形成されており、同じく表示操作モジュール300の左側面には、音量を調節する音量調節ボタン314bが形成されている。更に表示操作モジュール300には、スマートデバイス50が移動体無線通信機器として機能する際に、通話者の音声を検出するマイク318が設けられている。マイク318は、スマートデバイス50がビデオカメラとして機能する際に、動画の音声を収集する役割も担う。また、スマートデバイス50の本体の正面側の上部のスロット1000には、スピーカモジュール350が取り付けられている。スピーカモジュール350には、スマートデバイス50が移動体無線通信機器として機能する際に、受信した音声を出力するスピーカ部351が設けられている。このスピーカ部351は、その他に音楽や操作音を出力する。
一方、スマートデバイス50の本体の背面側には、スパイン102の左側の上部のスロット1500に、各種撮影機能を有する撮像モジュール500が、またスパイン102の右側の上部のスロット1600に、撮像モジュール600が装着されている。撮像モジュール500,600が装着されるスロットが略同一平面であり、これらのスロットに装着した場合に撮像モジュール500,600の光軸が略平行である場合、後述する複眼モードがユーザ選択可能なモードに設定される。これによって、撮像モジュール500,600はそれぞれの撮影範囲に同一の被写体をフレーミングすることが可能となり、後述する視差を用いて被写体距離を測定したり略同時に撮影したりする構成となるからである。また前述した通り、撮像モジュール500,600は、スマートデバイス50の本体への着脱手段と通信手段とが一定の規格を満足するように共通化されてはいるものの、それぞれのモジュールにおいては構成部品の配置が異なっている。
スパイン102の左側の上部のスロット1500に対して、その下部に形成されたスロット1700には、外部と無線でデータの送受信を行う無線LANモジュール700が装着されている。更にその下部のスロット1800には、スマートデバイス50の姿勢を検知する姿勢検知モジュール800が取り付けられている。姿勢検知モジュール800は、3軸のジャイロセンサから取得する角速度情報を利用することで、スマートデバイス50の姿勢を検知する。スパイン102の左側の下部のスロット1900には、TDMA、CDMA、LTE等の単数或いは複数の各種遠距離通信機能を有する移動体通信モジュール900が装着されている。スパイン102の右側の上部のスロット1600に対して、その下部に形成されたスロット1200には、スマートデバイス50全体の制御を行うアプリケーションプログラム制御モジュール200が装着されている。
ユーザがスマートデバイス50において利用を所望する機能を動作させるには、装着中の所定のモジュール専用のアプリケーションプログラムをアプリケーションプログラム制御モジュール200にインストールする必要ある。これにより、アプリケーションプログラム制御モジュール200を介することでスマートデバイス50においてその所望する機能を利用できる。例えば、移動体通信モジュール900専用の通話アプリケーションがインストールされている場合、アプリケーションプログラム制御モジュール200を介して移動体通信モジュール900を動作させて通話機能が利用可能となる。また、無線LANモジュール700専用のインターネット接続アプリケーションがインストールされている場合がある。この場合、アプリケーションプログラム制御モジュール200を介して無線LANモジュール700を動作させてインターネット接続によるウェブ閲覧機能が利用可能となる。また例えば、撮像モジュール500,600専用の撮影アプリケーションがインストールされている場合、アプリケーションプログラム制御モジュール200を介して撮像モジュール500,600を動作させて複眼カメラの機能を利用することができる。ここで、複眼カメラの機能とは画像の合成機能や測定機能を指す。
複眼カメラに期待される画像の合成機能としては、前述の特許文献1に記載された立体視モード、パノラマモード、パンフォーカスモード、ダイナミックレンジ拡大モード、シャローフォーカスモード、マルチズーム(高解像度)モードが含まれる。そして専用の撮影アプリケーションは、撮像モジュール500,600のそれぞれで任意に設定可能である。これらの合成機能は、撮像モジュール500,600の夫々の撮影条件を一致もしくは異ならせて同時撮影を行い、得られた2枚の画像データから1枚の画像を合成するものである。
また上述の撮影アプリケーションでは、測定機能として、前述の特許文献2に記載された測距技術が適用される。この機能は、撮像モジュール500,600により被写体を同時に撮影し、得られたステレオ画像を処理することで、被写体を三次元的に認識したり、被写体までの距離を計測したりするものである。尚、こうした複眼カメラの機能を実現する具体的な動作フローについては、図11及び図12に従って後述する。
スロット1200の下部のスロット1400には、スマートデバイス50に電力を供給する電源モジュール400が装着されている。更にスパイン102の右側の下部のスロット1100には、撮影した画像データなどの各種データを保存する記録モジュール150が取り付けられている。
図2は、スマートデバイス50の本体に取り付けられるモジュール150,200,300,350,400,500,600,700,800,900の外観図である。図2(a)は、スマートデバイス50の本体の正面側に取り付けられる表示操作モジュール300及びスピーカモジュール350を正面側から見た外観図と背面側から見た外観図である。図2(b)は、スマートデバイス50の本体の背面側に取り付けられる各モジュールを正面側から見た外観図と背面側から見た外観図である。前述のとおり、スマートデバイス50の本体の背面側には、図1(b)に示すように、スパイン102の左側に、撮像モジュール500、無線LANモジュール700、姿勢検知モジュール800、及び移動体通信モジュール900が取り付けられている。また、スパイン102の右側に、撮像モジュール600、アプリケーションプログラム制御モジュール200、電源モジュール400、及び記録モジュール150が取り付けられている。
図2(a)に示すように、表示操作モジュール300及びスピーカモジュール350の背面には、スマートデバイス50の本体に設けられたEPM163,160と対向する位置に、磁性体360,356が設けられている。ここで用いられる磁性体360,356の材質としては、保磁力が小さく透磁率が大きい軟磁性体が好ましく、本実施例では鉄・コバルト・バナジウムの軟磁性合金であるHIPERCOTM50が採用されている。以下説明する各磁性体においても同様の材質が採用される。
更に、スマートデバイス50の本体に設けられた本体側CMC143,140と対向する位置には、スマートデバイス50の本体とデータの送受信を行うモジュール側非接触通信手段(以下、モジュール側CMCと称する)340,354が設けられている。磁性体360,356とモジュール側CMC340,354とは、それぞれ隣接して表示操作モジュール300及びスピーカモジュール350に一対ずつ設けられている。
一方、図2(b)に示すように、撮像モジュール500の背面には、スマートデバイス50の本体に設けられたEPM165a,165bと対向する位置に、磁性体560a,560bが設けられている。また、撮像モジュール600の背面には、スマートデバイス50の本体に設けられたEPM166と対向する位置に、磁性体660aが設けられている。尚、撮像モジュール600の背面には磁性体660bも設けられているが、スマートデバイス50の本体にはこれと対向する磁性体が存在しない。このため、撮像モジュール600では磁性体660bは用いず、磁性体660aがEPM166と磁力で結合することによりスマートデバイス50の本体に装着される。
同様に、無線LANモジュール700の背面には、スマートデバイス50の本体に設けられたEPM167a,167bと対向する位置に、磁性体760a,760bが設けられている。また、姿勢検知モジュール800及び移動体通信モジュール900の背面には、スマートデバイス50の本体に設けられたEPM168,169と対向する位置に、磁性体860,960が設けられている。
更に、アプリケーションプログラム制御モジュール200の背面には、スマートデバイス50の本体に設けられたEPM162a,162bと対向する位置に、磁性体260a,260bが設けられている。また、電源モジュール400、及び記録モジュール150の背面には、スマートデバイス50の本体に設けられたEPM,164a,164b,161と対向する位置に、磁性体,460a,460b,156aが設けられている。尚、記録モジュール150の背面には磁性体156bも設けられているが、スマートデバイス50の本体にはこれと対向する磁性体が存在しない。このため、記録モジュール150では磁性体156bは用いず、磁性体156aがEPM161と磁力で結合することによりスマートデバイス50の本体に装着される。
本体側CMC145b,146,147b,148,149,142a,142b,144a,144b,141と対向する位置にモジュール側CMC540,640,740,840,940,240a,240b,440a,440b,154が設けられる。これらのモジュール側CMCにより、各モジュールはスマートデバイス50の本体とデータの送受信を行う。磁性体560b,660a,760b,860,960,260a,260b,460a,460b,156aとモジュール側CMC540,640,740,840,940,240a,240b,440a,440b,154はそれぞれ隣接して設けられる。そして、撮像モジュール500,600、無線LANモジュール700、姿勢検知モジュール800、移動体通信モジュール900、記録モジュール150には、すくなくとも一対が設けられている。また、アプリケーションプログラム制御モジュール200及び電源モジュール400は、それぞれ二対ずつ設けられている。
図3は、スマートデバイス50の本体に、モジュール150,200,300,350,400,500,600,700,800,900を取り付ける方法を示した説明図である。
ここで、図3(a)は、スマートデバイス50の本体の正面側に、表示操作モジュール300及びスピーカモジュール350を取り付ける方法を示した説明図である。また、図3(b)は、スマートデバイス50の本体の背面側に、撮像モジュール500、無線LANモジュール700、姿勢検知モジュール800、及び移動体通信モジュール900を取り付ける方法を示した説明図である。また、図3(b)では、スパイン102の右側に、撮像モジュール600、アプリケーションプログラム制御モジュール200、電源モジュール400、及び記録モジュール150も併せて示す。
図3(a)に示すように、表示操作モジュール300及びスピーカモジュール350は、スマートデバイス50の本体に対して、リブ101a〜cに沿って側面方向からスライドさせて取り付けられる。このとき、表示操作モジュール300及びスピーカモジュール350は、スマートデバイス50の本体の左側面、或いは右側面のどちら側からでも挿入することができる。
図3(b)に示すように、撮像モジュール500、無線LANモジュール700、姿勢検知モジュール800、移動体通信モジュール900は、スマートデバイス50の本体に対して、左側面からスライドさせて取り付けられる。左側面から各モジュールをスパイン102に突き当てることにより、スマートデバイス50の本体に対してモジュール500,700,800,900の位置が決定する。また、撮像モジュール600、アプリケーションプログラム制御モジュール200、電源モジュール400、記録モジュール150は、スマートデバイス50の本体に対して、右側面からスライドさせて取り付けられる。右側面から各モジュールをスパイン102に突き当てることにより、スマートデバイス50の本体に対してモジュール600,200,400,150の位置が決定する。
