JP2018150915A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2018150915A
JP2018150915A JP2017049507A JP2017049507A JP2018150915A JP 2018150915 A JP2018150915 A JP 2018150915A JP 2017049507 A JP2017049507 A JP 2017049507A JP 2017049507 A JP2017049507 A JP 2017049507A JP 2018150915 A JP2018150915 A JP 2018150915A
Authority
JP
Japan
Prior art keywords
temperature
exhaust
catalyst carrier
heat storage
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017049507A
Other languages
Japanese (ja)
Other versions
JP6812863B2 (en
Inventor
忠伸 植田
Tadanobu Ueda
忠伸 植田
直樹 馬場
Naoki Baba
直樹 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017049507A priority Critical patent/JP6812863B2/en
Publication of JP2018150915A publication Critical patent/JP2018150915A/en
Application granted granted Critical
Publication of JP6812863B2 publication Critical patent/JP6812863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance an effect of maintaining a catalyst in an appropriate temperature range.SOLUTION: An exhaust emission control device 12 includes: an auxiliary flow passage 24 branched from an exhaust pipe 14 on the upstream side of a catalyst carrier 16, passing trough the circumference of the catalyst carrier 16 and merging with the exhaust pipe 14; a heat storage member 40 provided at a position around the catalyst carrier 16 in the auxiliary flow passage 24; a selector valve 30 for switching a flow of exhaust gas in the exhaust pipe 14 to the auxiliary flow passage 24; and a control device 36 for controlling the selector valve 30.SELECTED DRAWING: Figure 1

Description

本願は、排気浄化装置に関する。   The present application relates to an exhaust emission control device.

特許文献1には、エンジンの排気通路における触媒よりも上流側に、融解点と凝固点とが触媒の活性温度領域内の設定温度近傍にある物質で構成された蓄熱材を設けたエンジンの排気ガス浄化装置が記載されている。   Patent Document 1 discloses an exhaust gas of an engine provided with a heat storage material composed of a substance having a melting point and a freezing point in the vicinity of a set temperature in the active temperature region of the catalyst upstream of the catalyst in the exhaust passage of the engine. A purification device is described.

特許文献2には、排気ガス浄化用の触媒を収容する触媒ケースと、触媒を通過する排気ガスの熱を回収するとともに触媒との間で熱伝達を行う排熱回収部とを持つ触媒ケース装置が記載されている。   Patent Document 2 discloses a catalyst case device having a catalyst case that houses a catalyst for purifying exhaust gas, and an exhaust heat recovery unit that recovers heat of exhaust gas that passes through the catalyst and transfers heat between the catalyst and the catalyst. Is described.

特許文献3には、排気ガスを浄化する触媒と、該触媒を担持する触媒担持体とからなる触媒構造体を有する排気ガス浄化装置において、該排気ガス浄化装置に触媒の活性化温度領域内に融点を有する金属材料からなる蓄熱体を配設した構成が記載されている。   In Patent Document 3, in an exhaust gas purification apparatus having a catalyst structure comprising a catalyst for purifying exhaust gas and a catalyst carrier for supporting the catalyst, the exhaust gas purification apparatus has a catalyst activation temperature region within the activation temperature region. A configuration in which a heat storage body made of a metal material having a melting point is provided is described.

特開昭60−212608号公報JP 60-212608 A 特開2000−179338号公報JP 2000-179338 A 特開2000−204936号公報JP 2000-204936 A

特許文献1に記載の技術では、排気ガスの有する熱量を一旦蓄熱材で蓄熱する。すなわち、排気ガスが蓄熱材を通った後に触媒に流入するので、蓄熱材と触媒との間の配管に排気ガスから放熱され、触媒の温度を所定範囲に維持することが難しい場合がある。   In the technique described in Patent Document 1, the heat quantity of the exhaust gas is temporarily stored with a heat storage material. That is, since the exhaust gas flows into the catalyst after passing through the heat storage material, it may be difficult to maintain the temperature of the catalyst within a predetermined range because heat is radiated from the exhaust gas to the pipe between the heat storage material and the catalyst.

引用文献2に記載の技術では、排熱回収部への熱伝達が排気から直接的に行われず、排熱回収部の排熱回収は、触媒ケースからの熱伝達が支配的である。触媒ケースの熱伝導率が低い場合には、排熱回収部への熱伝達に時間を要するため、触媒の温度を有効温度域に維持することは難しい。   In the technique described in the cited document 2, heat transfer to the exhaust heat recovery unit is not performed directly from the exhaust, and heat transfer from the catalyst case is dominant in the exhaust heat recovery of the exhaust heat recovery unit. When the thermal conductivity of the catalyst case is low, it takes time to transfer the heat to the exhaust heat recovery unit, so it is difficult to maintain the temperature of the catalyst in the effective temperature range.

特許文献3に記載の技術では、触媒担持体が蓄熱体を含んで一体化されているため、触媒担持体の実質的な熱容量が、蓄熱材が一体化されない構造と比較して大きい。このため、触媒担持体を短時間で昇温させることが難しい。   In the technique described in Patent Document 3, since the catalyst carrier is integrated including the heat storage body, the substantial heat capacity of the catalyst carrier is larger than that of the structure in which the heat storage material is not integrated. For this reason, it is difficult to raise the temperature of the catalyst carrier in a short time.

このように、いずれの特許文献に記載の技術も、触媒を適切な温度域に維持する点において改善の余地がある。   Thus, the techniques described in any of the patent documents have room for improvement in maintaining the catalyst in an appropriate temperature range.

本発明は上記事実を考慮し、触媒を適切な温度域に維持する効果を高めることを課題とする。   In view of the above facts, the present invention aims to increase the effect of maintaining the catalyst in an appropriate temperature range.

第一の態様では、排気管内に設けられ排気を浄化する触媒を担持する触媒担持体と、前記触媒担持体よりも前記排気の上流側の分流部で前記排気管から分岐し、前記触媒担持体の周囲を経て、前記分流部と前記触媒担持体の間の合流部で前記排気管に合流する副流路と、前記触媒担持体の周囲の位置で前記副流路に設けられる蓄熱部材と、前記排気管における前記排気の流れを前記副流路へ切り替える切替部材と、前記切替部材を制御する制御装置と、を有する。   In the first aspect, a catalyst carrier that is provided in the exhaust pipe and carries a catalyst that purifies exhaust gas, and a branching part from the exhaust pipe at a branch portion upstream of the exhaust gas from the catalyst carrier, the catalyst carrier A sub-flow path that merges with the exhaust pipe at a junction between the flow-dividing part and the catalyst carrier, and a heat storage member that is provided in the sub-flow path at a position around the catalyst carrier, A switching member that switches the flow of the exhaust gas in the exhaust pipe to the sub-flow path; and a control device that controls the switching member.

この排気浄化装置では、排気管内を流れた排気が、触媒担持体で担持された触媒により浄化される。   In this exhaust purification device, the exhaust gas flowing through the exhaust pipe is purified by the catalyst carried by the catalyst carrier.

触媒担持体よりも上流側の分流部では、副流路が分岐している。制御装置によって切替部材が切り替えられることで、排気を副流路に流すことができる。副流路には蓄熱部材が設けられているので、排気の熱の一部を蓄熱部材に蓄熱することで、排気の温度を低下させることができる。たとえば、排気温度を、触媒を劣化させる温度に達しない程度に低下させることで、触媒の劣化を抑制し、触媒を保護できる。   The sub-flow path branches off at the branch portion upstream of the catalyst carrier. By switching the switching member by the control device, the exhaust gas can be flowed into the sub-flow path. Since the heat storage member is provided in the sub-flow path, the temperature of the exhaust gas can be lowered by storing a part of the heat of the exhaust gas in the heat storage member. For example, the deterioration of the catalyst can be suppressed and the catalyst can be protected by reducing the exhaust temperature to such an extent that it does not reach the temperature at which the catalyst is deteriorated.

副流路は、触媒担持体の周囲を経るように設けられている。そして、この副流路において、触媒担持体の周囲の位置に蓄熱部材が設けられている。触媒担持体が、その周囲で保温されるので、エンジン停止時であっても、触媒の温度低下を抑制できる。そして、エンジンの始動直後等、排気の温度が低い場合でも、触媒を、活性温度に維持する(若しくは短時間で活性温度に昇温させる)ことで、高い排気浄化性能が得られる。   The sub-flow path is provided so as to pass around the catalyst carrier. And in this subchannel, the heat storage member is provided in the position around a catalyst carrier. Since the temperature of the catalyst carrier is kept around the catalyst carrier, it is possible to suppress a decrease in the temperature of the catalyst even when the engine is stopped. Even when the temperature of the exhaust gas is low, such as immediately after starting the engine, a high exhaust gas purification performance can be obtained by maintaining the catalyst at the active temperature (or raising the temperature to the active temperature in a short time).

第二の態様では、第一の態様において、前記制御装置で制御され、前記触媒担持体よりも前記排気の下流側で前記排気管を開閉する下流開閉部材を有する。   According to a second aspect, in the first aspect, there is provided a downstream opening / closing member that is controlled by the control device and opens / closes the exhaust pipe downstream of the exhaust with respect to the catalyst carrier.

