JP2018161327A - マイクロニードルの製造方法 - Google Patents

マイクロニードルの製造方法 Download PDF

Info

Publication number
JP2018161327A
JP2018161327A JP2017060705A JP2017060705A JP2018161327A JP 2018161327 A JP2018161327 A JP 2018161327A JP 2017060705 A JP2017060705 A JP 2017060705A JP 2017060705 A JP2017060705 A JP 2017060705A JP 2018161327 A JP2018161327 A JP 2018161327A
Authority
JP
Japan
Prior art keywords
microneedle
mold
cavity
substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017060705A
Other languages
English (en)
Inventor
阿部 秀夫
Hideo Abe
秀夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2017060705A priority Critical patent/JP2018161327A/ja
Publication of JP2018161327A publication Critical patent/JP2018161327A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】突起部先端まで材料が充填されたマイクロニードルの製造方法を提供することを目的とする。【課題手段】上記課題を解決するために、請求項1にかかる発明としては、第一の面と第二の面を有する基板の一方の面に複数の突起部を備えるマイクロニードルの製造方法であって、マイクロニードルに対応した空洞を備える金型内部に材料を射出し、固化することによりマイクロニードルを成形する射出工程と、前記金型からマイクロニードルを剥離する剥離工程とを備え、前記射出工程において、前記金型に材料を注入する際の注入口が前記基板の第一の面と第二の面を接続する側面に対応した箇所にあり、かつ、前記金型が前記注入口の対向した基板の側面部に余分な材料を充填するための樹脂溜まりを備えることを特徴とするマイクロニードルの製造方法とした。【選択図】図1