本実施例において、図3(b)のようにスマートデバイス50の本体の背面側に設けられたスロットは、サイズによって3種類に大別される。まずスロット1500,1600,1700,1100が同じ種類であり、例えば撮像モジュール500はこの4箇所のうち、どのスロットを選択して装着しても構わない。尚、本実施例では撮像モジュール500が装着可能なスロットは4か所存在しているが、3か所以上存在していればかかる構成に限定されるものではない。また最も大きいスロット1200,1400が同じ種類であり、例えばアプリケーションプログラム制御モジュール200はこの2箇所のうち、どちらのスロットを選択して装着しても構わない。同様に最も小さいスロット1800,1900が同じ種類であり、例えば姿勢検知モジュール800はこの2箇所のうち、どちらのスロットを選択して装着しても構わない。
図4は、スマートデバイス50の本体に設けられたEPM165bと、撮像モジュール500に設けられた磁性体560bとの磁力による結合を説明する模式図である。
ここで、図4(a)は、スマートデバイス50の本体と撮像モジュール500とが磁力による結合をしていない状態の部分拡大図である。また、図4(b)は、スマートデバイス50の本体と撮像モジュール500とが磁力による結合をしている状態の部分拡大図である。尚、図4は例としてEPM165bと磁性体560bとの組み合わせを示すものであるが、他のEPMと磁性体との組み合わせについても図4と同様である。
図4(a)に示すようにEPM165bは、極性が固定された永久磁石1651と永電磁石1652との両側面を、磁性体1653a,1653bによって連結・保持した構造となっている。ここで用いる永久磁石1651には、例えば磁束密度が非常に高いネオジム磁石などが適している。また永電磁石1652は、アルニコ等の硬磁性体からなる可逆性の永久磁石1654と、可逆性の永久磁石1654の周りに巻かれたコイル1655とから構成されている。コイル1655に電流を流すと、可逆性の永久磁石1654は一方向に着磁され、通電が終了した後もそのまま着磁状態を保持する。コイル1655に対する通電時間は1〜数秒程度であり、比較的短い時間である。こうして永電磁石1652は、コイル1655(極性変更手段)に流す電流の向きを変えることにより、極性が可変な永電磁石となる。
図4(a)に示す状態でコイル1655に対して通電すると、可逆性の永久磁石1654を着磁して、永電磁石1652は極性が固定された永久磁石1651の磁力線の向きと引き合う向きの磁力線を発生させる。その結果、永電磁石1652の磁力線と永久磁石1651の磁力線とが互いに閉じたループ形状となり、撮像モジュール500の磁性体560bを吸着しようとする磁力は非常に弱くなる。そのため撮像モジュール500は、EPM165bから吸着力を受けずに解放される。
一方図4(b)に示すように、図4(a)とは逆方向にコイル1655に対して通電すると、可逆性の永久磁石1654を着磁して、永電磁石1652は極性が固定された永久磁石1651の磁力線の向きと反発し合う向きの磁力線を発生させる。その結果、永電磁石1652の磁力線と永久磁石1651の磁力線とが互いに強め合って、撮像モジュール500に設けられた磁性体560bを吸着する磁力が非常に高まる。そのため撮像モジュール500は、EPM165bから吸着力を受けてスマートデバイス50の本体に固着される。このように本実施例では、着脱手段にEPMを採用することで、各モジュールの着脱の作業性と信頼性との両立を実現している。
図5は、複数のモジュール200〜600,800及びこれらが装着されたスマートデバイス50のハードウェア構成を示すブロック図である。
以下、図5を用いて、スマートデバイス50の本体、アプリケーションプログラム制御モジュール200、表示操作モジュール300、電源モジュール400、撮像モジュール500,600、及び姿勢検知モジュール800の構成を説明する。尚、スマートデバイス50の本体に装着可能なモジュールは多種多様であり、図5に示す組み合わせは単なる一例に過ぎず、本発明はその組み合わせを限定するものではない。
<スマートデバイス50の本体の構成>
スマートデバイス50の本体は、アプリケーションプログラム制御モジュール200による統括制御の下で、スマートデバイス50の本体に装着された各モジュールに関する制御を行う。スマートデバイス50の本体において、110はスマートデバイス50の本体全体を制御するシステム制御回路である。システム制御回路110は、カーネルやOSを実行させた環境で各種アプリケーションプログラムを実行する際、アプリケーションプログラム制御モジュール200が備えるアプリケーション制御回路210の指示や要求に応じて、協調動作を行う。そしてシステム制御回路110は、スマートデバイス50の本体と各モジュールとを連携して動作させることが可能となっており、アプリケーション制御回路210を介して各種サービス、機能を実行することが可能である。
112は、システム制御回路110が直接アクセスして読み書きを行うメモリである。114は、システム制御回路110の動作用の定数、変数、プログラム、各スロットの位置情報等を記憶し、電気的に消去・記録可能な不揮発性メモリであり、例えばフラッシュメモリ等が用いられる。ここで、各スロットの位置情報には、スマートデバイス50の本体の背面側に設けられたスロット1100,1200,1400,1500,1600,1700,1800,1900のそれぞれの位置情報が含まれる。この各スロットの位置情報は、各スロットにおいて、モジュールを装着した際にその位置を決定することになる、各リブ101a,c〜hやスパイン102の突き当て面の座標を特定するものである。尚、本実施例は各モジュールの位置決めを、リブ101a,c〜hとスパイン102への突き当てにより行っているが、本発明はこれに限定されるものではない。例えば、スマートデバイス50の本体に位置決め用の凸部を設け、各モジュールに凸部と嵌合する凹部を設けるなどしても良い。この場合、各スロットの位置情報には、位置決め用の凸部の位置情報が含まれることになる。
116は識別情報メモリであり、スマートデバイス50の本体が各モジュールと通信を行う際に必要な各種識別情報が格納されている。118は、スマートデバイス50の本体の所定箇所の温度を計測するための単数或いは複数の温度センサである。120は、システム制御回路110を介してスマートデバイス50の本体の各部に必要な所定の電圧・電流を供給する電源制御回路である。
122は、スマートデバイス50の本体の電源制御回路120及びコネクタ182〜186,188の電源端子に接続される電源バスである。コネクタ182〜186,188の電源端子は、それぞれ、各モジュールのコネクタ280,380,480,580,680,880の電源端子を介して、各モジュールの電源制御回路220,320,410,520,620,820と接続されている。
130はスイッチインターフェース回路であり、図5に示すように、本体側CMC142a,142b(不図示),143,144a,144b(不図示),145b,146,148を介して、各モジュールと接続する。これにより、各モジュールとスマートデバイス50の本体の間でデータやメッセージの高速な通信を切り替え中継する。本体側CMC142a,143,144a,145b,146,148は、誘導結合(インダクティブカップリング)方式により接触近接通信を行う。これにより、それぞれがこれに近接するモジュール側CMC240a,340,440a,540,640,840と高速通信を行う。尚、本体側CMCとこれに近接するモジュール側CMCとの組み合わせは、ユーザの意図に応じて適宜変更されるものであり、図5に示す組み合わせは単なる一例に過ぎない。
図5に示すように、スマートデバイス50は、EPM162a,162b(不図示),163,164a,164b(不図示),165a,165b(不図示),166,168を備える。これは、それぞれモジュールの磁性体260a,260b(不図示),360,460a,460b(不図示),560a,560b(不図示),660a,860を磁力制御により吸着或いは非吸着する。これにより、各モジュールをスマートデバイス50の本体のフレーム構造と各モジュールとの接続箇所において、固定(ロック)或いは解放(リリース)する。尚、スマートデバイス50の本体側の各EPMとこれに接続するモジュール側の磁性体との組み合わせは、ユーザの意図に応じて適宜変更されるものであり、図5に示す組み合わせは単なる一例に過ぎない。
コネクタ182〜186,188は、それぞれモジュールのコネクタ280,380,480,580,680,880と接続する。これにより、電源関係(パワーバス、グラウンド)の端子群を、スマートデバイス50の本体と各モジュール間で相互に使用可能とする。更に、モジュールの装着を示す検出(Detect)信号の端子、モジュールのスリープ解除を示す起動(Wake)信号の端子、アンテナの配線をつなぐRF信号の端子などの各機能についても同様に、相互に使用可能とするものである。ここで本実施例におけるコネクタ182〜186,188は、スマートデバイス50の本体のリブ101a〜hやスパイン102の側面部に形成された一般的な小型の金属端子であるが、図1〜3に示す位置からは視認できないため不図示とする。尚、コネクタ182〜186,188と、これに接続するモジュール側のコネクタの組み合わせは、ユーザの意図に応じて適宜変更されるものであり、図5に示す組み合わせは単なる一例に過ぎない。
<アプリケーションプログラム制御モジュール200の構成>
アプリケーションプログラム制御モジュール200は、アプリケーション制御回路210の動作により、スマートデバイス50の本体とこれに装着された各モジュールを含めた全体システムを統括制御する。例えばアプリケーション制御回路210は、表示操作モジュール300が備える表示操作制御回路310を介して、表示部であるLCDパネル312を制御し、各種情報の表示を行うことが可能である。またアプリケーション制御回路210は、表示操作モジュール300が備える表示操作制御回路310を介して、操作入力手段であるタッチパネル及び操作(以下「TP/ボタン」という)ボタン314に対する操作入力情報を取得することができる。そして、その操作入力内容に応じて、カーネルのサービスやOSのサービス、各種アプリケーションプログラムによる処理を実行させることが可能である。
212は、アプリケーション制御回路210が直接アクセスして読み書きを行うメモリである。214は、アプリケーション制御回路210の動作用の定数、変数、プログラム等を記憶し、電気的に消去・記録可能な不揮発性メモリであり、例えばフラッシュメモリ等が用いられる。216は識別情報メモリであり、アプリケーションプログラム制御モジュール200がスマートデバイス50の本体及び各モジュールと通信を行う際に必要な各種識別情報が格納されている。220は、アプリケーションプログラム制御モジュール200の各部に必要な所定の電圧・電流を供給する電源制御回路である。222は、アプリケーションプログラム制御モジュール200の所定箇所の温度を計測するための単数或いは複数の温度センサである。230はインターフェース回路であり、モジュール側CMC240aを介して、スマートデバイス50の本体及び各モジュールとのデータやメッセージの高速な通信を中継する。
290は、各専用アプリケーションプログラムを実行する上で必要となる複数の管理ファイルの情報を記憶した管理テーブルである。管理ファイルの情報には、各専用アプリケーションプログラムを実行する際に不可欠なモジュールの種類や、所望の機能を最大限に活用できる該当モジュールの組み合わせや、該当モジュールを装着するのに最適な各スロットの位置関係などが含まれる。また本実施例は、管理ファイルの情報として、各専用アプリケーションプログラムに必須ではないものの、機能追加に有効なモジュールの種類などを含んでおり、ユーザに多くの選択肢を提供することで利便性を高めている。こうした管理ファイルの情報は、アプリケーション制御回路210が、管理テーブル290から取得する。尚、本発明はこの構成に限定されるものではなく、管理ファイルの情報はメモリ212や不揮発性メモリ214に記憶させても良い。この場合の管理ファイルの情報は、アプリケーション制御回路210が、メモリ212や不揮発性メモリ214から取得することになる。
