JPH11125113A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH11125113A
JPH11125113A JP9290701A JP29070197A JPH11125113A JP H11125113 A JPH11125113 A JP H11125113A JP 9290701 A JP9290701 A JP 9290701A JP 29070197 A JP29070197 A JP 29070197A JP H11125113 A JPH11125113 A JP H11125113A
Authority
JP
Japan
Prior art keywords
temperature
heat storage
exhaust gas
storage material
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9290701A
Other languages
Japanese (ja)
Inventor
Kanehito Nakamura
兼仁 中村
Tsukasa Kuboshima
司 窪島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP9290701A priority Critical patent/JPH11125113A/en
Publication of JPH11125113A publication Critical patent/JPH11125113A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To rationalize the temperature of an exhaust emission control vessel of catalyst or the like by a simple constitution. SOLUTION: In the halfway of an exhaust manifold 18, an NOx catalyst 19 reduction purifying NOx in an exhaust is arranged. In a periphery of an upstream part of the NOx catalyst 19 and its periphery of the exhaust manifold 18, respectively a heat accumulator 24, 25 is provided. In each heat accumulator 24, 25, a fusion latent heat type accumulating material 26 is sealed in a good heat conductive closed case 24a, 25a. In this fusion latent heat type accumulating material 26, use of a fusion latent heat type accumulating material with a phase change generating temperature (fusing temperature) in s purifying temperature range of the NOx catalyst 19 is only required, and more preferably a fusion latent heat type accumulating material with a fusing temperature in almost the center of a purifying temperature range of the NOx catalyst 19 may be used. For instance, in the case that the almost center of the purifying temperature range of the NOx catalyst 19 is about 250 deg.C, as a fusion latent heat type accumulating material 26, NaF-SnF2 of 253 deg.C fusing temperature may be used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関から排出
される排気ガスを浄化する内燃機関の排気浄化装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine for purifying exhaust gas discharged from an internal combustion engine.

【0002】[0002]

【従来の技術】ディーゼルエンジン等、希薄空燃比で燃
焼が行われる内燃機関から排出される排気中の窒素酸化
物(以下「NOx」と表記する)を浄化するために、排
気管にNOx触媒を設置し、酸素過剰下で炭化水素を還
元剤としてNOxを選択的に浄化する技術が提案されて
いる。しかし、このNOx触媒は特定の浄化温度範囲
(例えば200〜300℃)でしかNOxを浄化できな
いため、NOx浄化率を高めるにはNOx触媒の温度を
制御することが有効である。
2. Description of the Related Art In order to purify nitrogen oxides (hereinafter referred to as "NOx") in exhaust gas discharged from an internal combustion engine in which combustion is performed at a lean air-fuel ratio such as a diesel engine, a NOx catalyst is provided in an exhaust pipe. There has been proposed a technique for selectively purifying NOx using a hydrocarbon as a reducing agent under an excess of oxygen. However, since this NOx catalyst can purify NOx only in a specific purification temperature range (for example, 200 to 300 ° C.), it is effective to control the temperature of the NOx catalyst to increase the NOx purification rate.

【0003】この観点から、例えば、特開平5一444
45号公報では、触媒の上流側に水冷型の熱交換器を設
置し、この熱交換器に流す冷却水の流量を触媒温度に応
じて調節することで、触媒に流入する排気ガスの温度を
調節するようにしている。また、特開平6一25440
3号公報では、触媒内部に蓄熱材を設け、エンジン停止
中も蓄熱材により触媒を保温することで、エンジン始動
後に触媒を早期に活性化させるようにしている。
From this viewpoint, for example, Japanese Patent Laid-Open No. Hei 5-144
In Japanese Patent No. 45, a water-cooled heat exchanger is installed upstream of the catalyst, and the flow rate of cooling water flowing through the heat exchanger is adjusted in accordance with the catalyst temperature, thereby reducing the temperature of exhaust gas flowing into the catalyst. I try to adjust it. Also, Japanese Patent Application Laid-Open No.
In Patent Document 3, a heat storage material is provided inside the catalyst, and the catalyst is activated by the heat storage material even when the engine is stopped, so that the catalyst is activated early after the engine is started.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者
(特開平5一44445号公報)では、熱交換器と、触
媒温度に応じて冷却水の流量を調節する機構が必要とな
り、構成が複雑化してコスト高になる。しかも、排気温
度が低下すると、触媒を昇温することができないという
欠点もある。
However, the former (Japanese Patent Application Laid-Open No. Hei 5-144445) requires a heat exchanger and a mechanism for adjusting the flow rate of the cooling water in accordance with the catalyst temperature. Increases cost. In addition, there is a disadvantage that when the exhaust gas temperature is lowered, the temperature of the catalyst cannot be increased.

【0005】一方、後者(特開平6一254403号公
報)では、触媒内部に設けた蓄熱材の熱容量で触媒を保
温できるため、触媒が過度に高温や低温になることを防
ぐことはできるが、排気温度の変化により蓄熱材の温度
も変化するため、触媒の温度を比較的狭い浄化温度範囲
内に保つことができず、排気浄化率向上の効果が少な
い。
On the other hand, in the latter case (JP-A-6-254403), the catalyst can be kept warm by the heat capacity of the heat storage material provided inside the catalyst, so that the catalyst can be prevented from being excessively high or low temperature. Since the temperature of the heat storage material also changes with a change in the exhaust gas temperature, the temperature of the catalyst cannot be kept within a relatively narrow purification temperature range, and the effect of improving the exhaust gas purification rate is small.

【0006】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、簡素な構成で、触媒
等の排気浄化器の温度を比較的狭い浄化温度範囲内に保
つことができ、排気浄化性能向上とコスト性とを両立す
ることができる内燃機関の排気浄化装置を提供すること
にある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and therefore has as its object to maintain the temperature of an exhaust purifier such as a catalyst within a relatively narrow purification temperature range with a simple configuration. It is an object of the present invention to provide an exhaust gas purifying apparatus for an internal combustion engine that can achieve both improved exhaust gas purifying performance and cost performance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の内燃機関の排気浄化装置は、排
気浄化器の排気浄化率が特定の浄化温度範囲内で高くな
る点に着目し、その浄化温度範囲内で相変化を起こす融
解潜熱型蓄熱材を用いて蓄熱器を構成し、この蓄熱器で
排気浄化器を保温するようにしたものである。ここで、
融解潜熱型蓄熱材は、固相と液相との相変化に伴う潜熱
を利用して効率良く蓄熱する蓄熱材であり、相変化のな
い蓄熱材と比較して蓄熱量がはるかに大きく、融解温度
の状態で温度一定のまま大量の熱量を蓄熱または放熱で
きる。このため、排気温度が大きく変化しても、融解潜
熱型蓄熱材の蓄熱または放熱により排気浄化器の温度を
融解潜熱型蓄熱材の融解温度に近付けることができる。
従って、融解潜熱型蓄熱材の融解温度を排気浄化率が高
くなる特定の浄化温度範囲内に設定すれば、排気浄化器
の温度を浄化温度範囲内に保つことができ、高い浄化性
能を得ることができる。
According to a first aspect of the present invention, there is provided an exhaust gas purifying apparatus for an internal combustion engine, wherein an exhaust gas purifying efficiency of an exhaust gas purifier is increased within a specific purifying temperature range. The heat storage device is configured using a latent heat type heat storage material that causes a phase change within the purification temperature range, and the exhaust gas purifier is kept warm by the heat storage device. here,
The latent heat type heat storage material is a heat storage material that efficiently stores heat using the latent heat associated with the phase change between the solid phase and the liquid phase. A large amount of heat can be stored or dissipated while maintaining the temperature at a constant temperature. For this reason, even if the exhaust gas temperature changes greatly, the temperature of the exhaust gas purifier can be made close to the melting temperature of the latent heat storage material by heat storage or heat radiation of the latent heat storage material.
Therefore, if the melting temperature of the latent heat type heat storage material is set within a specific purification temperature range where the exhaust gas purification rate is high, the temperature of the exhaust gas purifier can be kept within the purification temperature range, and high purification performance can be obtained. Can be.

【0008】この場合、請求項2のように、排気浄化器
は、特定の浄化温度範囲でNOxを吸着するNOx吸着
材、または、炭化水素を還元剤としてNOxを還元浄化
するNOx触媒にすると良い。これらNOx吸着材とN
Ox触媒は、浄化温度範囲が比較的狭いため、融解潜熱
型蓄熱材と組み合わせることで、高い浄化性能を得るこ
とができる。
In this case, the exhaust gas purifier may be a NOx adsorbent that adsorbs NOx in a specific purification temperature range or a NOx catalyst that reduces and purifies NOx using hydrocarbon as a reducing agent. . These NOx adsorbents and N
Since the purification temperature range of the Ox catalyst is relatively narrow, high purification performance can be obtained by combining it with the latent heat type heat storage material.

【0009】また、請求項3のように、融解潜熱型蓄熱
材の融解温度は特定の浄化温度範囲の略中央であること
が望ましい。例えば、NOx触媒は特定の比較的狭い浄
化温度範囲でNOxが浄化できるが、浄化温度範囲の略
中央でNOx浄化率が最も高くなる。従って、融解潜熱
型蓄熱材の融解温度を浄化温度範囲の略中央にすること
で、最も高い浄化性能を得ることができる。
It is desirable that the melting temperature of the latent heat type heat storage material is substantially at the center of a specific purification temperature range. For example, the NOx catalyst can purify NOx in a specific relatively narrow purification temperature range, but the NOx purification rate becomes highest approximately in the center of the purification temperature range. Therefore, the highest purification performance can be obtained by setting the melting temperature of the latent heat type heat storage material to approximately the center of the purification temperature range.

【0010】ところで、融解潜熱型蓄熱材は完全に融解
して液化すると、液体の比熱で温度上昇してしまう。こ
の温度領域では、上述した融解潜熱型蓄熱材特有の利点
(つまり温度一定の状態での蓄熱または放熱)が得られ
ない。
[0010] When the latent heat storage material is completely melted and liquefied, the temperature rises due to the specific heat of the liquid. In this temperature range, the above-described advantage (that is, heat storage or heat radiation at a constant temperature) unique to the above-described latent heat storage material cannot be obtained.

