JP2015031240A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2015031240A
JP2015031240A JP2013163169A JP2013163169A JP2015031240A JP 2015031240 A JP2015031240 A JP 2015031240A JP 2013163169 A JP2013163169 A JP 2013163169A JP 2013163169 A JP2013163169 A JP 2013163169A JP 2015031240 A JP2015031240 A JP 2015031240A
Authority
JP
Japan
Prior art keywords
cooling water
inner cylinder
cylinder part
heat recovery
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013163169A
Other languages
Japanese (ja)
Other versions
JP6171699B2 (en
Inventor
竜太郎 篠原
Ryutaro Shinohara
竜太郎 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2013163169A priority Critical patent/JP6171699B2/en
Publication of JP2015031240A publication Critical patent/JP2015031240A/en
Application granted granted Critical
Publication of JP6171699B2 publication Critical patent/JP6171699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce pressure loss of exhaust gas for heat exchange by curbing influence of wind generated by travel motion or a reduction of recovery efficiency of heat quantity of high temperature cooling water and to easily and reliably control recovered heat quantity.SOLUTION: An exhaust heat recovery device 1 comprises: an inner cylinder section 4 with cooling water 3 flowing inside the same; an outer cylinder section 5 arranged at an outer peripheral section of the inner cylinder section 4 with a space in between; and a third cylinder section 6 arranged with a distance from the outer cylinder section 5 with the cooling water 3 flowing inside the same. An exhaust gas flow passage 9 where exhaust gas 2 flows therein is formed in a gap between the outer peripheral section of the inner cylinder section 4 and an inner peripheral section of the outer cylinder section 5. The inner cylinder section 4 is connected to the third cylinder section 6 at an upstream section 14a and a downstream section 14b of a cooling water circulation passage 14 where the cooling water 3 flows therein. A control valve 15 which controls a flow rate of the cooling water 3 flowing inside the inner cylinder section 4 and the third cylinder section 6 is installed on the upstream section 14a of the cooling water circulation passage 14.

Description

本発明は、エンジンの排気ガスの熱を回収するための排気熱回収器に関する。   The present invention relates to an exhaust heat recovery device for recovering heat of exhaust gas of an engine.

従来、自動車用内燃機関(以下、エンジンという)の排気ガスの熱を回収する機器として、エンジンの排気管の途中に介装され、該排気管を通過するエンジンからの排気ガスの熱(以下、排気熱という)を熱交換によりエンジンの冷却媒体(例えば、エンジンの冷却水。以下、冷却水という)に回収する排気熱回収器が知られている。エンジンの冷却水を介して回収された排気熱は、例えば、エンジンの暖機運転を早期に完了させるため、エンジンの始動初期におけるエンジンの冷間時に、冷却水の温度を急上昇させることに利用され、あるいは車室内の暖房にも利用されている。
一方、熱回収が不要な時には、排気バルブ等により排気熱回収器内の流路を切換えて、バイパス流路に誘導し、熱回収部を経由することなく排気ガスを下流側にストレートに排出することで、圧力損失の増加を抑えている。
Conventionally, as a device for recovering heat of exhaust gas of an internal combustion engine for automobiles (hereinafter referred to as an engine), heat of exhaust gas from an engine that is interposed in the middle of the exhaust pipe of the engine and passes through the exhaust pipe (hereinafter referred to as “engine”). There is known an exhaust heat recovery device that recovers exhaust heat) into an engine cooling medium (for example, engine cooling water; hereinafter referred to as cooling water) by heat exchange. The exhaust heat recovered via the engine cooling water is used, for example, to rapidly increase the temperature of the cooling water when the engine is cold at the initial start of the engine in order to complete the warm-up operation of the engine at an early stage. It is also used for heating the passenger compartment.
On the other hand, when heat recovery is not necessary, the flow path in the exhaust heat recovery device is switched by an exhaust valve or the like, guided to the bypass flow path, and exhaust gas is discharged straight downstream without going through the heat recovery section. This suppresses the increase in pressure loss.

ところで、現在実用化されている排気熱回収器のタイプとしては、図5に示すような排気熱回収器(例えば、特許文献1参照)と、図6に示すような排気熱回収器(例えば、特許文献2参照)が挙げられる。
すなわち、特許文献1の排気熱回収器50は、図5に示すように、排気ガス51を通過させる排気ガス流路52が形成されている内筒部53と、該内筒部53の下流側に設けられ、排気ガス流路52を開閉する排気バルブ54と、内筒部53の外周側に間隔を空けて設けられる外筒部55と、内筒部53及び外筒部55の間に設けられる熱交換部(排気熱回収流路56a,56b及び冷却水流路57a,57b)とを備えている。なお、符号58は冷却水である。
そして、排気熱の回収を行うときは、排気バルブ54を閉じ、内筒部53内に導入された排気ガス51を小孔59から内筒部53の外周に位置する熱交換部の排気熱回収流路56a,56bへ流し、冷却水流路57a,57bを流れる冷却水58との間で熱交換している。一方、エンジンの始動から一定時間経過して暖機運転や暖房のニーズが低下したときには、排気バルブ54を開き、冷却水58と接する熱交換部を経由せずに排気熱の回収を行わず、内筒部53内に導入された排気ガス51を直接下流側へ排出している。
By the way, as a type of exhaust heat recovery devices currently in practical use, an exhaust heat recovery device as shown in FIG. 5 (see, for example, Patent Document 1) and an exhaust heat recovery device as shown in FIG. Patent Document 2).
That is, as shown in FIG. 5, the exhaust heat recovery device 50 of Patent Document 1 includes an inner cylinder portion 53 in which an exhaust gas passage 52 through which the exhaust gas 51 passes is formed, and a downstream side of the inner cylinder portion 53. Provided between the inner cylinder part 53 and the outer cylinder part 55, an exhaust valve 54 that opens and closes the exhaust gas passage 52, an outer cylinder part 55 that is provided on the outer peripheral side of the inner cylinder part 53 with a space therebetween. Heat exchange sections (exhaust heat recovery passages 56a and 56b and cooling water passages 57a and 57b). Reference numeral 58 denotes cooling water.
When the exhaust heat is recovered, the exhaust valve 54 is closed, and the exhaust gas 51 introduced into the inner cylinder portion 53 is exhausted from the small hole 59 to the exhaust heat recovery portion located on the outer periphery of the inner cylinder portion 53. Heat is exchanged between the cooling water 58 flowing into the flow paths 56a and 56b and flowing through the cooling water flow paths 57a and 57b. On the other hand, when the need for warm-up operation or heating has declined after a certain period of time has elapsed since the start of the engine, the exhaust valve 54 is opened, and exhaust heat is not collected without going through the heat exchange part in contact with the cooling water 58, The exhaust gas 51 introduced into the inner cylinder part 53 is directly discharged to the downstream side.

また、特許文献2の排気熱回収器60は、図6に示すように、一本の排気ガス流路61に排気バルブ62,63を有する分岐部が設けられ、排気熱回収器60を含む流路61aと排気ガスを排出するバイパス流路61bとが並行に配置されており、下流側で再び一本の排気ガス流路に合流するように構成されている。なお、符号64は排気マニホールド、符号65はコンバータである。
そして、排気熱の回収を行うときは、排気バルブ62を開くとともに、排気バルブ63を閉じ、排気熱回収器60を含む流路61aに排気ガスを流動させている。一方、排気熱を排出するときは、排気バルブ62を閉じるとともに、排気バルブ63を開き、排気ガスを排出するバイパス流路61bに排気ガスを流動させて排出している。
Further, as shown in FIG. 6, the exhaust heat recovery device 60 of Patent Document 2 is provided with a branch portion having exhaust valves 62 and 63 in one exhaust gas flow channel 61, and includes a flow including the exhaust heat recovery device 60. The passage 61a and the bypass passage 61b for discharging the exhaust gas are arranged in parallel, and are configured so as to merge again into one exhaust gas passage on the downstream side. Reference numeral 64 denotes an exhaust manifold, and reference numeral 65 denotes a converter.
When exhaust heat recovery is performed, the exhaust valve 62 is opened, the exhaust valve 63 is closed, and the exhaust gas is caused to flow through the flow path 61 a including the exhaust heat recovery device 60. On the other hand, when exhaust heat is exhausted, the exhaust valve 62 is closed, the exhaust valve 63 is opened, and the exhaust gas flows into the bypass flow path 61b that exhausts the exhaust gas and is exhausted.