<表示操作モジュール300の構成>
表示操作モジュール300は、アプリケーションプログラム制御モジュール200による統括制御の下で、スマートデバイス50の本体の制御により、各種情報の表示、操作入力の取得を行う。表示操作モジュール300において、310は表示操作モジュール300全体を制御する表示操作制御回路である。表示操作モジュール300の表示部としては、LCD、OLED、LED等の表示デバイスを採用することができるが、本実施例はLCDパネル312を採用している。表示操作モジュール300の操作入力手段としては、タッチパネル(TP)、操作ボタン等の操作デバイスを独立して構成しても一体として構成してもよいが、本実施例では、独立して構成されるTP/ボタン314を採用している。
LCDパネル312は、アプリケーションプログラム制御モジュール200のアプリケーション制御回路210の指示に応じて、表示操作制御回路310によりユーザに対する各種情報の表示を行う。また、TP/ボタン314へのユーザによるタッチパネル操作やボタン操作等の入力操作と、マイク318が検出した音声信号とは、表示操作制御回路310を介して、アプリケーション制御回路210に伝達される。
316は識別情報メモリで、表示操作モジュール300がスマートデバイス50の本体及び各モジュールと通信を行う際に必要な各種識別情報が格納されている。320は、表示操作モジュール300の各部に必要な所定の電圧・電流を供給する電源制御回路である。322は、表示操作モジュール300の所定箇所の温度を計測するための単数或いは複数の温度センサである。330はインターフェース回路であり、モジュール側CMC340を介して、スマートデバイス50の本体及び各モジュールとのデータやメッセージの高速な通信を中継する。
<電源モジュール400の構成>
電源モジュール400は、アプリケーションプログラム制御モジュール200による統括制御の下で、スマートデバイス50の本体の電源バス122を介して電池420の放電・充電を行う。電源モジュール400において、410は電池420の放電・充電制御を含め、電源モジュール400全体を制御する電池制御回路であり、電源モジュール400の各部に必要な所定の電圧・電流を供給する。416は識別情報メモリであり、電源モジュール400がスマートデバイス50の本体及び各モジュールと通信を行う際に必要な各種識別情報が格納されている。
電池420には、Li−ion電池、燃料電池等が該当する。電池420は、電池制御回路410によりコネクタ480を介して、スマートデバイス50の本体及び各モジュールに対して放電すると共に、スマートデバイス50の本体及び不図示の充電モジュールから充電される。422は、電源モジュール400の所定箇所の温度を計測するための単数或いは複数の温度センサである。430はインターフェース回路であり、モジュール側CMC440aを介して、スマートデバイス50の本体及び各モジュールとのデータやメッセージの高速な通信を中継する。
<撮像モジュール500の構成>
撮像モジュール500は、アプリケーションプログラム制御モジュール200による統括制御の下で、スマートデバイス50の本体によって制御され、所望の撮像処理を行うモジュールとしての撮像装置である。撮像モジュール500において510は、光軸上に光学レンズを複数配置したカメラである。更にカメラ510は、通過する光量を調節する絞り機構と、光軸方向に少なくとも一枚の光学レンズを移動させて焦点調節を行うAF機構と、これらの構成部品を内部に収納するレンズ鏡筒とで構成されている。またカメラ510は、光電変換により画像データを得る撮像センサと、画像データを処理する画像処理回路と、各機構を制御する駆動制御回路とを備える。
カメラ510は、絞りやシャッター速度や撮像センサの感度を最適に設定する自動露出調節(AE)、被写体距離に応じた自動焦点調節(AF)、色温度を調節して適正な色調を再現する自動ホワイトバランス(AWB)などの制御を実現する。他にも本実施例は、姿勢検知モジュール800で取得した角速度情報から手ブレを算出し、撮像センサ上で切り出した露光範囲を追従させることで、簡易的に手ブレ補正(IS)を行うことが可能である。尚、本発明はこうした撮像装置の一般的な制御方法を限定するものではなく、またこれらは既に先行技術文献等により公知であるため、詳細な個別の説明は省略する。
カメラ510への指示は、アプリケーション制御回路210で実行されるアプリケーションプログラムや、表示操作モジュール300のTP/ボタン314に対する入力に応じて行われる。カメラ510により取得した画像データは、アプリケーション制御回路210が、スマートデバイス50の本体と表示操作モジュール300とを制御することで、LCDパネル312に表示可能となる。
516は識別情報メモリで、撮像モジュール500がスマートデバイス50の本体及び各モジュールと通信を行う際に必要な各種識別情報が格納されている。520は、撮像モジュール500の各部に必要な所定の電圧・電流を供給する電源制御回路である。
522は、カメラ510の動作用の定数、変数、構成部品の位置情報、光軸の誤差情報、レンズの誤差情報等を記憶し、電気的に消去・記録可能な不揮発性メモリであり、例えばフラッシュメモリ等が用いられる。ここでいう構成部品の位置情報には、撮像モジュール500の外形から見た光軸の座標情報が含まれている。前述のように、撮像モジュール500は、スマートデバイス50の本体に対してその外形を突き当てることで位置が決定される。尚、本実施例は撮像モジュール500の位置決めを、スマートデバイス50の本体のリブ101a〜hとスパイン102への突き当てにより行っているが、本発明はこれに限定されるものではない。例えば、スマートデバイス50の本体に位置決め用の凸部を設け、撮像モジュール500に凸部と嵌合する凹部を設けるなどしても良い。この場合、構成部品の位置情報には、凸部と嵌合する凹部から見た光軸の座標情報が含まれることになる。
また光軸の誤差情報には、詳しくは後述するが、例えば部品や組立の精度により製造誤差として生じる、カメラ510の光軸の傾きの誤差が含まれる。一方レンズの誤差情報には、例えば製造誤差として生じる焦点距離の誤差やF値の誤差、歪曲、光軸を回転中心とする撮像センサの角度誤差などが含まれる。こうした製造誤差に関する情報を不揮発性メモリ522に記憶させることで、アプリケーション制御回路210の処理においてこれらの誤差を補正することが可能となる。ひいては、後述する複眼カメラの機能を利用する際に画像の合成機能や測定機能の精度を高めることができる。
530はインターフェース回路であり、モジュール側CMC540を介して、スマートデバイス50の本体及び各モジュールとのデータやメッセージの高速な通信を中継する。
<撮像モジュール600の構成>
撮像モジュール600は、アプリケーションプログラム制御モジュール200による統括制御の下で、スマートデバイス50の本体によって制御され、所望の撮像処理を行うモジュールとしての撮像装置である。撮像モジュール600において610は、光軸上に光学レンズを複数配置したカメラである。更にカメラ610は、通過する光量を調節する絞り機構と、光軸方向に少なくとも一枚の光学レンズを移動させて焦点調節を行うAF機構と、これらの構成部品を内部に収納するレンズ鏡筒とで構成されている。またカメラ610は、光電変換により画像データを得る撮像センサと、画像データを処理する画像処理回路と、各機構を制御する駆動制御回路とを備える。こうしたカメラ610の構成部品は、前述のカメラ510と同様である。しかしながら、撮像モジュール600におけるカメラ610の配置や形状は、撮像モジュール500におけるカメラ510の配置や形状とは異なっている。
カメラ610は、カメラ510と同様の制御を実現する。具体的には、絞りやシャッター速度や撮像センサの感度を最適に設定する自動露出調節(AE)、被写体距離に応じた自動焦点調節(AF)、色温度を調節して適正な色調を再現する自動ホワイトバランス(AWB)などの制御を実現する。他にも本実施例は、姿勢検知モジュール800で取得した角速度情報から手ブレを算出し、撮像センサ上で切り出した露光範囲を追従させることで、簡易的に手ブレ補正(IS)を行うことが可能である。尚、本発明はこうした撮像装置の一般的な制御方法を限定するものではなく、またこれらは既に先行技術文献等により公知であるため、詳細な個別の説明は省略する。
カメラ610への指示は、アプリケーション制御回路210で実行されるアプリケーションプログラムや、表示操作モジュール300のTP/ボタン314に対する入力に応じて行われる。カメラ610により取得した画像データは、アプリケーション制御回路210が、スマートデバイス50の本体と表示操作モジュール300とを制御することで、LCDパネル312に表示可能となる。
616は識別情報メモリで、撮像モジュール600がスマートデバイス50の本体及び各モジュールと通信を行う際に必要な各種識別情報が格納されている。620は、撮像モジュール600の各部に必要な所定の電圧・電流を供給する電源制御回路である。
622は、カメラ610の動作用の定数、変数、構成部品の位置情報、光軸の誤差情報、レンズの誤差情報等を記憶し、電気的に消去・記録可能な不揮発性メモリであり、例えばフラッシュメモリ等が用いられる。ここでいう構成部品の位置情報には、撮像モジュール600の外形から見た光軸の座標情報が含まれている。前述のように、撮像モジュール600は、スマートデバイス50の本体に対してその外形を突き当てることで位置が決定される。尚、本実施例は撮像モジュール600の位置決めを、スマートデバイス50の本体のリブ101a〜hとスパイン102への突き当てにより行っているが、本発明はこれに限定されるものではない。例えば、スマートデバイス50の本体に位置決め用の凸部を設け、撮像モジュール600に凸部と嵌合する凹部を設けるなどしても良い。この場合、構成部品の位置情報には、凸部と嵌合する凹部から見た光軸の座標情報が含まれることになる。
また光軸の誤差情報には、詳しくは後述するが、例えば部品や組立の精度により製造誤差として生じる、カメラ610の光軸の傾きの誤差が含まれる。一方レンズの誤差情報には、例えば製造誤差として生じる焦点距離の誤差やF値の誤差、歪曲、光軸を回転中心とする撮像センサの角度誤差などが含まれる。こうした製造誤差に関する情報を不揮発性メモリ622に記憶させることで、アプリケーション制御回路210の処理においてこれらの誤差を補正することが可能となる。ひいては、後述する複眼カメラの機能を利用する際に画像の合成機能や測定機能の精度を高めることができる。
630はインターフェース回路であり、モジュール側CMC640を介して、スマートデバイス50の本体及び各モジュールとのデータやメッセージの高速な通信を中継する。
<姿勢検知モジュール800の構成>
姿勢検知モジュール800は、アプリケーションプログラム制御モジュール200による統括制御の下で、スマートデバイス50の本体によって制御され、スマートデバイス50の姿勢を検知する。姿勢検知モジュール800において、810は3軸のジャイロセンサから角速度情報を取得するジャイロセンサである。816は識別情報メモリであり、姿勢検知モジュール800がスマートデバイス50の本体及び各モジュールと通信を行う際に必要な各種識別情報が格納されている。820は、姿勢検知モジュール800の各部に必要な所定の電圧・電流を供給する電源制御回路である。822は、姿勢検知モジュール800の所定箇所の温度を計測するための単数或いは複数の温度センサである。