【0011】そこで、請求項4のように、融解温度が異
なる複数種類の融解潜熱型蓄熱材を組み合わせて蓄熱器
を構成し、融解温度が低い融解潜熱型蓄熱材が特定の浄
化温度範囲内で相変化を起こすようにしても良い。この
ようにすれば、融解温度が低い融解潜熱型蓄熱材が完全
に融解した後は、それよりも融解温度が高い融解潜熱型
蓄熱材の潜熱で蓄熱することができ、融解温度が低い融
解潜熱型蓄熱材の過昇温ひいては排気浄化器の過昇温を
防止することができて、浄化性能の低下や蓄熱材の劣化
を防止することができる。
Therefore, a regenerator is constructed by combining a plurality of types of latent heat type heat storage materials having different melting temperatures, so that the latent heat type heat storage material having a low melting temperature falls within a specific purification temperature range. A phase change may be caused. With this configuration, after the melting latent heat type heat storage material having a low melting temperature is completely melted, heat can be stored with the latent heat of the melting latent heat type heat storage material having a higher melting temperature, and the melting latent heat having a lower melting temperature can be obtained. Excessive temperature rise of the mold heat storage material, and thus excessive temperature rise of the exhaust gas purifier, can be prevented, so that a reduction in purification performance and deterioration of the heat storage material can be prevented.

【0012】また、請求項5のように、排気通路を、排
気ガスが蓄熱器を通過して排気浄化器に流入する主排気
流路と、蓄熱器をバイパスして排気浄化器に流入するバ
イパス流路とに分岐し、両流路の分岐部に、温度に応じ
て流路を切り換える流路切換手段を設けた構成としても
良い。例えば、排気浄化器や蓄熱器が冷えている状態で
内燃機関を始動すると、排気熱で排気浄化器や蓄熱器が
昇温していくが、蓄熱器の熱容量で排気浄化器の昇温が
遅れると、浄化性能が低下してしまうおそれがある。こ
の対策として、低温時は、排気ガスの通路をバイパス流
路に切り換え、排気ガスを蓄熱器をバイパスさせて排気
浄化器に流入させることで、排気浄化器を早期に昇温さ
せ、始動後のエミッションを低減する。そして、中温時
は、主排気流路に排気ガスを流すことで、排気熱により
蓄熱器と排気浄化器を適温に昇温して、排気浄化率を高
める。また、高温時は、排気ガスの流れをバイパス流路
に切り換えて、排気ガスを蓄熱器をバイパスさせること
で、蓄熱器の高温劣化を防止する。
The exhaust passage may include a main exhaust passage through which the exhaust gas passes through the regenerator and flows into the exhaust purifier, and a bypass that bypasses the regenerator and flows into the exhaust purifier. It is also possible to adopt a configuration in which a flow path switching unit that branches to the flow path and switches the flow path according to the temperature is provided at a branch portion of both flow paths. For example, if the internal combustion engine is started with the exhaust purifier or regenerator cold, the exhaust heat or heat of the exhaust purifier or regenerator rises, but the temperature rise of the exhaust purifier is delayed by the heat capacity of the regenerator. In this case, the purification performance may be reduced. As a countermeasure, when the temperature is low, the exhaust gas passage is switched to a bypass flow path, and the exhaust gas is caused to flow into the exhaust gas purifier by bypassing the regenerator, so that the temperature of the exhaust gas purifier is raised at an early stage. Reduce emissions. When the temperature is medium, the exhaust gas is caused to flow through the main exhaust passage to raise the temperature of the regenerator and the exhaust gas purifier to an appropriate temperature by the exhaust heat, thereby increasing the exhaust gas purification rate. In addition, when the temperature is high, the flow of the exhaust gas is switched to the bypass flow path, and the exhaust gas is bypassed to the regenerator, thereby preventing the regenerator from deteriorating at a high temperature.

【0013】ここで、蓄熱器に用いられる融解潜熱型蓄
熱材は、固体から液体に相変化すると体積が変化する特
徴がある。この点に着目し、請求項6のように、流路切
換手段は、融解潜熱型蓄熱材の相変化に伴う体積変化を
温度検出部または駆動部として用いるようにしても良
い。このようにすれば、温度センサやアクチュエータが
無くても、融解潜熱型蓄熱材の相変化によって排気流路
を適切に切り換えることができる。
Here, the melting latent heat type heat storage material used in the heat storage device has a characteristic that the volume changes when the phase changes from a solid to a liquid. Focusing on this point, the channel switching means may use the volume change accompanying the phase change of the latent heat type heat storage material as the temperature detection unit or the drive unit. With this configuration, even without a temperature sensor or an actuator, the exhaust passage can be appropriately switched by the phase change of the latent heat type heat storage material.

【0014】[0014]

【発明の実施の形態】 [実施形態(1)]以下、本発明をディーゼルエンジン
に適用した実施形態(1)を図1乃至図4に基づいて説
明する。
[Embodiment (1)] An embodiment (1) in which the present invention is applied to a diesel engine will be described below with reference to FIGS.

【0015】まず、図1に基づいてエンジン制御システ
ム全体の構成を説明する。内燃機関であるディーゼルエ
ンジン10の各気筒には、吸気管11を通して吸入され
る吸入空気が吸気マニホールド13を通して吸入され
る。ディーゼルエンジン10の各気筒には、電磁弁式の
燃料噴射弁14が取り付けられ、各燃料噴射弁14に
は、高圧燃料ポンプ15から高圧に蓄圧された燃料がコ
モンレール16を通して分配される。
First, the configuration of the entire engine control system will be described with reference to FIG. To each cylinder of the diesel engine 10 which is an internal combustion engine, intake air taken in through an intake pipe 11 is taken in through an intake manifold 13. An electromagnetic valve type fuel injection valve 14 is attached to each cylinder of the diesel engine 10, and fuel stored at a high pressure from a high pressure fuel pump 15 is distributed to each fuel injection valve 14 through a common rail 16.

【0016】この燃料噴射弁14は、圧縮上死点近傍で
エンジン出力発生のためのメイン噴射を行うと共に、こ
のメイン噴射に先立ち、パイロット噴射を行って少量の
燃料を噴射し、この燃料が着火状態になったところで、
メイン噴射を行うことで、燃焼初期の予混合燃焼を減少
させてNOx排出量を低減させる。更に、燃料噴射弁1
4は、気筒内の温度が低下して燃料が燃焼しない膨張行
程後半にポスト噴射を実行し、後述するNOx触媒19
に炭化水素を還元剤として供給する。
The fuel injection valve 14 performs a main injection for generating an engine output near the compression top dead center, and performs a pilot injection to inject a small amount of fuel prior to the main injection, and this fuel is ignited. Once in the state,
By performing the main injection, the premixed combustion in the initial stage of the combustion is reduced, and the NOx emission is reduced. Further, the fuel injection valve 1
4 executes post-injection in the latter half of the expansion stroke in which the temperature in the cylinder decreases and fuel does not burn, and a NOx catalyst 19 described later.
Is supplied with a hydrocarbon as a reducing agent.

【0017】ディーゼルエンジン10の各気筒から排出
される排気ガスは、排気マニホールド17を通して1本
の集合排気管18(排気通路)に排出され、この集合排
気管18の途中には、排気浄化器として、排気中のNO
xを還元浄化するNOx触媒19が配設されている。こ
のNOx触媒19は、Pt(プラチナ)/ゼオライトが
用いられ、ポスト噴射により供給される炭化水素(軽油
等の燃料)を還元剤として、酸素過剰下で選択的にNO
xを還元浄化する。
Exhaust gas exhausted from each cylinder of the diesel engine 10 is exhausted through an exhaust manifold 17 to one collective exhaust pipe 18 (exhaust passage). , NO in exhaust
A NOx catalyst 19 for reducing and purifying x is provided. The NOx catalyst 19 is made of Pt (platinum) / zeolite, and uses a hydrocarbon (fuel such as light oil) supplied by post-injection as a reducing agent to selectively select NO under an excess of oxygen.
x is reduced and purified.

【0018】このNOx触媒19は、図2に示すよう
に、約200℃以下ではNOxを浄化せず、約200℃
から300℃の範囲でのみNOxを浄化し、約250℃
でNOx浄化率が最も高くなり、約300℃以上では、
NOxをあまり浄化できなくなる。従って、NOx触媒
19の浄化温度範囲は、約200〜300℃である。
As shown in FIG. 2, this NOx catalyst 19 does not purify NOx below about 200 ° C.
Purifies NOx only in the temperature range from 300 to 300 ° C, about 250 ° C
NOx purification rate is highest at about 300 ° C or higher.
NOx cannot be purified very much. Therefore, the purification temperature range of the NOx catalyst 19 is about 200 to 300 ° C.

【0019】このNOx触媒19の下流には排気温度セ
ンサ20が設置されている。この排気温度センサ20の
出力信号は、エンジン電子制御回路(以下「ECU」と
表記する)21に入力される。このECU21は、マイ
クロコンピュータを主体として構成され、アクセルセン
サ22及びエンジン回転数センサ23等から出力される
信号を読み込んでディーゼルエンジン10の運転状態を
検出し、前述したパイロット噴射、メイン噴射、ポスト
噴射の噴射量と噴射時期を制御する。
An exhaust temperature sensor 20 is provided downstream of the NOx catalyst 19. The output signal of the exhaust gas temperature sensor 20 is input to an engine electronic control circuit (hereinafter referred to as “ECU”) 21. The ECU 21 mainly includes a microcomputer, reads signals output from an accelerator sensor 22, an engine speed sensor 23, and the like, detects an operating state of the diesel engine 10, and performs pilot injection, main injection, and post injection described above. Control of the injection amount and the injection timing.

