JP6358938B2 - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system Download PDF

Info

Publication number
JP6358938B2
JP6358938B2 JP2014241032A JP2014241032A JP6358938B2 JP 6358938 B2 JP6358938 B2 JP 6358938B2 JP 2014241032 A JP2014241032 A JP 2014241032A JP 2014241032 A JP2014241032 A JP 2014241032A JP 6358938 B2 JP6358938 B2 JP 6358938B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
passage
exhaust
heat recovery
heat exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014241032A
Other languages
Japanese (ja)
Other versions
JP2016102446A (en )
Inventor
敏博 柴田
敏博 柴田
太田 真志
真志 太田
孝司 加藤
孝司 加藤
Original Assignee
株式会社三五
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/16Energy recuperation from low temperature heat sources of the ICE to produce additional power

Description

本発明は、自動車の内燃機関等の排気熱回収装置に関する。 The present invention relates to an exhaust heat recovery apparatus such as an internal combustion engine of a motor vehicle.

従来、内燃機関で動く自動車の総合的な熱効率の向上のために、内燃機関の排気熱を熱交換器で回収し冷却媒体を加熱して暖機促進や暖房性能向上に供する排気熱回収装置を、排気管に介装することが多用されている。 Conventionally, in order to improve the overall thermal efficiency of an automobile powered by an internal combustion engine, the exhaust heat recovery apparatus to be subjected to exhaust heat recovered by heating the cooling medium warm-up facilitating and heating performance improvement in the heat exchanger of the internal combustion engine , be interposed in the exhaust pipe has been widely used. また、排気熱を直接電気へ変換し、補機駆動やバッテリー充電に供する熱電発電装置を排気管に介装することも提案されている。 Further, to convert the exhaust heat directly to electricity, it has also been proposed to interposed thermoelectric generator subjected to accessory drive and battery charging in the exhaust pipe. そこで、排気熱の更なる有効活用の観点から、熱交換器と熱電発電装置を両方とも排気管に介装する統合型の排気熱回収装置も考え得るが、互いに必要とされる運転領域が異なること、あるいは、両方とも必要としない運転領域(バイパス域)も存在することから、各装置への排気ガスおよび冷却媒体の供給を上手く制御する必要があり、その実現は困難となっている。 Therefore, from the viewpoint of further effective use of exhaust heat, integrated exhaust heat recovery apparatus interposed thermoelectric generator and the heat exchanger both in an exhaust pipe is also conceivable, but the operating region is different required together it, or from also both not require operating range (bypass area) exists, it is necessary to control successfully the supply of exhaust gas and cooling medium to the device are realized is difficult.

理想的には、(α)熱電発電装置を介装する流路、(β)熱交換器を介装する流路、(γ)(α)(β)とも迂回して流れるバイパス流路、の三流路を独立して備え、三流路を選択的に切り替え得るとともに選択した複数流路における流量割合を連続的に分配制御できるような排気熱回収装置があれば好適であるが、そのような複数の独立流路および切り替えバルブを具備する大型システムは制御が困難となる上に、重量やスペースにおいて車両搭載上も著しく制限を受けるため、実現性が乏しい。 Ideally, (alpha) flow path interposing a thermoelectric generator, (beta) flow path interposing a heat exchanger, (γ) (α) (β) a bypass flow passage which flows bypassing both, of comprising a independently Sanryuro, is suitable if there is an exhaust heat recovery apparatus that allows continuous distribution control the flow rate at a plurality channels selected with may selectively switched to Sanryuro, such multiple independent flow path and large systems having a switching valve on the control becomes difficult, for receiving significantly limited on a vehicle equipped with the weight and space, poor feasibility.

そのような問題の一解決策として特許文献1においては、単一の筐体内に熱交換器と熱電発電装置(熱電発電素子)と板状バルブ体(開閉弁)とを備え、筐体内の排気ガスの流れを板状バルブ体の姿勢によって向きを変えることで、熱交換器と熱電発電素子への排気ガスの当たり方を変えて、疑似的に上記(α)(β)(γ)のような各流路を現出させる排気熱回収装置が開示されている。 In Patent Document 1 as one solution to such problems, a heat exchanger in a single housing and thermoelectric generator (thermoelectric generating element) and the plate-like valve member (open-close valve), the exhaust casing by changing the direction of flow of the gas by the attitude of the plate-like valve member, by changing the way per exhaust gas to the heat exchanger and the thermoelectric power generation element, artificially above (α) (β) as the (gamma) the exhaust heat recovery apparatus is disclosed for revealing a respective flow path. 尚、特許文献2には、「内燃機関に接続される排気流路を構成する少なくとも二つの流路を備えた内燃機関の排気装置において、単一の弁部材によって流路切換を行うと共に各々の流路面積調整を適切に行い得る排気装置」が開示されている(特許文献2の段落〔0014〕に記載)。 In Patent Document 2, in the exhaust system of an internal combustion engine having at least two flow paths that constitutes an exhaust passage connected to "internal combustion engine, each performs channel switching by a single valve member an exhaust device capable of performing flow area adjusted appropriately "is disclosed (described in paragraph Patent Document 2 [0014]).

特許第3767509号公報 Patent No. 3767509 Publication 特許第4486963号公報 Patent No. 4486963 Publication

しかしながら、特許文献1に開示される排気熱回収装置においては、上述の(α)(β)(γ)のような独立した流路を確保できないとともに、各流路におけるガス流量分配を大雑把にしか調節できないため、要求を満たせていない。 However, in the exhaust heat recovery device disclosed in Patent Document 1, the above-mentioned (α) (β) with can not be secured a flow path independent, such as (gamma), only roughly the gas flow distribution in each flow path because you can not adjust, do not let meet the request.

実際の車両運転状態においては、内燃機関の高負荷運転時には、熱交換器と熱電発電素子には排気ガスを接触させることなく主排気流路(バイパス流路)にだけ流すことで、内燃機関の出力性能を確保するとともに過剰な熱回収および熱電発電を回避したい。 In actual vehicle operating conditions, at the time of high load operation of the internal combustion engine, the heat exchanger and the thermoelectric power generation element by flowing only into the main exhaust passage without contacting the exhaust gas (bypass passage), the internal combustion engine We want to avoid excessive heat recovery and thermoelectric generator while ensuring output performance. しかしながら特許文献1の排熱回収装置によっては、内燃機関の高負荷時においても熱交換器と熱電発電素子に高温大流量のガスが当たってしまうため、熱交換器においては冷却水の沸騰が、熱電発電装置においては熱電発電素子への熱害が懸念される。 However some exhaust heat recovery apparatus of Patent Document 1, since the resulting hit high temperature high flow rate of gas to the heat exchanger and the thermoelectric power generation element even at a high load of the internal combustion engine, the boiling of the cooling water in the heat exchanger, in the thermoelectric generator is concern heat damage to the thermoelectric power generation element. もちろん、流路抵抗を最小にして内燃機関の出力性能を稼ぎたいとの本来目的も達成できない。 Of course, the purpose not be able to achieve the original and want to earn the output performance of the internal combustion engine and the flow resistance to a minimum.