830はインターフェース回路であり、モジュール側CMC840を介して、スマートデバイス50の本体及び各モジュールとのデータやメッセージの高速な通信を中継する。インターフェース回路830は、ジャイロセンサ810で取得した角速度情報を、スマートデバイス50の本体に送信する。そこから更に、スマートデバイス50の本体は、アプリケーションプログラム制御モジュール200にデータを高速で転送する。こうして、姿勢検知モジュール800の角速度情報は、表示操作モジュール300における表示方向の切り替えや、撮像モジュール500,600に対する手ブレ補正などに用いられる。
<アプリケーションプログラム制御モジュール200の動作説明>
図6は、アプリケーションプログラム制御モジュール200により実行される、複数のモジュールが装着されたスマートデバイス50の動作制御処理の手順を示すフローチャートである。
図6の処理は、アプリケーションプログラム制御モジュール200とスマートデバイス50の本体と表示操作モジュール300とが低消費電力状態であって、表示操作モジュール300の電源ボタン314aへのユーザ操作があったときに開始する。
かかるユーザ操作があると、表示操作制御回路310は、アプリケーション制御回路210へ向けてスリープ解除を示す起動(Wake)信号を送信する。アプリケーション制御回路210は、表示操作制御回路310からの起動(Wake)信号を受信すると、ステップS1100において初期設定を実行する。また本実施例は、スマートデバイス50の本体に装着される全てのモジュールのコネクタ部に検出(Detect)信号の端子が設けられている。これにより、例えば空いているスロットに対して新たなモジュールを装着した際も同様に、検出(Detect)信号が送信されてステップS1100に移行する。
ステップS1100において、アプリケーション制御回路210は、所定のフラグや制御変数等をリセットして初期化すると共に、アプリケーションプログラム制御モジュール200の各部の初期化を行う。続いて、アプリケーション制御回路210は、不揮発性メモリ214から読み出したソフトウェアプログラムを実行して、カーネル起動とOS起動を順次行う。その後、インターフェース回路230、モジュール側CMC240a、本体側CMC142a、スイッチインターフェース回路130を介して、スマートデバイス50の本体のシステム制御回路110との通信の初期化を行う。システム制御回路110の初期化によってスマートデバイス50の本体に装着される全てのモジュールは動作可能な状態となる。これにより、例えば表示操作モジュール300において、表示操作制御回路310は、表示部であるLCDパネル312に所定の起動画面を表示させる。そして表示操作モジュール300は、操作入力手段であるTP/ボタン314に対するユーザの入力指示が可能な状態に至る。
ステップS1100を終えると、ステップS1101に進み、アプリケーション制御回路210は、ステップS1101において終了メッセージを受信したか否かを判断する。この終了メッセージは、表示操作制御回路310において以下のような形でアプリケーション制御回路210に送信される。まず、表示部であるLCDパネル312に終了ボタンを表示すると共に、この終了ボタンをTP/ボタン314でユーザ選択できる状態とする。その後、この終了ボタンがユーザ選択されたとき、表示操作制御回路310は、アプリケーション制御回路210に終了メッセージを送信する。
ステップS1101で終了メッセージを受信したと判断した場合、ステップS1120に進む。ステップS1120で、アプリケーション制御回路210は終了処理を行なう。具体的には、アプリケーション制御回路210は、システム制御回路110に終了メッセージを送信した後、フラグや制御変数等を必要に応じて不揮発性メモリ214に退避する。それと共に、OS及びカーネルを低消費電力で動作する動作終了状態に移行する。そして、電源制御回路220を介したアプリケーションプログラム制御モジュール200とスマートデバイス50の本体と表示操作モジュール300とへの電力供給を、低消費電力の設定に変更する。システム制御回路110は、終了メッセージを受信すると、アプリケーションプログラム制御モジュール200とスマートデバイス50の本体、表示操作モジュール300以外のモジュールの全ての動作を停止する処理を行う。
ステップS1120の終了処理を終えた後、アプリケーション制御回路210は、本処理を終了し、所謂電源OFFの状態に至る。
ステップS1101で、終了メッセージを受信しなかった場合、ステップS1102に進む。ステップS1102において、アプリケーション制御回路210は、表示操作モジュール300の表示操作制御回路310からスリープ状態に移行するスリープメッセージを受信したかどうかを判断する。このスリープメッセージは、表示操作制御回路310において以下のような形でアプリケーション制御回路210に送信される。まず、表示部であるLCDパネル312にスリープボタンを表示すると共に、このスリープボタンをTP/ボタン314でユーザ選択できる状態とする。その後、このスリープボタンがユーザ選択されたとき、表示操作制御回路310は、アプリケーション制御回路210にスリープ状態に移行するスリープメッセージを送信する。
ステップS1102で、スリープ状態に移行するスリープメッセージを受信したと判断した場合、ステップS1103に進む。ステップS1103において、アプリケーション制御回路210はスリープ処理を行なう。具体的には、アプリケーション制御回路210は、システム制御回路110にスリープメッセージを送信した後、フラグや制御変数等を必要に応じて不揮発性メモリ214に退避する。それと共に、OS及びカーネルを低消費電力で動作するスリープ動作状態に移行する。そしてシステム制御回路110は、スリープメッセージを受信すると、スマートデバイス50の全てのモジュールの動作をスリープ状態に移行する処理を行った後、ステップS1104に進む。
尚、ステップS1100で初期設定がされると、表示操作モジュール300のLCDパネル312には、上述した終了ボタン、スリープボタンの他、後述するリリースボタン、アプリ実行ボタンが表示される。これらのボタンのいずれもLCDパネル312に表示されてから所定時間が経過するまでにユーザ選択されない場合がある。また、本処理の開始時に表示操作モジュール300の電源ボタン314aへのユーザ操作があった後、表示操作制御回路310から送信される起動(Wake)信号が所定の時間を経過しても受信されない場合がある。このような場合、スリープメッセージを受信したのと同じようにステップS1103に進む。更に、ステップS1102において、アプリケーション制御回路210は、後述する処理による入力指示や起動(Wake)信号が最後に受信されたタイミングから経過した時間を積算する。この積算した時間を所定値と比較した結果、積算時間のほうが長ければスリープ状態に移行する。その後のスリープ処理については、前述した通りである。
ステップS1104において、アプリケーション制御回路210は、コネクタ280を介して、各モジュールから送信される起動(Wake)信号を受信したかどうか判断する。ステップS1104で起動(Wake)信号を受信しなかったならば、起動(Wake)信号を受信するまでスリープ動作状態を継続する。ここで、本実施例におけるスリープ動作状態とは、前述した電源OFFの状態とは異なる。例えば、移動体通信モジュール900が移動体通信の規格に準じた呼び出し信号を受信した際、アプリケーション制御回路210は、直ちにスマートデバイス50をスリープ動作状態から所定のアプリ実行状態へと移行させる。尚、こうした移動体無線通信システムの一般的な制御については、既に公知であるため詳しい説明を省略する。
ステップS1104で起動(Wake)信号を受信したならば、ステップS1105に進む。ステップS1105において、アプリケーション制御回路210は、フラグや制御変数等を必要に応じて不揮発性メモリ214から戻す。それと共に、OS及びカーネルを通常消費電力で動作する通常動作状態に移行し、電源制御回路220を介したスマートデバイス50の全てのモジュールへの電力供給を通常消費電力の設定に変更する復帰処理を行う。更にステップS1105において、アプリケーション制御回路210は、スマートデバイス50の本体のシステム制御回路110との通信の復帰処理を行う。このときシステム制御回路110は、アプリケーション制御回路210以外の全てのモジュールに対して復帰処理を行い、スマートデバイス50を通常動作状態に移行させて、ステップS1101に戻る。
ステップS1102でスリープ状態に移行するスリープメッセージを受信しなかった場合、ステップS1106に進む。ステップS1106において、アプリケーション制御回路210は、表示操作モジュール300の表示操作制御回路310からリリースメッセージを受信したかどうかを判断する。このリリースメッセージは、表示操作制御回路310において以下のような形でアプリケーション制御回路210に送信される。まず、表示操作制御回路310は、表示部であるLCDパネル312にリリースボタンを表示すると共に、このリリースボタンをTP/ボタン314でユーザ選択できる状態とする。その後、このリリースボタンがユーザ選択され、更にどのモジュールの取り外しを行うかのユーザ指示が入力された場合、表示操作制御回路310は、アプリケーション制御回路210にリリース状態に移行するリリースメッセージを送信する。
ステップS1106でリリース状態に移行するリリースメッセージを受信したと判断した場合、ステップS1107に進む。ステップS1107において、アプリケーション制御回路210は、ユーザが取り外しを意図するモジュールに対して、正常に機能を終了させてEPMを解放するためのリリース処理を実行する。リリース処理の詳細は、図7を用いて後述する。ステップS1107を終了すると、ステップS1101に戻る。
ステップS1106で、リリース状態に移行するリリースメッセージを受信しなかった場合、ステップS1108に進む。ステップS1108において、アプリケーション制御回路210は、各モジュールの検出(Detect)信号を受信したかどうかを判断する。ここで検出(Detect)信号とは、スマートデバイス50の本体に対して新たにモジュールが装着されたことを検出する信号である。また、この検出信号は、その新たに装着されたモジュールからシステム制御回路110を介してアプリケーション制御回路210に送信される電気信号のことである。
ステップS1108で検出(Detect)信号を受信したならば、ステップS1109に進む。ステップS1109において、アプリケーション制御回路210は、スマートデバイス50の本体に挿入された該当モジュールを固定し適切に機能させるためのモジュール設定処理を実行する。モジュール設定処理の詳細は、図8を用いて後述する。ステップS1109を終了すると、ステップS1101に戻る。
ステップS1108で検出(Detect)信号を受信しなかったと判断した場合、ステップS1110に進む。ステップS1110において、アプリケーション制御回路210は、表示操作モジュール300の表示操作制御回路310から、アプリケーションプログラム関係メッセージを受信したかどうかを判断する。このアプリケーションプログラム関係メッセージは、表示操作制御回路310において以下のような形でアプリケーション制御回路210に送信される。まず、表示操作制御回路310は、表示部であるLCDパネル312にアプリ実行ボタンを表示すると共に、このアプリ実行ボタンをTP/ボタン314でユーザ選択できる状態とする。その後、このアプリ実行ボタンがユーザ選択され、更にどのアプリケーションプログラムを実行するかユーザ入力された場合、表示操作制御回路310は、アプリケーション制御回路210にアプリケーションプログラム関係メッセージを送信する。