特開2010−31671号公報JP 2010-31671 A 特開2001−30741号公報JP 2001-30741 A

このような排気熱回収器に対しては、エンジンの暖機運転や車室内の暖房という目的を達成した後においても、排気ガスの熱を燃費向上に活用したいという要請がある。例えば、排気ガスが持つ熱エネルギーを機械エネルギーに変換することで燃費向上を目指すランキンサイクル(蒸気サイクル)システムを搭載した車両において、排気ガスの熱を回収した冷却水を、当該ランキンサイクルシステムの加熱器の熱源として利用することが考えられる。
ここで、排気熱をランキンサイクルシステムにおいて使用するためには、エンジンの定常運転時や高負荷運転時において、継続的に排気熱を回収する必要がある。しかも、ランキンサイクルシステムに対しては、エンジンの定常運転時に排気熱回収器で排気熱を継続的に回収できるだけではなく、排気熱の回収量を容易にコントロールできることが求められている。
なお、上記ランキンサイクルシステムは排気熱回収方法の一例であり、これ以外にも吸着冷凍機、ケミカル蓄熱、熱音響発電、スターリングエンジン、熱電発電など種々の方法があるが、これらすべてを含め、以下「ランキンサイクルシステム」という。
There is a demand for such an exhaust heat recovery device to utilize the heat of exhaust gas for improving fuel efficiency even after achieving the objectives of warming up the engine and heating the passenger compartment. For example, in a vehicle equipped with a Rankine cycle (steam cycle) system that aims to improve fuel efficiency by converting the thermal energy of exhaust gas into mechanical energy, the cooling water that recovered the exhaust gas heat is used to heat the Rankine cycle system. It can be used as a heat source for the oven.
Here, in order to use the exhaust heat in the Rankine cycle system, it is necessary to continuously recover the exhaust heat during steady engine operation or high load operation. Moreover, the Rankine cycle system is required not only to continuously recover the exhaust heat with the exhaust heat recovery device during steady operation of the engine, but also to be able to easily control the amount of exhaust heat recovered.
The Rankine cycle system is an example of an exhaust heat recovery method. Besides this, there are various methods such as adsorption refrigerator, chemical heat storage, thermoacoustic power generation, Stirling engine, thermoelectric power generation, including all of these, This is called the “Rankin cycle system”.

しかしながら、上述した特許文献1及び2のいずれの排気熱回収器50,60においても、下記のような3つの課題を有している。
第1に、車体前部にエンジンが搭載されている車両では、排気管が車体前部からフロア下面を通って車両後方へと導かれているため、排気熱回収器がフロア下面に配置されることとなる。しかし、特許文献1の構成では、冷却水流路57a,57bが排気ガス流路52を覆うように配置されているので、冷却水58は排気ガス51と接するだけでなく、外筒部55を介して外気とも接している。そのため、次のような問題点がある。この点は、特許文献2の構成においても同様である。
冷却水58は、排気ガス51と接する部位においては排気熱の回収を行うが、外気と接する部位においては、折角回収した排気熱を放熱してしまう。例えば、エンジンの定常運転時や高速運転時に走行風の流れが速くなると、冷却水58がより冷却され、折角回収した排気熱をより一層放熱してしまう。すなわち、外気への熱量の損失が発生するため、排気熱の回収効率が低下してしまう。
また、冷却水58は、エンジンの稼働が一定時間経過すると温度が上昇するが、冷却水58の温度が上昇すると、冷却水58と外気の温度差が大きくなってしまうため、外気と接する部位において、冷却水58から外気への放熱量が増加してしまい、上記と同様の問題が生じることになる。
However, the exhaust heat recovery devices 50 and 60 of Patent Documents 1 and 2 described above have the following three problems.
First, in a vehicle in which an engine is mounted on the front part of the vehicle body, the exhaust pipe is led from the front part of the vehicle body to the rear of the vehicle through the lower surface of the vehicle body. It will be. However, in the configuration of Patent Document 1, since the cooling water channels 57 a and 57 b are arranged so as to cover the exhaust gas channel 52, the cooling water 58 not only contacts the exhaust gas 51 but also passes through the outer cylinder portion 55. It is also in contact with outside air. Therefore, there are the following problems. This also applies to the configuration of Patent Document 2.
The cooling water 58 collects exhaust heat at a portion in contact with the exhaust gas 51, but dissipates the collected exhaust heat at a portion in contact with outside air. For example, when the flow of the traveling wind becomes faster during steady operation or high speed operation of the engine, the cooling water 58 is further cooled, and the exhaust heat collected at the corner is further dissipated. In other words, since heat loss to the outside air occurs, the exhaust heat recovery efficiency decreases.
In addition, the temperature of the cooling water 58 rises after a certain period of engine operation, but when the temperature of the cooling water 58 rises, the temperature difference between the cooling water 58 and the outside air becomes large. Further, the amount of heat released from the cooling water 58 to the outside air increases, and the same problem as described above occurs.

第2に、特許文献1の構成では、排気ガス51が小孔59を通って第1の排気熱回収流路56aに流出し、その直後に折り返し、その後上流側で流れを折り返して第2の排気熱回収流路56bに導かれることになる。そのため、排気ガス51の圧力損失が大きくなってしまう。その結果として、エンジン高負荷時の出力が低下することなるとともに、燃費が悪化してしまうことになる。
第3に、特許文献2の構成では、排気熱回収器60において熱交換のため排ガス流路が狭まり、排ガス流路内の流れを意図的に乱すフィンなどが配置されているため、排気ガスの圧力損失が大きくなってしまう。その結果として、第2で述べたと同様の問題が生じることになる。
Secondly, in the configuration of Patent Document 1, the exhaust gas 51 flows out to the first exhaust heat recovery flow path 56a through the small hole 59, turns back immediately after that, and then turns back to flow upstream on the second side. It is led to the exhaust heat recovery flow path 56b. Therefore, the pressure loss of the exhaust gas 51 becomes large. As a result, the output at the time of high engine load is reduced and the fuel consumption is deteriorated.
Third, in the configuration of Patent Document 2, the exhaust gas flow path is narrowed due to heat exchange in the exhaust heat recovery device 60, and fins and the like that intentionally disturb the flow in the exhaust gas flow path are arranged. Pressure loss will increase. As a result, the same problem as described in the second case occurs.

本発明はこのような実状に鑑みてなされたものであって、その目的は、走行風の影響または高温の冷却水の熱量の回収効率の低下を防ぎ、熱交換を行う排気ガスの圧力損失を低減させるとともに、回収熱量を容易かつ確実に制御することが可能な排気熱回収器を提供することにある。   The present invention has been made in view of such a situation, and its purpose is to prevent the influence of traveling wind or decrease in the recovery efficiency of the heat quantity of high-temperature cooling water, and to reduce the pressure loss of exhaust gas for heat exchange. An object of the present invention is to provide an exhaust heat recovery device that can reduce the amount of recovered heat and can control the amount of recovered heat easily and reliably.

上記従来技術の有する課題を解決するために、本発明は、内部に冷却媒体が流動する内筒部と、該内筒部の外周部に間隔を空けて配置される外筒部と、該外筒部から間隔を空けて配置され、内部に冷却媒体が流動する第3の筒部とを備えた排気熱回収器において、前記内筒部の外周部と前記外筒部の内周部との間には、排気ガスが流動する空間が形成され、前記内筒部と前記第3の筒部とは、前記冷却媒体が流動する冷却媒体流路の上流部と下流部でそれぞれ連結され、前記冷却媒体流路の上流部には、前記内筒部の内部及び前記第3の筒部の内部に流れる前記冷却媒体の流量を制御する制御バルブが設けられている。   In order to solve the above-described problems of the related art, the present invention includes an inner cylinder part in which a cooling medium flows, an outer cylinder part arranged at an interval on an outer peripheral part of the inner cylinder part, An exhaust heat recovery device including a third cylindrical portion that is disposed at a distance from the cylindrical portion and in which a cooling medium flows, and includes an outer peripheral portion of the inner cylindrical portion and an inner peripheral portion of the outer cylindrical portion. A space in which exhaust gas flows is formed therebetween, and the inner cylinder part and the third cylinder part are respectively connected at an upstream part and a downstream part of a cooling medium flow path through which the cooling medium flows, A control valve for controlling the flow rate of the cooling medium flowing in the inner cylinder part and the third cylinder part is provided upstream of the cooling medium flow path.

また、本発明において、前記内筒部の内部には、前記制御バルブの流量制御によって前記冷却媒体が常に流動するように構成されている。   In the present invention, the cooling medium always flows inside the inner cylinder portion by controlling the flow rate of the control valve.

さらに、本発明において、前記制御バルブは、ストッパー付きの三方弁である。   Furthermore, in the present invention, the control valve is a three-way valve with a stopper.