また、内燃機関の低負荷乃至中負荷運転領域においては、熱回収および熱電発電に必要な熱量分だけの排気ガスを両者へ接触させるとともに、それ以上の不要な排気ガスは主排気流路へ流すというような各流路における流量調節(分配制御)が必要であるところ、特許文献1の排熱回収装置のような単一空間内における流向制御では実現が不可能である。 In the low load to middle load operation region of the internal combustion engine, with contacting the exhaust gases only heat amount required for heat recovery and heat power generation to both more unwanted exhaust gas flow into the main exhaust passage flow rate control where (distribution control) is needed in each flow path, such as that, it is impossible to achieve in the flow direction control in a single space, such as the exhaust heat recovery apparatus of Patent Document 1. さらに、主排気流路を内燃機関の運転状態によって絞り、消音要件を優先させるような制御も実現できない。 Furthermore, squeezing the main exhaust passage by the operating state of the internal combustion engine, also not be realized control as to prioritize the silencing requirements.

そこで本発明は、簡略な流路構成及び単一の制御弁によって、各流路の選択とともに流量制御を可能とし、効率的な熱回収と熱電発電を実現し得る排気熱回収装置を提供することを課題とする。 The present invention, by means of a simple flow channel structure and a single control valve, it is possible to flow control with the selection of each flow path, to provide an exhaust heat recovery device capable of realizing efficient heat recovery and thermoelectric generator a an object of the present invention.

上記の課題を達成するため、本発明に係る排気熱回収装置は、内燃機関の排気ガスを導入する主排気流路と、該主排気流路から分岐し当該主排気流路と合流部において合流する迂回流路と、前記合流部において前記主排気流路と前記迂回流路を開閉する弁装置とを備え、前記迂回流路には前記迂回流路内の排気ガスと熱交換をする熱交換器及び熱電発電装置が直列状に介装されており 、前記弁装置は前記主排気流路及び前記迂回流路の一方を閉塞した状態で他方の流路面積を連続的に設定する単一の弁部材であり、前記熱交換器及び前記熱電発電装置は共通の冷却媒体の流路を具備し、前記内燃機関の冷却媒体を導入して熱交換を行うこととしたものである。 To achieve the above object, an exhaust heat recovery apparatus according to the present invention, merge at the merging part and the main exhaust passage for introducing the exhaust gas of an internal combustion engine, the main exhaust passage branched from the main exhaust passage and a bypass flow path, and a valve device for opening and closing the bypass passage and the main exhaust passage at the merging portion, the heat exchanger wherein the bypass flow path for the exhaust gas heat exchanger of the bypass flow path vessels and the thermoelectric generator is interposed in series form, the valve device is a single the other flow path area is set continuously in a state of closing one of the main exhaust passage and the bypass passage a valve member, the heat exchanger and the thermoelectric power generating device comprises a flow path for common cooling medium is obtained by the fact that the introduction to the heat exchanger a cooling medium of the internal combustion engine.

上記の排気熱回収装置において、前記単一の弁部材を前記内燃機関の運転状態に応じて駆動し、前記主排気流路及び前記迂回流路の流路切換を行うと共に、前記主排気流路及び前記迂回流路の各々の流路面積調整を行う制御装置を備えたものとするとよい。 In the exhaust heat recovery device, driven according to the single valve member in the operating state of the internal combustion engine, it performs a channel switching of the main exhaust passage and the bypass passage, the main exhaust passage and may be assumed that a control device for performing each of the flow passage area adjustment of the bypass flow path.

本発明は上述のように構成されているので、以下の効果を奏する。 Since the present invention is constructed as described above, the following effects. 即ち、本発明の排気熱回収装置においては、主排気流路及び迂回流路の一方を完全に閉塞した状態で他方流路の面積を連続的に設定する弁装置を合流部に備えるとともに、迂回流路に熱交換器と熱電発電装置が直列状に介装されており、弁装置は主排気流路及び迂回流路の一方を閉塞した状態で他方の流路面積を連続的に設定する単一の弁部材であり、熱交換器及び熱電発電装置は共通の冷却媒体の流路を具備し、内燃機関の冷却媒体を導入して熱交換を行うこととしているので、内燃機関の高負荷時には熱交換器と熱電発電装置には排気ガスを接触させることなく主排気流路にだけ流すことで内燃機関の出力性能を確保できるとともに、過剰な熱回収および熱電発電を回避できる。 That is, in the exhaust heat recovery apparatus of the present invention, a valve device for setting the area of ​​the other channel continuously with provided the confluence portion in a state of complete occlusion of one of the main exhaust passage and bypass passage, bypassing single heat exchanger to the flow path and thermoelectric generator is interposed in series form, the valve system to continuously set the other flow path area in a state of closing one of the main exhaust passage and bypass passage is one of the valve member, the heat exchangers and thermoelectric power generation device comprises a flow path for common cooling medium, since by introducing a cooling medium of the internal combustion engine is set to be performed heat exchange, at the time of high load of the internal combustion engine with the thermoelectric generator and the heat exchanger can be secured output performance of the internal combustion engine by supplying only the main exhaust passage without contacting the exhaust gases, avoiding excessive heat recovery and thermoelectric power generation. また、主排気流路を閉塞しながら迂回流路の流路面積を任意に設定できるので、内燃機関の運転状態に応じ熱回収量及び熱電発電量を設定できる。 Since it arbitrarily set flow area bypass passage while closing the main exhaust passage, it can be set heat recovery amount and the thermoelectric power generation amount according to the operating conditions of the engine. さらに、迂回流路と主排気流路へ同時に流しながらその配分も任意に設定できるので、内燃機関の運転状態に応じた要求状態に対応可能となる。 Further, because the allocation can be set arbitrarily while simultaneously flows into the bypass passage and the main exhaust passage, and can respond to the request state in accordance with the operating state of the internal combustion engine.