【0020】集合排気管18のうちのNOx触媒19の
上流部の外周と、NOx触媒19の外周には、それぞれ
蓄熱器24,25が設けられている。各蓄熱器24,2
5はステンレス等の熱良導体で形成された密閉ケース2
4a,25a内に融解潜熱型蓄熱材26を封入して構成
したものである。この融解潜熱型蓄熱材26は、相変化
を起こす温度(融解温度)がNOx触媒19の浄化温度
範囲内の融解潜熱型蓄熱材を用いれば良く、より好まし
くは、融解温度がNOx触媒19の浄化温度範囲の略中
央の融解潜熱型蓄熱材を用いると良い。本実施形態
(1)では、NOx触媒19の浄化温度範囲の略中央が
約250℃であるため、融解潜熱型蓄熱材26として、
融解温度が253℃のNaF−SnF2 を用いている。
Heat accumulators 24 and 25 are provided on the outer periphery of the upstream portion of the NOx catalyst 19 and the outer periphery of the NOx catalyst 19 in the collective exhaust pipe 18, respectively. Each regenerator 24, 2
5 is a sealed case 2 made of a heat conductor such as stainless steel.
4a and 25a are formed by enclosing a latent heat type heat storage material 26 therein. As the melting latent heat type heat storage material 26, a melting latent temperature type heat storage material having a temperature at which a phase change occurs (melting temperature) within the purification temperature range of the NOx catalyst 19 may be used. More preferably, the melting temperature of the NOx catalyst 19 is reduced. It is preferable to use a latent heat type heat storage material substantially at the center of the temperature range. In the present embodiment (1), since the approximate center of the purification temperature range of the NOx catalyst 19 is about 250 ° C.,
NaF—SnF 2 having a melting temperature of 253 ° C. is used.

【0021】NOx触媒19の上流側の蓄熱器24は、
排気温度が融解潜熱型蓄熱材26の融解温度より高い時
に、排気ガスから熱を奪って排気温度を低下させ、排気
温度が融解温度より低い時に、排気ガスに熱を与えて排
気温度を上昇させる。また、NOx触媒19の外周の蓄
熱器25は、NOx触媒19の温度が融解温度より高い
時に、NOx触媒19から熱を奪ってNOx触媒19の
温度を低下させ、NOx触媒19の温度が融解温度より
低い時に、NOx触媒19に熱を与えてNOx触媒19
の温度を上昇させる。これにより、NOx触媒19の温
度がほぼ浄化温度範囲(約200〜300℃)内に保た
れる。
The regenerator 24 upstream of the NOx catalyst 19
When the exhaust temperature is higher than the melting temperature of the latent heat storage material 26, heat is taken from the exhaust gas to lower the exhaust temperature, and when the exhaust temperature is lower than the melting temperature, heat is applied to the exhaust gas to increase the exhaust temperature. . When the temperature of the NOx catalyst 19 is higher than the melting temperature, the regenerator 25 on the outer periphery of the NOx catalyst 19 removes heat from the NOx catalyst 19 to lower the temperature of the NOx catalyst 19, and the temperature of the NOx catalyst 19 becomes lower than the melting temperature. When the temperature is lower, heat is applied to the NOx catalyst 19 so that the NOx catalyst 19
Raise the temperature of. As a result, the temperature of the NOx catalyst 19 is kept substantially within the purification temperature range (about 200 to 300 ° C.).

【0022】ここで、融解潜熱型蓄熱材26の蓄熱特性
の特性を図2に基づいて説明する。図2は、融解潜熱型
蓄熱材26の温度と蓄熱量との関係を100℃の時を基
準(蓄熱量=0)として示している。融解潜熱型蓄熱材
26は、100℃から約250℃までは固体であり、固
体の比熱が約2kJ/kgであるため、温度上昇と共に
蓄熱量が約2kJ/kg・℃の割合で増加して、250
℃で約300kJ/kgの熱量を蓄熱する。この融解潜
熱型蓄熱材26は、約250℃で融解(固体から液体へ
の相変化)が起こり、完全に液体になるまで、温度は約
250℃のままで一定である。この融解潜熱型蓄熱材2
6の融解潜熱は、約300kJ/kgであるため、完全
に液化した時の蓄熱量は約600kJ/kgになる。完
全に液化した後の融解潜熱型蓄熱材26の比熱は約2k
J/kgであるため、温度上昇と共に蓄熱量が約2kJ
/kg・℃の割合で増加して、400℃で約900kJ
/kgの熱量を蓄熱する。このように、NOx触媒19
のNOx浄化率が最も高くなる約250℃で、蓄熱器2
4,25が大量の熱量を蓄熱または放熱するため、NO
x触媒19の温度を、NOx浄化率が最も高い状態、つ
まり浄化温度範囲の略中央の温度(約250℃)に保つ
ように自動的に調整できる。
Here, the characteristics of the heat storage characteristics of the latent heat type heat storage material 26 will be described with reference to FIG. FIG. 2 shows the relationship between the temperature of the latent heat type heat storage material 26 and the amount of heat storage on the basis of 100 ° C. (heat storage = 0). The melting latent heat type heat storage material 26 is solid from 100 ° C. to about 250 ° C., and the specific heat of the solid is about 2 kJ / kg. Therefore, the heat storage amount increases at a rate of about 2 kJ / kg · ° C. as the temperature rises. , 250
Approximately 300 kJ / kg of heat is stored at ℃. The melting latent heat type heat storage material 26 melts at about 250 ° C. (a phase change from a solid to a liquid), and the temperature remains constant at about 250 ° C. until it becomes completely liquid. This latent heat type heat storage material 2
Since the latent heat of fusion of No. 6 is about 300 kJ / kg, the amount of heat stored when completely liquefied is about 600 kJ / kg. The specific heat of the latent heat type heat storage material 26 after completely liquefied is about 2 k.
J / kg, so the amount of heat stored increases with the temperature
/ Kg ・ ℃, and increase at 400 ℃, about 900kJ
/ Kg of heat. Thus, the NOx catalyst 19
At about 250 ° C., at which the NOx purification rate of
NO.4 and 25 store or dissipate a large amount of heat.
The temperature of the x catalyst 19 can be automatically adjusted so as to maintain a state in which the NOx purification rate is the highest, that is, a temperature substantially at the center of the purification temperature range (about 250 ° C.).

【0023】次に、図3を用いて、蓄熱器24,25に
流入する排気ガス温度が昇温、降温した時の融解潜熱型
蓄熱材26の温度変化を説明する。相変化しない蓄熱材
は、流入ガス温度の上昇に伴い蓄熱材温度も高温まで昇
温してしまう。このため、蓄熱器24,25の温度がN
Ox触媒19の浄化温度範囲(約200〜300℃)内
になる流入ガス温度の温度範囲が狭く、蓄熱器24,2
5の温度ひいてはNOx触媒19の温度が浄化温度範囲
から外れやすい。
Next, the temperature change of the latent heat storage material 26 when the temperature of the exhaust gas flowing into the heat accumulators 24 and 25 rises and falls will be described with reference to FIG. The heat storage material that does not change phase also raises the temperature of the heat storage material to a high temperature as the inflow gas temperature increases. Therefore, the temperature of the heat accumulators 24 and 25 becomes N
The temperature range of the inflow gas temperature falling within the purification temperature range of the Ox catalyst 19 (about 200 to 300 ° C.) is narrow, and the heat accumulators 24 and 2
5, the temperature of the NOx catalyst 19 easily falls outside the purification temperature range.

【0024】これに対し、融解潜熱型蓄熱材26は、流
入ガス温度が100℃から昇温していくと、固体のまま
徐々に昇温していき、A点で融解潜熱型蓄熱材26が約
250になると、融解潜熱型蓄熱材26が融解を始める
ため、流入ガス温度が昇温しても、蓄熱材温度は約25
0℃のままで一定である。この時、融解潜熱型蓄熱材2
6は固体と液体が混じった状態であり、流入ガス温度が
昇温するに従い、液体の割合が高くなることで、蓄熱量
を増やしていく。この後、B点で融解潜熱型蓄熱材26
が完全に融解して液体のみとなると、流入ガス温度の昇
温とともに融解潜熱型蓄熱材26も昇温していく。
On the other hand, when the inflow gas temperature rises from 100 ° C., the temperature of the molten latent heat type heat storage material 26 gradually rises as it is in a solid state. When the temperature reaches about 250, the melting latent heat type heat storage material 26 starts melting.
It is constant at 0 ° C. At this time, the melting latent heat type heat storage material 2
Reference numeral 6 denotes a state in which the solid and the liquid are mixed, and the heat storage amount is increased by increasing the ratio of the liquid as the inflow gas temperature increases. Thereafter, at the point B, the latent heat type heat storage material 26 is melted.
Is completely melted into only liquid, the temperature of the molten latent heat type heat storage material 26 rises with the rise of the temperature of the inflow gas.

【0025】この後、流入ガス温度が降温を始めると、
融解潜熱型蓄熱材26は液体の状態で降温していき、C
点で融解潜熱型蓄熱材26が約250℃になると、融解
潜熱型蓄熱材26が凝固(液体から固体に相変化)し始
め、さらに流入ガス温度が降温しても蓄熱材温度は約2
50℃のままで一定である。この時、融解潜熱型蓄熱材
26は固体と液体が混じった状態であり、流入ガス温度
が低下するに従い、固体の割合が高くなることで、蓄熱
量を減らしていく。そして、D点で融解潜熱型蓄熱材2
6が完全に凝固して固体のみとなると、流入ガスの降温
とともに蓄熱材温度も降温していく。
Thereafter, when the temperature of the inflow gas starts to decrease,
The temperature of the molten latent heat type heat storage material 26 drops in a liquid state, and C
At this point, when the temperature of the latent heat type heat storage material 26 reaches about 250 ° C., the latent heat type heat storage material 26 begins to solidify (phase change from liquid to solid), and the temperature of the heat storage material becomes approximately 2 °
It is constant at 50 ° C. At this time, the molten latent heat type heat storage material 26 is in a state where the solid and the liquid are mixed, and the heat storage amount is reduced by increasing the ratio of the solid as the inflow gas temperature decreases. At the point D, the latent heat type heat storage material 2
When 6 solidifies completely and becomes only a solid, the temperature of the heat storage material decreases as the temperature of the inflowing gas decreases.