Description

本発明は、医療、MEMS(Micro Electro Mechanical Systems)デバイス、光学部材、創薬、化粧品、美容用途等に用いるマイクロニードルの製造方法に関する。皮膚に穿刺するマイクロニードルの製造方法に関する。
薬剤を人体に投与する方法としては、経口投与、注射器による皮膚真皮層または静脈への穿刺、皮膚表面への軟膏剤の塗布による局部真皮層への投与、皮膚表面への貼付け方法による局部真皮層への投与、などの方法が挙げられる。
この中で、貼り付けまたはアプリケーターを用いて穿刺する方法によって体内に薬剤を投与する器具として、近年、複数の微小な針を備えたマイクロニードルの開発が進められてきた。マイクロニードルの材料には穿刺によって針形状体の一部が折れて体内に残留しても悪影響がないように、生体内で溶解しても無害なものが選択されている。
また、医療用針において、針先の穿刺性を良くする為,蚊の針先形状を模倣した針形状が特許文献1、および特許文献2に示されている。これらの医療用針は針本数が少ない為,比較的簡単に射出成形によって成形することができる。
国際公開第2005/058162号 特開2006−334419号公報
一般に、射出成形において、成形物の形状が複雑で凹みなどがある場合、金型ブロックに空気ベントを設ける方法が採られるが、マイクロニードルのような複雑な形状のキャビティ構造であると、凹部への樹脂充填が悪く、成形物としての針先への充填性が低下する場合がある。突起部本数が少ない場合では金型ブロックに空気ベントを設ける方法が考えられる。この場合、突起部に対応した凹部を備えるコマを装着した金型ブロックの突起部先端箇所の空気ベントを行った上で、金型ブロックを加熱した後、材料を射出し、保圧しながら金型温度を室温まで低下させるいわゆるヒートアンドクール方法を用いることができる。しかしながら、突起部本数が少ない場合は、それぞれの針先にベントを設けることは金型加工上困難である。
本発明はこのような課題に鑑みてなされたものであり、突起部先端まで材料が充填されたマイクロニードルの製造方法を提供することを目的とする。
上記課題を解決するために、請求項1にかかる発明としては、第一の面と第二の面を有する基板の一方の面に複数の突起部を備えるマイクロニードルの製造方法であって、マイクロニードルに対応した空洞を備える金型内部に材料を射出し、固化することによりマイクロニードルを成形する射出工程と、前記金型からマイクロニードルを剥離する剥離工程とを備え、前記射出工程において、前記金型に材料を注入する際の注入口が前記基板の第一の面と第二の面を接続する側面に対応した箇所にあり、かつ、前記金型が前記注入口の対向した基板の側面部に余分な材料を充填するための樹脂溜まりを備えることを特徴とするマイクロニードルの製造方法とした。
また、請求項2にかかる発明としては、前記射出工程において、前記金型に材料を注入する前に脱気減圧が行われることを特徴とする請求項1記載のマイクロニードルの製造方法とした。
また、請求項3にかかる発明としては、前記射出工程において、前記金型に材料を注入する前に空洞内が30℃以上50℃以下に加熱されることを特徴とする請求項1または請求項2に記載のマイクロニードルの製造方法とした。
また、請求項4にかかる発明としては、前記樹脂溜まりの体積が、前記マイクロニードルの体積の1/10以上1/3以下の範囲内であることを特徴とする請求項1乃至3のいずれかに記載のマイクロニードルの製造方法とした。
また、請求項5にかかる発明としては、前記複数の突起部が、基板の一方の面に100個以上備えることを特徴とする請求項1乃至4のいずれかに記載のマイクロニードルの製造方法とした。
本発明のマイクロニードルの製造方法によれば、突起部先端まで材料が充填されたマイクロニードルを容易に製造することが可能となる。
図1は、本発明のマイクロニードルの一実施態様の斜視図である。 図2は、本発明のマイクロニードルの一実施態様の断面図である。 図3は、本発明の射出成形設備の説明図である。 図4は、本発明のマイクロニードルの製造方法の説明図である(図4(a):上面図、図4(b):側面図)。 図5は、図3の射出成形設備により成形された直後のマイクロニードルの斜視図である。
図1、図2を参照して本発明のマイクロニードルの一実施形態を説明する。図1は本発明のマイクロニードルの一実施態様の斜視図であり、図2は本発明のマイクロニードルの一実施態様の断面図である。
本発明のマイクロニードル1は、第一の面12Aと第二の面12Bを有する板状の基板の第一の面12Aに複数の突起部を備える。マイクロニードル1は、板状を有する基板12の少なくとも一方の面に、基板12から突き出た突起部11を備えている。基板の第1の面12Aと対向する方向から見た基板12の外形は特に限定されず、基板12の外形は、円形や楕円形であってもよいし、矩形であってもよい。
突起部11の形状は、角錐形状であってもよいし、円錐形状であってもよい。また、突起部11は、例えば、円柱形状や角柱形状のように、先端が尖っていない形状であってもよい。また、突起部11は、例えば、円柱に円錐が積層された形状のように、2以上の立体が結合した形状であってもよい。要は、突起部11は皮膚を刺すことが可能な形状であればよい。また、突起部11の側壁には、括れや段差が形成されていてもよいし、溝や孔が形成されていてもよい。
突起部11の数は1以上であれば特に限定されない。マイクロニードル1が複数の突起部11を有する場合、複数の突起部22は、基体21の第1面21Sに規則的に並んでいてもよいし、不規則に並んでいてもよい。例えば、複数の突起部11は、格子状や同心円状に配列される。