また、本発明において、前記内筒部の外周部及び前記第3の筒部の外周部には、フィンが設けられている。
そして、本発明において、前記内筒部のフィンの総表面積は、前記第3の筒部のフィンの総表面積よりも小さく設定されている。
In the present invention, fins are provided on the outer peripheral portion of the inner cylindrical portion and the outer peripheral portion of the third cylindrical portion.
In the present invention, the total surface area of the fins of the inner cylinder part is set smaller than the total surface area of the fins of the third cylinder part.

また、本発明において、前記内筒部及び前記第3の筒部のうち、少なくともどちらか一方の内部には、前記冷却媒体を撹拌する撹拌装置が設けられている。
しかも、本発明において、前記撹拌装置は、スタティックミキサーである。
Moreover, in this invention, the stirring apparatus which stirs the said cooling medium is provided in at least one inside of the said inner cylinder part and the said 3rd cylinder part.
Moreover, in the present invention, the stirring device is a static mixer.

上述の如く、本発明に係る排気熱回収器は、内部に冷却媒体が流動する内筒部と、該内筒部の外周部に間隔を空けて配置される外筒部と、該外筒部から間隔を空けて配置され、内部に冷却媒体が流動する第3の筒部とを備えたものであって、前記内筒部の外周部と前記外筒部の内周部との間には、排気ガスが流動する空間が形成され、前記内筒部と前記第3の筒部とは、前記冷却媒体が流動する冷却媒体流路の上流部と下流部でそれぞれ連結され、前記冷却媒体流路の上流部には、前記内筒部の内部及び前記第3の筒部の内部に流れる前記冷却媒体の流量を制御する制御バルブが設けられているので、次のような効果を得ることができる。   As described above, the exhaust heat recovery device according to the present invention includes an inner cylinder portion in which a cooling medium flows, an outer cylinder portion arranged at an outer periphery of the inner cylinder portion, and the outer cylinder portion. And a third cylinder part in which the cooling medium flows inside, between the outer peripheral part of the inner cylinder part and the inner peripheral part of the outer cylinder part. A space in which exhaust gas flows is formed, and the inner cylinder portion and the third cylinder portion are respectively connected in an upstream portion and a downstream portion of a cooling medium flow path in which the cooling medium flows, and the cooling medium flow Since the control valve for controlling the flow rate of the cooling medium flowing in the inner cylinder part and the third cylinder part is provided in the upstream part of the path, the following effects can be obtained. it can.

すなわち、本発明の排気熱回収器においては、内筒部の外周部と外筒部の内周部との間に形成された排気ガスの流動空間によって内筒部の内部が覆われ、外気に晒されていないので、冷却媒体に回収された排気ガスの熱が車両走行風により外気へ放熱してしまうことを抑制できる。すなわち、冷却媒体から外気への放熱が低減されることになる。したがって、本発明の排気熱回収器によれば、冷却媒体に回収された熱量の損失を防止することが可能になるため、排気熱の回収効率を向上させることができる。また、エンジンの稼働が一定時間経過し冷却媒体の温度が上昇しても、内筒部が熱量の損失の原因となる外気に晒されていないため、冷却媒体に回収された熱量の損失を防止でき、排気熱の回収効率向上を図ることができる。
しかも、本発明の排気熱回収器においては、従来の排気熱回収器で排気ガス流路の内部に配置されていた排気バルブを廃止することが可能になるため、排気バルブで発生していた圧力損失を取り除くことができ、圧力損失を低減できる。さらに、排気バルブの廃止により排気ガスが流動する空間を直線形状に形成することができる。これによって、空間の内部における排気ガスの流れが円滑になり、従来の排気熱回収器における排気バルブ及び曲がりの存在等に起因した渦の発生による圧力損失を小さくすることができる。さらに、本発明の排気熱回収器によれば、空間の内部において排気ガスが円滑に流れるため、空間の内部における排気ガス流路の断面積の大きさ、後述するフィンの配置数またはフィンの密集度などの設定の自由度を高くすることができる。その結果、空間の内部を流れる排気ガスの流路については、排気ガスの圧力損失を低減させるための設計が可能となるので、排気ガスの圧力損失をより一層低減できる。
それに加えて、本発明の排気熱回収器においては、排気熱回収部である内筒部の内部及び放熱部である第3の筒部の内部を流れる冷却媒体の流量の割合を制御バルブによって振り分けることが可能となるため、冷却媒体への排気ガスの回収熱量を容易かつ確実に制御することができる。したがって、冷却媒体に回収された排気ガスの熱をランキンサイクルシステムの加熱器の熱源として利用する場合にも、当該ランキンサイクルシステムの要請である熱量の制御に迅速に対応できる。
That is, in the exhaust heat recovery device of the present invention, the inside of the inner cylinder part is covered by the flow space of the exhaust gas formed between the outer peripheral part of the inner cylinder part and the inner peripheral part of the outer cylinder part. Since it is not exposed, it can suppress that the heat | fever of the exhaust gas collect | recovered by the cooling medium thermally radiates to external air with a vehicle running wind. That is, heat radiation from the cooling medium to the outside air is reduced. Therefore, according to the exhaust heat recovery device of the present invention, it is possible to prevent the loss of the amount of heat recovered in the cooling medium, so that the exhaust heat recovery efficiency can be improved. In addition, even if the engine has been running for a certain period of time and the temperature of the cooling medium rises, the inner cylinder is not exposed to the outside air that causes the loss of heat, thus preventing the loss of heat recovered in the cooling medium. It is possible to improve the exhaust heat recovery efficiency.
In addition, in the exhaust heat recovery device of the present invention, the exhaust valve disposed inside the exhaust gas flow path in the conventional exhaust heat recovery device can be eliminated, so the pressure generated in the exhaust valve Loss can be removed and pressure loss can be reduced. Furthermore, the space where the exhaust gas flows can be formed in a linear shape by eliminating the exhaust valve. As a result, the flow of the exhaust gas inside the space becomes smooth, and the pressure loss due to the generation of vortices due to the presence of the exhaust valve and the bend in the conventional exhaust heat recovery device can be reduced. Furthermore, according to the exhaust heat recovery device of the present invention, the exhaust gas smoothly flows inside the space. Therefore, the size of the cross-sectional area of the exhaust gas flow path inside the space, the number of fins to be described later, or the density of fins The degree of freedom of setting such as degree can be increased. As a result, the exhaust gas flow path flowing in the space can be designed to reduce the pressure loss of the exhaust gas, so that the pressure loss of the exhaust gas can be further reduced.
In addition, in the exhaust heat recovery device of the present invention, the control valve distributes the ratio of the flow rate of the cooling medium flowing through the inside of the inner cylinder part that is the exhaust heat recovery part and the inside of the third cylinder part that is the heat dissipation part. Therefore, it is possible to easily and reliably control the recovered heat amount of the exhaust gas to the cooling medium. Therefore, even when the heat of the exhaust gas recovered in the cooling medium is used as a heat source for the heater of the Rankine cycle system, it is possible to quickly respond to the control of the heat amount that is required by the Rankine cycle system.

また、前記内筒部の内部には、前記制御バルブの流量制御によって前記冷却媒体が常に流動するように構成されているので、内筒部の内部における冷却媒体の過熱や、冷却媒体の滞留を防止することができ、冷却媒体の突沸によって起こるエンジンの異常発生などを無くすことができる。   In addition, since the cooling medium always flows inside the inner cylinder part by controlling the flow rate of the control valve, the cooling medium overheats and the cooling medium stays inside the inner cylinder part. It is possible to prevent the occurrence of abnormalities in the engine caused by the sudden boiling of the cooling medium.

さらに、本発明において、前記制御バルブは、ストッパー付きの三方弁とすることができるので、ストッパーを調整することにより、小流量の冷却媒体を排気熱回収部である内筒部の内部へ常に流すことが可能となる。そのため、内筒部の内部における冷却媒体の過熱、ひいては突沸の原因となる冷却媒体の滞留を防止することができる。その結果、冷却媒体の突沸によって誘発される冷却媒体の循環障害に起因するエンジンの異常発生や、圧力変動による冷却媒体系への損傷を効果的に防ぐことができる。   Furthermore, in the present invention, since the control valve can be a three-way valve with a stopper, by adjusting the stopper, a small flow rate of cooling medium is always allowed to flow into the inner cylinder part which is the exhaust heat recovery part. It becomes possible. Therefore, it is possible to prevent the cooling medium from overheating inside the inner cylinder portion, and in turn, to stay in the cooling medium that causes bumping. As a result, it is possible to effectively prevent engine abnormality caused by cooling medium circulation failure induced by cooling medium bumping and damage to the cooling medium system due to pressure fluctuation.