【0026】次に、図4に基づいて、流入ガス温度が一
定速度で昇温、降温した時の融解潜熱型蓄熱材26の温
度変化とNOx触媒19の温度変化を説明する。融解潜
熱型蓄熱材26が固体のみの状態または液体のみの状態
では、流入ガス温度の昇温、降温に応じて融解潜熱型蓄
熱材26やNOx触媒19も昇温、降温するが、融解潜
熱型蓄熱材26が固体と液体の混合状態になると、流入
ガスが昇温、降温しても、融解潜熱型蓄熱材26が固体
と液体の混合比率が変化するだけで、融解潜熱型蓄熱材
26やNOx触媒19がほぼ一定温度に保たれる。この
ため、流入ガスの温度変化に対して融解潜熱型蓄熱材2
6とNOx触媒19の温度変化は少なく、NOx触媒1
9の温度が、ほぼNOx浄化温度範囲内に入るようにな
り、NOx浄化率が最も高い約250℃になることが多
くなる。これにより、高いNOx浄化性能を得ることが
でき、低エミッション化の要求を満たすことができる。
しかも、蓄熱器24,25を設けるだけで良いので、構
成が簡単であり、低コスト化の要求も満たすことができ
る。
Next, with reference to FIG. 4, a description will be given of a temperature change of the latent heat type heat storage material 26 and a temperature change of the NOx catalyst 19 when the temperature of the inflowing gas rises and falls at a constant speed. In the state where the melting latent heat type heat storage material 26 is only a solid or only a liquid, the temperature of the melting latent heat type heat storage material 26 and the NOx catalyst 19 also increase and decrease in accordance with the rise and fall of the inflow gas temperature. When the heat storage material 26 is in a mixed state of a solid and a liquid, even if the temperature of the inflow gas rises or falls, the melting latent heat type heat storage material 26 only changes the mixing ratio of the solid and the liquid, and the molten latent heat type heat storage material 26 The NOx catalyst 19 is kept at a substantially constant temperature. For this reason, the latent heat type heat storage material
6 and the temperature change of the NOx catalyst 19 are small, and the NOx catalyst 1
The temperature of No. 9 comes to substantially fall within the NOx purification temperature range, and the NOx purification rate often reaches the highest of about 250 ° C. Thereby, high NOx purification performance can be obtained, and the demand for low emission can be satisfied.
In addition, since it is only necessary to provide the heat accumulators 24 and 25, the configuration is simple and the demand for cost reduction can be satisfied.

【0027】本実施形態(1)では、融解潜熱型蓄熱材
26として、融解温度がNOx触媒19の浄化温度範囲
の略中央であるNaF−SnF2 (融解温度253℃)
を用いたが、融解温度がNOx触媒19の浄化温度範囲
内の融解潜熱型蓄熱材を用いれば良く、例えば、NaO
H−NaNO2 (融解温度237℃)、NaOH−Na
NO3 (融解温度257℃)、LiNO3 (融解温度2
64℃)、NaOH−NaNO2 (融解温度237
℃)、SnF2 (融解温度213℃)、NaNO2(融
解温度282℃)等を用いても良い。
In this embodiment (1), as the latent heat type heat storage material 26, NaF—SnF 2 whose melting temperature is substantially at the center of the purification temperature range of the NOx catalyst 19 (melting temperature: 253 ° C.)
However, a latent heat type heat storage material having a melting temperature within the purification temperature range of the NOx catalyst 19 may be used.
H-NaNO 2 (melting temperature 237 ° C.), NaOH-Na
NO 3 (melting temperature 257 ° C.), LiNO 3 (melting temperature 2
64 ° C.), NaOH—NaNO 2 (melting temperature 237)
° C), SnF 2 (melting temperature 213 ° C), NaNO 2 (melting temperature 282 ° C), or the like.

【0028】また、本実施形態(1)では、NOx触媒
19としてPt(プラチナ)/ゼオライトを用いたが、
Cu(銅)/ゼオライト(浄化温度範囲:約350〜5
00℃)を用いても良い。この場合には、融解潜熱型蓄
熱材としてLiOH(融解温度462℃)、NaCl−
MgCl2 (融解温度450℃)やKF−LiF−Mg
2 −NaF(重量組成55:27:6:12,融解温
度449℃)、KF−LiF−NaF(重量組成59:
29:12,融解温度454℃)等のフッ化物共融塩等
を用いると良い。特に、フッ化物共融塩は腐食性や毒性
が低いという利点がある。
In this embodiment (1), Pt (platinum) / zeolite is used as the NOx catalyst 19.
Cu (copper) / zeolite (purification temperature range: about 350-5
00 ° C.). In this case, LiOH (melting temperature 462 ° C.), NaCl—
MgCl 2 (melting temperature 450 ° C) or KF-LiF-Mg
F 2 -NaF (weight composition 55: 27: 6: 12, melting temperature 449 ° C.), KF-LiF-NaF (weight composition 59:
29:12, a melting temperature of 454 ° C.) and the like. In particular, fluoride eutectic salts have the advantage of low corrosiveness and toxicity.

【0029】尚、本実施形態(1)では、NOx触媒1
9の上流部の外周と、NOx触媒19の外周に、それぞ
れ蓄熱器24,25を設けたが、いずれか一方の蓄熱器
を省いた構成としても良く、さらに、蓄熱器の内周部に
排気ガスとの熱伝達を促進する熱交換フィンを設けても
良い。また、NOx触媒19はメタル担体を用いても良
い。この場合、セラミックハニカム担体と比較してメタ
ル担体は熱伝導性が良いため、蓄熱器25とNOx触媒
19と排気ガスとの熱交換性能を高くできるという利点
がある。また、蓄熱器24,25は集合排気管18の内
部に配置しても良い。また、本実施形態(1)では、ポ
スト噴射によりNOx触媒19に炭化水素を供給するよ
うにしたが、NOx触媒19の上流に、燃料等の炭化水
素を噴霧するインジェクタを設けても良い。
In this embodiment (1), the NOx catalyst 1
Although the heat storage devices 24 and 25 are provided on the outer periphery of the upstream portion of the NOx catalyst 9 and the outer periphery of the NOx catalyst 19, either one of the heat storage devices may be omitted. Heat exchange fins for promoting heat transfer with the gas may be provided. Further, the NOx catalyst 19 may use a metal carrier. In this case, since the metal carrier has better heat conductivity than the ceramic honeycomb carrier, there is an advantage that the heat exchange performance between the regenerator 25, the NOx catalyst 19, and the exhaust gas can be increased. Further, the heat accumulators 24 and 25 may be arranged inside the collective exhaust pipe 18. Further, in the present embodiment (1), hydrocarbons are supplied to the NOx catalyst 19 by post injection, but an injector for spraying hydrocarbons such as fuel may be provided upstream of the NOx catalyst 19.

【0030】また、本実施形態(1)では、排気浄化器
としてNOx触媒19を用いたが、これに代えてNOx
吸着材を用いても良い。図5を用いてNOx吸着材の吸
着、脱離特性を説明する。NOx吸着材として、Mn
(マンガン)−Zr酸化物(ジルコニア)を用いた場合
には、約150℃以下ではNOxを吸着せず、約150
℃から350℃でNOxを吸着し、約350℃以上でN
Oxを脱離する。一方、Pt(プラチナ)−Ba(バリ
ウム)を用いた場合には、約250℃以下ではNOxを
吸着せず、約250℃から550℃でNOxを吸着し、
約550℃以上でNOxを脱離する。従って、NOx吸
着材もNOxを吸着できる温度範囲があるため、融解潜
熱型蓄熱材と組み合わせることでNOx吸着性能を向上
できる。
In this embodiment (1), the NOx catalyst 19 is used as the exhaust gas purifier.
An adsorbent may be used. The adsorption and desorption characteristics of the NOx adsorbent will be described with reference to FIG. Mn as NOx adsorbent
When (manganese) -Zr oxide (zirconia) is used, NOx is not adsorbed at about 150 ° C. or less, and about 150 ° C.
NOx is adsorbed between 350 ° C and 350 ° C, and N
Ox is desorbed. On the other hand, when Pt (platinum) -Ba (barium) is used, NOx is not adsorbed at about 250 ° C. or less, and NOx is adsorbed at about 250 ° C. to 550 ° C.
Above about 550 ° C., NOx is desorbed. Therefore, since the NOx adsorbent also has a temperature range in which NOx can be adsorbed, the NOx adsorption performance can be improved by combining the NOx adsorbent with a latent heat type heat storage material.

【0031】Mn(マンガン)−Zr酸化物(ジルコニ
ア)を用いた場合には、融解潜熱型蓄熱材として、Na
F一SnF2 (融解温度253℃)を用いると良い。ま
た、Pt(プラチナ)−Ba(バリウム)を用いた場合
には、融解潜熱型蓄熱材としてLi2 CO3 一Na2
3 一K2 CO3 (重量組成43.5:31.5:2
5,融解温度397℃)を用いると良い。
When Mn (manganese) -Zr oxide (zirconia) is used, Na is used as a latent heat type heat storage material.
It is preferable to use F-SnF 2 (melting temperature: 253 ° C.). When Pt (platinum) -Ba (barium) is used, Li 2 CO 3 -Na 2 C is used as a latent heat type heat storage material.
O 3 -K 2 CO 3 (weight composition 43.5: 31.5: 2
5, a melting temperature of 397 ° C.).