上記の排気熱回収装置において、単一の弁部材を内燃機関の運転状態に応じて駆動し、主排気流路及び迂回流路の流路切換を行うと共に、主排気流路及び迂回流路の各々の流路面積調整を行う制御装置を備えたものとすれば、熱回収及び熱電発電要求、内燃機関の出力性能要求、流路絞りによる消音要求等において、時々刻々の優先度に応じたトレードオフ制御が可能となる In the exhaust heat recovery device, driven according to single valve member in the operating state of the internal combustion engine, performs a channel switching of the main exhaust passage and bypass passage, the main exhaust passage and bypass passage Assuming that a control device for performing each of the flow passage area adjustment, heat recovery and thermoelectric generation request, the output performance requirements of the internal combustion engine, in mute request due passage aperture, trade in accordance with the priority of every moment it is possible to turn off control

本発明の一実施形態に係る排気熱回収装置の暖機状態を示す断面図である。 The warmed-up state of the exhaust heat recovery apparatus according to an embodiment of the present invention is a cross-sectional view illustrating. 本発明の一実施形態に係る排気熱回収装置の暖機後の通常運転状態を示す断面図である。 The normal operation state after the warm-up of the exhaust heat recovery apparatus according to an embodiment of the present invention is a cross-sectional view illustrating. 本発明の一実施形態に係る排気熱回収装置の熱回収および熱電発電状態を示す断面図である。 It is a sectional view showing a heat recovery and thermoelectric power generation state of the exhaust heat recovery apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る排気熱回収装置の消音要件優先状態を示す断面図である。 It is a sectional view showing a mute requirements priority state of the exhaust heat recovery apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る排気熱回収装置のバイパス状態を示す断面図である。 It is a sectional view showing a bypass state of the exhaust heat recovery apparatus according to an embodiment of the present invention. 本発明の他の実施形態に係る排気熱回収装置の暖機状態を示す断面図である。 The warmed-up state of the exhaust heat recovery apparatus according to another embodiment of the present invention is a cross-sectional view illustrating. 本発明の他の実施形態に係る排気熱回収装置の通常運転状態を示す断面図である。 The normal operation of the exhaust heat recovery apparatus according to another embodiment of the present invention is a cross-sectional view illustrating. 本発明の他の実施形態に係る排気熱回収装置のバイパス状態を示す断面図である。 The bypass state of the exhaust heat recovery apparatus according to another embodiment of the present invention is a cross-sectional view illustrating. 本発明の更に他の実施形態に係る排気熱回収装置の暖機状態を示す断面図である。 Further warming-up state of the exhaust heat recovery apparatus according to another embodiment of the present invention is a cross-sectional view illustrating. 本発明の更に他の実施形態に係る排気熱回収装置の通常運転状態を示す断面図である。 It is a sectional view showing a further normal operation of the exhaust heat recovery apparatus according to another embodiment of the present invention. 本発明の更に他の実施形態に係る排気熱回収装置の通常運転状態を示す断面図である。 It is a sectional view showing a further normal operation of the exhaust heat recovery apparatus according to another embodiment of the present invention.

以下、本発明の望ましい実施形態について図面を参照して説明する。 It will be described below with reference to the accompanying drawings preferred embodiments of the present invention. 図1乃至図5は本発明の一実施形態に係る排気熱回収装置を示すものである。 1 to 5 shows the exhaust heat recovery apparatus according to an embodiment of the present invention. 図示しない内燃機関に接続された上流側排気管EP1と車両後方へ延びる下流側排気管EP2との間に、排気熱回収装置1が接続されている。 Between the downstream exhaust pipe EP2 extending connected upstream exhaust pipe EP1 and the vehicle rear to the internal combustion engine (not shown), the exhaust heat recovery device 1 is connected. これらの接続方法については、本実施形態のように接続部J1及びJ2において溶接等で直接接続することとしてもよいし、フランジや継手装置を介して着脱自在に接続することとしてもよい。 These connection methods, may be be connected directly by welding or the like at the connecting portion J1 and J2, as in the present embodiment, may be detachably connected via a flange or coupling device. 尚、図面の左方が排気ガスの上流側で、図示しない内燃機関より触媒コンバータ等を経て、排気ガスが排気管EP1内を流下する。 In the upstream side of the drawing left side is an exhaust gas, via a catalytic converter or the like from an internal combustion engine (not shown), the exhaust gas flows down through the exhaust pipe EP1. そして、図の右方が排気ガスの下流側となる。 The right side of figure the downstream side of the exhaust gas.

排気管EP1に接続する分岐部4において主排気流路2と迂回流路3とに分岐しており、両流路は下流の合流部5において合流する。 In the branch unit 4 connected to the exhaust pipe EP1 branches into the bypass channel 3 and the main exhaust passage 2, both flow paths are merged at the merging part 5 of the downstream. 合流部5内には、両流路の流れを選択し、かつ流量配分を制御し得る弁装置である単一の弁部材10が配されている。 In the junction unit 5, a single valve member 10 is disposed a valve device capable of controlling to select the flow of both flow paths, and flow distribution. 迂回流路3には、上流側に熱電発電装置6が、下流側に熱交換器7が、直列状に介装されている。 The bypass passage 3, the thermoelectric generator 6 on the upstream side, heat exchanger 7 on the downstream side, are interposed in series form. 即ち、本発明における排気熱回収装置は全ての実施形態ともに、熱電発電装置6及び熱交換器7を介装する迂回流路と両方とも介装しない主排気流路との二つの流路で構成される。 That is, both all embodiments the exhaust heat recovery apparatus of the present invention, consists of two flow paths between the main exhaust passage without interposed both the bypass flow path interposed thermoelectric generator 6 and the heat exchanger 7 It is.