ステップS1110でアプリケーションプログラム関係メッセージを受信したと判断した場合、ステップS1111に進み、アプリケーション制御回路210は、ステップS1111でアプリケーションプログラム実行処理を実行する。本実施例で想定されるアプリケーションプログラムには、各モジュールの組み合わせによって実現され得る様々な機能が含まれる。例えば、移動体通信モジュール900と表示操作モジュール300の組み合わせにより通話機能が可能となり、無線LANモジュール700と表示操作モジュール300の組み合わせによりインターネット接続を介したウェブ閲覧が可能となる。また例えば、撮像モジュール500のみによって一般的な撮影機能が実現され、そこへ撮像モジュール600を組み合わせることによって複眼カメラの機能である画像の合成機能や測定機能が実現される。こうしたアプリケーションプログラムの一例である撮影アプリケーション実行処理の詳細は、図9を用いて後述する。ステップS1111を終了すると、ステップS1101に戻る。
ステップS1110でアプリケーションプログラム関係メッセージを受信しなかったと判断した場合、ステップS1101に戻る。
図7は、図6のステップS1107のリリース処理の詳細な手順を示すフローチャートである。
図7において、まずステップS1201で、アプリケーション制御回路210は、システム制御回路110にユーザにより取り外し指示を受けたモジュール(以下「リリース対象モジュール」という)の機能の終了を指示するメッセージを送信する。次にステップS1202に進み、アプリケーション制御回路210は、システム制御回路110から送信される、リリース対象モジュールのモジュール情報が更新されていることを通知する情報更新メッセージを受信したかどうかを判断する。
ステップS1202で情報更新メッセージを受信しなかったと判断した場合、アプリケーション制御回路210は、ステップS1203で所定のエラー処理を行う。その後、ステップS1205においてEPMを制御することにより、リリース対象モジュールのロック状態を解除して本処理を終了する。ステップS1203のエラー処理では、表示操作モジュール300などにエラー内容を表示してユーザに通知しても良い。
ステップS1202で情報更新メッセージを受信したと判断した場合、ステップS1204に進む。ステップS1204において、アプリケーション制御回路210は、受信した情報更新メッセージの内容に応じて、OS及びカーネルが管理する不揮発性メモリ214及びメモリ212の所定領域に格納された管理情報を更新する。ここでいう管理情報とは、モジュール管理情報、EPM制御管理情報、RFバス構成管理情報を含む。その後、ステップS1215においてEPMを制御することにより、リリース対象モジュールのロック状態を解除して本処理を終了する。
図8は、図6のステップS1109の装着処理の詳細な手順を示すフローチャートである。
図8において、まずステップS1301で、アプリケーション制御回路210は、システム制御回路110と共にメッセージ通信のコネクションセットアップを行い、システム制御回路110とのネットワークリンクを確立する。次にステップS1302に進み、アプリケーション制御回路210は、システム制御回路110を介してスマートデバイス50の本体に装着されたモジュール(以下「装着モジュール」という)から初期化などのモジュール情報を取得する。更にステップS1303に進み、アプリケーション制御回路210は、ステップS1302で取得したモジュール情報が、スマートデバイス50において問題の無い内容かどうかを検証する。例えば、安定した通信が可能か、既に装着されている電源モジュール400の電圧で動作可能か、またその他にも、スマートデバイス50に個別で設定されている規格がある場合にはそれを満足しているか等が検証される。
ステップS1303で検証した結果に問題があれば、アプリケーション制御回路210は、ステップS1304で所定のエラー処理を行った後、装着モジュールに対して本処理を終了する。エラー処理では、表示操作モジュール300などにエラー内容などを表示してユーザに通知しても良い。
一方、ステップS1303で検証した結果に問題が無ければ、装着モジュールが正常であると判断し、ステップS1305に進む。ステップS1305において、アプリケーション制御回路210は、初期化を行う装着モジュールのモジュール情報に基づき、不揮発性メモリ214及びメモリ212の所定領域に格納された管理情報を更新する。ここでいう管理情報とは、モジュール管理情報、EPM制御管理情報、RFバス構成管理情報を含む。
次にステップS1306において、アプリケーション制御回路210は、システム制御回路110に初期化を行う装着モジュールのEPMロック指示メッセージを送信する。これにより、スマートデバイス50の本体と初期化を行う装着モジュールとが、EPMにより固定されてロック状態となる。
続いて、ステップS1307でアプリケーション制御回路210は、システム制御回路110に向けて通信開始指示メッセージを送信し、一連の初期化処理を行った装着モジュールとのメッセージ通信が可能になったことを通知する。その後、ステップS1308において、状態変化フラグをONに切り替えて、本処理を終了する。ここでいう状態変化フラグとは、各モジュールに割り付けられて不揮発性メモリ214に保持されるフラグであり、各モジュールの状態変化の有無によりONとOFFとが切り替えられる再処理フラグである。状態変化フラグがONとなるのは、各モジュールの状態変化フラグがOFFの状態において、スマートデバイス50の本体に装着された各モジュールの状態が変化した時である。尚、状態の変化としては、各モジュールの装着の他に、電池残量の変化、故障、性能の劣化などが含まれる。また、スマートデバイス50の本体にある温度センサ118により計測された温度変化が一定の閾値を超えた場合や、図5において不図示の湿度センサにより計測された湿度変化が一定の閾値を超えた場合は、すべてのモジュールの状態変化フラグがONとなる。
本処理の結果、装着モジュールが正常であり(ステップS1303でYES)、更に装着モジュールがロック状態となったときに(ステップS1306)、装着モジュールの機能がスマートデバイス50において利用可能な状態となる。
尚、本発明の装着処理は図8に示す手順に限定されるわけでない。例えば、各通信を安定させるため、EPMによる装着モジュールのロックをステップS1301の前に行っても良く、その場合はステップS1304の後にロック解除を行うことになる。
図9は、図6のステップS1111のアプリケーションプログラム実行処理の一例である撮影アプリケーション実行処理の動作フローを示すフローチャートである。
図9において、まずステップS1401で表示操作モジュール300の操作入力により撮影アプリケーションを立ち上げると、アプリケーション制御回路210は、管理テーブル290から撮影アプリケーションの管理ファイルの情報を取得する。この情報には、撮影アプリケーションを実行するのに不可欠なモジュールの種類や、撮影機能を最大限に活用できる該当モジュールの組み合わせや、該当モジュールを装着するのに最適な各スロットの位置関係が含まれる。
次にステップS1402に進み、アプリケーション制御回路210は、システム制御回路110を介して各モジュールからモジュール情報を取得する。そしてステップS1403において、撮像アプリケーションの管理ファイルの情報に基づき、必要なモジュールが装着されているか、その組み合わせに問題がないか等を検証する。
ステップS1403で検証した結果に問題があれば、アプリケーション制御回路210は、ステップS1404で所定のエラー処理を行った後、本撮影アプリケーション実行処理を終了する。エラー処理では、表示操作モジュール300などにエラー内容などを表示してユーザに通知しても良い。例えば、ステップS1402の時点でいずれのスロットにも撮像モジュールが装着されておらず、撮像アプリケーションを実行できない場合は、ステップS1404のエラー処理においてエラー内容を通知し、本撮影アプリケーション実行処理を終了する。またその他に、装着された撮像モジュール500に手ブレ補正(IS)の機能が備わっているにも関わらず、例えば姿勢検知モジュール800が装着されていないために手ブレを検知できない場合がある。この場合は、ステップS1404のエラー処理において撮影機能の一部を制限する。この場合は、本撮影アプリケーション実行処理を終了する必要はなく、エラー内容の通知に対してユーザの操作入力等があれば、状況に応じてステップS1405の撮影実行処理に移行しても良い。
ステップS1403で検証した結果に問題が無ければ、ステップS1405に進んで撮影実行処理を行う。その後、アプリケーション制御回路210は、撮像アプリケーションに必要な各モジュールの動作を停止し、本処理を終了する。撮影実行処理の詳細は、図10を用いて後述する。
図10は、図9のステップS1405において実行される撮影実行処理の手順を示すフローチャートである。
図10のステップS1501で、アプリケーション制御回路210は、モジュール起動指示のメッセージをシステム制御回路110に送信する。システム制御回路110を介してこの撮像モジュール起動指示のメッセージを受信すると、装着されている撮像モジュール(本実施例では、撮像モジュール500,600)はリセット動作を行って撮影準備を完了させる。
次にステップS1502において、図9のステップS1402で取得したモジュール情報から、アプリケーション制御回路210は、撮像モジュールが複数装着されているかどうかを判断する。撮像モジュールが一つのみであった場合はステップS1503に進む。例えば撮像モジュール500のみが装着されている場合、アプリケーション制御回路210が、そのカメラ510を利用して単眼モードの一般的な撮影を実行し、ステップS1510に進む。ここでいう一般的な撮影とは、自動露出(AE)、自動焦点調節(AF)、自動ホワイトバランス(AWB)、手ブレ補正(IS)等の制御を行いつつ、撮像センサから所望の画像データを取得することである。尚、本発明はこうした一般的な撮影の内容を限定するものではなく、またこれらは既に先行技術文献等により公知であるため、詳細な説明は省略する。
ステップS1502で、撮像モジュールが複数装着されていると判断した場合は、ステップS1504に進む。ステップS1504において、アプリケーション制御回路210は、装着されている各撮像モジュールの状態が変化したかどうかを検知するため、状態変化フラグがONとなっているかどうかを判断する。このとき、状態変化フラグが全てOFFであればステップS1509に進む。例えば撮像モジュール500,600が装着されている場合、アプリケーション制御回路210が、そのカメラ510,610を介して複眼撮影実行処理を行なった後、本処理を終了する。前述のように、複眼カメラの機能には、画像の合成機能や測定機能が含まれる。尚、複眼撮影実行処理については、図11を用いて詳しく後述する。
ステップS1504の判断の結果、装着されている撮像モジュール(例えば撮像モジュール500,600)のいずれかの状態変化フラグがONとなっていた場合、ステップS1505に進む。
ステップS1505では、アプリケーション制御回路210は、各スロットの位置情報と各光軸の座標情報とを取得する。各スロットの位置情報については、スマートデバイス50の本体のメモリ114から取得する。同様に、カメラ510における光軸の座標情報については、撮像モジュール500の不揮発性メモリ522から、カメラ610における光軸の座標情報については、撮像モジュール600の不揮発性メモリ622から取得する。
次にステップS1506に進み、アプリケーション制御回路210は、カメラ510における光軸とカメラ610における光軸との距離である基線長を計算する。背景技術において前述したように、少なくとも2つの撮像モジュールが複眼カメラの機能を発揮するには、正確な基線長を得ることは重要である。尚、本発明でいう基線長とは、少なくとも2つの撮像モジュールの視差情報を処理する目的で用いられる変数であって、2つの光軸間の距離を示しているが、先行技術文献によっては位置ずれ量や視差といった表現で記載されるものである。本実施例における基線長の計算方法の詳細については後述する。