【0032】また、排気浄化器としてディーゼル用の酸
化触媒(排気ガス中のHCやSOFを排気中のO2 で酸
化浄化する触媒)を用いても良い。図6に示すように、
酸化触媒は、約200℃以下ではHC、SOFを浄化せ
ず、約200℃以上で浄化が始まり、高温になるに従っ
て浄化率が高くなる。一方、サルフェートの浄化特性
(SO2 →SO3 - →H2 SO4 )は、約350℃以下
ではサルフェートは生成されず、約350℃以上でサル
フェートの生成が始まり、高温になるにしたがい生成率
が高くなる。サルフェートは排気規制物質であるパティ
キュレートの一部であるため、生成を抑制する必要があ
る。そこで、酸化触媒の温度を融解潜熱型蓄熱材により
例えば280℃から400℃に保持すれば、高いHC、
SOFの浄化率と低いサルフェートの生成率とを両立す
ることができる。この場合、融解潜熱型蓄熱材として、
例えばKNO3 (融解温度337℃)を用いると良い。
Also, an oxidation catalyst for diesel (a catalyst for oxidizing and purifying HC and SOF in exhaust gas with O 2 in exhaust gas) may be used as the exhaust gas purifier. As shown in FIG.
The oxidation catalyst does not purify HC and SOF at about 200 ° C. or lower, but starts purifying at about 200 ° C. or higher, and the purification rate increases as the temperature increases. On the other hand, the purification characteristics of sulfate (SO 2 → SO 3 → H 2 SO 4 ) indicate that sulfate is not generated at about 350 ° C. or lower, and sulfate starts to be generated at about 350 ° C. or higher, and the generation rate increases as the temperature increases. Will be higher. Sulfate is a part of particulates, which is an emission control substance, so its production must be suppressed. Therefore, if the temperature of the oxidation catalyst is maintained at, for example, 280 ° C. to 400 ° C. by the latent heat type heat storage material, high HC,
It is possible to achieve both a purification rate of SOF and a low production rate of sulfate. In this case, as the latent heat type heat storage material,
For example, KNO 3 (melting temperature: 337 ° C.) may be used.

【0033】[実施形態(2)]次に、本発明の実施形
態(2)を図7ないし図9を用いて説明する。この実施
形態(2)では、融解温度が異なる融解潜熱型蓄熱材3
2,33を用いた2種類の蓄熱器30,31を組み合わ
せて構成している。各蓄熱器30,31は、それぞれス
テンレス等の熱良導体で形成された筒状の密閉ケース3
0a,31a内に融解潜熱型蓄熱材32,33を封入し
たものである。内周側の蓄熱器30は、NOx触媒19
の外周に密着するように嵌合され、この蓄熱器30の外
周に蓄熱器31が密着するように嵌合されている。両蓄
熱器30,31は、集合排気管18の内部に設置されて
いる。この場合、内周側の蓄熱器30の融解潜熱型蓄熱
材32は、融解温度がNOx触媒19の浄化温度範囲内
のもの、より好ましくは浄化温度範囲の略中央のものを
用い、外周側の蓄熱器31の融解潜熱型蓄熱材33は、
融解温度が内周側の融解潜熱型蓄熱材32よりも高いも
のを使用している。その他の構成は、前記実施形態
(1)と同じである。
[Embodiment (2)] Next, an embodiment (2) of the present invention will be described with reference to FIGS. In this embodiment (2), the latent heat storage material 3 having a different melting temperature is used.
Two types of regenerators 30 and 31 using 2 and 33 are combined. Each of the heat accumulators 30 and 31 is a cylindrical closed case 3 made of a heat conductor such as stainless steel.
0a and 31a are filled with a latent heat type heat storage material 32 and 33, respectively. The heat storage unit 30 on the inner peripheral side is provided with the NOx catalyst 19.
The heat storage device 31 is fitted so as to be in close contact with the outer periphery of the heat storage device 30. Both regenerators 30 and 31 are installed inside the collective exhaust pipe 18. In this case, as the melting latent heat type heat storage material 32 of the heat storage device 30 on the inner peripheral side, a material having a melting temperature within the purification temperature range of the NOx catalyst 19, more preferably substantially at the center of the purification temperature range, is used. The latent heat type heat storage material 33 of the heat storage device 31 is:
A material having a melting temperature higher than the melting latent heat type heat storage material 32 on the inner peripheral side is used. Other configurations are the same as those in the embodiment (1).

【0034】ここで、図8を用いて内周側の融解潜熱型
蓄熱材32と外周側の融解潜熱型蓄熱材33の蓄熱特性
を説明する。図8は温度100℃を基準(蓄熱量=0)
として蓄熱量と蓄熱材温度との関係を示している。本実
施形態(2)では、内周側の蓄熱材32として実施形態
(1)で用いたNaF−SnF2 (融解温度253℃)
を用い、外周側の蓄熱材33としてKF−LiF−Na
F(重量組成59:29:12,融解温度455℃)を
使用している。内周側の蓄熱材32の蓄熱特性は、実施
形態(1)の図2で説明した内容と同じである。
Here, the heat storage characteristics of the latent heat storage material 32 on the inner periphery and the latent heat storage material 33 on the outer periphery will be described with reference to FIG. FIG. 8 is based on a temperature of 100 ° C. (heat storage amount = 0)
Shows the relationship between the heat storage amount and the heat storage material temperature. In the present embodiment (2), NaF—SnF 2 (melting temperature: 253 ° C.) used in the embodiment (1) as the heat storage material 32 on the inner peripheral side.
And KF-LiF-Na as the heat storage material 33 on the outer peripheral side.
F (weight composition 59:29:12, melting temperature 455 ° C.). The heat storage characteristics of the heat storage material 32 on the inner peripheral side are the same as the contents described in FIG. 2 of the embodiment (1).

【0035】一方、外周側の蓄熱材33は、100℃か
ら約450℃までは固体であり、比熱が約2.6kJ/
kgであるため、温度上昇と共に蓄熱量が約2.6kJ
/kg・℃の割合で増加して、450℃で約900kJ
/kgの熱量を蓄熱する。外周側の蓄熱材33は、約4
50℃で融解(固体から液体への相変化)が起こり、完
全に液体になるまで、温度は約450℃のままである。
外周側の蓄熱材33の融解潜熱は約400kJ/kgで
あるため、外周側の蓄熱材33が完全に液化した時の蓄
熱量は約1300kJ/kgになる。完全に液化した後
の外周側の蓄熱材33の比熱は約2.4kJ/kgであ
るため、温度上昇と共に蓄熱量が約2.4kJ/kg・
℃の割合で増加して500℃で約1420kJ/kgの
熱量を蓄熱する。
On the other hand, the heat storage material 33 on the outer peripheral side is solid from 100 ° C. to about 450 ° C., and has a specific heat of about 2.6 kJ /
kg, the amount of heat stored increases with the temperature rise to about 2.6 kJ.
/ Kg · ° C, about 900 kJ at 450 ° C
/ Kg of heat. The heat storage material 33 on the outer peripheral side is about 4
At 50 ° C., melting (solid to liquid phase change) occurs and the temperature remains at about 450 ° C. until it is completely liquid.
Since the latent heat of fusion of the heat storage material 33 on the outer peripheral side is about 400 kJ / kg, the heat storage amount when the heat storage material 33 on the outer peripheral side is completely liquefied is about 1300 kJ / kg. Since the specific heat of the heat storage material 33 on the outer peripheral side after being completely liquefied is about 2.4 kJ / kg, the heat storage amount increases with the temperature rise to about 2.4 kJ / kg ·.
The heat amount is increased at a rate of 500 ° C. and about 1420 kJ / kg is stored at 500 ° C.

【0036】次に、図9を用いて流入ガス温度が昇温、
降温した時の内周側の蓄熱材32の温度変化を説明す
る。流入ガス温度が100℃から昇温していくと、内周
側、外周側の蓄熱材32,33とも固体のまま徐々に昇
温していき、E点で内周側の蓄熱材32が約250℃に
なると、内周側の蓄熱材32は融解を始め、流入ガス温
度が昇温しても、内周側の蓄熱材温度は約250℃のま
まで一定である。その後、F点で内周側の蓄熱材32が
完全に融解して液体のみになると、流入ガス温度の上昇
とともに内周側の蓄熱材32も昇温していく。この後、
I点で外周側の蓄熱材33が約450℃になると、外周
側の蓄熱材33は融解を始め、流入ガス温度が昇温して
も、内周側、外周側の蓄熱材32,33の温度は約45
0℃のままである。そして、H点で外周側の蓄熱材33
が完全に融解して液体のみになるまで、内周側、外周側
の蓄熱材32,33の温度は約450℃のままである。
Next, referring to FIG. 9, the inflow gas temperature is increased,
A description will be given of a temperature change of the heat storage material 32 on the inner peripheral side when the temperature is lowered. When the temperature of the inflow gas rises from 100 ° C., the temperature of the heat storage materials 32 and 33 on the inner and outer circumferences gradually rises in a solid state. When the temperature reaches 250 ° C., the heat storage material 32 on the inner circumference side starts melting, and the temperature of the heat storage material on the inner circumference side remains constant at about 250 ° C. even if the temperature of the inflow gas rises. Thereafter, when the heat storage material 32 on the inner circumference side is completely melted at the point F and becomes only liquid, the temperature of the heat storage material 32 on the inner circumference side increases with the rise of the inflow gas temperature. After this,
When the temperature of the heat storage material 33 on the outer peripheral side reaches about 450 ° C. at the point I, the heat storage material 33 on the outer peripheral side starts to melt, and even if the temperature of the inflow gas rises, the heat storage materials 32 and 33 on the inner and outer peripheral sides are melted. The temperature is about 45
It remains at 0 ° C. Then, at point H, the heat storage material 33 on the outer peripheral side
The temperature of the heat storage materials 32 and 33 on the inner peripheral side and the outer peripheral side remains at about 450 ° C. until is completely melted into only liquid.