熱電発電装置6は、複数の熱電発電素子6aで熱交換フィン6bを挟持するとともに、熱電発電素子6aの外面には冷却媒体通路6cが設けられた構造である。 Thermoelectric generator 6, as well as to sandwich the heat exchange fins 6b by a plurality of thermoelectric power generation elements 6a, the outer surface of the thermoelectric power generation element 6a is coolant passage 6c is provided structure. 迂回流路3を流れる排気ガスは熱交換フィン6b内を通過する際に熱交換し、その熱が熱電発電素子6aの内側面に伝達される。 Exhaust gas flowing through the bypass passage 3 is heat exchanged when passing through the heat exchange fins 6b, the heat is transferred to the inner surface of the thermoelectric power generating device 6a. 一方、熱電発電素子6aの外側面は冷却媒体流路6c内を流れる冷却媒体とも熱交換するが、ここにおいて、排気ガスからの伝熱と冷却媒体への伝熱の温度差ΔTが大きいほど、その発電量が大きくなる特性がある。 On the other hand, the outer surface of the thermoelectric power generating device 6a is heat exchange with the cooling medium flowing through the cooling medium flow passage 6c, but in this case, as the temperature difference ΔT of heat transfer to heat transfer and the cooling medium from the exhaust gas is large, a characteristic that its power generation amount increases. 熱交換器7は、複数の冷却フィン7aと複数の冷却媒体流路7bとが交互に積層されて熱交換器を形成しており、冷却フィン7aを通過する排気ガスが冷却媒体と熱交換する。 Heat exchanger 7, a plurality of cooling fins 7a and a plurality of cooling medium passages 7b are stacked alternately forms a heat exchanger, the exhaust gas passing through the cooling fins 7a to coolant heat exchanger . 尚、冷却媒体としては、内燃機関を冷却するための車両の冷却システムにて用いられるクーラント液をそのまま導入するのが好適であるが、その他の冷却媒体でも構わない。 As the cooling medium, but it is preferable to directly introduce the coolant used in the vehicle cooling system for cooling an internal combustion engine, but may be other coolant. 熱電発電素子としては、ゼーベック効果を利用したものが一般的であるが、上記の熱電発電素子6aは、それに限らず温度差によって発電する素子であればどのようなものでもよい。 The thermoelectric power generation element, but which utilizes the Seebeck effect is generally above thermoelectric generating device 6a may be any as long as it elements for generating power by the temperature difference is not limited thereto. また、排気ガスは熱交換フィン6b内を通過するに従って温度が低下するので、温度変化に応じて上流側から下流側に向かって対応温度が異なる熱電発電素子を配置すれば、更に効率的な発電が可能となる。 Further, since the temperature decreases as the exhaust gas passes through the heat exchange fins 6b, by arranging the corresponding temperature is different thermoelectric generating element from upstream to downstream in response to temperature change, further efficient power generation it is possible.

熱電発電装置6の冷却媒体流路6cと熱交換器7の冷却媒体流路7bとは連通管8を介して連通されている。 Communicate with each other through a communication pipe 8 and the cooling medium flow path 7b of the cooling medium flow passage 6c and the heat exchanger 7 of the thermoelectric generator 6. 導入管6aから冷却媒体流路6cに入った冷却媒体は熱交換を経て連通管8へ排出され、連通管8を通って冷却媒体流路7bへ流入し、更に熱交換を経て導出管7cから排出されて、図示しない車両の冷却水流路へ供される。 Coolant entering from the inlet pipe 6a to the cooling medium flow passage 6c are discharged to the communicating tube 8 through the heat exchanger, through the communication pipe 8 flows into the cooling medium flow path 7b, the further outlet pipe 7c through the heat exchanger is discharged, it is subjected to the cooling water passage (not shown) of the vehicle. 尚、冷却媒体を流す方向、すなわち冷却媒体流路6cと熱交換器7の冷却媒体流路7bのどちらへ先に冷却媒体を通すかについては、本実施形態に限らず適宜設定すればよいが、本実施形態のように、温度差ΔTを大きく確保するため低い温度の冷却媒体を導入したい熱電発電装置6へ先に通し、熱電発電装置6によって加熱された後の冷却媒体が、より多くの熱を回収したい熱交換器7へ流入するという順序が、合理的である。 The direction of flowing a cooling medium, i.e. for either through a cooling medium to the first one of the cooling medium flow path 7b of the cooling medium flow passage 6c and the heat exchanger 7 may be appropriately determined not limited to this embodiment , as in this embodiment, through a previously into thermoelectric generator 6 to be introduced a low temperature of the cooling medium to secure a large temperature difference [Delta] T, the cooling medium which has been heated by the thermoelectric generator 6 and many more the order that flows into the heat exchanger 7 to be recovering heat, is reasonable.

弁部材10は断面扇形状であり、その要部分をピボット軸9により揺動自在に軸支され、弁部材10の外周壁面が迂回流路3の内壁面および主排気流路の内壁面に摺動自在に配設されている。 The valve member 10 is a sectional fan shape, sliding the main part thereof is swingably supported by a pivot shaft 9, the outer peripheral wall surface inner wall surface of the inner wall surface and the main exhaust passage bypass passage 3 of the valve member 10 It is movably disposed. 弁部材10はアクチュエータACTに連結され、このアクチュエータACTを介して、電子制御ユニットECUにより内燃機関の運転状態に応じて駆動制御される。 The valve member 10 is connected to an actuator ACT, through the actuator ACT, is driven and controlled according to the operating state of the internal combustion engine by the electronic control unit ECU. アクチュエータACTは、例えばステップモータ(図示せず)を有し、これが電子制御ユニットECUによって精密に回転駆動あるいは保持固定される。 The actuator ACT is, for example, a step motor (not shown), which is precisely the rotary drive or held stationary by the electronic control unit ECU. 電子制御ユニットECUでは、各種センサ(酸素センサ、圧力センサ、水温センサ、回転センサ、アクセル開度センサ等)の検出信号等に基づき、内燃機関の運転状況、運転者のアクセルペダル等の操作状況、更には、車両姿勢や制動状況が監視され、所定のサイクルで、その時点における弁部材10の最適な位置が演算され、その位置まで回転し、あるいはその位置で停止するように、上記ステップモータの駆動信号が出力される。 In the electronic control unit ECU, various sensors (oxygen sensors, pressure sensors, temperature sensors, rotation sensors, an accelerator opening sensor, etc.) on the basis of the detection signal or the like, the operating condition of the internal combustion engine, such as an accelerator pedal by the driver operating conditions, Furthermore, the vehicle attitude and the braking status is monitored, at a predetermined cycle, the optimum position of the valve member 10 is calculated at that point in time, it rotated to that position, or to stop at that position, of the step motor drive signal is output. 而して、上記のアクチュエータACT及び電子制御ユニットECUによって制御装置が構成され、主排気流路2と迂回流路3との間の流路切換(各流路の開閉)が行われると共に、主排気流路2および迂回流路3の各々の流路面積調整が行われる。 And Thus, the control device by the actuator ACT and the electronic control unit ECU is configured, together with the channel switching between the main exhaust passage 2 and bypass channel 3 (opening and closing of the flow paths) is carried out, the main each of the flow passage area adjustment of the exhaust passage 2 and bypass channel 3 is performed. 尚、電子制御ユニットECUは、本システム専用に設置しても良いし、車両や内燃機関の電子制御ユニットに統合しても構わない。 The electronic control unit ECU may be installed in the system only, it may be integrated into the electronic control unit of the vehicle or internal combustion engine. また、弁部材10の具体的な設定および駆動の詳細については、前掲の特許文献2に開示された弁部材を参考にすることができる。 For details on the specific configuration and operation of the valve member 10, reference may be made to the valve member disclosed in Patent Document 2 cited above.