下流開閉部材を開状態とすることで、排気管を排気が流れる状態を実現できる。下流開閉部材を閉状態とすることで、下流側からの空気が触媒に達することを抑制でき、触媒の温度低下を抑制できる。   By opening the downstream opening / closing member, it is possible to realize a state in which exhaust flows through the exhaust pipe. By setting the downstream opening / closing member in the closed state, it is possible to suppress the air from the downstream side from reaching the catalyst and to suppress the temperature decrease of the catalyst.

第三の態様では、第二の態様において、前記制御装置で制御され、前記分流部よりも前記排気の上流側で前記排気管を開閉する上流開閉部材を有する。   According to a third aspect, in the second aspect, there is provided an upstream opening / closing member that is controlled by the control device and opens / closes the exhaust pipe upstream of the flow dividing portion.

上流開閉部材を開状態とすることで、排気管を排気が流れる状態を実現できる。上流開閉部材を閉状態とすることで、上流側からの気体が触媒に達することを抑制でき、触媒の温度低下を抑制できる。   By opening the upstream opening / closing member, it is possible to realize a state in which exhaust flows through the exhaust pipe. By closing the upstream opening / closing member, the gas from the upstream side can be prevented from reaching the catalyst, and the temperature drop of the catalyst can be suppressed.

第四の態様では、第三の態様において、エンジンの作動及び停止を検出して前記制御装置に伝えるエンジン作動センサを有し、前記制御装置は、エンジン停止時には前記下流開閉部材及び前記上流開閉部材を閉状態とし、エンジン作動時には前記下流開閉部材及び前記上流開閉部材を開状態とする。   According to a fourth aspect, in the third aspect, there is provided an engine operation sensor that detects operation and stop of the engine and transmits the detected operation to the control device, and the control device has the downstream opening and closing member and the upstream opening and closing member when the engine is stopped. Is closed, and the downstream opening and closing member and the upstream opening and closing member are opened when the engine is operating.

エンジン作動時には、下流開閉部材及び上流開閉部材を開状態とするので、エンジンからの排気が排気管を流れる。エンジン停止時には、下流開閉部材及び上流開閉部材を閉状態とするので、下流側及び上流側からの空気が触媒に達することを抑制できる。   When the engine is operating, the downstream opening / closing member and the upstream opening / closing member are opened, so that exhaust from the engine flows through the exhaust pipe. Since the downstream opening / closing member and the upstream opening / closing member are closed when the engine is stopped, it is possible to suppress the air from the downstream side and the upstream side from reaching the catalyst.

第五の態様では、第一〜第四のいずれか1つの態様において、前記排気管内を流れる排気の温度を検出する排気温度センサと、前記蓄熱部材の温度を検出する蓄熱部材温度センサと、前記触媒担持体の温度を検出する触媒担持体温度センサと、を有し、前記制御装置は、前記排気の温度、前記蓄熱部材の温度及び、前記触媒担持体の温度に基づいて前記切替部材を制御する。   In a fifth aspect, in any one of the first to fourth aspects, an exhaust temperature sensor that detects a temperature of the exhaust gas flowing in the exhaust pipe, a heat storage member temperature sensor that detects a temperature of the heat storage member, and A catalyst carrier temperature sensor for detecting a temperature of the catalyst carrier, and the control device controls the switching member based on the temperature of the exhaust, the temperature of the heat storage member, and the temperature of the catalyst carrier. To do.

排気の温度、蓄熱部材の温度及び、触媒担持体の温度に基づいて、切替部材が制御されることで、排気から蓄熱部材や触媒担持体(触媒)への熱の授受や、蓄熱部材と触媒担持体(触媒)への熱の授受を適切に制御できる。   The switching member is controlled based on the temperature of the exhaust, the temperature of the heat storage member, and the temperature of the catalyst carrier, so that heat is transferred from the exhaust to the heat storage member or the catalyst carrier (catalyst), or the heat storage member and the catalyst. The transfer of heat to the support (catalyst) can be appropriately controlled.

第六の態様では、第一〜第五のいずれか1つの態様において、前記蓄熱部材が、蓄熱材が収容される収容部材と、前記収容部材から延出されるフィンと、を有する熱交換器である。   According to a sixth aspect, in any one of the first to fifth aspects, the heat storage member includes a storage member in which the heat storage material is stored, and a fin extending from the storage member. is there.

蓄熱部材が収容部材に収容された蓄熱材を有するので、この蓄熱材への熱の授受により、蓄熱及び放熱を確実に行うことができる。蓄熱材は収容部材に収容されているので漏れ出すことはない。   Since the heat storage member includes the heat storage material housed in the housing member, heat storage and heat dissipation can be reliably performed by transferring heat to the heat storage material. Since the heat storage material is housed in the housing member, it does not leak out.

収容部材からはフィンが延出されており、実質的な収容部材の表面積が広くなっているので、蓄熱材への熱の授受を効率的に行うことができる。   Since the fin is extended from the housing member and the substantial surface area of the housing member is widened, heat can be efficiently transferred to the heat storage material.

本発明は上記構成としたので、触媒を適切な温度域に維持する効果が高い。   Since this invention was set as the said structure, the effect of maintaining a catalyst in a suitable temperature range is high.

図1は第一実施形態の排気浄化装置を示す断面図である。FIG. 1 is a cross-sectional view showing an exhaust emission control device according to the first embodiment. 図2は第一実施形態の排気浄化装置を示す図1の2−2線断面図である。2 is a cross-sectional view taken along line 2-2 of FIG. 1 showing the exhaust emission control device of the first embodiment. 図3は第一実施形態の排気浄化装置を部分的に拡大して示す断面図である。FIG. 3 is a partially enlarged cross-sectional view of the exhaust emission control device of the first embodiment. 図4は第二実施形態の排気浄化装置を示す断面図である。FIG. 4 is a cross-sectional view showing the exhaust emission control device of the second embodiment. 図5は第三実施形態の排気浄化装置を示す断面図である。FIG. 5 is a cross-sectional view showing the exhaust emission control device of the third embodiment. 図6は第一変形例の排気浄化装置を図2と同様の断面で示す断面図である。FIG. 6 is a cross-sectional view showing the exhaust gas purification apparatus of the first modification in the same cross section as FIG. 図7は第二変形例の排気浄化装置を図2と同様の断面で示す断面図である。FIG. 7 is a cross-sectional view showing the exhaust gas purification apparatus of the second modification in the same cross section as FIG.

以下、図面を参照して第一実施形態の排気浄化装置12を説明する。   Hereinafter, the exhaust emission control device 12 of the first embodiment will be described with reference to the drawings.

図1及び図2に示すように、排気浄化装置12は、排気管14の内部に取り付けられる触媒担持体16を有している。本実施形態では、排気管14は略円筒形であるが、長手方向の一部分は他の部分よりも径が太い太径配管14Bである。触媒担持体16は太径配管14Bに配置されている。   As shown in FIGS. 1 and 2, the exhaust purification device 12 has a catalyst carrier 16 attached to the inside of the exhaust pipe 14. In the present embodiment, the exhaust pipe 14 has a substantially cylindrical shape, but a part in the longitudinal direction is a large-diameter pipe 14B having a larger diameter than the other part. The catalyst carrier 16 is disposed in the large diameter pipe 14B.

以下において、単に「上流側」及び「下流側」というときは、排気管14内での排気の流れ方向(矢印F1方向)における上流側及び下流側をそれぞれいうものとする。   Hereinafter, the terms “upstream side” and “downstream side” simply refer to the upstream side and the downstream side in the exhaust flow direction (in the direction of arrow F1) in the exhaust pipe 14, respectively.

排気管14において、太径配管14Bよりも上流側の部分は上流配管14Aであり、下流側の部分は下流配管14Cである。そして、上流配管14Aから太径配管14Bを経て下流配管14Cに至る部分が、エンジンからの排気が流れる主流路22である。太径配管14Bと下流配管14Cとの間は径が徐々に変化するテーパー配管14Dにより連続しているが、太径配管14Bと上流配管14Aの間は不連続であり、後述する分流部26及び合流部28が設けられている。   In the exhaust pipe 14, a portion upstream of the large-diameter pipe 14B is the upstream pipe 14A, and a downstream portion is the downstream pipe 14C. A portion from the upstream pipe 14A to the downstream pipe 14C through the large diameter pipe 14B is a main flow path 22 through which exhaust from the engine flows. The large-diameter pipe 14B and the downstream pipe 14C are continuous by a tapered pipe 14D whose diameter gradually changes. However, the large-diameter pipe 14B and the upstream pipe 14A are discontinuous, and a later-described branching section 26 and A junction 28 is provided.

触媒担持体16は、薄板を、たとえば波状あるいはハニカム状とすることで、表面積が増大された構造であり、この表面に、触媒が担持されている。触媒は、排気管14内を流れる排気中の物質(炭化水素等)を浄化する作用を有している。このような作用を奏する触媒としては、白金、パラジウム、ロジウム等を挙げることができる。なお、触媒担持体16の表面積を増大させる構造は、上記した波状やハニカム状に限定されない。   The catalyst carrier 16 has a structure in which the surface area is increased by making the thin plate into a wave shape or a honeycomb shape, for example, and the catalyst is supported on the surface. The catalyst has an action of purifying substances (hydrocarbons, etc.) in the exhaust gas flowing in the exhaust pipe 14. Examples of the catalyst having such an action include platinum, palladium, rhodium and the like. The structure for increasing the surface area of the catalyst carrier 16 is not limited to the above-described wave shape or honeycomb shape.