【0037】その後、流入ガス温度が降温を始めると、
I点で外周側の蓄熱材33が完全に凝固して固体のみに
なるまでは、流入ガスが降温しても内周側、外周側の蓄
熱材32,33の温度は約450℃のままである。流入
ガス温度がさらに降温すると、内周側、外周側の蓄熱材
32,33も降温し、J点で内周側の蓄熱材32が約2
50℃になると、内周側の蓄熱材32は凝固(液体から
固体に相変化)し始め、さらに流入ガスが降温しても内
周側の蓄熱材温度は約250℃のままである。そして、
K点で内周側の蓄熱材32が完全に凝固して固体のみに
なると、流入ガス温度の降温とともに内周側の蓄熱材3
2も降温していく。以上のことから、流入ガス温度が6
00℃まで昇温しても、内周側の蓄熱材32は450℃
までしか昇温せず、内周側の蓄熱材32の高温劣化を防
止できる。
Thereafter, when the temperature of the inflow gas starts to decrease,
Until the heat storage material 33 on the outer circumference side is completely solidified at the point I and becomes only a solid, the temperature of the heat storage materials 32 and 33 on the inner circumference side and the outer circumference side remains at about 450 ° C. even if the temperature of the inflow gas is lowered. is there. When the temperature of the inflow gas further decreases, the temperatures of the heat storage materials 32 and 33 on the inner circumference and the outer circumference also decrease, and the heat storage material 32 on the inner circumference at the point J is reduced by about 2%.
When the temperature reaches 50 ° C., the heat storage material 32 on the inner circumference side starts to solidify (phase change from liquid to solid), and the temperature of the heat storage material on the inner circumference side remains at about 250 ° C. even if the temperature of the inflow gas further decreases. And
At the point K, when the heat storage material 32 on the inner circumference side is completely solidified and becomes only solid, the temperature of the inflow gas temperature decreases and the heat storage material 3 on the inner circumference side decreases.
2 also cools down. From the above, the inflow gas temperature was 6
Even if the temperature is raised to 00 ° C, the heat storage material 32 on the inner peripheral side is 450 ° C.
The heat storage material 32 on the inner peripheral side can be prevented from deteriorating at a high temperature.

【0038】尚、本実施形態(2)では、融解温度が異
なる2種類の融解潜熱型蓄熱材32,33を組み合わせ
たが、3種類以上の融解潜熱型蓄熱材を組み合わせるよ
うにしても良い。また、複数種の融解潜熱型蓄熱材を同
一の密閉ケース内に封入するようにしても良い(但し複
数種の融解潜熱型蓄熱材が互いに化学反応しないことが
前提となる)。
In this embodiment (2), two kinds of latent heat type heat storage materials 32 and 33 having different melting temperatures are combined, but three or more kinds of latent heat type heat storage materials may be combined. Also, a plurality of types of latent heat type heat storage materials may be sealed in the same closed case (provided that a plurality of types of latent heat type storage materials do not chemically react with each other).

【0039】[実施形態(3)]次に、本発明の実施形
態(3)を図10ないし図12を用いて説明する。図1
0は低温時の蓄熱装置41の状態を示し、図11は中温
時の蓄熱装置41の状態を示し、図12は高温時の蓄熱
装置41の状態を示し、図13は図12のA−A線に沿
って示す断面図である。図10ないし図11において、
左方にはディーゼルエンジンが位置し、右方にはNOx
触媒等の排気浄化器が位置する。
[Embodiment (3)] Next, an embodiment (3) of the present invention will be described with reference to FIGS. FIG.
0 shows the state of the heat storage device 41 at the time of low temperature, FIG. 11 shows the state of the heat storage device 41 at the time of medium temperature, FIG. 12 shows the state of the heat storage device 41 at the time of high temperature, and FIG. It is sectional drawing shown along a line. In FIGS. 10 and 11,
The diesel engine is located on the left and NOx on the right
An exhaust purifier such as a catalyst is located.

【0040】蓄熱装置41のハウジング42が集合排気
管18の途中に設けられ、このハウジング42の内部に
は、金属等の熱良導体で形成されたハニカム構造体43
が複数本の支持部材44を介して組み付けられている。
このハニカム構造体43には、左右に貫通する多数の流
路が形成されている。集合排気管18の管路18aの先
端がハニカム構造体43の左端面に当接し、該管路18
aには、排気ガスが通る開口部45,46が形成されて
いる。ハニカム構造体43の中心部には、円柱状の第1
の蓄熱器47が管路18a内に突出するように配設さ
れ、該ハニカム構造体43の外周部には、円筒状の第2
の蓄熱器48が管路18aの外側に位置するように配設
されている。
A housing 42 of the heat storage device 41 is provided in the middle of the collective exhaust pipe 18. Inside the housing 42, a honeycomb structure 43 made of a good heat conductor such as a metal is provided.
Are assembled via a plurality of support members 44.
The honeycomb structure 43 has a large number of flow paths penetrating left and right. The leading end of the pipe 18a of the collective exhaust pipe 18 contacts the left end face of the honeycomb structure 43, and the pipe 18a
Openings 45 and 46 through which exhaust gas passes are formed in a. At the center of the honeycomb structure 43, a columnar first
Is disposed so as to protrude into the pipeline 18a, and the outer peripheral portion of the honeycomb structure 43 has a cylindrical second
Is disposed so as to be located outside the pipeline 18a.

【0041】第1の蓄熱器47は、円柱状の密閉ケース
47a内に融解潜熱型蓄熱材49を封入して構成したも
のであり、その左端部には、左右方向に伸縮可能なベロ
ーズ部47bが設けられている。このベローズ部47b
の左端部には、ベローズ部47bの伸縮に応じて管路1
8a内を左右方向にスライドする流路切換部材51(流
路切換手段)が設けられ、該流路切換部材51には排気
ガスが通る開口部52が形成されている。
The first heat accumulator 47 is constructed by enclosing a melting latent heat type heat storage material 49 in a cylindrical closed case 47a, and has a bellows portion 47b which can expand and contract in the left-right direction at its left end. Is provided. This bellows part 47b
At the left end of the pipe 1 according to the expansion and contraction of the bellows part 47b.
A flow path switching member 51 (flow path switching means) that slides in the left and right direction inside 8a is provided, and the flow path switching member 51 has an opening 52 through which exhaust gas passes.

【0042】第2の蓄熱器48は、円筒状の密閉ケース
48a内に融解潜熱型蓄熱材50を封入して構成したも
のであり、その左端部には、左右方向に伸縮可能なベロ
ーズ部48bが設けられている。このベローズ部48b
の左端部には、ベローズ部48bの伸縮に応じて管路1
8aの外周面に沿って左右方向にスライドする流路切換
部材53(流路切換手段)が設けられ、該流路切換部材
53には排気ガスが通る開口部54が形成されている。
The second regenerator 48 is constructed by enclosing a melting latent heat type heat storage material 50 in a cylindrical closed case 48a, and has a bellows portion 48b which can expand and contract in the left-right direction at its left end. Is provided. This bellows part 48b
At the left end of the pipe 1 according to the expansion and contraction of the bellows portion 48b.
A channel switching member 53 (channel switching means) that slides in the left-right direction along the outer peripheral surface of 8a is provided, and the channel switching member 53 has an opening 54 through which exhaust gas passes.

【0043】内周側に位置する第1の蓄熱器47の融解
潜熱型蓄熱材49は、融解温度が浄化温度範囲内のも
の、より好ましくは浄化温度範囲の略中央のもの、例え
ばNaF−SnF2 (融解温度253℃)を用いてい
る。一方、外周側に位置する第2の蓄熱器48の融解潜
熱型蓄熱材50は、融解温度が内周側の融解潜熱型蓄熱
材49よりも高いもの、例えばKF一LiF−NaF
(重量組成59:29:12,融解温度455℃)を使
用している。
The latent heat type heat storage material 49 of the first heat storage unit 47 located on the inner peripheral side has a melting temperature within a purification temperature range, more preferably a material substantially at the center of the purification temperature range, for example, NaF-SnF. 2 (melting temperature 253 ° C) is used. On the other hand, the melting latent heat type heat storage material 50 of the second heat storage unit 48 located on the outer peripheral side has a melting temperature higher than the melting latent heat type heat storage material 49 on the inner peripheral side, for example, KF-LiF-NaF.
(Weight composition 59:29:12, melting temperature 455 ° C.).

【0044】次に、この蓄熱装置41の作動を図10な
いし図12を用いて説明する。エンジン始動時のよう
に、第1、第2の蓄熱器47,48の温度が低い場合
は、両蓄熱器47,48の融解潜熱型蓄熱材49,50
が共に固体の状態であり、ベローズ部47b,48bが
共に図10に示すように縮んで、外周側の流路切換部材
53が管路18aの右側の開口部46を塞いだ状態にな
っている。この状態では、集合排気管18を流れる排気
ガスは、図10に矢印で示すように、管路18aの左側
の開口部45を通って第2の蓄熱器48の外周を流れる
(この流路が特許請求の範囲でいうバイパス流路とな
る)。この時、排気ガスの一部が内周側の流路切換部材
51の開口部52を通過してハニカム構造体43の内部
流路にも流れるが、ハニカム構造体43の内部流路は流
路抵抗が大きいため、大部分の排気ガスは第2の蓄熱器
48の外周を流れて、下流のNOx触媒に供給される。
これにより、排気ガスの熱が、第1、第2の蓄熱器4
7,48に奪われることなく、NOx触媒に供給され、
NOx触媒を早期に昇温できる。
Next, the operation of the heat storage device 41 will be described with reference to FIGS. When the temperatures of the first and second regenerators 47 and 48 are low, such as when the engine is started, the latent heat storage materials 49 and 50 of the two regenerators 47 and 48 are melted.
Are in a solid state, the bellows portions 47b and 48b are both contracted as shown in FIG. 10, and the flow path switching member 53 on the outer peripheral side closes the opening 46 on the right side of the conduit 18a. . In this state, the exhaust gas flowing through the collective exhaust pipe 18 flows through the outer periphery of the second regenerator 48 through the opening 45 on the left side of the pipe 18a as indicated by an arrow in FIG. It becomes a bypass flow path referred to in the claims). At this time, a part of the exhaust gas passes through the opening 52 of the flow path switching member 51 on the inner peripheral side and also flows into the internal flow path of the honeycomb structure 43. However, the internal flow path of the honeycomb structure 43 Due to the high resistance, most of the exhaust gas flows around the outer periphery of the second regenerator 48 and is supplied to the downstream NOx catalyst.
Thereby, the heat of the exhaust gas is transferred to the first and second regenerators 4.
It is supplied to the NOx catalyst without being deprived by 7,48,
The temperature of the NOx catalyst can be raised early.