続いてステップS1507において、アプリケーション制御回路210は、ステップS1506で計算した基線長の管理情報と共に、不揮発性メモリ214及びメモリ212の所定領域に格納された管理情報を更新する。ここでいう管理情報とは、ステップS1506で新たに得た基線長の管理情報の他に、モジュール管理情報、EPM制御管理情報、RFバス構成管理情報を含む。
その後、ステップS1508へ進み、アプリケーション制御回路210は、状態変化フラグをOFFに切り替える。ここで状態変化フラグをONにするタイミングとは、例えば図8の装着処理におけるステップS1308で新たなモジュールをスマートデバイス50の50の本体に対して装着した時である。一方、状態変化フラグをOFFにするタイミングとは、例えばステップS1508のように、管理ファイルを最新の状態に更新した直後である。このように、適切なタイミングで状態変化フラグのONとOFFとを切り替えることにより、本実施例ではモジュールの状態変化が常に管理される。
続いてステップS1509に進み、アプリケーション制御回路210が、例えばカメラ510,カメラ610とを介して複眼モードでの撮影を行う複眼撮影実行処理を行う。
最後にステップS1510で、アプリケーション制御回路210は、撮像モジュール終了指示のメッセージをシステム制御回路110に送信し、本処理を終了する。システム制御回路110はこの撮像モジュール終了指示のメッセージを受信すると、電源制御回路220を介して撮像モジュール500,600への電源供給を、低消費電力の設定に変更する。
図11は、図10のステップS1509の複眼撮影実行処理の手順を示すフローチャートである。
まず、図11のステップS1601で、アプリケーション制御回路210は、撮像モジュール500,600を同時に制御して、被写体の測距処理を行う。測距処理の詳細は、図12を用いて後述する。
次にステップS1602に進み、ステップS1601で得られたデフォーカス量に基づく焦点調節と、絞りやシャッター速度や撮像センサの感度を最適に設定する露出調節とを実行する。そして、ステップS1601の測距処理からステップS1602の焦点調節及び露出調整までのステップは、次のステップS1603において、ユーザによる撮影指示があるまで繰り返される。このユーザによる撮影指示は、TP/ボタン314に対して行われ、これに応じて表示操作制御回路310は、アプリケーション制御回路210へ向けて撮影指示メッセージを送信する。
ステップS1603で、アプリケーション制御回路210が撮影指示メッセージを受信すると、ステップS1604に進む。ステップS1604において、各撮像モジュール500,600は露光処理を行い、撮像センサの光電変換により生成される画像データをそれぞれ出力する。ステップS1604で出力された各画像データは、ステップS1605において画像補正される。このとき例えば、それぞれの画像データについて、ノイズを除去したり歪曲を補正したりする。また、画像データを変形したり移動したりすれば、お互いの画像データの傾きや意図しない位置ずれなどを補正することが可能である。理想的には、撮像モジュール500,600の光軸は、平行であるのが好ましい。しかしながら、部品や組立の精度によって生じる製造誤差を避けることは困難である。そこでステップS1605において、撮像モジュール500,600の製造誤差が、画像データの変形や移動により電子的に補正される。これにより、後述する画像の合成機能や測定機能の精度を高めることが可能となる。
次にステップS1606に進み、アプリケーション制御回路210は、ステップS1605によって補正された各画像データの統合処理を行う。本発明のスマートデバイス50では、撮像モジュール500と撮像モジュール600との視点がお互いに異なっており、それぞれにわずかな視差を有している。そのため、各画像データの画素をサブピクセル精度で組み合わせて一つの画像データに統合すれば、単眼モードで得られる画像データよりも高い解像度の画像データを生成できる。
また一般的に、光学レンズから成るカメラの被写界深度が浅い場合、焦点の合った被写体については高い解像度が得られるが、焦点位置に対して奥行き方向で異なる被写体についてはボケが生じる。かかる問題を解消するために、ステップS1602において撮像モジュール500,600の焦点位置をわずかに異ならせておき、ステップS1606において基準画像データ及び参照画像データの焦点位置をサブピクセル精度で組み合わせるようにしてもよい。これにより、画面全体の被写界深度を深くして解像度を高めることができる。他にも、本複眼撮影実行処理では、被写界深度を浅くしてボケを強調したり、意図的に焦点位置を移動させたりする画像処理が可能である。更に、ステップS1602において焦点調整だけでなく露出調整についても同様に、各撮像モジュール500,600における露出の設定をそれぞれでわずかに異ならせる制御とすれば、画面全体のダイナミックレンジを拡大することができる。尚、本発明はこうした画像統合処理の制御方法を限定するものではなく、またこれらは既に先行技術文献等により公知であるため、詳細な個別の説明は省略する。
ステップS1606において所望の画像データを生成した後、ステップS1607に進み、生成した画像データを記録モジュール150に保存する。ステップS1607を終了すると、ステップS1608に進む。ステップS1608で、ステップS1607の処理後、一定時間を経過してもユーザによる撮影終了の指示が入力されない場合、ステップS1601に戻って、本複眼撮影実行処理を繰り返す。
ステップS1608でユーザによる撮影終了の指示が入力された場合、表示操作制御回路310は、アプリケーション制御回路210へ向けて撮影終了指示メッセージを送信する。この撮影終了指示メッセージの受信をしたときに、アプリケーション制御回路210は、撮像モジュール500,600の動作を停止し、本処理を終了する。
図12は、図11のステップS1601の測距処理の手順を示すフローチャートである。
まず、図12のステップS1701で、アプリケーション制御回路210は、撮像モジュール500,600を同時に制御して露光処理を行い、続いてステップS1702で、得られた画像データの補正処理を実行する。このステップS1701,S1702は、それぞれ図11で前述したステップS1604,S1605と同様な制御内容であるため、詳しい説明は省略する。
次にステップS1703に進み、アプリケーション制御回路210は、ブロックマッチング処理を行う。
ここでいうブロックマッチングとは、2つの視点の異なる画像データにおいて、それぞれの対応位置を求めるアルゴリズムのことである。単純化して説明すると、2つの画像データから、同一の被写体における特定箇所、例えばエッジの頂点に対応する座標を探す手法であり、基準画像データを小さな面積の領域に分割し、各領域について参照画像データ上で対応する座標を探索するものである。具体的には、ブロックマッチング処理では、画像データ間の類似性を評価するために、比較する画像データから任意の領域を切り出し、評価値を求める。求める評価値としては、その切り出された領域に対する輝度差の総和SAD(Sum of Absolute Difference)や、輝度差の自乗和SSD(Sum of Spuared Difference)が挙げられる。また、正規化相互相関ZNCC(Zero−mean Normalized Cross−Correlation)などをこの評価値として求めるようにしてもよい。
このとき仮に、被写体が明暗差のない不鮮明なものであったり、基線長の長さに比べて被写体の距離があまりに近かったりすると、それぞれの画像データ上に同一の特定箇所が見つからない。かかる場合、ステップS1703のブロックマッチング処理に失敗することもあり得る。そこで、ブロックマッチング処理に失敗したと判定された場合(ステップS1704でNO)、アプリケーション制御回路210は、ステップS1705に進み、所定のエラー処理を行う。エラー処理では、表示操作モジュール300などにエラー内容を表示してユーザに通知しても良い。
一方、ステップS1704でブロックマッチング処理に成功したと判定された場合は、ステップS1706に進み、画面全体について像面上の視差量の算出を行う。本実施例における視差量は、ブロックマッチング処理によって対応付けられた基準画像データに対する参照画像データの座標のずれ量に基づいて、画面全体にわたって算出されるものである。その後ステップS1707に進み、ステップS1706で算出した像面上の視差量を距離に変換する。
像面上の視差量を距離に変換する方法でもっとも容易なのは、下記数1に示す計算式を用いる方法である。Zは被写体までの距離、Lは撮像モジュール500,600の間の基線長、fはカメラ510,610の焦点距離、dは視差量を示している。尚、ここでは説明を単純化するため、撮像モジュールは2つとし、また、それぞれのカメラの焦点距離を同一としたが、本発明はこれに限定されるものではない。
[数1]
Z=L×f÷d
ステップS1707で、画面全体にわたって像面上の視差量を距離に換算し、所謂距離マップを作成した後、ステップS1708において、所望の被写体が含まれるように測距範囲を指定する。測距範囲の指定は、撮影対象の被写体が含まれるように、例えば指標としてLCDパネル312上に移動自在な測距枠を表示させるなど、一般的にはユーザの操作によって行われるものである。他にも、例えば人物の顔など、被写体の特徴点を検出することにより、アプリケーション制御回路210が判断して、自動で行うものであっても構わない。
ステップS1708で測距範囲を指定すると、どの被写体を目標とするのかが明確になり、ステップS1707で作成した距離マップのどの範囲を参照するのかが一義的に決定される。そしてステップS1709において、距離マップ上の目標となる焦点位置と、実際の光学レンズの位置で決定される現在の焦点位置との差を、デフォーカス量として算出する。本実施例の撮像モジュール500,600は、このデフォーカス量に基づいて光学レンズの移動量を算出し、図11のステップS1602で前述した焦点調節を行う。その後、本測距処理を終了する。
以上で、スマートデバイス50の一連の動作フローの説明を終了する。尚、図5に示すアプリケーションプログラム制御モジュール200に設けられた管理テーブル290は、無線LANモジュール700等により、アプリケーションプログラムのアップデートがされた時点で情報を更新することができる。そのため、図5における管理テーブル290は、各モジュールの種類や実現できる機能、その他必要となる情報を適宜変更したり追加したりすることが可能である。
図13は、図10のステップS1506において実行される基線長の計算方法を示した説明図である。
前述した図10のステップS1506において、アプリケーション制御回路210は、スマートデバイス50の本体のメモリ114から各スロットの位置情報を取得する。ここで本実施例における各スロットの位置情報とは、スロット1500,1600との位置情報を含み、モジュールの位置を決定する各リブ101a,c〜hやスパイン102の突き当て面の位置を特定するものである。これと同時に、ステップS1506においてアプリケーション制御回路210は、撮像モジュール500の不揮発性メモリ522からカメラ510における光軸の座標情報を取得する。またアプリケーション制御回路210は、撮像モジュール600の不揮発性メモリ622からカメラ610における光軸の座標情報を取得する。ここで本実施例における各光軸の座標情報とは、それぞれの撮像モジュール500,600の外形から見た各光軸の座標を特定するものである。