図1においては、主排気流路2が弁部材10によって全閉状態とされ、排気流路は迂回流路3側へ切り替えられる。 1 is fully closed by the main exhaust passage 2 the valve member 10, the exhaust passage is switched to the bypass flow path 3 side. 従って、排気ガスaのすべてが迂回流路3に導入され、熱電発電装置6と熱交換器7にて熱交換された後、合流部5において主排気流路2へ排気ガスbとして排出される。 Thus, all of the exhaust gas a is introduced into the bypass channel 3, after being heat-exchanged by the thermoelectric generator 6 and the heat exchanger 7, and is discharged as an exhaust gas b in the merging portion 5 to the main exhaust passage 2 . 更に、本実施形態においては、主排気流路2が全閉状態に維持された状態で、弁部材10の揺動駆動によって、出力要件及び消音要件に適合するように迂回流路3の流路面積が逐次調整される。 Further, in the present embodiment, in a state in which the main exhaust passage 2 is maintained in the fully closed state, the swing drive of the valve member 10, the flow path of the bypass flow channel 3 so as to conform to the power requirements and silencing requirements area is sequentially adjusted. 例えば、弁部材10と迂回流路3との隙間を流れる排気ガスbの量が調整されると、弁部材10の「絞り機能」により「流量調節機能」が発揮される。 For example, when the amount of exhaust gas b through the gap between the bypass channel 3 and the valve member 10 is adjusted, "flow rate adjusting function" is exhibited by the "stop function" of the valve member 10. 尚、弁部材10は無段階に駆動し得るので、主排気流路2を全閉状態に維持した状態で、迂回流路3の流路面積を任意に調整することができる。 Incidentally, the valve member 10 so may drive steplessly, the main exhaust passage 2 while maintaining the fully closed state, it is possible to arbitrarily adjust the flow area of ​​the bypass channel 3.

図1の態様は、内燃機関の始動直後で内燃機関および冷却媒体が温まっていない冷間時、所謂暖機状態を示すもので、冷却媒体が一定温度に達するまでの暖機期間においては、早期に冷却媒体温度を向上させる要件が最優先される。 Embodiment of Figure 1, the cold that is not warmed the internal combustion engine and the cooling medium immediately after starting the internal combustion engine, shows a so-called warm-up state, in the warm-up period until the coolant reaches a certain temperature, early requirements to improve the cooling medium temperature is the highest priority. 従って、熱交換器7における熱回収が優先されるため、前述のように主排気流路2が、凹部11内に位置する弁部材10によって全閉状態とされ、排気流路は迂回流路3側へ切り替えられている。 Thus, since the heat recovery in the heat exchanger 7 is preferentially as the aforementioned main exhaust passage 2, it is fully closed by the valve member 10 located in the recess 11, the exhaust passage bypass passage 3 It has been switched to the side. そして、排気ガスのすべてが迂回流路3に導入され、熱電発電装置6と熱交換器7にて熱交換された後、合流部5において主排気流路2へ排出される。 Then, all the exhaust gas is introduced into bypass channel 3, after being heat-exchanged by the thermoelectric generator 6 and the heat exchanger 7 is discharged to the main exhaust passage 2 at the merging portion 5. この時、熱電発電装置6にて熱交換された排気ガスが熱交換器7へ流入することになるが、熱電発電素子自体は低熱伝導率のため熱回収量は微々たるものであり、悪影響はない。 At this time, although exhaust gas heat exchanger in the thermoelectric generator 6 is able to flow into the heat exchanger 7, heat recovery amount for thermoelectric power generation element itself low thermal conductivity is insignificant, adverse effects Absent. 尚、暖機過程においては、弁部材10によって主排気流路2が全閉となるのが好ましいが、排気ガスの完全遮断が必須ではないので、主排気流路2の排気流量が必要なだけ絞られていれば、必ずしも全閉状態とする必要はなく、若干開いた状態でも構わない。 In the warm-up process, the main exhaust passage 2 by the valve member 10 is is preferred that the fully closed, since it is not essential complete blockage of the exhaust gas, only need exhaust flow rate of the main exhaust passage 2 if it is squeezed, it is not necessarily required to be fully closed state, it may be in a state of open slightly.

図2の態様は、暖機が完了後の通常運転状態を示すものであり、内燃機関の中回転乃至高回転時の状態において適度な熱電発電および熱回収を実施するものである。 Embodiment of FIG. 2 shows a normal operation state after the warm-up is completed, it is to implement a moderate thermoelectric generation and heat recovery in the state at the time of rotation to high rotation in the internal combustion engine. この状態においては、弁部材10は主排気流路2と迂回流路3の両方に排気ガスを流せる範囲内で揺動し、時々刻々の優先要件に従い電子制御ユニットECUからの指示を受けて、各流路へ流す割合(配分)を決めている。 In this state, it swung within a range that can safely exhaust gas to both the bypass flow path 3 the valve member 10 and the main exhaust passage 2 in response to an instruction from the electronic control unit ECU in accordance with the priority requirements of every moment, and it controls the percentage (allocation) to flow into the flow paths. すなわち、主排気流路2を流れる量eは隙間gによって決まり、迂回流路3を流れる量dは隙間fによって決まるので、これら両隙間の大きさをトレードオフ調整することで、熱電発電量および熱回収量と、消音量あるいは内燃機関の出力を適宜選択できる。 That is, determined by the amount e is a gap g flowing through the main exhaust passage 2, so determined by the amount d is a gap f that flows through the bypass channel 3, by tradeoff adjust the size of both the gap, thermoelectric power generation amount and a heat recovery amount can be appropriately selected output vanishing volume or internal combustion engine.

このように本発明の排気熱回収装置によれば、前述の(α)(β)(γ)の独立した三流路とその切替弁を必要とせずに、特に(α:熱電発電素子を介装する流路)と(β:熱交換器を介装する流路)を統合し、二流路と単一の弁体だけの簡易な全体構成で、従来の課題を解決できる。 According to the exhaust heat recovery system of the present invention, without requiring the above-mentioned (α) (β) independent triple circuit and the switching valve (gamma), especially (alpha: interposing a thermoelectric power generation element flow passages) and (beta: integrating the flow path) interposing a heat exchanger, a simple overall configuration of only the double flow circuit and a single valve body, can solve the conventional problems. 更に、熱電発電および熱回収要件、消音要件、内燃機関出力要件を、車両側からの優先要求に従って統合的にトレードオフ制御することも可能となる。 Furthermore, the thermoelectric power generation and heat recovery requirements, mute requirements, the internal combustion engine output requirements, it is possible to integrally tradeoff controlled according to the priority request from the vehicle side.