【0045】その後、排気ガス温度が上昇して、第1の
蓄熱器47の融解潜熱型蓄熱材49が約250℃になる
と、融解を始め、液体になり始める。この融解潜熱型蓄
熱材49は、固体から液体に相変化する時に体積が約2
0%増加するため、ベローズ部47bは図11に示すよ
うに左方向に伸びて、内周側の流路切換部材51が管路
18aの左側の開口部45を塞いだ状態になる。このと
き、第2の蓄熱器48の融解潜熱型蓄熱材50は融解温
度以下であるため、固体の状態であり、ベローズ部48
bは引き続き図11に示すように縮んだ状態に維持され
る。このため、外周側の流路切換部材53は、管路18
aの右側の開口部46を塞いだままである。
Thereafter, when the temperature of the exhaust gas rises and the latent heat type heat storage material 49 of the first heat storage unit 47 reaches about 250 ° C., it starts to melt and becomes liquid. This latent heat storage material 49 has a volume of about 2 when the phase changes from a solid to a liquid.
Since it increases by 0%, the bellows portion 47b extends to the left as shown in FIG. 11, and the flow path switching member 51 on the inner peripheral side closes the left opening 45 of the conduit 18a. At this time, since the melting latent heat type heat storage material 50 of the second heat storage unit 48 has a melting temperature or lower, it is in a solid state, and the bellows portion 48
b is maintained in a contracted state as shown in FIG. For this reason, the flow path switching member 53 on the outer peripheral side is
The opening 46 on the right side of FIG.

【0046】従って、集合排気管18を流れる排気ガス
は、全て、図11に矢印で示すように、内周側の流路切
換部材51の開口部52を通ってハニカム構造体43の
内部流路を通過し、下流のNOx触媒に供給される(こ
の流路が特許請求の範囲でいう主排気流路となる)。こ
の際、排気ガスは、ハニカム構造体43の内部流路を通
過する過程で熱が奪われ、第1の蓄熱器47に蓄熱され
る。これにより、排気ガスが高温になっても、第1の蓄
熱器47の蓄熱作用により排気ガスの温度が降温され、
NOx触媒に流入する排気ガス温度が浄化温度範囲のほ
ぼ中央の約250℃となり、高いNOx浄化率が得られ
る。
Therefore, all the exhaust gas flowing through the collective exhaust pipe 18 passes through the opening 52 of the flow path switching member 51 on the inner peripheral side as shown by the arrow in FIG. And is supplied to the downstream NOx catalyst (this flow path becomes the main exhaust flow path in the claims). At this time, the exhaust gas loses heat while passing through the internal flow path of the honeycomb structure 43 and is stored in the first heat storage 47. Thereby, even if the exhaust gas becomes high temperature, the temperature of the exhaust gas is lowered by the heat storage action of the first heat storage device 47,
The temperature of the exhaust gas flowing into the NOx catalyst is approximately 250 ° C., which is approximately at the center of the purification temperature range, and a high NOx purification rate can be obtained.

【0047】その後、排気ガス温度がさらに上昇して、
第2の蓄熱器48の融解潜熱型蓄熱材50が約450℃
になると、融解を始め、液体になり始める。この融解潜
熱型蓄熱材50は、固体から液体に相変化する時に体積
が約20%増加するため、ベローズ部48bが図12に
示すように左方向に伸びて、外周側の流路切換部材53
が管路18aの右側の開口部46を開放した状態とな
る。この時、第1の蓄熱器47の融解潜熱型蓄熱材49
は液体の状態であり、べローズ部47bは図12に示す
ように伸びたままの状態に維持されるため、内周側の流
路切換部材51は管路18aの左側の開口部45を塞い
だままである。
Thereafter, the exhaust gas temperature further rises,
The melting latent heat type heat storage material 50 of the second heat storage 48 is approximately 450 ° C.
When it becomes, it begins to melt and become liquid. Since the volume of the molten latent heat type heat storage material 50 increases by about 20% when the phase changes from solid to liquid, the bellows portion 48b extends leftward as shown in FIG.
Open the opening 46 on the right side of the conduit 18a. At this time, the latent heat type heat storage material 49 of the first heat storage 47 is used.
Is a liquid state, and since the bellows portion 47b is maintained in an extended state as shown in FIG. 12, the flow path switching member 51 on the inner peripheral side closes the left opening 45 of the conduit 18a. It is still.

【0048】従って、排気ガスは、図12に矢印で示す
ように内周側の流路切換部材51の開口部52→管路1
8aの右側の開口部46→外周側の流路切換部材53の
開口部54の経路で第2の蓄熱器48の外周を流れ(こ
の流路も特許請求の範囲でいうバイパス流路となる)、
下流のNOx触媒に供給される。これにより、排気ガス
が高温の場合には、排気ガスが第1の蓄熱器47をバイ
パスして流れるため、第1の蓄熱器47が過昇温せず、
第1の蓄熱器47の高温劣化を防止できる。
Therefore, the exhaust gas flows from the opening 52 of the flow path switching member 51 on the inner peripheral side to the pipe line 1 as shown by the arrow in FIG.
The outer circumference of the second regenerator 48 flows through the path from the opening 46 on the right side of 8a to the opening 54 of the flow path switching member 53 on the outer peripheral side (this flow path also becomes a bypass flow path in the claims). ,
It is supplied to the downstream NOx catalyst. Accordingly, when the exhaust gas has a high temperature, the exhaust gas flows by bypassing the first regenerator 47, so that the first regenerator 47 does not overheat,
High temperature deterioration of the first heat storage 47 can be prevented.

【0049】以上説明した実施形態(3)によれば、融
解潜熱型蓄熱材49,50の相変化に伴う体積変化を温
度検出部または駆動部として用いるので、特別な温度セ
ンサやアクチュエータを用いなくても、エンジン始動後
のNOx触媒の早期昇温、NOx触媒に流入する排気ガ
ス温度の適温維持、融解潜熱型蓄熱材の高温劣化防止を
図ることができる。
According to the embodiment (3) described above, the volume change accompanying the phase change of the latent heat type heat storage material 49, 50 is used as the temperature detecting unit or the driving unit, so that a special temperature sensor or actuator is not used. However, it is possible to raise the temperature of the NOx catalyst early after the engine is started, maintain the temperature of the exhaust gas flowing into the NOx catalyst at an appropriate temperature, and prevent high-temperature deterioration of the latent heat type heat storage material.

【0050】尚、本実施形態(3)では、NOx触媒
(排気浄化器)を蓄熱装置41の下流に配設したが、ハ
ニカム構造体43にNOx触媒を担持しても良い。その
他、本発明は、ディーゼルエンジンに限定されず、ガソ
リンエンジンにも適用可能である。
In this embodiment (3), the NOx catalyst (exhaust gas purifier) is disposed downstream of the heat storage device 41, but the honeycomb structure 43 may carry the NOx catalyst. In addition, the present invention is not limited to a diesel engine but can be applied to a gasoline engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.

【図2】NOx浄化特性と融解潜熱型蓄熱材の蓄熱特性
を示す図
FIG. 2 is a diagram showing NOx purification characteristics and heat storage characteristics of a latent heat type heat storage material.

【図3】流入ガス温度に対する蓄熱材温度の変化特性を
示す図
FIG. 3 is a diagram showing a change characteristic of a heat storage material temperature with respect to an inflow gas temperature.

【図4】流入ガス温度を一定速度で昇温、降温させた時
の蓄熱材温度とNOx触媒温度の変化を示す図
FIG. 4 is a diagram showing changes in the heat storage material temperature and the NOx catalyst temperature when the inflow gas temperature is raised and lowered at a constant speed.

【図5】NOx吸着材として用いるMn−Zr酸化物、
Pt−BaのNOx吸着率の温度変化特性を示す図
FIG. 5 shows a Mn—Zr oxide used as a NOx adsorbent,
The figure which shows the temperature change characteristic of NOx adsorption rate of Pt-Ba

【図6】酸化触媒の浄化特性図FIG. 6 is a purification characteristic diagram of an oxidation catalyst.

【図7】本発明の実施形態(2)における蓄熱器の配置
構造を示す縦断面図
FIG. 7 is a longitudinal sectional view showing an arrangement structure of a heat storage device according to an embodiment (2) of the present invention.

【図8】内周側の蓄熱材と外周側の蓄熱材の蓄熱特性を
示す図
FIG. 8 is a diagram showing heat storage characteristics of a heat storage material on the inner circumference side and a heat storage material on the outer circumference side.

【図9】流入ガス温度に対する内周側の蓄熱材温度の変
化特性を示す図
FIG. 9 is a diagram showing a change characteristic of a temperature of a heat storage material on an inner peripheral side with respect to an inflow gas temperature.

【図10】本発明の実施形態(3)における蓄熱装置の
低温時の状態を示す縦断面図
FIG. 10 is a longitudinal sectional view showing a state at a low temperature of a heat storage device according to an embodiment (3) of the present invention.

【図11】蓄熱装置の中温時の状態を示す縦断面図FIG. 11 is a longitudinal sectional view showing a state at a medium temperature of the heat storage device.

【図12】蓄熱装置の高温時の状態を示す縦断面図FIG. 12 is a longitudinal sectional view showing a state of the heat storage device at a high temperature.