図2が示すように、突起部11の長さHは、基板12の厚さ方向、すなわち、基体21の第一の面12Aと直交する方向における、第一の面12Aから突起部11の先端までの長さである。突起部11の長さHは、10μm以上2000μm以下であることが好ましく、突起部11の長さHは、この範囲のなかで、突起部22によって穿孔の対象に形成される孔に必要な深さに応じて決定される。穿孔の対象が人体の皮膚であって、孔の底が角質層内に設定される場合、長さHは10μm以上300μm以下であることが好ましく、30μm以上200μm以下であることがより好ましい。孔の底が角質層を貫通し、かつ、神経層へ到達しない深さに設定される場合、長さHは200μm以上700μm以下であることが好ましく、200μm以上500μm以下であることがより好ましく、200μm以上300μm以下であることがさらに好ましい。孔の底が真皮に到達する深さに設定される場合、長さHは200μm以上500μm以下であることが好ましい。孔の底が表皮に到達する深さに設定される場合、長さHは200μm以上300μm以下であることが好ましい。
突起部11の幅Dは、基板12の第一の面12Aに沿った方向、すなわち、第一の面212Aと平行な方向における突起部11の長さの最大値である。例えば、突起部11が正四角錐形状や正四角柱形状を有するとき、基板12の第一の面12Aにて、突起部11の底部によって区画された正方形における対角線の長さが、突起部11の幅Dである。また、例えば、突起部11が円錐形状や円柱形状を有するとき、突起部11の底部によって区画された円の直径が、突起部11の幅Dである。突起部11の幅Dは、1μm以上300μm以下であることが好ましい。
突起部11の幅Dに対する長さHの比であるアスペクト比A(A=H/D)は、1以上10以下であることが好ましい。
マイクロニードル1の材料としては、熱可塑性樹脂等を用いることができる。熱可塑性樹脂としては、例えば、ポリグリコール酸、ポリ乳酸、ポリ乳酸−ポリグリコール酸共重合体、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリカーボネート、ポリアクリロニトリル、環状ポリオレフィン、ポリカプロラクトン、アクリル、ウレタン樹脂、芳香族ポリエーテルケトン、および、エポキシ樹脂等が挙げられる。ただし、本発明においてマイクロニードルの形成材料はこれらに限定されるものではない。
次に、本発明のマイクロニードルの製造方法について説明する。
本発明のマイクロニードルは、マイクロニードルに対応した空洞を備える金型を使用した射出成形法により作製される。
(射出成形設備)
図3に本発明の射出成形設備の説明図を示す。
射出成形設備(金型)2は、金型を構成するキャビティ22とコア23とを含む。キャビティ22は、冷却用配管25と、マイクロニードル1を元に作製されたコマ(入子)24と、脱気用パイプ27とを備える。また、コア23は、冷却用配管25と、Oリング21とを備える。キャビティ22とコア23とを合わせた際の空洞部(以下、キャビティ内部という)には、コア11側から、図示しない射出成形機によりノズル26を介して材料が供給される。
冷却用配管25は、例えば、内部に冷却水を流すことでキャビティ22及びコア23のそれぞれを冷却させ、金型及びキャビティ内部を設定温度に保つ。
脱気用パイプ27は、キャビティ内部と連通し、図示しない真空ポンプを用いることでキャビティ内部を脱気することができる。
Oリング21は、コア23の型合わせ面であって、キャビティ22とコア23とを合わせた際にキャビティ内部よりも外側となる位置に設けられ、脱気時におけるキャビティ内部への外気の流入を抑制する。
コマ24は、マイクロニードル1の原版から作製できる。マイクロニードル1の原版は金属またはシリコン等を加工して作製し、これを元に電鋳で凹版を作製し、この外部を予定寸法に研削加工してコマ14とすることができる。コマの表面には、成形樹脂の離型性を良くする為、離型膜をコーティングした方が良い。
また、射出成形設備には、加熱機構(図示せず)を備え、金型(キャビティ内部)を加熱するできることが好ましい。
なお、図3に記載の射出成形設備は、1回の材料の注入によりマイクロニードルを2つ作製することができる。
射出成形設備は、マイクロニードル1の基板の側面に対応した注入口から材料が導入される。また、射出成形整備は、注入口28の対向した基板の側面部に余分な材料を充填するための樹脂溜まり29を備える。
図4に、本発明のマイクロニードルの製造方法の説明図を示す。図4(a)は上面図であり、図4(b)は側面図である。
本発明のマイクロニードルの製造方法にあっては、材料を注入する際の注入口28が基板の第一の面12Aと第二の面12Bを接続する側面12Cに対応した箇所にあり、かつ、前記金型が前記注入口28の対向した基板12の側面部12Cに余分な材料を充填するための樹脂溜まり29を備える。
当該構成とすることにより、突起部先端まで材料を充填することが可能となる。なお、注入口は、少なくとも注入口28の一部が側面12Cと接触していればよい。また、注入口28と樹脂溜まり29は、基板12の中心点を基準として互いに対向する位置に設けられる。少なくとも注入口28の一部と樹脂溜まり29の一部が基板12の中心点を基準として互いに対向する位置に設けられていればよい。
なお、樹脂溜まり29の体積は、マイクロニードルの体積の1/10以上1/3以下の範囲内であることが好ましい。樹脂溜まり29の体積がマイクロニードルの体積の1/10を下回る場合、本発明の効果を十分に得られない場合がある。一方、樹脂溜まり29の体積がマイクロニードルの体積の1/3を超える場合、余分な材料を使用することにより、製造コスト面で不利となる。
(射出成形方法)