具体的にはこうした位置・座標情報を基にして、アプリケーション制御回路210は、図13に示すX101〜X103及びY101、Y102のそれぞれの数値を得る。X101は、撮像モジュール500の突き当て面からカメラ510における光軸までの水平方向の長さを示しており、同じくY101は、垂直方向の長さを示している。X102は、スマートデバイス50の本体におけるスパイン102の水平方向の長さを示している。X103は、撮像モジュール600の突き当て面からカメラ610における光軸までの水平方向の長さを示しており、同じくY102は、垂直方向の長さを示している。
図13に示すL100は、カメラ510における光軸とカメラ610における光軸とを結んだ中心線の長さを示しており、基線長に相当するものである。基線長L100は、X101〜X103とY101、Y102とから幾何学的に算出されるものである。ここで本実施例における基線長L100は、下記数2に示す計算式によって求められる。
[数2]
L100=√{(X101+X102+X103)+(Y101−Y102)
上記に示すように、計算式自体は比較的単純であり、アプリケーションプログラム制御モジュール200のメモリ212や不揮発性メモリ214に要求とされるメモリ容量は比較的少ない。更に、アプリケーション制御回路210による処理速度は非常に高速であるため、合焦や露光開始までにタイムラグを生じさせてしまう恐れはない。
図14は、本実施例にかかる撮像モジュール500のスマートデバイス50の本体に対する光軸の傾きを示す説明図である。図14(a)は、図13において撮像モジュール500を水平方向に分断した際の断面であり、カメラ510の光軸を通過するS1−S1断面図である。一方図14(b)は、図13において撮像モジュール500を垂直方向に分断した際の断面であり、カメラ510の光軸を通過するS2−S2断面図である。尚、図14における水平方向とは、各リブ101a〜hの長手方向を指し、垂直方向とは、本図において不図示のスパイン102の長手方向を指す。
図14(a)に示すθxは、カメラ510の光軸に生じる水平方向の傾き角度を模式的に示したものであり、図14(b)に示すθyは、カメラ510の光軸に生じる垂直方向の傾き角度を模式的に示したものである。前述のようにスマートデバイス50の本体では、少なくともスロット1500,1600とが同一平面であり、且つカメラ510,610の光軸が平行であるのが好ましい。しかしながら、部品や組立の精度によって生じる製造誤差は避けることができず、製造工程においてレンズ位置調整等の修正は図るものの、それぞれ微小な水平方向の傾き角度θxと垂直方向の傾き角度θyとが残ってしまう。尚、図14ではカメラ510の光軸に生じる傾きを示しているが、こうした製造誤差はカメラ610にも同様に生じるものである。
そこで本実施例では、撮像モジュール500,600の製造誤差を製造工程において測定する。この測定結果としてのカメラ510,610の光軸の傾きはそれぞれ撮像モジュール500の不揮発性メモリ522及び撮像モジュール600の不揮発性メモリ622に記憶させる。こうすることで、図11のステップS1605及び図12のステップS1702において画像データを補正する際、アプリケーション制御回路210がそれぞれの誤差を考慮して、理想の系に近づけるように変形したり移動したりすることが可能となる。こうして本実施例では、複眼カメラの機能を利用する際に画像の合成機能や測定機能の精度を高めることができる。尚、カメラ510の光軸の傾きとカメラ610の光軸の傾きとから誤差を補正する具体的な手法については、既に前述の特許文献2等により公知であるため、詳細な個別の説明は省略する。
(実施例2)
ここまで本発明の好ましい実施の形態を、図1〜14に示す実施例1に従って説明してきた。ここから以下に、モジュールを取り付けるスロットの組み合わせのみを実施例1から変更する実施例2について説明する。
図15は、本実施例にかかる電子機器としてのスマートデバイス50の外観図であり、図10のステップS1506において実行される基線長の計算方法を示した説明図である。
本実施例は実施例1と異なり、スマートデバイス50の本体の背面側において、スロット1600に撮像モジュール500が、またスロット1100に撮像モジュール600が装着されている。そして、実施例1において撮像モジュール500が装着されていたスロット1500に対して、本実施例では記録モジュール150が取り付けられた状態となっている。こうすることによって、カメラ510における光軸とカメラ610における光軸とをより離して配置し、基線長を長くすることができる。一般的に基線長を長くすると、遠くの被写体を撮影する際、立体視モードにおいて立体感を得やすく、また測距精度を高めることが可能である。また、ユーザがスマートデバイス50を使用する際の持ちやすさなどによっても、こうした撮像モジュール500,600との位置関係は変更されるものである。
前述した図10のステップS1506においてアプリケーション制御回路210は、スマートデバイス50の本体のメモリ114から各スロットの位置情報を取得する。ここで本実施例における各スロットの位置情報とは、スロット1500,1600とスロット1800との位置情報を含み、モジュールの位置を決定する各リブ101a〜hやスパイン102の突き当て面の位置を特定するものである。これと同時に、ステップS1506においてアプリケーション制御回路210は、撮像モジュール500の不揮発性メモリ522からカメラ510における光軸の座標情報を取得する。またアプリケーション制御回路210は、撮像モジュール600の不揮発性メモリ622からカメラ610における光軸の座標情報を取得する。ここで本実施例における各光軸の座標情報とは、それぞれの撮像モジュール500,600の外形から見た各光軸の座標を特定するものである。
具体的にはこうした位置・座標情報を基にして、アプリケーション制御回路210は、図15に示すX201〜X203及びY201、Y202のそれぞれの数値を得る。X201は、撮像モジュール500の突き当て面からカメラ510における光軸までの水平方向の長さを示しており、同じくY201は、垂直方向の長さを示している。X202は、スマートデバイス50の本体におけるリブ101fとリブ101hの水平方向の長さを示している。X203は、撮像モジュール600の突き当て面からカメラ610における光軸までの水平方向の長さを示しており、同じくY202は、垂直方向の長さを示している。
図15に示すL200は、カメラ510における光軸とカメラ610における光軸とを結んだ中心線の長さを示しており、基線長に相当するものである。基線長L200は、X201〜X203とY201、Y202とから幾何学的に算出されるものである。ここで本実施例における基線長L200は、下記数3に示す計算式によって求められる。
[数3]
L200=√{(X201+X202+X203)+(Y201−Y202)
上記に示すように、計算式自体は比較的単純であり、アプリケーションプログラム制御モジュール200のメモリ212や不揮発性メモリ214に要求とされるメモリ容量は比較的少ない。更に、アプリケーション制御回路210による処理速度は非常に高速であるため、合焦や露光開始までにタイムラグを生じさせてしまう恐れはない。
以上、本発明の好ましい別の実施の形態を、図15に従って説明した。尚、スマートデバイス50の本体に装着可能なモジュールは多種多様であり、またモジュールを装着するスロットもユーザにより自由に選択可能であるため、図15に示す組み合わせは単なる一例に過ぎず、本発明はその組み合わせを限定するものではない。
また、本発明の目的は、以下の処理を実行することによっても達成される。即ち、上述した実施例の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)が記憶媒体に格納されたプログラムコードを読み出す処理である。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコード及び該プログラムコードを記憶した記憶媒体は本発明を構成することになる。
50 スマートデバイス
101a〜h リブ
102 スパイン
118 温度センサ
1000〜1900 スロット
200 アプリケーションプログラム制御モジュール
210 アプリケーション制御回路
214 不揮発性メモリ
500,600 撮像モジュール
510,610 カメラ

Claims (13)

  1. 第1及び第2の撮像モジュールを複数の取り付け領域のいずれかにそれぞれ装着する電子機器において、
    複眼モードで撮影を行う撮影手段と、
    前記第1及び第2の撮像モジュールからそれぞれの光軸の座標情報を取得する取得手段と、
    前記複数の取り付け領域の位置情報を記憶する記憶手段と、
    前記第1及び第2の撮像モジュールと前記電子機器の本体のいずれかで状態変化があった場合、前記光軸の座標情報と、前記取り付け領域の位置情報とを取得して基線長を計算する計算手段とを備えることを特徴とする電子機器。
  2. 前記複眼モードは、前記第1及び第2の撮像モジュールのそれぞれから出力される画像を合成するモードであり、前記複数の取り付け領域は略同一平面であって、前記第1及び第2の撮像モジュールの光軸が略平行である場合にユーザ選択可能なモードに設定されることを特徴とする請求項1記載の電子機器。
  3. 前記複眼モードは、前記第1及び第2の撮像モジュールのそれぞれから出力される画像データに基づき被写体距離を計算するモードであり、前記複数の取り付け領域は略同一平面であって、前記第1及び第2の撮像モジュールの光軸が略平行である場合にユーザ選択可能なモードに設定されることを特徴とする請求項1記載の電子機器。
  4. 前記取得手段は、前記第1及び第2の撮像モジュールからそれぞれの前記光軸の誤差情報を更に取得し、
    前記第1及び第2の撮像モジュールと前記電子機器の本体のいずれかで状態変化があった場合、前記光軸の座標情報と、前記光軸の誤差情報と、前記取り付け領域の位置情報とを取得して、前記第1及び第2の撮像モジュールから出力される画像データを補正することを特徴とする請求項1乃至3のいずれか1項に記載の電子機器。
  5. 前記第1及び第2の撮像モジュールが前記複数の取り付け領域のいずれかにそれぞれ装着されているか否かを検出する検出手段を更に備え、
    前記検出手段により前記第1及び第2の撮像モジュールのそれぞれが前記複数の取り付け領域のいずれかに装着されたと検出された場合に、前記撮影手段により前記複眼モードで撮影を行うことを特徴とする請求項1乃至4のいずれか1項に記載の電子機器。
  6. 前記第1及び第2の撮像モジュールはそれぞれ異なる配置及び形状のカメラを有することを特徴とする請求項1乃至5のいずれか1項に記載の電子機器。
  7. 前記複数の取り付け領域は、少なくとも3か所あり、それぞれの位置情報が異なることを特徴とする請求項1乃至6のいずれか1項に記載の電子機器。
  8. 前記複数の取り付け領域のそれぞれの、前記第1及び第2の撮像モジュールの有する磁性体に対応する位置に設けられる永電磁石と、前記永電磁石の極性を個別に変更する極性変更手段とを更に備え、
    前記極性変更手段は、前記永電磁石の極性を個別に変更することによって、前記第1及び第2の撮像モジュールの前記複数の取り付け領域のいずれかへの解放及び固着を行うことを特徴とする請求項1乃至7のいずれか1項に記載の電子機器。
  9. 前記複数の取り付け領域を分割するガイド部を更に備え、
    前記ガイド部は、前記第1及び第2の撮像モジュールを前記複数の取り付け領域のいずれかに取り付ける際にガイドし、且つ装着後の前記第1及び第2の撮像モジュールを保持することを特徴とする請求項1乃至8のいずれか1項に記載の電子機器。
  10. 前記基線長が計算されたときに、前記基線長の情報を含む管理情報を更新することを特徴とする請求項1乃至9のいずれか1項に記載の電子機器。