また、本発明において、前記内筒部の外周部及び前記第3の筒部の外周部には、フィンが設けられているので、内筒部の内部を流れる冷却媒体が排気ガスの熱を効率的に回収できるとともに、第3の筒部の内部を流れる冷却媒体から外気へ効率的に放熱することができる。
しかも、本発明において、前記内筒部のフィンの総表面積は、前記第3の筒部のフィンの総表面積よりも小さく設定されているので、内筒部の内部における排気ガスの熱の回収熱量と、第3の筒部の内部における外気への放熱熱量とを略同等にすることができる。すなわち、内筒部と第3の筒部のそれぞれの冷却媒体が合流した後の冷却媒体の温度を、内筒部と第3の筒部とに振り分ける前(分岐前)の冷却媒体の温度と略同等にすることが可能となり、冷却媒体流路の下流側に位置するラジエータへの負荷が発生しないようにしながら、排気熱回収熱量を容易に制御することができる。
In the present invention, since fins are provided on the outer peripheral portion of the inner cylindrical portion and the outer peripheral portion of the third cylindrical portion, the cooling medium flowing inside the inner cylindrical portion efficiently uses the heat of the exhaust gas. Can be recovered efficiently, and heat can be efficiently radiated from the cooling medium flowing inside the third cylindrical portion to the outside air.
Moreover, in the present invention, the total surface area of the fins of the inner cylinder portion is set smaller than the total surface area of the fins of the third cylinder portion, so that the heat recovery amount of the exhaust gas heat inside the inner cylinder portion And the amount of heat released to the outside air inside the third cylindrical portion can be made substantially equal. That is, the temperature of the cooling medium after distribution of the cooling mediums of the inner cylinder part and the third cylinder part to the inner cylinder part and the third cylinder part (before branching) The exhaust heat recovery heat quantity can be easily controlled while preventing a load from being applied to the radiator located downstream of the cooling medium flow path.

さらに、本発明において、前記内筒部及び前記第3の筒部のうち、少なくともどちらか一方の内部には、前記冷却媒体を撹拌する撹拌装置が設けられているので、冷却媒体の熱伝達率向上を図ることができる。すなわち、内筒部の内部における排気熱の回収効率、及び前記第3の筒部の内部における外気への放熱効率を高めることができる。
しかも、本発明において、前記撹拌装置は、スタティックミキサーとすることができるので、内部を流れる冷却媒体を確実に撹拌できる上、内筒部の外周部外側の空間を流れる排気ガスと内筒部の内部を流れる冷却媒体との熱交換効率を向上させ、冷却媒体による排気ガスの回収熱量を増大させることができる。
Furthermore, in this invention, since the stirring apparatus which stirs the said cooling medium is provided in at least any one inside the said inner cylinder part and the said 3rd cylinder part, the heat transfer rate of a cooling medium Improvements can be made. That is, the exhaust heat recovery efficiency inside the inner cylinder part and the heat radiation efficiency to the outside air inside the third cylinder part can be increased.
Moreover, in the present invention, since the stirring device can be a static mixer, the cooling medium flowing inside can be reliably stirred, and the exhaust gas flowing in the space outside the outer peripheral portion of the inner tube portion and the inner tube portion It is possible to improve the efficiency of heat exchange with the cooling medium flowing inside, and to increase the amount of heat recovered from the exhaust gas by the cooling medium.

本発明の実施形態に係る排気熱回収器の全体を示す概念図である。It is a conceptual diagram which shows the whole exhaust heat recovery device which concerns on embodiment of this invention. 本発明の実施形態に係る排気熱回収器において、エンジン始動時の冷却水の流れを示す概念図である。In the exhaust heat recovery device concerning the embodiment of the present invention, it is a key map showing the flow of the cooling water at the time of engine starting. 本発明の実施形態に係る排気熱回収器において、エンジン定常運転時やエンジン高負荷運転時の冷却水の流れを示す概念図である。In the exhaust heat recovery device concerning the embodiment of the present invention, it is a key map showing the flow of the cooling water at the time of engine steady operation or engine high load operation. 本発明の実施形態に係る排気熱回収器に設けられるストッパー付きの三方弁であり、(a)はボールの回転により冷却水の流路をAからBにした状態の断面図、(b)はボールの回転により冷却水の流路をAからCにした状態の断面図である。It is a three-way valve with a stopper provided in the exhaust heat recovery device concerning the embodiment of the present invention, (a) is a sectional view in the state where the flow path of the cooling water was changed from A to B by rotation of the ball, (b) It is sectional drawing of the state which changed the flow path of the cooling water from A to C by rotation of the ball | bowl. 従来の排気熱回収器を示す断面図である。It is sectional drawing which shows the conventional exhaust heat recovery device. 他の従来の排気熱回収器を示す断面図である。It is sectional drawing which shows the other conventional exhaust heat recovery device.

以下、本発明を図示の実施の形態に基づいて詳細に説明する。
図1〜図4は、本発明の実施形態に係る排気熱回収器を示すものである。なお、図1〜図3中の矢印Fr方向は車両前方側を示し、矢印Re方向は車両後方側を示している。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
1 to 4 show an exhaust heat recovery device according to an embodiment of the present invention. 1 to 3, the arrow Fr direction indicates the vehicle front side, and the arrow Re direction indicates the vehicle rear side.

本実施形態の排気熱回収器1は、図1〜図3に示すように、自動車のエンジン(図示せず)の始動時のほか、当該エンジンの定常運転時や高負荷運転時にも、車両前方側より車両後方側へ流動するエンジンからの排気ガス2の熱を冷却水(冷却媒体)3が回収し、この回収した熱をエンジンの暖機運転、車室内の暖房、ランキンサイクル加熱器の熱源に利用するものである。
このため、本実施形態の排気熱回収器1は、図1に示すように、内部に冷却水3が流動する横置きの内筒部4と、該内筒部4の外周部側に所定の間隔を空けて配置される横置きの外筒部5と、該外筒部5から所定の間隔を空けて並行に配置され、内部に冷却水3が流動する横置きの第3の筒部6とを備えており、これら内筒部4、外筒部5及び第3の筒部6は、車両前後方向に延在して設けられている。また、第3の筒部6は、内筒部4及び外筒部5に対して、車両上下方向の上側もしくは下側のいずれかに配置され、あるいは車両幅方向の左側もしくは右側のいずれかに配置されている。
As shown in FIGS. 1 to 3, the exhaust heat recovery device 1 according to the present embodiment is used not only at the start of an automobile engine (not shown) but also at the time of steady operation or high load operation of the engine. The cooling water (cooling medium) 3 recovers the heat of the exhaust gas 2 flowing from the engine to the vehicle rear side from the side, and this recovered heat is used to warm up the engine, heat the vehicle interior, and heat source of the Rankine cycle heater It is used for.
For this reason, as shown in FIG. 1, the exhaust heat recovery device 1 of the present embodiment has a horizontal inner cylinder portion 4 in which the cooling water 3 flows, and a predetermined amount on the outer peripheral side of the inner cylinder portion 4. A laterally placed outer cylinder part 5 arranged at an interval, and a laterally arranged third cylinder part 6 arranged in parallel at a predetermined interval from the outer cylinder part 5 and in which the cooling water 3 flows. The inner cylinder part 4, the outer cylinder part 5, and the third cylinder part 6 are provided to extend in the vehicle front-rear direction. Further, the third cylinder portion 6 is arranged on either the upper side or the lower side in the vehicle vertical direction with respect to the inner cylinder portion 4 and the outer cylinder portion 5, or on the left side or the right side in the vehicle width direction. Has been placed.

本実施形態の内筒部4の内部は、図1〜図3に示すように、冷却水3が流れる第1冷却水流路7として形成されており、第1冷却水流路7内には、冷却水3を撹拌する撹拌装置のスタティックミキサー8が設けられている。このスタティックミキサー8は、右方向に捩られた複数枚の右捩り羽根8aと左方向に捩られた複数枚の左捩り羽根8bとを軸方向(車両前後方向)に交互に配置しながら接合することにより、構成されている。第1冷却水流路7内を流れる冷却水3は、羽根8a,8bによって回転され、撹拌されるようになっている。第1冷却水流路7内を流れる冷却水3が撹拌されると、内筒部4の外側を流れる排気ガス2との熱交換効率が向上し、冷却水3による排気ガス2の回収熱量が増大されることになる。   As shown in FIGS. 1 to 3, the inside of the inner cylinder portion 4 of the present embodiment is formed as a first cooling water passage 7 through which the cooling water 3 flows. A static mixer 8 serving as a stirring device for stirring the water 3 is provided. In the static mixer 8, a plurality of right twist blades 8a twisted in the right direction and a plurality of left twist blades 8b twisted in the left direction are joined while being alternately arranged in the axial direction (vehicle longitudinal direction). It is configured. The cooling water 3 flowing in the first cooling water flow path 7 is rotated and stirred by the blades 8a and 8b. When the cooling water 3 flowing in the first cooling water flow path 7 is stirred, the heat exchange efficiency with the exhaust gas 2 flowing outside the inner cylinder portion 4 is improved, and the amount of heat recovered by the cooling water 3 in the exhaust gas 2 is increased. Will be.