【図13】図12のA−A線に沿って示す断面図FIG. 13 is a sectional view taken along the line AA in FIG. 12;

【符号の説明】[Explanation of symbols]

10…ディーゼルエンジン(内燃機関)、14…燃料噴
射弁、18…集合排気管(排気通路)、19…NOx触
媒(排気浄化器)、24,25…蓄熱器、26…融解潜
熱型蓄熱材、30,31…蓄熱器、32,33…融解潜
熱型蓄熱材、41…蓄熱装置、43…ハニカム構造体、
45,46…開口部、47…第1の蓄熱器、47b…ベ
ローズ部、48…第2の蓄熱器、48b…ベローズ部、
49,50…融解潜熱型蓄熱材、51…流路切換部材
(流路切換手段)、52…開口部、53…流路切換部材
(流路切換手段)、54…開口部。
DESCRIPTION OF SYMBOLS 10 ... Diesel engine (internal combustion engine), 14 ... Fuel injection valve, 18 ... Combined exhaust pipe (exhaust passage), 19 ... NOx catalyst (exhaust gas purifier), 24, 25 ... Heat storage device, 26 ... 30, 31 ... heat storage device, 32, 33 ... melting latent heat type heat storage material, 41 ... heat storage device, 43 ... honeycomb structure,
45, 46 ... opening, 47 ... first regenerator, 47b ... bellows part, 48 ... second regenerator, 48b ... bellows part,
49, 50: a latent heat type heat storage material; 51, a flow path switching member (flow path switching means); 52, an opening; 53, a flow path switching member (flow path switching means);

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に配設された排気浄
化器と、前記排気浄化器を保温する蓄熱器とを備え、 前記蓄熱器は、前記排気浄化器の排気浄化率が高くなる
特定の浄化温度範囲内で相変化を起こす融解潜熱型蓄熱
材を用いて構成されていることを特徴とする内燃機関の
排気浄化装置。
1. An exhaust purifier provided in an exhaust passage of an internal combustion engine, and a heat accumulator for keeping the exhaust purifier warm, wherein the heat accumulator has a high exhaust gas purification rate of the exhaust purifier. An exhaust gas purifying apparatus for an internal combustion engine, characterized by using a latent heat type heat storage material that undergoes a phase change within the purifying temperature range.
【請求項2】 前記排気浄化器は、前記特定の浄化温度
範囲で排気中の窒素酸化物(以下「NOx」と表記す
る)を吸着するNOx吸着材、または、炭化水素を還元
剤としてNOxを還元浄化するNOx触媒を用いて構成
されていることを特徴とする請求項1に記載の内燃機関
の排気浄化装置。
2. The exhaust gas purifier according to claim 1, wherein the exhaust gas purifier includes a NOx adsorbent that adsorbs nitrogen oxides (hereinafter, referred to as “NOx”) in the exhaust gas in the specific purification temperature range, or a NOx adsorbent using a hydrocarbon as a reducing agent. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purifying apparatus is configured using a NOx catalyst that performs reduction purification.
【請求項3】 前記融解潜熱型蓄熱材は、融解温度が前
記特定の浄化温度範囲の略中央であることを特徴とする
請求項1または2に記載の内燃機関の排気浄化装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the melting latent heat type heat storage material has a melting temperature substantially at the center of the specific purification temperature range.
【請求項4】 前記蓄熱器は、融解温度が異なる複数種
類の融解潜熱型蓄熱材を組み合わせて構成され、融解温
度が低い融解潜熱型蓄熱材が前記特定の浄化温度範囲内
で相変化を起こすことを特徴とする請求項1ないし3の
いずれかに記載の内燃機関の排気浄化装置。
4. The heat storage device is configured by combining a plurality of types of latent heat type heat storage materials having different melting temperatures, and the phase change occurs in the latent heat storage material having a low melting temperature within the specific purification temperature range. The exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein:
【請求項5】 前記排気通路は、排気ガスが前記蓄熱器
を通過して前記排気浄化器に流入する主排気流路と、前
記蓄熱器をバイパスして前記排気浄化器に流入するバイ
パス流路とに分岐され、両流路の分岐部に温度に応じて
流路を切り換える流路切換手段が設けられていることを
特徴とする請求項1ないし4のいずれかに記載の内燃機
関の排気浄化装置。
5. The exhaust passage includes a main exhaust passage through which exhaust gas passes through the regenerator and flows into the exhaust purifier, and a bypass passage that bypasses the regenerator and flows into the exhaust purifier. 5. An exhaust purification system for an internal combustion engine according to claim 1, wherein a flow path switching means for switching the flow path in accordance with the temperature is provided at a branch portion of both flow paths. apparatus.
【請求項6】 前記流路切換手段は、前記融解潜熱型蓄
熱材の相変化に伴う体積変化を温度検出部または駆動部
として用いることを特徴とする請求項5に記載の内燃機
関の排気浄化装置。
6. The exhaust gas purification of an internal combustion engine according to claim 5, wherein the flow path switching means uses a volume change accompanying a phase change of the latent heat storage material as a temperature detecting unit or a driving unit. apparatus.
JP9290701A 1997-10-23 1997-10-23 Exhaust emission control device for internal combustion engine Pending JPH11125113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9290701A JPH11125113A (en) 1997-10-23 1997-10-23 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9290701A JPH11125113A (en) 1997-10-23 1997-10-23 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH11125113A true JPH11125113A (en) 1999-05-11

Family

ID=17759403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9290701A Pending JPH11125113A (en) 1997-10-23 1997-10-23 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH11125113A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2002349248A (en) * 2001-05-21 2002-12-04 Kawasaki Heavy Ind Ltd Nitrogen oxide in diesel engine exhaust gas removing method and device
EP1420149A2 (en) * 2002-11-14 2004-05-19 Hitachi, Ltd. Exhaust gas purification apparatus
JP2005076454A (en) * 2003-08-29 2005-03-24 Aisin Takaoka Ltd Exhaust emission control device for internal combustion engine
JP2006348767A (en) * 2005-06-13 2006-12-28 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2010001779A (en) * 2008-06-19 2010-01-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
CN102146833A (en) * 2011-03-29 2011-08-10 吉林大学 Inlet temperature control device for postprocessor of engine based on phase-change materials
KR101294063B1 (en) * 2011-08-19 2013-08-07 현대자동차주식회사 Reducing agent freezing prevention device
WO2014045908A1 (en) * 2012-09-18 2014-03-27 株式会社豊田自動織機 Exhaust gas purification device
JP2014095294A (en) * 2012-11-07 2014-05-22 Toyota Industries Corp Exhaust emission control system
JP2014231928A (en) * 2013-05-28 2014-12-11 株式会社豊田自動織機 Chemical heat storage device
JP2018150915A (en) * 2017-03-15 2018-09-27 株式会社豊田中央研究所 Exhaust emission control device
JP2019112948A (en) * 2017-12-20 2019-07-11 株式会社豊田中央研究所 Exhaust emission control device
JP2019183663A (en) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 Exhaust emission control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2002349248A (en) * 2001-05-21 2002-12-04 Kawasaki Heavy Ind Ltd Nitrogen oxide in diesel engine exhaust gas removing method and device
JP4685266B2 (en) * 2001-05-21 2011-05-18 川崎重工業株式会社 Method and apparatus for removing nitrogen oxides in diesel engine exhaust gas
EP1420149A3 (en) * 2002-11-14 2005-03-30 Hitachi, Ltd. Exhaust gas purification apparatus
US7010910B2 (en) 2002-11-14 2006-03-14 Hitachi, Ltd. Exhaust gas purification apparatus
EP1420149A2 (en) * 2002-11-14 2004-05-19 Hitachi, Ltd. Exhaust gas purification apparatus
JP2005076454A (en) * 2003-08-29 2005-03-24 Aisin Takaoka Ltd Exhaust emission control device for internal combustion engine
JP2006348767A (en) * 2005-06-13 2006-12-28 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2010001779A (en) * 2008-06-19 2010-01-07 Toyota Motor Corp Exhaust emission control device for internal combustion engine
CN102146833A (en) * 2011-03-29 2011-08-10 吉林大学 Inlet temperature control device for postprocessor of engine based on phase-change materials
KR101294063B1 (en) * 2011-08-19 2013-08-07 현대자동차주식회사 Reducing agent freezing prevention device
WO2014045908A1 (en) * 2012-09-18 2014-03-27 株式会社豊田自動織機 Exhaust gas purification device
JP5915762B2 (en) * 2012-09-18 2016-05-11 株式会社豊田自動織機 Exhaust gas purification device
JP2014095294A (en) * 2012-11-07 2014-05-22 Toyota Industries Corp Exhaust emission control system
JP2014231928A (en) * 2013-05-28 2014-12-11 株式会社豊田自動織機 Chemical heat storage device
US9719390B2 (en) 2013-05-28 2017-08-01 Kabushiki Kaisha Toyota Jidoshokki Chemical heat storage device
JP2018150915A (en) * 2017-03-15 2018-09-27 株式会社豊田中央研究所 Exhaust emission control device
JP2019112948A (en) * 2017-12-20 2019-07-11 株式会社豊田中央研究所 Exhaust emission control device
JP2019183663A (en) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 Exhaust emission control device

Similar Documents

Publication Publication Date Title
JPH11125113A (en) Exhaust emission control device for internal combustion engine
EP0953738B1 (en) Exhaust emission control system of internal combustion engine
JP4270170B2 (en) Exhaust gas purification device for internal combustion engine
WO2012029187A1 (en) Exhaust gas purification device for internal combustion engine
US5499501A (en) Engine exhaust emission control system
JP3093905B2 (en) Exhaust gas purification device for internal combustion engine
WO2014033836A1 (en) Exhaust purification device for spark ignition internal combustion engine
JP6024835B2 (en) Exhaust gas purification device for internal combustion engine
WO2014128860A1 (en) Exhaust purification device of internal combustion engine
JP2845080B2 (en) Exhaust gas purification device for internal combustion engine
JP3577956B2 (en) Exhaust gas purification device for internal combustion engine
JP2722988B2 (en) Exhaust gas purification device for internal combustion engine
JP5604912B2 (en) Automotive exhaust purification system
JP2548499Y2 (en) Exhaust gas purification device for internal combustion engine
JP4396159B2 (en) NOx purification system
JP3826288B2 (en) Exhaust gas purification device
JP3912134B2 (en) Exhaust gas purification device and exhaust gas purification method
JP3397175B2 (en) Exhaust gas purification device for internal combustion engine
JP3496557B2 (en) Exhaust gas purification device for internal combustion engine
JP2722985B2 (en) Exhaust gas purification device for internal combustion engine
JP2004092430A (en) Exhaust emission control device of internal combustion engine
WO2014024311A1 (en) Exhaust purification device of spark ignition internal combustion engine
JP2842122B2 (en) Exhaust gas purification device for internal combustion engine
JP2677125B2 (en) Exhaust gas purification device for internal combustion engine
JP3896893B2 (en) Exhaust gas purification device for internal combustion engine