図3および図4の態様は、暖機後の通常運転時においても図2のように両流路に排気ガスを流すことをせず、あえて片側の流路のみに流すことで優先する要件を満たすものである。 Embodiment of FIGS. 3 and 4, even at the time of normal operation after warm-up without flowing the exhaust gas both flow paths as shown in FIG. 2, dare priority requirements by passing only one side of the channel it is intended to meet. 例えば図3の態様は、迂回流路3を流れる排気ガス流量hを絞ることで熱電発電装置6および熱交換器7に流れる排気ガスの流速を遅くして、積極的に熱電発電量および熱回収量を増やすような制御形態である。 For example embodiments of FIG. 3, to slow down the flow rate of the exhaust gas flowing through the thermoelectric generator 6 and the heat exchanger 7 by throttling the exhaust gas flow rate h which flows through the bypass passage 3, actively thermoelectric power generation and heat recovery a control mode such as increasing the amount. また図4の態様は、主排気流路2のみに排気ガスを流し、かつ排気ガス流量iを絞っている。 The embodiment of Figure 4 focuses main exhaust passage 2 only flowing exhaust gas, and the exhaust gas flow rate i. このようにすることで、熱電発電および熱回収が不要の状態における消音要件を優先させることができる。 In this way, it is possible to thermoelectric power generation and heat recovery to prioritize the silencing requirements in unwanted state.

図5の態様は、内燃機関の中回転乃至高回転時、あるいは高負荷時の状態を示すもので、主排気流路2が全開状態とされると共に、迂回流路3が全閉状態とされる。 Embodiment of FIG. 5 shows a state when the rotation or at high rotation or a high load in the internal combustion engine, with the main exhaust passage 2 is fully opened, bypass channel 3 is fully closed that. すなわち、前述の(γ)に対応する態様である。 That is an aspect which corresponds to the above-mentioned (gamma). これにより、熱交換器と熱電発電素子に高温大流量の排気ガスを接触させることがなくなるので、熱交換器においては過度の熱回収および冷却水の沸騰を、熱電発電装置においては過度の発電や素子への熱害を、それぞれ防止できる。 Thus, the contacting the high-temperature exhaust gas high flow to the heat exchanger and the thermoelectric power generation element is eliminated, the boiling of excessive heat recovery and cooling water in the heat exchanger, Ya generating excessive in thermoelectric generator the thermal damage to the element can be prevented respectively. もちろん、主排気流路2(バイパス流路)にだけ抵抗なく排気ガスを流すことで、内燃機関の出力性能を確保することもできる。 Of course, by flowing only without resistance the exhaust gas in the main exhaust passage 2 (bypass passage), it is also possible to secure the output performance of the internal combustion engine.

図6乃至図8は、本発明の第2の実施形態に係る排気熱回収装置1xを示すものであり、前述の第1の実施形態に対して、熱電発電装置6と熱交換器7の配置順序が逆となっている。 6 to FIG. 8 shows an exhaust heat recovery apparatus 1x in accordance with a second embodiment of the present invention, the first embodiment described above, the arrangement of the thermoelectric generator 6 and the heat exchanger 7 the order has become a reverse. 即ち、迂回流路3における上流側に熱交換器7を配置すると共に下流側に熱電発電装置6を配置したものである。 That is obtained by placing the thermoelectric generator 6 on the downstream side with disposing the heat exchanger 7 on the upstream side of the bypass passage 3. このような配置とすることにより、内燃機関から流下してきた排気ガスが直接熱交換器7に導入されるため、暖機時の冷却媒体の早期温度上昇に寄与する。 With this arrangement, since the exhaust gas which has flowed down from the internal combustion engine is introduced to the heat exchanger 7 directly contributes to the early temperature rise of the cooling medium at the time of warm-up. 尚、冷却媒体の導入順序については、第1の実施形態と同様に熱電発電装置6へ先に通し、熱電発電装置6によって加熱された後の冷却媒体が熱交換器7へ流入するという順序が、合理的であるが、必要に応じて適宜順序を入れ替えても構わない Note that the order of introduction of the cooling medium, the order of the first embodiment as well as through the previously to thermoelectric generator 6, the cooling medium which has been heated by the thermoelectric generator 6 to flow into the heat exchanger 7 it is reasonable, but may be changed as appropriate order as needed

図6の態様は、第1の実施形態における図1の態様と同じ状態を示すものであり、内燃機関の暖機中の状態である。 Embodiment of Figure 6 shows the same state as the embodiment of FIG. 1 in the first embodiment, a state in the warm-up of the internal combustion engine. 内燃機関から流下してきた排気ガスが直接熱交換器7に導入されるため、暖機時の冷却媒体の早期温度上昇に効果的である。 Since the exhaust gas which has flowed down from the internal combustion engine is introduced to the heat exchanger 7 directly, which is effective in the early temperature rise of the cooling medium at the time of warm-up.

図7の態様は、第1の実施形態における図2の態様と同じ状態、すなわち暖機完了後の内燃機関の中回転乃至高回転時における状態を示すものであり、適度な熱電発電および熱回収を実施する状態である。 Embodiment of Figure 7, the same state as the embodiment of FIG. 2 in the first embodiment, that is, shows the state at the time of rotation to high rotation in the internal combustion engine after completion of warming up, moderate thermoelectric generation and heat recovery which is a state to implement. この状態においては、弁部材10は主排気流路2と迂回流路3の両方に排気ガスを流せる範囲内で揺動し、時々刻々の優先要件に従い電子制御ユニットECUからの指示を受けて、各流路へ流す割合(配分)を決めている。 In this state, it swung within a range that can safely exhaust gas to both the bypass flow path 3 the valve member 10 and the main exhaust passage 2 in response to an instruction from the electronic control unit ECU in accordance with the priority requirements of every moment, and it controls the percentage (allocation) to flow into the flow paths. この場合においても、熱電発電よりも熱回収を積極的に実施できる構造として有効である。 In this case, it is effective as a structure capable of actively implementing heat recovery than the thermal power generation.