また、内筒部4の外周部と外筒部5の内周部との間には、排気ガス2が流動する空間である排気ガス流路9が車両前後方向に沿って形成されており、該排気ガス流路9によって内筒部4の内部の第1冷却水流路7が覆われ、外気10に晒されないように構成されている。このため、排気ガス流路9内に導入された排気ガス2の熱は、熱交換によって内筒部4の内部の第1冷却水流路7を流れる冷却水3に回収されるとともに、冷却水3に回収された排気ガス2の熱が車両走行風11によって外気10へ放熱されることが抑制されるような排気熱回収部Xになっている。   Further, an exhaust gas passage 9 that is a space in which the exhaust gas 2 flows is formed along the vehicle front-rear direction between the outer peripheral portion of the inner cylindrical portion 4 and the inner peripheral portion of the outer cylindrical portion 5. The exhaust gas passage 9 covers the first cooling water passage 7 inside the inner cylinder portion 4 and is configured not to be exposed to the outside air 10. For this reason, the heat of the exhaust gas 2 introduced into the exhaust gas passage 9 is recovered into the cooling water 3 flowing through the first cooling water passage 7 inside the inner cylinder portion 4 by heat exchange, and the cooling water 3 The exhaust heat recovery section X is configured such that the heat of the exhaust gas 2 recovered in the above is suppressed from being radiated to the outside air 10 by the vehicle traveling wind 11.

さらに、第3の筒部6の内部は、図1〜図3に示すように、冷却水3が流れる第2冷却水流路12として形成されており、第2冷却水流路12内には、第1冷却水流路7と同様、冷却水3を撹拌する撹拌装置のスタティックミキサー13が設けられている。このスタティックミキサー13は、第1冷却水流路7のスタティックミキサー8と同じ構造を有し、右方向に捩られた複数枚の右捩り羽根13aと左方向に捩られた複数枚の左捩り羽根13bとを軸方向(車両前後方向)に交互に配置しながら接合することにより、構成されている。第2冷却水流路12内を流れる冷却水3は、これら羽根13a,13bによって回転され、冷却水3を撹拌するようになっている。第2冷却水流路12内を流れる冷却水3が撹拌されると、第3の筒部6の外側を流れる車両走行風11を含む外気10との熱交換効率が向上し、冷却水3に回収された排気ガス2の熱が車両走行風11などによって外気10へ放熱される放熱部Yになっている。   Further, as shown in FIGS. 1 to 3, the inside of the third cylindrical portion 6 is formed as a second cooling water flow path 12 through which the cooling water 3 flows, and in the second cooling water flow path 12, Similar to the 1 cooling water flow path 7, a static mixer 13 of a stirring device for stirring the cooling water 3 is provided. The static mixer 13 has the same structure as the static mixer 8 of the first cooling water flow path 7, and a plurality of right twist blades 13a twisted in the right direction and a plurality of left twist blades 13b twisted in the left direction. Are joined together while being alternately arranged in the axial direction (vehicle longitudinal direction). The cooling water 3 flowing in the second cooling water flow path 12 is rotated by the blades 13a and 13b, and the cooling water 3 is stirred. When the cooling water 3 flowing in the second cooling water flow path 12 is agitated, the efficiency of heat exchange with the outside air 10 including the vehicle traveling wind 11 flowing outside the third cylindrical portion 6 is improved and recovered in the cooling water 3. The heat of the exhaust gas 2 is a heat radiating part Y that radiates heat to the outside air 10 by the vehicle traveling wind 11 or the like.

本実施形態の排気熱回収器1における内筒部4と第3の筒部6とは、図1〜図3に示すように、冷却水3が流動する冷却水循環流路(冷却媒体流路)14の上流部14aと下流部14bでそれぞれ連結されている。すなわち、冷却水循環流路14の上流部14a及び下流部14bは、内筒部4の第1冷却水流路7及び第3の筒部6の第2冷却水流路12と連通している。なお、冷却水循環流路14の上流端は、図示しない冷却水ポンプに接続され、冷却水循環流路14の下流端は、図示しないエンジン及びラジエータに接続されており、冷却水ポンプにより冷却水3がエンジン及びラジエータに循環するように構成されている。   As shown in FIGS. 1 to 3, the inner cylinder portion 4 and the third cylinder portion 6 in the exhaust heat recovery device 1 of the present embodiment are a cooling water circulation channel (cooling medium channel) through which the cooling water 3 flows. 14 are connected by an upstream portion 14a and a downstream portion 14b. That is, the upstream part 14 a and the downstream part 14 b of the cooling water circulation channel 14 communicate with the first cooling water channel 7 of the inner cylinder part 4 and the second cooling water channel 12 of the third cylinder part 6. The upstream end of the cooling water circulation passage 14 is connected to a cooling water pump (not shown), and the downstream end of the cooling water circulation passage 14 is connected to an engine and a radiator (not shown). It is comprised so that it may circulate to an engine and a radiator.

冷却水循環流路14の上流部14aには、図1〜図3に示すように、内筒部4の第1冷却水流路7及び第3の筒部6の第2冷却水流路12に流れる冷却水3の流量を制御する制御バルブ15が設けられている。この制御バルブ15は、ストッパー付きの三方弁とすることができ、当該ストッパーを調整することにより、冷却水3の全流量が放熱部Yである第3の筒部6の第2冷却水流路12に送られることはなく、小流量でも冷却水3が排気熱回収部Xである内筒部4の第1冷却水流路7へ送られて常に流れることを保証するように構成されている。すなわち、制御バルブ15は、図4に示すように、通常、「A⇒B」もしくは「A⇒C」というように流路を切り替えるために用いられるが、切り替えの途中では、「A⇒BかつC」という流路に流すことが可能であり、本実施形態では、この現象を利用している。
そのため、制御バルブ15には、ボール15aのB側への回転を制限するストッパー(図示せず)が設けられ、図4(a)に示すように、ボール15aをB側に回したときでも、このストッパーにより「A⇒B」のみの流れにならず、「A⇒B(最大流量)かつC(小流量)」という流れを確保している。一方、図4(b)に示すように、ボール15aをC側に回す方向にはストッパーが設けられておらず、排気熱回収部Xである内筒部4の第1冷却水流路7に冷却水3の全流量を流すことが可能に構成されている。これにより、内筒部4の内部の第1冷却水流路7における冷却水3の過熱や、突沸の原因となる冷却水3の滞留を防止し、冷却水3の循環障害に起因するエンジンの異常発生や、圧力変動による冷却水系への損傷を防いでいる。
As shown in FIGS. 1 to 3, in the upstream portion 14 a of the cooling water circulation channel 14, cooling flows through the first cooling water channel 7 of the inner cylinder portion 4 and the second cooling water channel 12 of the third cylinder portion 6. A control valve 15 for controlling the flow rate of the water 3 is provided. The control valve 15 can be a three-way valve with a stopper. By adjusting the stopper, the second cooling water flow path 12 of the third cylindrical portion 6 in which the total flow rate of the cooling water 3 is the heat radiating portion Y is provided. The cooling water 3 is sent to the first cooling water flow path 7 of the inner cylinder part 4 which is the exhaust heat recovery part X and is always guaranteed to flow even at a small flow rate. That is, as shown in FIG. 4, the control valve 15 is normally used for switching the flow path such as “A → B” or “A → C”. It is possible to flow through a flow path called “C”, and this phenomenon is utilized in this embodiment.
Therefore, the control valve 15 is provided with a stopper (not shown) for restricting the rotation of the ball 15a to the B side, and even when the ball 15a is turned to the B side as shown in FIG. This stopper ensures not only the flow of “A → B” but also the flow of “A → B (maximum flow rate) and C (small flow rate)”. On the other hand, as shown in FIG. 4B, no stopper is provided in the direction in which the ball 15a is turned to the C side, and the first cooling water passage 7 of the inner cylinder portion 4 that is the exhaust heat recovery portion X is cooled. The entire flow rate of the water 3 is configured to flow. As a result, overheating of the cooling water 3 in the first cooling water flow path 7 inside the inner cylinder portion 4 and retention of the cooling water 3 that causes bumping are prevented, and an engine abnormality caused by a circulation failure of the cooling water 3 It prevents generation and damage to the cooling water system due to pressure fluctuations.