触媒担持体16は、排気管14の内部に収容されるように、全体として円柱状あるいは円筒状に形成されている。   The catalyst carrier 16 is formed in a columnar shape or a cylindrical shape as a whole so as to be accommodated in the exhaust pipe 14.

排気管14の太径配管14Bと、この太径配管14Bの上流側及び下流側を含む所定範囲は、太径配管よりもさらに太径の外筒18で覆われている。図2に示すように、第一実施形態の外筒18は、太径配管14Bを周方向に取り囲む円筒状である。   A predetermined range including the large-diameter pipe 14B of the exhaust pipe 14 and the upstream side and the downstream side of the large-diameter pipe 14B is covered with an outer cylinder 18 having a larger diameter than that of the large-diameter pipe. As shown in FIG. 2, the outer cylinder 18 of the first embodiment has a cylindrical shape that surrounds the large-diameter pipe 14B in the circumferential direction.

外筒18の上流端部18Aは、径が上流側へと漸減する上流テーパー部18Bにより上流配管14Aに接続され、下流端部18Eは、径が下流側へと漸減する下流テーパー部18Dにより下流配管14Cに接続されている。   The upstream end portion 18A of the outer cylinder 18 is connected to the upstream pipe 14A by an upstream tapered portion 18B whose diameter gradually decreases toward the upstream side, and the downstream end portion 18E is downstream by a downstream tapered portion 18D whose diameter gradually decreases toward the downstream side. It is connected to the pipe 14C.

太径配管14Bと外筒18の間には、中間筒20が配置されている。中間筒20と太径配管14B及び外筒18とは離間している。中間筒20の上流側は、上流テーパー部20Bにより、径が上流側へ漸減している。そして、中間筒20の上流端部20Aは、排気管14及び外筒18と非接触である。これに対し、中間筒20の下流側には径が漸減する部分は形成されておらず、下流端部20Cは排気管14及び外筒18と非接触である。   An intermediate cylinder 20 is disposed between the large diameter pipe 14 </ b> B and the outer cylinder 18. The intermediate cylinder 20, the large diameter pipe 14B, and the outer cylinder 18 are separated from each other. On the upstream side of the intermediate cylinder 20, the diameter gradually decreases toward the upstream side by the upstream taper portion 20 </ b> B. The upstream end 20A of the intermediate cylinder 20 is not in contact with the exhaust pipe 14 and the outer cylinder 18. On the other hand, a portion where the diameter gradually decreases is not formed on the downstream side of the intermediate cylinder 20, and the downstream end portion 20 </ b> C is not in contact with the exhaust pipe 14 and the outer cylinder 18.

このような外筒18及び中間筒20を設けたことで、触媒担持体16の上流側には、分流部26によって主流路22から分岐し、主流路22の外側で触媒担持体16の周囲を経て、合流部28により主流路22に合流する副流路24が形成されている。具体的には、副流路24は、外筒18の上流テーパー部18Bと中間筒20の上流テーパー部20Bの間の分流部26で主流路22から分岐する。そして、外筒18と中間筒20の間を下流側に至り、中間筒20の下流端部20Cで折り返して、中間筒20と太径配管14Bの間を上流側に至る。さらに、中間筒20の上流テーパー部20Bと太径配管14Bの上流端の間の合流部28から、主流路22に合流する。   By providing the outer cylinder 18 and the intermediate cylinder 20 as described above, the upstream side of the catalyst carrier 16 is branched from the main flow path 22 by the diverter 26, and around the catalyst carrier 16 outside the main flow path 22. As a result, a sub-flow path 24 that merges with the main flow path 22 is formed by the merge portion 28. Specifically, the auxiliary flow path 24 branches from the main flow path 22 at a flow dividing portion 26 between the upstream tapered portion 18B of the outer cylinder 18 and the upstream tapered portion 20B of the intermediate cylinder 20. Then, the space between the outer cylinder 18 and the intermediate cylinder 20 reaches the downstream side, and is turned back at the downstream end 20C of the intermediate cylinder 20 to reach the upstream side between the intermediate cylinder 20 and the large-diameter pipe 14B. Furthermore, it joins to the main flow path 22 from the junction 28 between the upstream tapered portion 20B of the intermediate cylinder 20 and the upstream end of the large diameter pipe 14B.

中間筒20の上流端部20Aは、切替弁30が設けられている。切替弁30は切替部材の一例である。   A switching valve 30 is provided at the upstream end 20 </ b> A of the intermediate cylinder 20. The switching valve 30 is an example of a switching member.

本実施形態の切替弁30は、排気の流れ方向と直交する軸32を中心として回転可能な弁体34を有している。弁体34の回転角度は、制御装置36によって制御される。そして、切替弁30は、弁体34の回転角度により、図1に実線で示す閉状態HSと、二点鎖線で示す開状態KSとを採り得る。   The switching valve 30 of the present embodiment includes a valve body 34 that can rotate around an axis 32 that is orthogonal to the flow direction of the exhaust gas. The rotation angle of the valve body 34 is controlled by the control device 36. And the switching valve 30 can take the closed state HS shown with a continuous line in FIG. 1, and the open state KS shown with a dashed-two dotted line by the rotation angle of the valve body 34. FIG.

制御装置36には、エンジンの作動及び停止を検知するエンジン作動センサ38が接続されている。なお、制御装置36が、エンジンの状態を制御することも可能な構成としてもよく、この場合は、制御装置が、エンジン作動センサを兼ねる。   An engine operation sensor 38 that detects operation and stop of the engine is connected to the control device 36. The control device 36 may be configured to be able to control the state of the engine. In this case, the control device also serves as an engine operation sensor.

切替弁30が開状態KSにあるときは、上流配管14Aを流れた排気は、太径配管14Bと副流路24の両方に流れることが可能である。ただし、主流路22の方が副流路24よりも流路抵抗が小さいので、排気の多くは、副流路24を経ることなく、直接的に太径配管14Bへ流れる。これに対し、切替弁30が閉状態HSにあるときは、上流配管14Aを流れた排気は直接的には太径配管14Bに流れないので、副流路24を流れる。そして、副流路24を排気が流れた後、合流部28を通って太径配管14Bへ流れる。   When the switching valve 30 is in the open state KS, the exhaust gas that has flowed through the upstream pipe 14A can flow into both the large-diameter pipe 14B and the sub-flow path 24. However, since the flow resistance of the main flow path 22 is smaller than that of the sub flow path 24, most of the exhaust flows directly to the large diameter pipe 14B without passing through the sub flow path 24. On the other hand, when the switching valve 30 is in the closed state HS, the exhaust gas that has flowed through the upstream pipe 14A does not flow directly into the large-diameter pipe 14B, and therefore flows through the auxiliary flow path 24. Then, after the exhaust gas flows through the sub-flow channel 24, it flows through the merging portion 28 to the large-diameter pipe 14B.

副流路24には、蓄熱部材40が配置されている。図3に詳細に示すように、蓄熱部材40は、外筒18の内周面、中間筒20の外周面及び内周面、太径配管14Bの外周面に接触配置される収容部材42を有している。収容部材42は中空状であり、内部に蓄熱材が収容されている。副流路24を流れる排気と、収容部材42内の蓄熱材とで熱交換がなされる。たとえば、副流路24を流れる排気が収容部材42内の蓄熱材より高温である場合は、排気の熱が蓄熱材に移動し、蓄熱材に蓄熱されると共に、排気の温度が低下する。これとは逆に、副流路24を流れる排気が収容部材42内の蓄熱材より低温である場合は、蓄熱材の熱が排気に移動し、排気の温度が上昇する。   A heat storage member 40 is disposed in the sub flow path 24. As shown in detail in FIG. 3, the heat storage member 40 includes a housing member 42 disposed in contact with the inner peripheral surface of the outer cylinder 18, the outer peripheral surface and inner peripheral surface of the intermediate cylinder 20, and the outer peripheral surface of the large-diameter pipe 14 </ b> B. doing. The housing member 42 is hollow, and a heat storage material is housed therein. Heat exchange is performed between the exhaust gas flowing through the sub-channel 24 and the heat storage material in the housing member 42. For example, when the exhaust gas flowing through the auxiliary flow path 24 is hotter than the heat storage material in the housing member 42, the heat of the exhaust gas moves to the heat storage material and is stored in the heat storage material, and the temperature of the exhaust gas decreases. On the contrary, when the exhaust gas flowing through the sub flow path 24 is at a lower temperature than the heat storage material in the housing member 42, the heat of the heat storage material moves to the exhaust gas, and the temperature of the exhaust gas rises.