図8の態様は、第1の実施形態における図3の態様と同じ状態、すなわち内燃機関の中回転乃至高回転時、あるいは高負荷時の状態を示すもので、主排気流路2が全開状態とされると共に、迂回流路3が全閉状態とされる。 Embodiment of FIG. 8, the same state as the embodiment of FIG. 3 in the first embodiment, i.e., shows the state at the time of rotation to the time of high rotation or a high load in the internal combustion engine, the main exhaust passage 2 is fully open together they are, bypass channel 3 is fully closed. この場合においては熱電発電装置6と熱交換器7の順序は関係が無いが、図3の態様と同様に、熱交換器においては過度の熱回収および冷却水の沸騰を、熱電発電装置においては過度の発電や素子への熱害を、それぞれ防止できると共に、主排気流路2(バイパス流路)にだけ抵抗なく排気ガスを流すことで、内燃機関の出力性能を確保することもできる。 Although there is no relationship between the order of the thermoelectric generator 6 and the heat exchanger 7 in this case, similarly to the embodiment of FIG. 3, the boiling of excessive heat recovery and cooling water in the heat exchanger, the thermoelectric generator is the thermal damage to the excessive power generation and element, it is possible to prevent each by flowing only without resistance the exhaust gas in the main exhaust passage 2 (bypass passage), it is also possible to secure the output performance of the internal combustion engine.

図9乃至図11は、本発明の第3の実施形態に係る排気熱回収装置1yを示すものであり、前述の第1の実施形態に対して、冷却媒体の流路および制御が異なる。 9 to 11 shows a third exhaust heat recovery apparatus 1y in accordance with an embodiment of the present invention, the first embodiment described above, the flow path and control of the cooling medium different. 図9において、図示しない車両の冷却媒体通路から分岐してきた冷却媒体配管210が分岐211において第1導入管212および第2導入管213とに分かれ、第1導入管212は熱電発電装置6に、第2導入管213は熱交換器7へそれぞれ接続される。 9, divided into the cooling medium pipe 210 that has branched from the cooling medium path of the vehicle (not shown) and a first inlet pipe 212 and a second inlet pipe 213 at a branch 211, the first inlet pipe 212 to the thermoelectric generator 6, the second inlet pipe 213 is connected to the heat exchanger 7. そして熱電発電装置6に接続された第1導出管214と熱交換器7に接続された第2導出管215は切換弁217に接続されている。 The second discharge pipe 215 connected to the first outlet pipe 214 and the heat exchanger 7 connected to the thermoelectric generator 6 is connected to the switching valve 217. 冷却媒体の流れを切替える切換弁217は、第1導出管214内および第2導出管215内を流れて来る冷却媒体の流れを選択可能な所謂三方弁であり、第1導出管214からの冷却媒体と第2導出管215からの冷却媒体の流れについて、何れか一方を選択するか、あるいは両方を選択することが可能である。 Switching valve 217 for switching the flow of the cooling medium is selectable so-called three-way valve the flow of the cooling medium that flows a first outlet pipe and the second discharge pipe 215 214, cooling from the first discharge pipe 214 the flow of the cooling medium from the medium and a second discharge pipe 215, either choose one, or it is possible to select both. 従って、熱電発電装置6と熱交換器7について、何れか一方のみに冷却媒体を流すことも、両方に冷却媒体を流すことも自在である。 Thus, the thermoelectric generator 6 and the heat exchanger 7, it is also, it is free to flow both to the cooling medium to flow either only to the cooling medium. 尚、三方弁の構造については周知であるため、図示を省略する。 Since it is known about the structure of the three-way valve, not shown.

図9の態様は、第1の実施形態における図1の態様と同じ状態であり、内燃機関の暖機中の状態である。 Embodiment of Figure 9 is the same state as the embodiment of FIG. 1 in the first embodiment, a state in the warm-up of the internal combustion engine. 暖機過程において早く車両の冷却媒体を昇熱させたいとの要求を優先して、切換弁217を操作して冷却媒体を熱交換器7のみに流す状態とし、熱電発電装置6には流さない。 A request and want to Noborinetsu cooling medium of the vehicle quickly in warm-up process with priority, a state for flowing the cooling medium by operating the switching valve 217 only to the heat exchanger 7, does not flow in the thermoelectric generator 6 . それにより、熱電発電装置6に冷却水の熱を奪われることがなくなるため、冷却媒体の早期温度上昇が促進される。 Thereby, since it is unnecessary to be deprived of the heat of the cooling water in thermoelectric generator 6, early temperature rise of the cooling medium is promoted.

図10の態様は、第1の実施形態における図2の態様と同じ状態であり、内燃機関の中回転乃至高回転時の状態において適度な熱発電および熱回収を実施するものである。 Embodiment of Figure 10 is the same state as the embodiment of FIG. 2 in the first embodiment is intended to implement an appropriate heat generation and heat recovery in the state at the time of rotation to high rotation in the internal combustion engine. この状態においては、切換弁217を操作して熱電発電装置6と熱交換器7の両方に冷却媒体を流す状態とする。 In this state, a state for flowing the cooling medium by operating the switching valve 217 to both the thermoelectric generator 6 and the heat exchanger 7. 低い温度の冷却媒体を直接導入したい熱電発電装置6が熱交換器7の影響を受けることがなくなり、発電効率を高めることができる。 Thermoelectric generator 6 to be introduced a low temperature of the cooling medium directly prevents affected by heat exchanger 7, it is possible to enhance the power generation efficiency. 特に寒冷地などにおいては、熱交換器7における常時熱回収によって暖房補助としたいニーズがあり、本実施形態によれば、熱発電と常時熱回収を効率的に両立させることができる。 In such particular cold climates, there is a need to be a heating assisted by constantly heat recovery in the heat exchanger 7, according to the present embodiment, it is possible to achieve both heat generator and constantly heat recovery efficiently.

一方、内燃機関の中回転乃至高回転時の状態において、熱回収する必要がなく、積極的に熱発電を実施したいような場合においては、図11の態様のように、切換弁217を操作して熱電発電装置6のみに冷却水を流し、熱交換器7への流入を止めると良い。 On the other hand, in the state at the time of rotation to high rotation in the internal combustion engine, heat is not necessary to recover, when it is desired to implement the proactive thermal power generation, as in the embodiment of FIG. 11, by operating the selector valve 217 only thermoelectric generator 6 to the flow of cooling water Te, may stop flowing into the heat exchanger 7. 但し、熱交換器7に排気ガスが流入し、熱交換器7内での冷却媒体が沸騰する懸念があるため、熱交換器7内で冷却媒体温度を何らかの手段で監視しておくことが好ましい。 However, the exhaust gas flows into the heat exchanger 7, the cooling medium in heat exchanger 7 there is a concern that boils, it is preferable to monitor some means coolant temperature in the heat exchanger 7 .