本実施形態の内筒部4の外周部及び第3の筒部6の外周部には、図1〜図3に示すように、多数のフィン16,17が設けられている。内筒部4のフィン16は、内部の第1冷却水流路7を流れる冷却水3が排気ガス2の熱を効率的に回収するために設けられ、第3の筒部6のフィン17は、内部の第2冷却水流路12を流れる冷却水3から外気10へ効率的に放熱するために設けられている。
また、本実施形態の排気熱回収器1においては、内筒部4のフィン16の総表面積が第3の筒部6のフィン17の総表面積よりも小さく設定され、言い換えれば、放熱部である第3の筒部6のフィン17の総表面積が排気熱回収部Xである内筒部4のフィン16の総表面積よりも大きく設定されており、エンジンの定常運転時や高負荷運転時でランキンサイクルシステムからの熱要請が無い場合(冷却水3の半分以上が放熱部Yである第3の筒部6の内部の第2冷却水流路12に送られる時)に、内筒部4の内部の第1冷却水流路7を流れる冷却水3による排気ガス2の熱の回収熱量と、第3の筒部6の内部の第2冷却水流路12を流れる冷却水3からの外気10への放熱熱量とが略同等になるように構成されている。これにより、内筒部4の第1冷却水流路7と第3の筒部6の第2冷却水流路12の各冷却水3が合流した後の冷却水3の温度が、内筒部4の第1冷却水流路7と第3の筒部の第2冷却水流路12とに振り分ける前(分岐前)の冷却水3の温度と略同等にすることが可能となり、冷却水循環流路14の下流側に位置するラジエータ(図示せず)への負荷が発生しない。
また、ランキンサイクルシステムからの熱要請がある場合は、その要請される熱量に応じて冷却水3を内筒部4の第1冷却水流路7と第3の筒部6の内部の第2冷却水流路12とに振り分けることができ、排気熱回収熱量の制御が容易に行えるようにしている。
As shown in FIGS. 1 to 3, a large number of fins 16 and 17 are provided on the outer peripheral portion of the inner cylindrical portion 4 and the outer peripheral portion of the third cylindrical portion 6 of the present embodiment. The fins 16 of the inner cylinder part 4 are provided so that the cooling water 3 flowing through the first cooling water flow path 7 inside can efficiently recover the heat of the exhaust gas 2, and the fins 17 of the third cylinder part 6 are It is provided for efficiently radiating heat from the cooling water 3 flowing through the internal second cooling water flow path 12 to the outside air 10.
Further, in the exhaust heat recovery device 1 of the present embodiment, the total surface area of the fins 16 of the inner cylinder part 4 is set smaller than the total surface area of the fins 17 of the third cylinder part 6, in other words, the heat dissipation part. The total surface area of the fins 17 of the third cylinder part 6 is set to be larger than the total surface area of the fins 16 of the inner cylinder part 4 that is the exhaust heat recovery part X, and Rankine is used during steady operation or high load operation of the engine. When there is no heat request from the cycle system (when more than half of the cooling water 3 is sent to the second cooling water flow path 12 inside the third cylindrical portion 6 which is the heat radiating portion Y), the inside of the inner cylindrical portion 4 The amount of heat recovered from the heat of the exhaust gas 2 by the cooling water 3 flowing through the first cooling water flow path 7 and the heat radiation from the cooling water 3 flowing through the second cooling water flow path 12 inside the third cylindrical portion 6 to the outside air 10 It is comprised so that a calorie | heat amount may become substantially equivalent. Thereby, the temperature of the cooling water 3 after the respective cooling waters 3 of the first cooling water channel 7 of the inner cylinder part 4 and the second cooling water channel 12 of the third cylinder part 6 merge is It becomes possible to make the temperature substantially the same as the temperature of the cooling water 3 before distribution (before branching) to the first cooling water flow path 7 and the second cooling water flow path 12 of the third cylindrical portion, and downstream of the cooling water circulation flow path 14. No load is applied to the radiator (not shown) located on the side.
Further, when there is a heat request from the Rankine cycle system, the cooling water 3 is supplied to the first cooling water flow path 7 of the inner cylinder portion 4 and the second cooling inside the third cylinder portion 6 according to the required amount of heat. It can be distributed to the water flow path 12 so that the exhaust heat recovery heat quantity can be easily controlled.

例えば、冷却水3の温度が約100℃の場合、内筒部4の第1冷却水流路7の周囲における排気ガス2の温度が約300℃であるため、冷却水3との温度差は約200℃となる。一方、第3の筒部6の内部の第2冷却水流路12の周囲における外気10の温度は約30℃であるため、冷却水3との温度差は約70℃となる。仮に、内筒部4のフィン16の総表面積と第3の筒部6のフィン17の総表面積を同じに設定した場合には、第3の筒部6における第2冷却水流路12の放熱量は内筒部4における第1冷却水流路7の回収熱量の約半分となる。面積が広いほど伝わる熱量は大きいことから、内筒部4における第1冷却水流路7の回収熱量と第3の筒部6における第2冷却水流路12の放熱量を略同等とするためには、第3の筒部6のフィン17の総表面積を内筒部4のフィン16の総表面積よりも大きく設定する必要がある。   For example, when the temperature of the cooling water 3 is about 100 ° C., the temperature of the exhaust gas 2 around the first cooling water flow path 7 of the inner cylinder portion 4 is about 300 ° C., so the temperature difference from the cooling water 3 is about 200 ° C. On the other hand, since the temperature of the outside air 10 around the second cooling water flow path 12 inside the third cylindrical portion 6 is about 30 ° C., the temperature difference from the cooling water 3 is about 70 ° C. If the total surface area of the fins 16 of the inner cylinder part 4 and the total surface area of the fins 17 of the third cylinder part 6 are set to be the same, the heat dissipation amount of the second cooling water channel 12 in the third cylinder part 6 Is about half the amount of heat recovered by the first cooling water flow path 7 in the inner cylinder portion 4. The larger the area, the larger the amount of heat that is transmitted, so that the recovered heat amount of the first cooling water channel 7 in the inner cylinder part 4 and the heat dissipation amount of the second cooling water channel 12 in the third cylinder part 6 are substantially equal. The total surface area of the fins 17 of the third cylindrical part 6 needs to be set larger than the total surface area of the fins 16 of the inner cylindrical part 4.

次に、本発明の実施形態に係る排気熱回収器1の動作及び作用について説明する。
まず、エンジン始動時において、エンジンの暖機運転や車室内の暖房の要求がある場合は、図2に示すように、冷却水循環流路14の上流部14aに設けた制御バルブ15を制御することにより、冷却水循環流路14の上流部14aから排気熱回収部Xである内筒部4の第1冷却水流路7に冷却水3の全量が送られ、放熱部Yである第3の筒部6の第2冷却水流路12には冷却水3が送られない。第1冷却水流路7に送られた冷却水3は、第1冷却水流路7を流れながら、内筒部4の外側の排気ガス流路9を流れる排気ガス2と熱交換を行って、排気ガス2の熱を回収する。熱回収を行った後、冷却水3は、内筒部4の第1冷却水流路7から流出し、そのままの状態で、冷却水循環流路14の下流部14bを経て図外のラジエータに送られることになる。
Next, the operation and action of the exhaust heat recovery device 1 according to the embodiment of the present invention will be described.
First, when there is a request for warming up the engine or heating the passenger compartment at the time of starting the engine, the control valve 15 provided in the upstream portion 14a of the cooling water circulation passage 14 is controlled as shown in FIG. Thus, the entire amount of the cooling water 3 is sent from the upstream portion 14a of the cooling water circulation passage 14 to the first cooling water passage 7 of the inner cylinder portion 4 that is the exhaust heat recovery portion X, and the third cylinder portion that is the heat radiating portion Y. The cooling water 3 is not sent to the second cooling water flow path 12. The cooling water 3 sent to the first cooling water flow path 7 exchanges heat with the exhaust gas 2 flowing through the exhaust gas flow path 9 outside the inner cylinder portion 4 while flowing through the first cooling water flow path 7, thereby The heat of gas 2 is recovered. After the heat recovery, the cooling water 3 flows out from the first cooling water flow path 7 of the inner cylinder part 4 and is sent to a radiator (not shown) through the downstream part 14b of the cooling water circulation flow path 14 as it is. It will be.