収容部材42からは、副流路24に向けて、複数のフィン44が延出されている。フィン44により、収容部材42の実質的な表面積が増大されている。すなわち、蓄熱部材40は、収容部材42とフィン44とを有し、内部の蓄熱材に対して外部と熱交換を行う熱交換器である。   A plurality of fins 44 extend from the housing member 42 toward the sub-flow path 24. The substantial surface area of the housing member 42 is increased by the fins 44. That is, the heat storage member 40 includes a housing member 42 and fins 44 and is a heat exchanger that performs heat exchange with the outside for the internal heat storage material.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

第一実施形態の排気浄化装置12では、切替弁30が開状態KS(図1に二点鎖線で示す)にあるとき、上流配管14Aを流れる排気の多くは、副流路24ではなく太径配管14Bへ、すなわち主流路22へ直接的に流れる。また、副流路24へ流れた排気も、合流部28から主流路22に合流する。そして、触媒担持体16に担持された触媒によって排気が浄化され、浄化された排気は、下流配管14Cからさらに下流へ流れる。   In the exhaust gas purification device 12 of the first embodiment, when the switching valve 30 is in the open state KS (indicated by a two-dot chain line in FIG. 1), most of the exhaust gas flowing through the upstream pipe 14A has a large diameter instead of the sub flow path 24. It flows directly to the pipe 14B, that is, to the main flow path 22. Further, the exhaust gas that has flowed to the sub-flow channel 24 also merges from the merge portion 28 to the main flow channel 22. Then, the exhaust gas is purified by the catalyst supported on the catalyst carrier 16, and the purified exhaust gas flows further downstream from the downstream pipe 14C.

切替弁30が開状態KSにあるとき、排気の多くは直接的に触媒担持体16に導入されるので、たとえば、排気の多くが副流路24を流れる構造と比較して、排気の熱を触媒に作用させて、短時間で昇温する(昇温速度を向上させる)ことが可能である。   When the switching valve 30 is in the open state KS, most of the exhaust gas is directly introduced into the catalyst carrier 16, so that, for example, the heat of the exhaust gas is reduced as compared with a structure in which most of the exhaust gas flows through the auxiliary flow path 24. It is possible to increase the temperature in a short time (improving the temperature increase rate) by acting on the catalyst.

これに対し、切替弁30が閉状態HS(図1に実線で示す)にあるとき、上流配管14Aを流れた排気は、直接的には太径配管14B、すなわち触媒担持体16には導入されず、副流路24を流れる。副流路24には蓄熱部材40が配置されているので、排気の熱の一部が蓄熱部材40、特に蓄熱材へ移動して蓄熱される。そして、温度が低下した状態の排気が、合流部28から太径配管14B(主流路22)に合流して触媒担持体16に導入される。排気の温度が低下しているので、高温の排気の熱が触媒担持体16に担持された触媒に作用せず、触媒の劣化を抑制できる。   In contrast, when the switching valve 30 is in the closed state HS (shown by a solid line in FIG. 1), the exhaust gas flowing through the upstream pipe 14A is directly introduced into the large diameter pipe 14B, that is, the catalyst carrier 16. Instead, it flows through the auxiliary flow path 24. Since the heat storage member 40 is disposed in the sub-channel 24, a part of the heat of the exhaust moves to the heat storage member 40, particularly the heat storage material, and is stored. Then, the exhaust gas with the temperature lowered joins the large diameter pipe 14 </ b> B (main flow path 22) from the junction 28 and is introduced into the catalyst carrier 16. Since the temperature of the exhaust gas is lowered, the heat of the high-temperature exhaust gas does not act on the catalyst supported on the catalyst carrier 16 and the deterioration of the catalyst can be suppressed.

副流路24は触媒担持体16の周囲を経るように設けられており、この副流路24に蓄熱部材40が配置されている。そして、蓄熱部材40には、排気から作用した熱が蓄熱されている。すなわち、蓄熱した状態にある蓄熱部材40が、触媒担持体16の周囲に配置されている。したがって、たとえばエンジンが停止し、排気が触媒担持体16に導入されない状態でも、触媒担持体16に担持された触媒を保温でき、触媒の温度低下を抑制できる。特に、蓄熱部材が、たとえば上流配管14Aに配置された構造と比較して、蓄熱部材40からの熱伝導や、蓄熱部材40から副流路24を移動した気体の自然対流等により、触媒担持体16に効果的に蓄熱部材40の熱を作用させることができる。   The sub flow path 24 is provided so as to pass around the catalyst carrier 16, and the heat storage member 40 is disposed in the sub flow path 24. The heat storage member 40 stores heat that has acted from the exhaust. That is, the heat storage member 40 in a state of storing heat is disposed around the catalyst carrier 16. Therefore, for example, even when the engine is stopped and the exhaust gas is not introduced into the catalyst carrier 16, the temperature of the catalyst supported on the catalyst carrier 16 can be maintained, and the temperature drop of the catalyst can be suppressed. In particular, the heat carrying member is, for example, compared with the structure arranged in the upstream pipe 14A, due to heat conduction from the heat accumulating member 40, natural convection of the gas moved from the heat accumulating member 40 through the sub-flow path 24, etc. The heat of the heat storage member 40 can be effectively applied to 16.

また、蓄熱部材40に蓄熱された状態で、エンジンが始動されたときには、切替弁30を閉状態とすれば、排気は副流路24を経て、触媒担持体16に導入される。エンジンの始動直後は排気の温度が十分に上昇していないことが想定されるが、このような場合でも、副流路24を流れた排気が蓄熱部材40の熱を受けて昇温される。そして、昇温された排気が触媒担持体16に導入されることで、この熱を触媒担持体16に担持された触媒に作用させることができる。これにより、触媒の温度を短時間で所望の温度に向けて上昇させることができる。   Further, when the engine is started in a state where heat is stored in the heat storage member 40, the exhaust is introduced into the catalyst carrier 16 via the sub-flow path 24 if the switching valve 30 is closed. Although it is assumed that the temperature of the exhaust gas is not sufficiently increased immediately after the engine is started, even in such a case, the exhaust gas flowing through the auxiliary flow path 24 is heated by receiving heat from the heat storage member 40. The heated exhaust gas is introduced into the catalyst carrier 16, so that this heat can be applied to the catalyst carried on the catalyst carrier 16. Thereby, the temperature of a catalyst can be raised toward a desired temperature in a short time.

第一実施形態において、切替弁30の開閉状態の判断基準としては、たとえば、触媒担持体16の温度を温度センサで検出し、この検出温度に基づいて行うことが可能である。さらには、エンジンの始動からの時間によって、切替弁30の開閉を制御してもよい。具体的には、エンジンの始動から所定時間は、排気の温度が低いので、切替弁30を開状態KSとする。そして、エンジンの始動から所定時間経過後は、排気の温度が高くなるので、切替弁30を閉状態HSとして、高温の排気の熱が触媒に直接的に作用することを抑制すると共に、蓄熱部材40に排気の熱を作用させるようにすればよい。   In the first embodiment, as a criterion for determining the open / closed state of the switching valve 30, for example, the temperature of the catalyst carrier 16 can be detected by a temperature sensor and can be performed based on the detected temperature. Furthermore, the opening / closing of the switching valve 30 may be controlled according to the time from the start of the engine. Specifically, since the temperature of the exhaust gas is low for a predetermined time from the start of the engine, the switching valve 30 is set to the open state KS. Then, after a predetermined time has elapsed from the start of the engine, the temperature of the exhaust gas becomes high. Therefore, the switching valve 30 is closed to prevent the heat of the high-temperature exhaust gas from directly acting on the catalyst, and the heat storage member What is necessary is just to make the heat of exhaust act on 40.

次に、第二実施形態について説明する。第二実施形態において、第一実施形態と同様の要素、部材等については同一符号を付して、詳細な説明を省略する。   Next, a second embodiment will be described. In the second embodiment, elements, members, and the like that are the same as in the first embodiment are assigned the same reference numerals, and detailed descriptions thereof are omitted.

図4に示すように、第二実施形態の排気浄化装置62では、上流配管14Aに上流開閉弁64が設けられ、下流配管14Cに下流開閉弁66が設けられている。上流開閉弁64及び下流開閉弁66は、制御装置36によって制御される。   As shown in FIG. 4, in the exhaust purification device 62 of the second embodiment, an upstream on-off valve 64 is provided in the upstream pipe 14A, and a downstream on-off valve 66 is provided in the downstream pipe 14C. The upstream opening / closing valve 64 and the downstream opening / closing valve 66 are controlled by the control device 36.

上流開閉弁64は、分流部26よりも上流側の位置で、排気管14(主流路22)を開閉する弁であり、上流開閉部材の一例である。下流開閉弁66は、触媒担持体16よりも下流側の位置で、排気管14(主流路22)を開閉する部材であり、下流開閉部材の一例である。   The upstream opening / closing valve 64 is a valve that opens and closes the exhaust pipe 14 (main flow path 22) at a position upstream of the flow dividing section 26, and is an example of an upstream opening / closing member. The downstream opening / closing valve 66 is a member that opens and closes the exhaust pipe 14 (main flow path 22) at a position downstream of the catalyst carrier 16, and is an example of a downstream opening / closing member.

このような構成とされた第二実施形態の排気浄化装置62では、第一実施形態の排気浄化装置12と同様の作用効果を奏するが、さらに、以下の作用効果を奏する。   The exhaust purification device 62 of the second embodiment configured as described above has the same operational effects as the exhaust purification device 12 of the first embodiment, but further has the following operational effects.