はじめに、離型膜をコーティングしたコマ24を、キャビティ22に固定する。このキャビティ22とコア23とを3〜20トン程度の比較的小型の射出成形機に搭載する。射出成形機のホッパーに成形樹脂を入れた後、射出成形機のノズル26が所定温度になるように加熱機能により昇温させる。昇温後パージを行い安定した射出ができるように条件を整えておく。
次に、キャビティ22とコア23とを閉じる(合わせる)。その後、真空ポンプを用いて脱気用パイプ27からキャビティ内部の脱気減圧をおこなう。脱気減圧をおこなうことにより、材料の充填性をより高めることができる。キャビティ内部が所定の真空度になったら、ノズル26から成形樹脂を射出して、マイクロニードルを成形する(射出工程)。このときのキャビティ内部の温度は、30〜50℃であることがこのましい。
次に、保圧を掛けながら、材料温度を金型設定温度の約30〜50℃付近まで低下させる。その後、キャビティ12内部へ空気を導入し、キャビティ12とコア13とを開いて成形物であるマイクロニードルを剥離し、取り出す(剥離工程)。
図5に、図3の射出成形設備により成形された直後のマイクロニードルの斜視図を示した。この後、必要に応じて、樹脂溜まりに対応した部分等は切除され、マイクロニードル1となる。
本発明のマイクロニードルの製造方法にあっては、基板の一方の面に設ける突起部は100個以上であることが好ましい。本発明のマイクロニードルの製造方法にあっては、基板の一方の面に設ける突起部の数が100個以上であっても突起部先端まで材料を充填することができる。
<実施例1>
全自動射出成形機(住友重機械工業(株)製、SE7M、7トン機)を用い、上述の射出成形方法で実施例1に係るマイクロニードルを製造した。なお、樹脂溜まりの体積はマイクロニードルの体積の1/7とした。材料とする樹脂としては、ポリグリコール酸(PGA)を用いた。キャビティ内部の温度を40℃に設定し、減圧したキャビティ内部へ射出速度50〜200mm/secで樹脂を射出し、保圧力50〜70MPaで2秒間保圧した。
次に、キャビティ内部の温度を約40℃としてPGA温度がこの温度になるまで樹脂を低下させた。その後、キャビティ内部を大気圧に戻し、金型を開いて目的とするマイクロニードル(突起部形状:円錐、突起部本数:150本、:H:300μm、D:100μm)を得た。
<実施例2>
実施例1と同じ設備を用いて、上述の射出成形方法で実施例2に係るマイクロニードルを製造した。材料とする樹脂として、ポリ乳酸(PLA)を用いた。なお、樹脂溜まりの体積はマイクロニードルの体積の1/7とした。キャビティ内部の温度を35℃に設定し、減圧したキャビティ内部へ射出速度100〜200mm/secで樹脂を射出し、保圧力20〜50MPaで2秒間保圧した。
次に、キャビティ及びコア内部の樹脂が35℃になるまで低下させた。その後、キャビティ内部を大気圧に戻し、金型を開いて目的とするマイクロニードル(突起部形状:円錐、突起部本数:150本、H:300μm、D:100μm)を得た。
<実施例3>
実施例1と同じ設備を用いて、上述の射出成形方法で実施例3に係るマイクロニードルを製造した。材料とする樹脂として、ポリカーボネート(PC)を用いた。なお、樹脂溜まりの体積はマイクロニードルの体積の1/7とした。キャビティ内部の温度を35℃に設定し、減圧したキャビティ内部へ射出速度60〜100mm/secで樹脂を射出し、保圧力60〜80MPaで2秒間保圧した。
次に、キャビティ及びコア内部の樹脂温度が約35℃程度まで低下させた。その後、キャビティ内部を大気圧に戻し、金型を開いて目的とするマイクロニードル(突起部形状:円錐、突起部本数:150本、H:300μm、D:100μm)を得た。
<実施例4>
全自動射出成形機(ソディック(株)製、LD10m8、10トン機)を用い、上述の射出成形方法で実施例4に係るマイクロニードルを製造した。材料とする樹脂として、ポリ乳酸(PLA)を用いた。なお、樹脂溜まりの体積はマイクロニードルの体積の1/7とした。キャビティ内部の温度を35℃に設定し、減圧したキャビティ内部へ射出速度45〜65mm/secで樹脂を射出し、保圧力70〜170MPaで3〜10秒間保圧した。
次に、キャビティ及びコア内部の樹脂温度が約35℃程度まで低下させた。その後、キャビティ内部を大気圧に戻し、金型を開いて目的とするマイクロニードル(突起部形状:円錐、突起部本数:150本、H:300μm、D:100μm)を得た。
<実施例5>
実施例4と同じ設備を用いて、上述の射出成形方法で実施例5に係るマイクロニードルを製造した。材料とする樹脂として、ポリカーボネイト(PC)を用いた。なお、樹脂溜まりの体積はマイクロニードルの体積の1/7とした。キャビティ内部の温度を40℃に設定し、減圧したキャビティ内部へ射出速度60〜100mm/secで樹脂を射出し、保圧力80〜100MPaで2秒間保圧した。
次に、キャビティ及びコア内部の樹脂温度を約40℃程度まで低下させた。その後、キャビティ内部を大気圧に戻し、金型を開いて目的とするマイクロニードル(突起部形状:円錐、突起部本数:150本、H:300μm、D:100μm)を得た。
実施例1〜5により得られたマイクロニードルは、いずれも突起部先端まで材料が充填されていた。以上の結果から、本マイクロニードルの製造方法によって、充填率を向上させることが可能であることが確認できた。
本発明は、医療、MEMS(Micro Electro Mechanical Systems)デバイス、光学部材、創薬、化粧品、美容用途等に用いるマイクロニードルの製造に用いることができる。
1 マイクロニードル
11 突起部
12 基板
12A 基板の第一の面
12B 基板の第二の面
12C 基板側面
2 射出成形設備(金型)
21 Oリング
22 キャビティ
23 コア
24 コマ(入子)
25 冷却配管
26 ノズル
27 脱気用パイプ
28 注入口
29 樹脂溜まり(樹脂溜まりに対応した空洞)