また、エンジン定常運転時や高負荷運転時において、エンジンの暖機運転や車室内の暖房の要求が無い場合は、図3に示すように、冷却水循環流路14の上流部14aに設けた制御バルブ15を制御することにより、冷却水循環流路14の上流部14aから放熱部Yである第3の筒部6の第2冷却水流路12に半分以上の大流量の冷却水3が送られるとともに、排気熱回収部Xである内筒部4の第1冷却水流路7には小流量の冷却水3が送られる。第1冷却水流路7に送られた小流量の冷却水3は、第1冷却水流路7を流れながら、内筒部4の外側の排気ガス流路9を流れる排気ガス2と熱交換を行って、排気ガス2の熱を回収するため、内筒部4の内部における第1冷却水流路7が、内筒部4の外側の排気ガス流路9を流れる排気ガス2の熱で過熱されることが防止されることになる。
熱回収を行った小流量の冷却水3は、内筒部4の第1冷却水流路7から流出する一方、第2冷却水流路12に送られた大流量の冷却水3は、第3の筒部6の第2冷却水流路12を流れながら、第3の筒部6の外側を流れる車両走行風11などにより外気10へ放熱されるとともに、第2冷却水流路12から流出する。そして、第2冷却水流路12から流出した冷却水3は、第1冷却水流路7から流出した冷却水3と合流し、冷却水循環流路14の下流部14bを経て図外のラジエータに送られることになる。この際、放熱部Yである第3の筒部6は、車速に比例して増加する車両走行風11に晒されているため、第2冷却水流路12を流れる冷却水3は車速に比例して冷却されることになる。しかも、第3の筒部6の外周部に設けられたフィン17の総表面積が内筒部4の外周部に設けられたフィン16の総表面積よりも大きくなるように設定されているため、内筒部4の第1冷却水流路7を流れる冷却水3による排気ガス2の熱の回収熱量と、第3の筒部6の第2冷却水流路12を流れる冷却水3からの外気10への放熱熱量とを略同等にすることが可能である。これにより、内筒部4の第1冷却水流路7から流出した冷却水3と、第3の筒部6の第2冷却水流路12から流出した冷却水3とが合流した後の温度は、第1冷却水流路7と第2冷却水流路12とに振り分ける前(分岐前)の冷却水3の温度と略同等にすることが可能となり、冷却水循環流路14の下流側に位置するラジエータ(図示せず)への負荷が増大せず、排気熱回収熱量の制御が容易となる。
Further, when there is no request for warming up the engine or heating the passenger compartment during steady engine operation or high load operation, as shown in FIG. 3, the control provided in the upstream portion 14a of the cooling water circulation passage 14 is provided. By controlling the valve 15, the cooling water 3 having a flow rate of more than half is sent from the upstream portion 14 a of the cooling water circulation passage 14 to the second cooling water passage 12 of the third cylindrical portion 6 that is the heat radiating portion Y. A small flow amount of the cooling water 3 is sent to the first cooling water flow path 7 of the inner cylinder part 4 which is the exhaust heat recovery part X. The small flow rate of the cooling water 3 sent to the first cooling water channel 7 exchanges heat with the exhaust gas 2 flowing through the exhaust gas channel 9 outside the inner cylinder part 4 while flowing through the first cooling water channel 7. In order to recover the heat of the exhaust gas 2, the first cooling water passage 7 inside the inner cylinder portion 4 is overheated by the heat of the exhaust gas 2 flowing through the exhaust gas passage 9 outside the inner cylinder portion 4. It will be prevented.
The small flow rate of cooling water 3 that has recovered heat flows out from the first cooling water flow path 7 of the inner cylinder portion 4, while the large flow rate of cooling water 3 sent to the second cooling water flow path 12 While flowing through the second cooling water flow path 12 of the cylindrical portion 6, the heat is released to the outside air 10 by the vehicle traveling wind 11 flowing outside the third cylindrical portion 6 and flows out from the second cooling water flow path 12. And the cooling water 3 which flowed out from the 2nd cooling water flow path 12 merges with the cooling water 3 which flowed out from the 1st cooling water flow path 7, and is sent to the radiator outside a figure through the downstream part 14b of the cooling water circulation flow path 14. FIG. It will be. At this time, since the third cylinder portion 6 that is the heat radiating portion Y is exposed to the vehicle traveling wind 11 that increases in proportion to the vehicle speed, the cooling water 3 flowing through the second cooling water flow path 12 is proportional to the vehicle speed. Will be cooled. Moreover, since the total surface area of the fins 17 provided on the outer peripheral part of the third cylindrical part 6 is set to be larger than the total surface area of the fins 16 provided on the outer peripheral part of the inner cylindrical part 4, The amount of heat recovered from the heat of the exhaust gas 2 by the cooling water 3 flowing through the first cooling water flow path 7 of the cylindrical portion 4 and the outside air 10 from the cooling water 3 flowing through the second cooling water flow path 12 of the third cylindrical portion 6 It is possible to make the heat radiation amount substantially equal. Thereby, the temperature after the cooling water 3 flowing out from the first cooling water flow path 7 of the inner cylinder portion 4 and the cooling water 3 flowing out from the second cooling water flow path 12 of the third cylindrical portion 6 merges, It becomes possible to make the temperature substantially the same as the temperature of the cooling water 3 before the distribution to the first cooling water flow path 7 and the second cooling water flow path 12 (before branching), and a radiator ( (Not shown) does not increase, and the exhaust heat recovery heat quantity can be easily controlled.

このように本発明の実施形態に係る排気熱回収器1においては、内筒部4の外周部と外筒部5の内周部との間に形成された空間である排気ガス流路9によって内筒部4の内部の第1冷却水流路7が覆われ、外気10に直接晒されていないので、冷却水3に回収された排気ガス2の熱が車両走行風11により外気10へ放熱されてしまうことを大幅に抑制することが可能となり、冷却水3から外気10への放熱量を低減でき、排気ガス2の熱回収効率を向上させることができる。また、本実施形態の排気熱回収器1においては、排気ガス流路9の内部に排気バルブを配置する必要がないので、排気バルブで発生していた圧力損失を削減し、圧力損失を低く抑えることができる。さらに、排気バルブの廃止により排気ガス流路9を直線形状に形成して、排気ガス流路9中の排気ガス2を円滑に流すことが可能となり、渦の発生による圧力損失を小さくすることができるとともに、排気ガス流路9の断面積の大きさ、フィン16,17の配置数、フィン16,17の密集度などの選択及び設定の自由度を高めることができる。さらに、本実施形態の排気熱回収器1においては、排気熱回収部Xである内筒部4の第1冷却水流路7及び放熱部Yである第3の筒部6の第2冷却水流路12を流れる冷却水3の流量の割合が制御バルブ15によって振り分け可能に構成されているので、冷却水3に回収された排気ガス2の熱量を容易かつ確実に制御することができ、冷却水3に回収された排気ガス2の熱をランキンサイクルシステムの加熱器の熱源として支障なく利用することができる。   Thus, in the exhaust heat recovery device 1 according to the embodiment of the present invention, the exhaust gas flow path 9 which is a space formed between the outer peripheral portion of the inner cylindrical portion 4 and the inner peripheral portion of the outer cylindrical portion 5 is used. Since the first cooling water flow path 7 inside the inner cylinder portion 4 is covered and not directly exposed to the outside air 10, the heat of the exhaust gas 2 collected in the cooling water 3 is radiated to the outside air 10 by the vehicle traveling wind 11. The amount of heat released from the cooling water 3 to the outside air 10 can be reduced, and the heat recovery efficiency of the exhaust gas 2 can be improved. Further, in the exhaust heat recovery device 1 of the present embodiment, it is not necessary to arrange an exhaust valve inside the exhaust gas flow path 9, so that the pressure loss generated in the exhaust valve is reduced and the pressure loss is kept low. be able to. Further, by eliminating the exhaust valve, it is possible to form the exhaust gas passage 9 in a straight shape so that the exhaust gas 2 in the exhaust gas passage 9 can flow smoothly, and the pressure loss due to the generation of vortices can be reduced. In addition, the degree of freedom of selection and setting such as the size of the cross-sectional area of the exhaust gas passage 9, the number of fins 16 and 17 arranged, and the density of the fins 16 and 17 can be increased. Furthermore, in the exhaust heat recovery device 1 of the present embodiment, the first cooling water passage 7 of the inner cylinder portion 4 that is the exhaust heat recovery portion X and the second cooling water passage of the third cylinder portion 6 that is the heat radiating portion Y. Since the ratio of the flow rate of the cooling water 3 flowing through 12 is configured to be distributed by the control valve 15, the amount of heat of the exhaust gas 2 recovered in the cooling water 3 can be easily and reliably controlled. Thus, the heat of the exhaust gas 2 recovered can be used without any problem as a heat source for the heater of the Rankine cycle system.

以上、本発明の実施の形態につき述べたが、本発明は既述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。
例えば、既述の実施形態の制御バルブ15は、図4に示すようなストッパー付きの三方弁の形式に限らず、同様の機能を発揮できるものであれば、他の形式の三方弁であっても良い。
While the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.
For example, the control valve 15 of the above-described embodiment is not limited to a three-way valve with a stopper as shown in FIG. 4, but may be another type of three-way valve as long as it can perform the same function. Also good.