すなわち、第二実施形態の排気浄化装置62では、たとえば、エンジンの停止時に、制御装置36は、上流開閉弁64及び下流開閉弁66を閉じる。   That is, in the exhaust purification device 62 of the second embodiment, for example, when the engine is stopped, the control device 36 closes the upstream on-off valve 64 and the downstream on-off valve 66.

上流開閉弁64の上流側に存在している気体は、触媒担持体16の近傍の気体よりも低温の場合がある。したがって、上流開閉弁64が閉じられていないと、上流開閉弁64の上流側と下流側との気体の移動(対流)が生じ、触媒担持体16の近傍の空気の温度が低下することがある。しかし、本実施形態では、上流開閉弁64が閉じられるので、上流開閉弁64の上流側と下流側との気体の移動が阻止される。このため、上流開閉弁64の上流側にある低温の気体が触媒担持体16に流入しなくなる。また、触媒担持体16の近傍の空気が上流開閉弁64の上流側へ移動しなくなる。すなわち、触媒担持体16の温度低下を抑制できる。   The gas existing on the upstream side of the upstream opening / closing valve 64 may be at a lower temperature than the gas in the vicinity of the catalyst carrier 16. Therefore, if the upstream opening / closing valve 64 is not closed, gas movement (convection) between the upstream side and the downstream side of the upstream opening / closing valve 64 occurs, and the temperature of the air in the vicinity of the catalyst carrier 16 may decrease. . However, in this embodiment, since the upstream on-off valve 64 is closed, gas movement between the upstream side and the downstream side of the upstream on-off valve 64 is prevented. For this reason, the low temperature gas on the upstream side of the upstream opening / closing valve 64 does not flow into the catalyst carrier 16. Further, the air in the vicinity of the catalyst carrier 16 does not move to the upstream side of the upstream opening / closing valve 64. That is, the temperature drop of the catalyst carrier 16 can be suppressed.

また、下流開閉弁66の下流側に存在している気体は、触媒担持体16の近傍の気体よりも低温の場合がある。したがって、下流開閉弁66が閉じられていないと、下流開閉弁66の上流側と下流側との気体の移動が生じ、触媒担持体16の近傍の空気の温度が低下することがある。しかし、本実施形態では、下流開閉弁66が閉じられるので、下流開閉弁66の上流側と下流側との気体の移動が阻止される。このため、下流開閉弁66の下流側にある低温の気体が触媒担持体16に流入しなくなる。また、触媒担持体16の近傍の空気が下流開閉弁66の下流側へ移動しなくなる。すなわち、触媒担持体16の温度低下を抑制できる。   Further, the gas present on the downstream side of the downstream on-off valve 66 may be at a lower temperature than the gas in the vicinity of the catalyst carrier 16. Therefore, if the downstream on-off valve 66 is not closed, gas movement between the upstream side and the downstream side of the downstream on-off valve 66 occurs, and the temperature of the air in the vicinity of the catalyst carrier 16 may decrease. However, in this embodiment, since the downstream on-off valve 66 is closed, gas movement between the upstream side and the downstream side of the downstream on-off valve 66 is prevented. For this reason, the low temperature gas on the downstream side of the downstream opening / closing valve 66 does not flow into the catalyst carrier 16. Further, the air in the vicinity of the catalyst carrier 16 does not move to the downstream side of the downstream on-off valve 66. That is, the temperature drop of the catalyst carrier 16 can be suppressed.

そして、上流開閉弁64と下流開閉弁66とを閉じることで、触媒担持体16及び蓄熱部材40は、上流開閉弁64と下流開閉弁66との間の密閉された空間に位置することになる。触媒担持体16と蓄熱部材40との温度差による気体の対流が生じるが、この対流により、密閉空間の内部の高温の気体が上流配管14A内や下流配管14C内に逃げることが抑制され、触媒担持体16と蓄熱部材40との熱交換を促進できる。   Then, by closing the upstream opening / closing valve 64 and the downstream opening / closing valve 66, the catalyst carrier 16 and the heat storage member 40 are positioned in a sealed space between the upstream opening / closing valve 64 and the downstream opening / closing valve 66. . Gas convection occurs due to a temperature difference between the catalyst carrier 16 and the heat storage member 40. This convection suppresses escape of high-temperature gas inside the sealed space into the upstream pipe 14A and the downstream pipe 14C, and thus the catalyst. Heat exchange between the carrier 16 and the heat storage member 40 can be promoted.

なお、たとえば、エンジンから触媒担持体16までの距離(実質的には上流配管14Aの長さ)が短く、上流配管14Aから外部への放熱が少ない場合等は、上流開閉弁64を省略してもよい。上流開閉弁64を省略しても、切替弁30を閉じることで、切替弁30の上流側と下流側との気体の移動を阻止できる。この場合は、切替弁30が上流開閉部材を兼ねる構造である。   For example, when the distance from the engine to the catalyst carrier 16 (substantially the length of the upstream pipe 14A) is short and there is little heat radiation from the upstream pipe 14A, the upstream on-off valve 64 is omitted. Also good. Even if the upstream opening / closing valve 64 is omitted, the gas transfer between the upstream side and the downstream side of the switching valve 30 can be prevented by closing the switching valve 30. In this case, the switching valve 30 has a structure also serving as an upstream opening / closing member.

次に、第三実施形態について説明する。第三実施形態において、第一実施形態又は第二実施形態と同様の要素、部材等については同一符号を付して、詳細な説明を省略する。   Next, a third embodiment will be described. In 3rd embodiment, the same code | symbol is attached | subjected about the same element, member, etc. as 1st embodiment or 2nd embodiment, and detailed description is abbreviate | omitted.

図5に示すように、第三実施形態の排気浄化装置72では、排気温度センサ74、蓄熱部材温度センサ76及び触媒担持体温度センサ78を有している。   As shown in FIG. 5, the exhaust purification device 72 of the third embodiment has an exhaust temperature sensor 74, a heat storage member temperature sensor 76, and a catalyst carrier temperature sensor 78.

排気温度センサ74は、上流配管14Aに設けられており、排気の温度を検出して制御装置36に送信する。   The exhaust temperature sensor 74 is provided in the upstream pipe 14 </ b> A, detects the temperature of the exhaust, and transmits it to the control device 36.

蓄熱部材温度センサ76は、蓄熱部材40に接触配置されており、蓄熱部材40の温度を検出して、制御装置36に送信する。   The heat storage member temperature sensor 76 is disposed in contact with the heat storage member 40, detects the temperature of the heat storage member 40, and transmits it to the control device 36.

触媒担持体温度センサ78は、触媒担持体16に接触配置されており、触媒担持体16の温度を検出して、制御装置36に送信する。触媒担持体の温度は、実質的に触媒の温度に等しいので、以下では、触媒担持体温度センサ78で検出した温度は、単に触媒温度とする。   The catalyst carrier temperature sensor 78 is disposed in contact with the catalyst carrier 16, detects the temperature of the catalyst carrier 16, and transmits it to the control device 36. Since the temperature of the catalyst carrier is substantially equal to the temperature of the catalyst, hereinafter, the temperature detected by the catalyst carrier temperature sensor 78 is simply referred to as the catalyst temperature.

制御装置36は、エンジンの動作に加えて、排気温度、蓄熱部材温度及び触媒温度に基づき、切替弁30、上流開閉弁64及び下流開閉弁66を制御する。   The control device 36 controls the switching valve 30, the upstream on-off valve 64, and the downstream on-off valve 66 based on the exhaust temperature, the heat storage member temperature, and the catalyst temperature in addition to the operation of the engine.

以下では、第三実施形態における切替弁30、上流開閉弁64及び下流開閉弁66の制御の一例を、詳述する。   Below, an example of control of the switching valve 30, the upstream on-off valve 64, and the downstream on-off valve 66 in 3rd embodiment is explained in full detail.

この制御では、排気温度、蓄熱部材温度及び触媒温度に閾値温度が設定されており、これら閾値温度との関係において、それぞれの弁の開閉が制御される。表1において、排気温度、蓄熱部材温度及び触媒温度のそれぞれにつき、設定されている閾値温度よりも高い状態を「高」、低い状態を「低」とする。この閾値温度は、触媒活性温度であり、この閾値温度よりも高い温度であれば、触媒は排気を浄化する能力を高く発揮する。   In this control, threshold temperatures are set for the exhaust gas temperature, the heat storage member temperature, and the catalyst temperature, and the opening and closing of each valve is controlled in relation to these threshold temperatures. In Table 1, for each of the exhaust temperature, the heat storage member temperature, and the catalyst temperature, a state that is higher than the set threshold temperature is “high”, and a state that is lower is “low”. This threshold temperature is the catalyst activation temperature. If the temperature is higher than this threshold temperature, the catalyst exhibits a high ability to purify the exhaust gas.