  11. 請求項1乃至10のいずれか1項に記載の前記複数の取り付け領域のいずれかに装着された場合に、前記第1及び第2の撮像モジュールのうちの1つとして機能する撮像装置であって、
    それぞれの外形からみた前記光軸の座標情報を記憶するメモリを有することを特徴とする撮像装置。
  12. 第1及び第2の撮像モジュールを複数の取り付け領域のいずれかにそれぞれ装着する電子機器の制御方法において、
    複眼モードで撮影を行う撮影ステップと、
    前記第1及び第2の撮像モジュールからそれぞれの光軸の座標情報を取得する取得ステップと、
    前記複数の取り付け領域の位置情報を記憶する記憶ステップと、
    前記第1及び第2の撮像モジュールと前記電子機器の本体のいずれかで状態変化があった場合、前記光軸の座標情報と、前記取り付け領域の位置情報とを取得して基線長を計算する計算ステップとを備えることを特徴とする制御方法。
  13. 請求項12記載の制御方法を実行することを特徴とするプログラム。
JP2017061112A 2017-03-27 2017-03-27 電子機器、撮像装置、及び制御方法、並びにプログラム Active JP6906995B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017061112A JP6906995B2 (ja) 2017-03-27 2017-03-27 電子機器、撮像装置、及び制御方法、並びにプログラム
US15/928,638 US10848736B2 (en) 2017-03-27 2018-03-22 Electronic apparatus equipped with detachable image pickup apparatuses, image pickup apparatus, control method for electronic apparatus, and storage medium storing control program for electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017061112A JP6906995B2 (ja) 2017-03-27 2017-03-27 電子機器、撮像装置、及び制御方法、並びにプログラム

Publications (2)

Publication Number Publication Date
JP2018163299A true JP2018163299A (ja) 2018-10-18
JP6906995B2 JP6906995B2 (ja) 2021-07-21

Family

ID=63583085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017061112A Active JP6906995B2 (ja) 2017-03-27 2017-03-27 電子機器、撮像装置、及び制御方法、並びにプログラム

Country Status (2)

Country Link
US (1) US10848736B2 (ja)
JP (1) JP6906995B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120886A (ja) 2018-01-11 2019-07-22 キヤノン株式会社 像振れ補正装置およびその制御方法
US10972714B2 (en) 2018-02-15 2021-04-06 Canon Kabushiki Kaisha Image processing apparatus, image processing method and storage medium for storing program
JP7137313B2 (ja) * 2018-02-15 2022-09-14 キヤノン株式会社 出力装置、画像処理方法およびプログラム
US20200005832A1 (en) * 2018-06-28 2020-01-02 Getac Technology Corporation Method for calculating position coordinates and electronic device
JP2022125744A (ja) * 2021-02-17 2022-08-29 キヤノン株式会社 撮像装置及び撮像装置の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150465A (ja) * 2005-11-24 2007-06-14 Fujifilm Corp 多焦点カメラの撮像ユニット取付構造
JP2008129439A (ja) * 2006-11-22 2008-06-05 Fujifilm Corp 複眼撮像装置
JP2012134826A (ja) * 2010-12-22 2012-07-12 Nikon Corp 撮像装置
US20150277503A1 (en) * 2014-03-27 2015-10-01 Google, Inc. Modules and connections for modules to couple to a computing device
WO2016016984A1 (ja) * 2014-07-31 2016-02-04 日立マクセル株式会社 撮像装置およびその被写体追尾方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792832B2 (ja) 1997-05-07 2006-07-05 富士重工業株式会社 ステレオカメラの調整装置
JPH11355624A (ja) * 1998-06-05 1999-12-24 Fuji Photo Film Co Ltd 撮影装置
FI115947B (fi) * 2004-02-25 2005-08-15 Nokia Corp Elektroninen laite ja menetelmä elektronisessa laitteessa kuvainformaation muodostamiseksi sekä ohjelmatuote menetelmän toteuttamiseksi
US8164655B2 (en) * 2008-05-19 2012-04-24 Spatial Cam Llc Systems and methods for concurrently playing multiple images from a storage medium
US20100194860A1 (en) * 2009-02-03 2010-08-05 Bit Cauldron Corporation Method of stereoscopic 3d image capture using a mobile device, cradle or dongle
CN202488510U (zh) * 2012-02-20 2012-10-10 中兴通讯股份有限公司 移动设备
US9565416B1 (en) * 2013-09-30 2017-02-07 Google Inc. Depth-assisted focus in multi-camera systems
JP6929094B2 (ja) 2017-03-27 2021-09-01 キヤノン株式会社 電子機器、撮像装置、及び制御方法、並びにプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150465A (ja) * 2005-11-24 2007-06-14 Fujifilm Corp 多焦点カメラの撮像ユニット取付構造
JP2008129439A (ja) * 2006-11-22 2008-06-05 Fujifilm Corp 複眼撮像装置
JP2012134826A (ja) * 2010-12-22 2012-07-12 Nikon Corp 撮像装置
US20150277503A1 (en) * 2014-03-27 2015-10-01 Google, Inc. Modules and connections for modules to couple to a computing device
WO2016016984A1 (ja) * 2014-07-31 2016-02-04 日立マクセル株式会社 撮像装置およびその被写体追尾方法

Also Published As

Publication number Publication date
JP6906995B2 (ja) 2021-07-21
US20180278915A1 (en) 2018-09-27
US10848736B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP6906995B2 (ja) 電子機器、撮像装置、及び制御方法、並びにプログラム
JP6929094B2 (ja) 電子機器、撮像装置、及び制御方法、並びにプログラム
JP5506499B2 (ja) 撮像装置、その制御方法、プログラム及び記録媒体
US10764504B2 (en) Method for reducing parallax of multiple cameras and electronic device supporting the same
KR101719590B1 (ko) 촬상장치 및 그 제어방법
US9749537B2 (en) Imaging apparatus having camera shake correction device
JP5558956B2 (ja) 撮像装置およびその制御方法
JP5219697B2 (ja) 画像処理装置、撮像装置、画像処理装置の制御方法及びプログラム
JP2008160381A (ja) ファイル生成方法および装置並びに立体画像の表示制御方法および装置
US11595563B2 (en) Imaging apparatus for generating a composite image from a plurality of images
CN105379244A (zh) 摄像装置和摄像方法
CN109691085A (zh) 摄像装置及摄像控制方法
JP2010157850A (ja) カメラ及びカメラシステム
JP2012239135A (ja) 電子機器
CN102761689A (zh) 摄像设备、镜头设备及其控制方法
JP6946033B2 (ja) 電子機器、撮像装置、及び制御方法、並びにプログラム
US11750921B2 (en) Image pickup apparatus capable of performing function change, and control method for image pickup apparatus
JP2004040298A (ja) 撮像装置および撮影レンズ
US20190014199A1 (en) Electronic equipment and method for controlling the same
JP2012239134A (ja) 電子機器
JP5704872B2 (ja) 表示装置
JP2012019321A (ja) 撮像装置及びその制御方法、プログラム並びに記憶媒体
JP2012237937A (ja) 電子機器
JP2019102972A (ja) 電子機器及びその制御方法
JP2019015945A (ja) 電子機器及びその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210630

R151 Written notification of patent or utility model registration

Ref document number: 6906995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151