1 排気熱回収器
2 排気ガス
3 冷却水(冷却媒体)
4 内筒部
5 外筒部
6 第3の筒部
7 第1冷却水流路(内筒部の内部)
8,13 スタティックミキサー(撹拌装置)
9 排気ガス流路(空間)
10 外気
11 車両走行風
12 第2冷却水流路(第3の筒部の内部)
14 冷却水循環流路(冷却媒体流路)
14a 上流部
14b 下流部
15 制御バルブ
16,17 フィン
X 排気熱回収部
Y 放熱部
1 Exhaust heat recovery device 2 Exhaust gas 3 Cooling water (cooling medium)
4 inner cylinder part 5 outer cylinder part 6 3rd cylinder part 7 1st cooling water flow path (inside of inner cylinder part)
8,13 Static mixer (stirrer)
9 Exhaust gas passage (space)
10 Outside air 11 Vehicle running wind 12 Second cooling water flow path (inside the third cylinder)
14 Cooling water circulation channel (cooling medium channel)
14a Upstream part 14b Downstream part 15 Control valve 16, 17 Fin X Exhaust heat recovery part Y Heat radiation part

Claims (7)

内部に冷却媒体が流動する内筒部と、該内筒部の外周部に間隔を空けて配置される外筒部と、該外筒部から間隔を空けて配置され、内部に冷却媒体が流動する第3の筒部とを備えた排気熱回収器において、
前記内筒部の外周部と前記外筒部の内周部との間には、排気ガスが流動する空間が形成され、
前記内筒部と前記第3の筒部とは、前記冷却媒体が流動する冷却媒体流路の上流部と下流部でそれぞれ連結され、
前記冷却媒体流路の上流部には、前記内筒部の内部及び前記第3の筒部の内部に流れる前記冷却媒体の流量を制御する制御バルブが設けられていることを特徴とする排気熱回収器。
An inner cylinder part in which the cooling medium flows inside, an outer cylinder part that is spaced from the outer peripheral part of the inner cylinder part, and a space that is spaced from the outer cylinder part, and the cooling medium flows inside In the exhaust heat recovery device including the third cylindrical portion,
Between the outer peripheral part of the inner cylinder part and the inner peripheral part of the outer cylinder part, a space in which exhaust gas flows is formed,
The inner cylinder part and the third cylinder part are respectively connected at an upstream part and a downstream part of a coolant flow path through which the coolant flows.
Exhaust heat characterized by having a control valve for controlling the flow rate of the cooling medium flowing in the inner cylinder part and the third cylinder part in the upstream part of the cooling medium flow path. Collector.
前記内筒部の内部には、前記制御バルブの流量制御によって前記冷却媒体が常に流動するように構成されていることを特徴とする請求項1に記載の排気熱回収器。   2. The exhaust heat recovery device according to claim 1, wherein the cooling medium always flows inside the inner cylinder portion by controlling the flow rate of the control valve. 前記制御バルブは、ストッパー付きの三方弁であることを特徴とする請求項1または2に記載の排気熱回収器。   The exhaust heat recovery device according to claim 1 or 2, wherein the control valve is a three-way valve with a stopper. 前記内筒部の外周部及び前記第3の筒部の外周部には、フィンが設けられていることを特徴とする請求項1〜3のいずれかに記載の排気熱回収器。   The exhaust heat recovery device according to any one of claims 1 to 3, wherein fins are provided on an outer peripheral portion of the inner cylindrical portion and an outer peripheral portion of the third cylindrical portion. 前記内筒部のフィンの総表面積は、前記第3の筒部のフィンの総表面積よりも小さく設定されていることを特徴とする請求項4に記載の排気熱回収器。   The exhaust heat recovery device according to claim 4, wherein a total surface area of the fins of the inner cylinder part is set smaller than a total surface area of the fins of the third cylinder part. 前記内筒部及び前記第3の筒部のうち、少なくともどちらか一方の内部には、前記冷却媒体を撹拌する撹拌装置が設けられていることを特徴とする請求項1〜5のいずれかに記載の排気熱回収器。   6. The stirring device for stirring the cooling medium is provided in at least one of the inner tube portion and the third tube portion. 6. The exhaust heat recovery device described. 前記撹拌装置は、スタティックミキサーであることを特徴とする請求項6に記載の排気熱回収器。   The exhaust heat recovery device according to claim 6, wherein the stirring device is a static mixer.
JP2013163169A 2013-08-06 2013-08-06 Exhaust heat recovery unit Active JP6171699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013163169A JP6171699B2 (en) 2013-08-06 2013-08-06 Exhaust heat recovery unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013163169A JP6171699B2 (en) 2013-08-06 2013-08-06 Exhaust heat recovery unit

Publications (2)

Publication Number Publication Date
JP2015031240A true JP2015031240A (en) 2015-02-16
JP6171699B2 JP6171699B2 (en) 2017-08-02

Family

ID=52516766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013163169A Active JP6171699B2 (en) 2013-08-06 2013-08-06 Exhaust heat recovery unit

Country Status (1)

Country Link
JP (1) JP6171699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066250A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Energy conversion device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114118U (en) * 1986-01-08 1987-07-20
JPH032809U (en) * 1989-06-01 1991-01-11
JPH066976U (en) * 1992-06-30 1994-01-28 株式会社ゼクセル Heat exchanger
JP2001254861A (en) * 2000-03-08 2001-09-21 Matsushita Refrig Co Ltd Three-way valve
JP2006192950A (en) * 2005-01-11 2006-07-27 Denso Corp Cooling water circuit of engine
JP2010149794A (en) * 2008-12-26 2010-07-08 Panasonic Corp On-vehicle heating device
JP2012031966A (en) * 2010-08-02 2012-02-16 Rinnai Corp Three-way valve
JP2013539517A (en) * 2010-08-19 2013-10-24 ダウ グローバル テクノロジーズ エルエルシー Method and device for heating urea-containing materials in a vehicle emission control system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114118U (en) * 1986-01-08 1987-07-20
JPH032809U (en) * 1989-06-01 1991-01-11
JPH066976U (en) * 1992-06-30 1994-01-28 株式会社ゼクセル Heat exchanger
JP2001254861A (en) * 2000-03-08 2001-09-21 Matsushita Refrig Co Ltd Three-way valve
JP2006192950A (en) * 2005-01-11 2006-07-27 Denso Corp Cooling water circuit of engine
JP2010149794A (en) * 2008-12-26 2010-07-08 Panasonic Corp On-vehicle heating device
JP2012031966A (en) * 2010-08-02 2012-02-16 Rinnai Corp Three-way valve
JP2013539517A (en) * 2010-08-19 2013-10-24 ダウ グローバル テクノロジーズ エルエルシー Method and device for heating urea-containing materials in a vehicle emission control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066250A1 (en) * 2016-10-06 2018-04-12 株式会社デンソー Energy conversion device
JP2018059685A (en) * 2016-10-06 2018-04-12 株式会社デンソー Energy conversion device
US10767538B2 (en) 2016-10-06 2020-09-08 Denso Corporation Energy conversion device

Also Published As

Publication number Publication date
JP6171699B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP4023472B2 (en) Thermoelectric generator
US7921640B2 (en) Exhaust gas waste heat recovery
JP5018592B2 (en) Waste heat recovery device
KR101125004B1 (en) Exhaust heat recovery apparatus
JP5451594B2 (en) Internal combustion engine cooling device
JP2008144595A (en) Exhaust heat recovery device
JP2007247556A (en) Exhaust heat recovery device
JP4923832B2 (en) Vehicle cooling system
JP2014095362A (en) Exhaust heat recovery device
JP6358938B2 (en) Exhaust heat recovery device
WO2014017014A1 (en) Egr systems and exhaust heat exchanger systems
JP2018035764A (en) Exhaust heat recovery device for engine
JP6171699B2 (en) Exhaust heat recovery unit
JP4311272B2 (en) Cooling medium circulation device
JP2016109018A (en) Exhaust heat recovery apparatus
WO2015170567A1 (en) Cooling device for hybrid vehicle
JP6390463B2 (en) Thermoelectric generator
JP4550077B2 (en) Heat source machine
JP2008175125A (en) Exhaust gas heat recovery device of internal combustion engine
JP6680729B2 (en) Exhaust heat recovery unit and exhaust heat recovery system
JP5494357B2 (en) Cooling device for internal combustion engine
JP2006083784A (en) Engine exhaust heat utilizing device
JP2016160889A (en) Heat exchanger
JP5691999B2 (en) Thermoelectric generator
CN209295741U (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R151 Written notification of patent or utility model registration

Ref document number: 6171699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151