表1の条件(1)は、エンジンが停止している状態である。この場合、切替弁30、上流開閉弁64及び下流開閉弁66はいずれも閉状態とされる。上流配管14A内や下流配管14C内の低温空気の流入が抑制され、また、蓄熱部材40と触媒担持体16との間の対流も抑制される。そして、蓄熱部材40に蓄熱された熱が放熱されて触媒担持体16に作用することで、触媒担持体16の温度低下が抑制される。   Condition (1) in Table 1 is a state where the engine is stopped. In this case, the switching valve 30, the upstream on-off valve 64, and the downstream on-off valve 66 are all closed. Inflow of low-temperature air in the upstream pipe 14A and the downstream pipe 14C is suppressed, and convection between the heat storage member 40 and the catalyst carrier 16 is also suppressed. Then, the heat stored in the heat storage member 40 is dissipated and acts on the catalyst carrier 16, so that the temperature drop of the catalyst carrier 16 is suppressed.

条件(2)〜(9)は、エンジンが作動している場合であり、上流開閉弁64及び下流開閉弁66はいずれも開状態とされる。   Conditions (2) to (9) are when the engine is operating, and the upstream on-off valve 64 and the downstream on-off valve 66 are both open.

条件(2)は、エンジン作動時で、排気温度、触媒温度及び蓄熱部材温度のいずれも、それぞれの閾値温度より低い場合である。この場合、排気温度が蓄熱部材温度より高ければ、切替弁30が開かれ、排気が触媒担持体16に導入されるので、短時間で触媒担持体16を昇温することができる。ただし、排気温度が蓄熱部材温度よりも低い場合は、切替弁30が閉じられる。これにより、排気が直接的には触媒担持体16に導入されず、副流路24において、蓄熱部材40の熱を受けて昇温される。昇温された排気が触媒担持体16に導入されるので、触媒担持体16を昇温することができる。すなわち、蓄熱部材40よりも排気が高温であれば、排気を直接的に触媒担持体16に導入し、蓄熱部材40が排気よりも高温であれば、排気が蓄熱部材40によって昇温された後に触媒担持体16に導入される。   Condition (2) is when the engine is operating and all of the exhaust temperature, the catalyst temperature, and the heat storage member temperature are lower than the respective threshold temperatures. In this case, if the exhaust gas temperature is higher than the heat storage member temperature, the switching valve 30 is opened, and the exhaust gas is introduced into the catalyst carrier 16, so that the catalyst carrier 16 can be raised in a short time. However, when the exhaust temperature is lower than the heat storage member temperature, the switching valve 30 is closed. As a result, the exhaust gas is not directly introduced into the catalyst carrier 16, but is heated in the sub-flow path 24 by receiving heat from the heat storage member 40. Since the heated exhaust gas is introduced into the catalyst carrier 16, the catalyst carrier 16 can be heated. That is, if the exhaust gas is hotter than the heat storage member 40, the exhaust gas is directly introduced into the catalyst carrier 16. If the heat storage member 40 is hotter than the exhaust gas, the exhaust gas is heated by the heat storage member 40. It is introduced into the catalyst carrier 16.

条件(3)は、排気温度及び触媒温度はそれぞれ閾値温度よりも低く、蓄熱部材温度は閾値温度よりも高い場合である。この場合は、切替弁30が開かれ、排気が副流路24に流れる。排気は、蓄熱部材40によって昇温され、昇温された排気が触媒担持体16に導入されるので、触媒担持体16を短時間で昇温することができる。低温の排気が直接的に触媒担持体16に導入されることによる触媒の温度低下を抑制できる。   Condition (3) is when the exhaust temperature and the catalyst temperature are each lower than the threshold temperature, and the heat storage member temperature is higher than the threshold temperature. In this case, the switching valve 30 is opened, and the exhaust gas flows into the sub flow path 24. The exhaust gas is heated by the heat storage member 40, and the heated exhaust gas is introduced into the catalyst carrier 16, so that the catalyst carrier 16 can be heated in a short time. It is possible to suppress a decrease in the temperature of the catalyst due to the low temperature exhaust gas being directly introduced into the catalyst carrier 16.

条件(4)は、排気温度及び蓄熱部材温度が温度閾値よりも低く、触媒温度が閾値温度よりも高い場合である。この場合、排気温度が蓄熱部材温度よりも高ければ、切替弁30が開かれ、排気が直接的に触媒担持体16に導入される。蓄熱部材40よりも相対的に高温である排気が蓄熱部材40で温度低下されることなく触媒担持体16に導入されることで、触媒の温度低下を抑制できる。これに対し、排気温度が蓄熱部材温度よりも低い場合は、切替弁30が閉じられる。排気が直接的には触媒担持体16に導入されず、副流路24において、蓄熱部材40の熱を受けて昇温される。昇温された排気が触媒担持体16に導入されるので、排気が蓄熱部材40で昇温されない場合と比較して、触媒担持体16の温度低下を抑制できる。   Condition (4) is when the exhaust gas temperature and the heat storage member temperature are lower than the temperature threshold and the catalyst temperature is higher than the threshold temperature. In this case, if the exhaust gas temperature is higher than the heat storage member temperature, the switching valve 30 is opened and the exhaust gas is directly introduced into the catalyst carrier 16. The exhaust gas having a temperature higher than that of the heat storage member 40 is introduced into the catalyst carrier 16 without being lowered in temperature by the heat storage member 40, so that the temperature drop of the catalyst can be suppressed. On the other hand, when the exhaust temperature is lower than the heat storage member temperature, the switching valve 30 is closed. The exhaust gas is not directly introduced into the catalyst carrier 16, but is heated in the sub-flow path 24 by receiving heat from the heat storage member 40. Since the exhaust gas whose temperature has been raised is introduced into the catalyst carrier 16, the temperature drop of the catalyst carrier 16 can be suppressed as compared with the case where the exhaust gas is not heated by the heat storage member 40.

条件(5)は、排気温度が閾値温度よりも低く、触媒温度及び蓄熱部材温度が閾値温度よりも高い場合である。この場合、触媒温度が蓄熱部材温度よりも高ければ、切替弁30が開かれ、排気が直接的に触媒担持体16に導入されるので、触媒の過度の昇温を抑制できる。これに対し、触媒温度が蓄熱部材温度よりも低い場合は、切替弁30が閉じられる。副流路24において、蓄熱部材40により昇温された排気が触媒担持体16に導入されるので、触媒担持体16を昇温することができる。   Condition (5) is when the exhaust gas temperature is lower than the threshold temperature, and the catalyst temperature and the heat storage member temperature are higher than the threshold temperature. In this case, if the catalyst temperature is higher than the heat storage member temperature, the switching valve 30 is opened, and the exhaust gas is directly introduced into the catalyst carrier 16, so that excessive temperature rise of the catalyst can be suppressed. On the other hand, when the catalyst temperature is lower than the heat storage member temperature, the switching valve 30 is closed. Since the exhaust gas whose temperature has been raised by the heat storage member 40 is introduced into the catalyst carrier 16 in the sub-channel 24, the temperature of the catalyst carrier 16 can be raised.

条件(6)は、排気温度、触媒温度及び蓄熱部材温度のいずれも、閾値温度よりも高い場合である。この場合、触媒温度が排気温度よりも高く、排気温度が蓄熱部材温度よりも高ければ、切替弁30は閉じられるので、蓄熱部材40によって温度低下された排気が触媒担持体16に導入され、触媒の過度の昇温を抑制できる。触媒温度が蓄熱部材温度よりも高く、蓄熱部材温度が排気温度よりも高ければ、切替弁30は開けられるので、排気により、触媒の過度の昇温を抑制できる。排気温度が蓄熱部材温度よりも高く、蓄熱部材温度が触媒温度よりも高い場合は、切替弁30は開けられ、排気を直接的に触媒担持体16に導入して触媒を昇温できる。排気温度が触媒温度よりも高く、触媒温度が蓄熱部材温度よりも高ければ、切替弁30は閉じられ、蓄熱部材40によって昇温された排気が触媒担持体16に導入されることで、触媒を昇温できる。   Condition (6) is when the exhaust temperature, the catalyst temperature, and the heat storage member temperature are all higher than the threshold temperature. In this case, if the catalyst temperature is higher than the exhaust temperature and the exhaust temperature is higher than the heat storage member temperature, the switching valve 30 is closed, so that the exhaust gas whose temperature has been lowered by the heat storage member 40 is introduced into the catalyst carrier 16 and the catalyst Excessive temperature rise can be suppressed. If the catalyst temperature is higher than the heat storage member temperature and the heat storage member temperature is higher than the exhaust temperature, the switching valve 30 is opened, so that excessive temperature rise of the catalyst can be suppressed by exhaust. When the exhaust gas temperature is higher than the heat storage member temperature and the heat storage member temperature is higher than the catalyst temperature, the switching valve 30 is opened, and the exhaust gas can be directly introduced into the catalyst carrier 16 to raise the temperature of the catalyst. If the exhaust gas temperature is higher than the catalyst temperature and the catalyst temperature is higher than the heat storage member temperature, the switching valve 30 is closed, and the exhaust gas heated by the heat storage member 40 is introduced into the catalyst carrier 16 so that the catalyst is The temperature can be raised.

条件(7)は、排気温度が閾値温度よりも高く、触媒温度及び蓄熱部材温度が閾値温度よりも低い場合である。この場合は、切替弁30が開けられ、排気が直接的に触媒担持体16に導入されることで、触媒を昇温できる。   Condition (7) is when the exhaust gas temperature is higher than the threshold temperature, and the catalyst temperature and the heat storage member temperature are lower than the threshold temperature. In this case, the temperature of the catalyst can be raised by opening the switching valve 30 and introducing exhaust directly into the catalyst carrier 16.