1 、1x、1y 排気熱回収装置2 主排気流路3 迂回流路4 分岐部5 合流部6 熱電発電装置6a 熱電素子6b 熱交換フィン6c 冷却媒体流路6d 導入管7 熱交換器7a 熱交換フィン7b 冷却媒体流路7c 導出管8 連通管9 ピボット軸10 弁装置11 凹部210、216 冷却媒体配管211 分岐212 第1導入管213 第2導入管214 第1導出管215 第2導出管217 切換弁 1, 1x, 1y exhaust heat recovery apparatus 2 main exhaust line 3 bypass flow path 4 branch section 5 merging portion 6 thermoelectric generator 6a thermoelectric element 6b heat exchange fins 6c coolant flow 6d inlet tube 7 the heat exchanger 7a heat exchanger fins 7b coolant flow 7c guiding tube 8 communicating pipe 9 pivot shaft 10 valve unit 11 recesses 210, 216 the cooling medium pipe 211 branches 212 first inlet 213 second inlet pipe 214 first outlet pipe 215 second outlet pipe 217 switching valve

Claims (2)

  1. 内燃機関の排気ガスを導入する主排気流路と、該主排気流路から分岐し当該主排気流路と合流部において合流する迂回流路と、前記合流部において前記主排気流路と前記迂回流路を開閉する弁装置とを備える排気熱回収装置において、前記迂回流路には前記迂回流路内の排気ガスと熱交換をする熱交換器及び熱電発電装置が直列状に介装されており 、前記弁装置は前記主排気流路及び前記迂回流路の一方を閉塞した状態で他方の流路面積を連続的に設定する単一の弁部材であり、前記熱交換器及び前記熱電発電装置は共通の冷却媒体の流路を具備し、前記内燃機関の冷却媒体を導入して熱交換を行うことを特徴とする排気熱回収装置。 The main exhaust passage for introducing the exhaust gas of an internal combustion engine, a bypass passage merging at the branch joined portion with the main exhaust passage from the main exhaust passage, and the main exhaust passage at the merging portion detour in the exhaust heat recovery device and a valve device for opening and closing the flow passage, the bypass flow path heat exchanger and a thermoelectric power generator for the exhaust gas heat exchanger of the bypass flow path is in is interposed in series form cage, the valve device Ri single valve member der continuously set the other flow path area in a state of closing one of the main exhaust passage and the bypass flow path, the heat exchanger and the thermoelectric power plant common comprises a flow path of the cooling medium, the exhaust heat recovery apparatus, characterized in that the introduction to the heat exchanger a cooling medium of the internal combustion engine.
  2. 前記単一の弁部材を前記内燃機関の運転状態に応じて駆動し、前記主排気流路及び前記迂回流路の流路切換を行うと共に、前記主排気流路及び前記迂回流路の各々の流路面積調整を行う制御装置を備えたことを特徴とする請求項1記載の排気熱回収装置。 Driven according to the single valve member in the operating state of the internal combustion engine, performs a channel switching of the main exhaust passage and the bypass flow path, each of said main exhaust passage and the bypass passage the exhaust heat recovery apparatus according to claim 1, further comprising a control unit for the passage area adjustment.
JP2014241032A 2014-11-28 2014-11-28 Exhaust heat recovery system Active JP6358938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241032A JP6358938B2 (en) 2014-11-28 2014-11-28 Exhaust heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241032A JP6358938B2 (en) 2014-11-28 2014-11-28 Exhaust heat recovery system

Publications (2)

Publication Number Publication Date
JP2016102446A true JP2016102446A (en) 2016-06-02
JP6358938B2 true JP6358938B2 (en) 2018-07-18

Family

ID=56088547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241032A Active JP6358938B2 (en) 2014-11-28 2014-11-28 Exhaust heat recovery system

Country Status (1)

Country Link
JP (1) JP6358938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016216281A1 (en) 2016-08-30 2018-03-01 HANON SYSTEMS, jusik hoesa bypass valve
FR3060053A1 (en) * 2016-12-09 2018-06-15 Faurecia Systemes Dechappement A heat recovery tailpipe IMPROVED SEAL

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3350705B2 (en) * 1997-07-08 2002-11-25 科学技術庁長官官房会計課長 Heat transfer coefficient control thermoelectric generator
JP3767509B2 (en) * 2002-04-17 2006-04-19 株式会社デンソー Engine exhaust gas re-use device
EP1795722A4 (en) * 2004-07-07 2009-11-04 Sango Co Ltd Exhaust device of internal combustion engine
WO2007098847A1 (en) * 2006-02-28 2007-09-07 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle comprising a unit operated by cryogenically stored fuel
JP2009127544A (en) * 2007-11-26 2009-06-11 Toyota Motor Corp Thermoelectric power generation system
DE102012207612B4 (en) * 2012-05-08 2016-09-29 Eberspächer Exhaust Technology GmbH & Co. KG heat exchangers

Also Published As

Publication number Publication date Type
JP2016102446A (en) 2016-06-02 application

Similar Documents

Publication Publication Date Title
US20020069839A1 (en) Cooling system for an internal combustion engine cooled with a liquid coolant
US20120102934A1 (en) Unit for recovering and converting the thermal energy of the exhaust gases of an internal combustion engine of a vehicle
US7921640B2 (en) Exhaust gas waste heat recovery
US20100043413A1 (en) Exhaust heat recovery system
CN102941791A (en) Integrated thermal cycling system of electric vehicle
GB2429763A (en) Cooling system comprising heat exchangers for motor vehicle cold start operation
JP2004360681A (en) Thermoelectric power generation apparatus
JP2010043555A (en) Cooling device for internal combustion engine
JP2011121551A (en) Heat control device of vehicle
CN101978140A (en) Waste heat recovering device
US20080223317A1 (en) Cooling apparatus for internal combustion engine
JP2005188327A (en) Vehicle cooling device
JP2008208716A (en) Cooling system
JP2011099400A (en) Cooling device for vehicle
JP2006001530A (en) In-cabin temperature control system for hybrid vehicle
JP2010163920A (en) Cooling device of engine
JP2004332744A (en) Cooling system of hybrid electric car
CN201484169U (en) Cooling system of hybrid vehicle
JP2000315512A (en) Temperature adjusting device of fuel cell
JP2002227646A (en) Engine with egr cooler
US20090229649A1 (en) Thermal management for improved engine operation
JP2009216028A (en) Cooling device for internal combustion engine
JP2000352313A (en) Exhaust heat power generation system for automobile
JP2005061711A (en) Exhaust heat recovering water heater
JP2005341700A (en) Thermoelectric generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180619

R150 Certificate of patent or registration of utility model

Ref document number: 6358938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150