Claims (5)

  1. 第一の面と第二の面を有する基板の一方の面に複数の突起部を備えるマイクロニードルの製造方法であって、
    マイクロニードルに対応した空洞を備える金型内部に加熱された材料を射出し、固化することによりマイクロニードルを成形する射出工程と、
    前記金型からマイクロニードルを剥離する剥離工程とを備え、
    前記射出工程において、前記金型に材料を注入する際の注入口が前記基板の第一の面と第二の面を接続する側面に対応した箇所にあり、かつ、前記金型が前記注入口の対向した基板の側面部に余分な材料を充填するための樹脂溜まりを備えることを特徴とする
    マイクロニードルの製造方法。
  2. 前記射出工程において、前記金型に材料を注入する前に脱気減圧が行われることを特徴とする請求項1記載のマイクロニードルの製造方法。
  3. 前記射出工程において、前記金型に材料を注入する前に空洞内が30℃以上50℃以下に加熱されることを特徴とする請求項1または請求項2に記載のマイクロニードルの製造方法。
  4. 前記樹脂溜まりの体積が、前記マイクロニードルの体積の1/10以上1/3以下の範囲内であることを特徴とする請求項1乃至3のいずれかに記載のマイクロニードルの製造方法。
  5. 前記複数の突起部が、基板の一方の面に100個以上備えることを特徴とする請求項1乃至4のいずれかに記載のマイクロニードルの製造方法。
JP2017060705A 2017-03-27 2017-03-27 マイクロニードルの製造方法 Pending JP2018161327A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060705A JP2018161327A (ja) 2017-03-27 2017-03-27 マイクロニードルの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060705A JP2018161327A (ja) 2017-03-27 2017-03-27 マイクロニードルの製造方法

Publications (1)

Publication Number Publication Date
JP2018161327A true JP2018161327A (ja) 2018-10-18

Family

ID=63859468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060705A Pending JP2018161327A (ja) 2017-03-27 2017-03-27 マイクロニードルの製造方法

Country Status (1)

Country Link
JP (1) JP2018161327A (ja)

Similar Documents

Publication Publication Date Title
JP5558772B2 (ja) マイクロニードルシートのスタンパー及びその製造方法とそれを用いたマイクロニードルの製造方法
JP5542404B2 (ja) マイクロニードルスタンパーの製造方法
CA2491839C (en) A method of forming a mold and molding a micro-device
JP2010502267A (ja) マイクロニードルおよびマイクロニードルの製造方法
JP5845808B2 (ja) マイクロニードルデバイスおよびその製造方法
JP5063544B2 (ja) 経皮吸収シート及びその製造方法
JP5879927B2 (ja) マイクロニードルデバイスおよびその製造方法
JP6481613B2 (ja) マイクロニードル、および、マイクロニードルの製造方法
JP4779084B2 (ja) マイクロニードルおよびその製造方法と金型
JP2011224332A (ja) 経皮吸収シート及びその製造方法
EP2772279B1 (en) Hollow needles manufacturing method and hollow needles
CN108237211B (zh) 一种非晶合金微针的制造方法
JP2006526510A (ja) 流体ジェットを用いることにより穿孔された微細構造を製造する−方法
JPWO2006121110A1 (ja) 医薬物運搬用器具およびその製造方法
JP2011083387A (ja) 針状体の製造方法並びに針状体および針状体保持シート
CN101124072A (zh) 形成微结构的方法和装置
JP2011245055A (ja) ニードルシートの製造方法
US9962535B2 (en) Hollow silica glass microneedle arrays and method and apparatus for manufacturing same
JP2018161327A (ja) マイクロニードルの製造方法
JP6255759B2 (ja) マイクロニードル
JP6525017B2 (ja) マイクロニードルデバイス
JP2013106831A (ja) 針状体の製造方法および針状体の転写版
JP6519632B2 (ja) マイクロニードルデバイス
JP2018082742A (ja) マイクロニードルの製造方法、マイクロニードル及び金型
Wu et al. Shadow mask assisted droplet-born air-blowing method for fabrication of dissoluble microneedle