条件(8)は、排気温度及び蓄熱部材温度が閾値温度よりも高く、触媒温度が閾値温度よりも低い場合である。この場合、排気温度が蓄熱部材温度よりも低い場合は、切替弁30を閉じられる。排気が直接的には触媒担持体16に導入されず、副流路24において、蓄熱部材40の熱を受けて昇温される。昇温された排気が触媒担持体16に導入されるので、排気が蓄熱部材40で昇温されない場合と比較して、触媒担持体16の温度低下を抑制できる。これに対し、排気温度が蓄熱部材温度よりも高ければ、切替弁30が開かれ、排気が直接的に触媒担持体16に導入される。蓄熱部材40よりも相対的に高温である排気が蓄熱部材40で温度低下されることなく触媒担持体16に導入されることで、触媒の温度低下を抑制できる。   Condition (8) is when the exhaust gas temperature and the heat storage member temperature are higher than the threshold temperature and the catalyst temperature is lower than the threshold temperature. In this case, when the exhaust gas temperature is lower than the heat storage member temperature, the switching valve 30 is closed. The exhaust gas is not directly introduced into the catalyst carrier 16, but is heated in the sub-flow path 24 by receiving heat from the heat storage member 40. Since the exhaust gas whose temperature has been raised is introduced into the catalyst carrier 16, the temperature drop of the catalyst carrier 16 can be suppressed as compared with the case where the exhaust gas is not heated by the heat storage member 40. On the other hand, if the exhaust gas temperature is higher than the heat storage member temperature, the switching valve 30 is opened and the exhaust gas is directly introduced into the catalyst carrier 16. The exhaust gas having a temperature higher than that of the heat storage member 40 is introduced into the catalyst carrier 16 without being lowered in temperature by the heat storage member 40, so that the temperature drop of the catalyst can be suppressed.

条件(9)は、排気温度及び触媒温度が閾値温度よりも高く、蓄熱部材温度が閾値温度よりも低い場合である。この場合、切替弁30は閉じられるので、蓄熱部材40によって温度低下された排気が触媒担持体16に導入され、触媒の過度の昇温を抑制できる。   Condition (9) is when the exhaust gas temperature and the catalyst temperature are higher than the threshold temperature, and the heat storage member temperature is lower than the threshold temperature. In this case, since the switching valve 30 is closed, the exhaust gas whose temperature has been lowered by the heat storage member 40 is introduced into the catalyst carrier 16, and excessive temperature rise of the catalyst can be suppressed.

以上説明したように、第三実施形態の排気浄化装置72では、エンジンの動作に加えて、排気温度、蓄熱部材温度及び触媒温度に基づき、切替弁30、上流開閉弁64及び下流開閉弁66を制御することで、触媒の温度を適切に制御できる。   As described above, in the exhaust purification device 72 of the third embodiment, in addition to the operation of the engine, the switching valve 30, the upstream on-off valve 64, and the downstream on-off valve 66 are provided based on the exhaust temperature, the heat storage member temperature, and the catalyst temperature. By controlling, the temperature of the catalyst can be appropriately controlled.

第一〜第三実施形態において、副流路24の構造は、上記したものに限定されず、図6に示す第一変形例や、図7に示す第二変形例の構造を採り得る。   In 1st-3rd embodiment, the structure of the subchannel 24 is not limited to what was mentioned above, The structure of the 1st modification shown in FIG. 6 and the 2nd modification shown in FIG. 7 can be taken.

図6に示す第一変形例の排気浄化装置82では、外筒84が、一対の平行な平坦部86を有している。平坦部86の間隔は、太径配管14Bの外径と等しく、平坦部86は幅方向(矢印W1方向)の中央で太径配管14Bに接触している。そして、中間筒88も、平坦部86の間に位置するように、断面にて左右2つの円弧形状に形成されている。   In the exhaust emission control device 82 of the first modification shown in FIG. 6, the outer cylinder 84 has a pair of parallel flat portions 86. The interval between the flat portions 86 is equal to the outer diameter of the large-diameter pipe 14B, and the flat portions 86 are in contact with the large-diameter pipe 14B at the center in the width direction (arrow W1 direction). The intermediate cylinder 88 is also formed in two left and right arc shapes in cross section so as to be positioned between the flat portions 86.

第一変形例では、外筒84の高さが、第一実施形態の外筒18の高さよりも低い。したがって、第一変形例では、排気浄化装置82を、その周囲の部材との干渉を避けて配置することができ、配置の自由度が高い。   In the first modification, the height of the outer cylinder 84 is lower than the height of the outer cylinder 18 of the first embodiment. Therefore, in the first modified example, the exhaust purification device 82 can be arranged avoiding interference with the surrounding members, and the degree of freedom of arrangement is high.

図7に示す第二変形例の排気浄化装置92では、外筒94が、平坦部86に加えて、さらに、一対の平行な平板部96を有しており、外筒94は、流れ方向と直交する断面で見て長方形状である。また、中間筒98も、外筒94の平板部96と平行な平坦部100を有している。さらに、中間筒98と太径配管14Bの間に、平坦部100と平行な隔壁102が形成されている。   In the exhaust emission control device 92 of the second modified example shown in FIG. 7, the outer cylinder 94 has a pair of parallel flat plate portions 96 in addition to the flat portion 86, and the outer cylinder 94 has a flow direction. It is rectangular when viewed in a cross section perpendicular to it. The intermediate cylinder 98 also has a flat portion 100 parallel to the flat plate portion 96 of the outer cylinder 94. Further, a partition wall 102 parallel to the flat portion 100 is formed between the intermediate cylinder 98 and the large diameter pipe 14B.

第二変形例では、このように、外筒94が流れ方向と直交する断面で見て長方形状であり、曲面部分が存在しない。また。中間筒98にも曲線部分が存在しない。したがって、外筒94及び中間筒98の成形が容易であり、排気浄化装置92を低コストで製造できる。   In the second modification example, the outer cylinder 94 is thus rectangular when viewed in a cross section perpendicular to the flow direction, and there is no curved surface portion. Also. The intermediate cylinder 98 also has no curved portion. Therefore, the outer cylinder 94 and the intermediate cylinder 98 can be easily molded, and the exhaust purification device 92 can be manufactured at a low cost.

上記した各実施形態及び変形例の排気浄化装置において、蓄熱材としては、高温の排気からの熱を受けて蓄熱することができると共に、低温の排気に対して放熱できれば特に限定されない。たとえば、100℃以上600℃以下の範囲に融点がある溶融塩を用いることができる。溶融塩は、常温で固体の塩や酸化物を、加熱により融解して液体にした物質であり、陽イオンと陰イオンとで構成されている。そして、相変化(融解、一次転移又は二次転移)に伴ってエンタルピーが変化し、蓄熱及び放熱する。   In the exhaust purification apparatus of each of the above-described embodiments and modifications, the heat storage material is not particularly limited as long as it can store heat by receiving heat from high-temperature exhaust and can radiate heat to low-temperature exhaust. For example, a molten salt having a melting point in the range of 100 ° C. or higher and 600 ° C. or lower can be used. A molten salt is a substance obtained by melting a salt or oxide that is solid at room temperature into a liquid by heating, and is composed of cations and anions. And enthalpy changes with phase change (melting, primary transition, or secondary transition), and heat storage and heat dissipation are carried out.

上記の表2から分かるように、上記各実施形態において実際に蓄熱及び放熱する際の相変化は、固相と液相との相転移を伴う融解であってもよく、相変化時には蓄熱材は潜熱として蓄熱及び放熱する。これに対し、固相と液相との相転移を伴わない相変化で蓄熱及び放熱してもよい。   As can be seen from Table 2 above, the phase change when actually storing and radiating heat in each of the above embodiments may be melting accompanied by a phase transition between the solid phase and the liquid phase. Stores and dissipates heat as latent heat. On the other hand, heat storage and heat dissipation may be performed by a phase change that does not involve a phase transition between the solid phase and the liquid phase.

これらの溶融塩において、特に、相変化温度が100℃以上600℃以下の範囲の溶融塩は、排気との熱交換を効率よく行うことができ、各実施形態及び変形例の排気浄化装置に好ましく適用できる。   Among these molten salts, in particular, a molten salt having a phase change temperature in the range of 100 ° C. or more and 600 ° C. or less can efficiently perform heat exchange with the exhaust gas, and is preferable for the exhaust purification apparatus of each embodiment and modification. Applicable.

なお、溶融塩の種類によっては、相変化によって体積変化する溶融塩もある。体積変化する溶融塩を用いる場合は、収容部材42において、溶融塩の体積変化を吸収できるように十分な容積を確保しておけばよい。   Depending on the type of molten salt, there is also a molten salt whose volume changes due to a phase change. In the case of using a molten salt whose volume changes, a sufficient volume may be secured in the housing member 42 so that the volume change of the molten salt can be absorbed.

12 排気浄化装置
14 排気管
16 触媒担持体
18 外筒
20 中間筒
22 主流路
24 副流路
26 分流部
28 合流部
30 切替弁
36 制御装置
38 エンジン作動センサ
40 蓄熱部材
42 収容部材
44 フィン
62 排気浄化装置
64 上流開閉弁
66 下流開閉弁
72 排気浄化装置
74 排気温度センサ
76 蓄熱部材温度センサ
78 触媒担持体温度センサ
82 排気浄化装置
92 排気浄化装置
12 Exhaust purification device 14 Exhaust pipe 16 Catalyst carrier 18 Outer cylinder 20 Intermediate cylinder 22 Main flow path 24 Sub-flow path 26 Splitting section 28 Junction section 30 Switching valve 36 Controller 38 Engine operation sensor 40 Heat storage member 42 Housing member 44 Fin 62 Exhaust Purification device 64 Upstream on-off valve 66 Downstream on-off valve 72 Exhaust purification device 74 Exhaust temperature sensor 76 Heat storage member temperature sensor 78 Catalyst carrier temperature sensor 82 Exhaust purification device 92 Exhaust purification device

Claims (6)

排気管内に設けられ排気を浄化する触媒を担持する触媒担持体と、
前記触媒担持体よりも前記排気の上流側の分流部で前記排気管から分岐し、前記触媒担持体の周囲を経て、前記分流部と前記触媒担持体の間の合流部で前記排気管に合流する副流路と、
前記触媒担持体の周囲の位置で前記副流路に設けられる蓄熱部材と、
前記排気管における前記排気の流れを前記副流路へ切り替える切替部材と、
前記切替部材を制御する制御装置と、
を有する排気浄化装置。
A catalyst carrier provided in the exhaust pipe and carrying a catalyst for purifying exhaust;
Branches from the exhaust pipe at a branch portion upstream of the exhaust from the catalyst carrier, passes through the periphery of the catalyst carrier, and joins the exhaust pipe at a junction between the branch portion and the catalyst carrier. A secondary flow path
A heat storage member provided in the sub-flow path at a position around the catalyst carrier;
A switching member for switching the flow of the exhaust gas in the exhaust pipe to the sub-flow channel;
A control device for controlling the switching member;
Exhaust gas purification apparatus.
前記制御装置で制御され、前記触媒担持体よりも前記排気の下流側で前記排気管を開閉する下流開閉部材を有する請求項1に記載の排気浄化装置。   The exhaust emission control device according to claim 1, further comprising a downstream opening / closing member that is controlled by the control device and opens / closes the exhaust pipe on a downstream side of the exhaust with respect to the catalyst carrier. 前記制御装置で制御され、前記分流部よりも前記排気の上流側で前記排気管を開閉する上流開閉部材を有する請求項2に記載の排気浄化装置。   The exhaust emission control device according to claim 2, further comprising an upstream opening / closing member that is controlled by the control device and opens / closes the exhaust pipe upstream of the flow dividing section. エンジンの作動及び停止を検出して前記制御装置に伝えるエンジン作動センサを有し、
前記制御装置は、エンジン停止時には前記下流開閉部材及び前記上流開閉部材を閉状態とし、エンジン作動時には前記下流開閉部材及び前記上流開閉部材を開状態とする請求項3に記載の排気浄化装置。
An engine operation sensor that detects operation and stop of the engine and transmits the detected operation to the control device;
The exhaust emission control device according to claim 3, wherein the control device closes the downstream opening / closing member and the upstream opening / closing member when the engine is stopped, and opens the downstream opening / closing member and the upstream opening / closing member when the engine is operating.
前記排気管内を流れる排気の温度を検出する排気温度センサと、
前記蓄熱部材の温度を検出する蓄熱部材温度センサと、
前記触媒担持体の温度を検出する触媒担持体温度センサと、
を有し、
前記制御装置は、前記排気の温度、前記蓄熱部材の温度及び、前記触媒担持体の温度に基づいて前記切替部材を制御する請求項1〜請求項4のいずれか1項に記載の排気浄化装置。
An exhaust temperature sensor for detecting the temperature of the exhaust flowing in the exhaust pipe;
A heat storage member temperature sensor for detecting the temperature of the heat storage member;
A catalyst carrier temperature sensor for detecting the temperature of the catalyst carrier;
Have
The exhaust control device according to any one of claims 1 to 4, wherein the control device controls the switching member based on a temperature of the exhaust gas, a temperature of the heat storage member, and a temperature of the catalyst carrier. .
前記蓄熱部材が、
蓄熱材が収容される収容部材と、
前記収容部材から延出されるフィンと、
を有する熱交換器である請求項1〜請求項5のいずれか1項に記載の排気浄化装置。
The heat storage member is
A housing member for housing the heat storage material;
A fin extending from the housing member;
The exhaust gas purification device according to any one of claims 1 to 5, wherein the exhaust gas purification device is a heat exchanger having a heat exchanger.
JP2017049507A 2017-03-15 2017-03-15 Exhaust purification device Active JP6812863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017049507A JP6812863B2 (en) 2017-03-15 2017-03-15 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049507A JP6812863B2 (en) 2017-03-15 2017-03-15 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2018150915A true JP2018150915A (en) 2018-09-27
JP6812863B2 JP6812863B2 (en) 2021-01-13

Family

ID=63680299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049507A Active JP6812863B2 (en) 2017-03-15 2017-03-15 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP6812863B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186663A (en) * 2019-05-13 2020-11-19 株式会社豊田中央研究所 Exhaust emission control device
CN113446091A (en) * 2020-03-26 2021-09-28 比亚迪股份有限公司 Exhaust apparatus, engine and car
CN116201625A (en) * 2023-03-31 2023-06-02 浙江尤恩叉车股份有限公司 Tail gas treatment device for diesel fork truck

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123U (en) * 1985-06-17 1987-01-06
JPH11125113A (en) * 1997-10-23 1999-05-11 Denso Corp Exhaust emission control device for internal combustion engine
JP2001289039A (en) * 2000-04-06 2001-10-19 Nissan Motor Co Ltd Exhaust emission control system for internal combustion engine
JP2010071223A (en) * 2008-09-19 2010-04-02 Mazda Motor Corp Exhaust emission control device for engine
JP2010174791A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Exhaust emission control device
JP2012512994A (en) * 2008-12-12 2012-06-07 ウエスキャスト インダストリーズ インク. Liquid-cooled exhaust valve assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123U (en) * 1985-06-17 1987-01-06
JPH11125113A (en) * 1997-10-23 1999-05-11 Denso Corp Exhaust emission control device for internal combustion engine
JP2001289039A (en) * 2000-04-06 2001-10-19 Nissan Motor Co Ltd Exhaust emission control system for internal combustion engine
JP2010071223A (en) * 2008-09-19 2010-04-02 Mazda Motor Corp Exhaust emission control device for engine
JP2012512994A (en) * 2008-12-12 2012-06-07 ウエスキャスト インダストリーズ インク. Liquid-cooled exhaust valve assembly
JP2010174791A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Exhaust emission control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186663A (en) * 2019-05-13 2020-11-19 株式会社豊田中央研究所 Exhaust emission control device
JP7287100B2 (en) 2019-05-13 2023-06-06 株式会社豊田中央研究所 Exhaust purification device
CN113446091A (en) * 2020-03-26 2021-09-28 比亚迪股份有限公司 Exhaust apparatus, engine and car
CN113446091B (en) * 2020-03-26 2023-11-14 比亚迪股份有限公司 Exhaust apparatus, engine and car
CN116201625A (en) * 2023-03-31 2023-06-02 浙江尤恩叉车股份有限公司 Tail gas treatment device for diesel fork truck
CN116201625B (en) * 2023-03-31 2023-08-18 浙江尤恩叉车股份有限公司 Tail gas treatment device for diesel fork truck

Also Published As

Publication number Publication date
JP6812863B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US20190053330A1 (en) Exhaust system with actuated flow bypass and thermal storage device
JP2018150915A (en) Exhaust emission control device
JP6384409B2 (en) Waste heat recovery unit structure
EP2318676B1 (en) Exhaust heat recovery system
JP2007032561A (en) Exhaust gas heat recovery device
CN102844537A (en) Electrically-heated catalytic converter
JP2015183639A (en) exhaust heat recovery system
US20160186625A1 (en) Exhaust heat recovery device structure
JP2014034922A (en) Exhaust heat recovery device
JP7063069B2 (en) Exhaust gas purification device
KR101123161B1 (en) Exhaust heat recovery apparatus
JP2014020345A (en) Egr system
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP2010059862A (en) Exhaust heat recovery device
JP7287100B2 (en) Exhaust purification device
JP2017193969A (en) Heating device
JP2005226474A (en) Heat exchange system for engine
RU2588335C1 (en) Exhaust gas heat recuperation device
JP6421513B2 (en) Heat exchanger and heat exchanger control method
JP2007032545A (en) Exhaust emission control system for internal combustion engine
JP2010270983A (en) Exhaust heat recovery device
JP2005330832A (en) Heat storage system
JP2004084481A (en) Exhaust pipe
JP2010133349A (en) Exhaust heat recovery device
JP2015031240A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R150 Certificate of patent or registration of utility model

Ref document number: 6812863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150