JP2014034922A - Exhaust heat recovery device - Google Patents

Exhaust heat recovery device Download PDF

Info

Publication number
JP2014034922A
JP2014034922A JP2012176351A JP2012176351A JP2014034922A JP 2014034922 A JP2014034922 A JP 2014034922A JP 2012176351 A JP2012176351 A JP 2012176351A JP 2012176351 A JP2012176351 A JP 2012176351A JP 2014034922 A JP2014034922 A JP 2014034922A
Authority
JP
Japan
Prior art keywords
exhaust
heat recovery
cylinder portion
valve
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012176351A
Other languages
Japanese (ja)
Inventor
Ryutaro Shinohara
竜太郎 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2012176351A priority Critical patent/JP2014034922A/en
Priority to DE102013107868.0A priority patent/DE102013107868B4/en
Priority to CN201310332131.5A priority patent/CN103573355B/en
Publication of JP2014034922A publication Critical patent/JP2014034922A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust Silencers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent decrease of an amount of heat recovery due to influence by traveling wind, to reduce pressure loss of exhaust and a refrigerant exchanging heat with each other, and further to easily control the amount of heat recovery.SOLUTION: An exhaust heat recovery device includes: an inner cylindrical portion 11 in which cooling water 2 flows; an intermediate cylindrical portion 12 disposed outside of the inner cylindrical portion 11 at a prescribed interval, and forming a heat recovery flow channel 16 with the inner cylindrical portion 11 to allow the cooling water 2 in the inner cylindrical portion 11 to recover heat of introduced exhaust 1; an outer cylindrical portion 13 disposed outside of the intermediate cylindrical portion 12 at a prescribed interval, and forming a bypass flow channel 17 with the intermediate cylindrical portion 12 to allow the bypassed exhaust to flow therein; and an exhaust valve 14 disposed at an upstream end in a flowing direction of the exhaust 1 in the intermediate cylindrical portion 12, and allowing the exhaust 1 to selectively flow to the heat recovery flow channel 16 and the bypass flow channel 17.

Description

本発明は、エンジンの排気の熱を冷媒、例えばエンジンの冷却水に回収する排気熱回収装置に関する。   The present invention relates to an exhaust heat recovery device that recovers heat of engine exhaust into a refrigerant, for example, engine coolant.

従来より、自動車用内燃機関(自動車用エンジン;以下エンジンと称する)の排気の熱を回収する機器として、排気熱回収装置が知られている。このような排気熱回収装置は、エンジンの排気管の途中に設置され、排気管を通過するエンジンからの排気とエンジンの冷却水との間で熱交換を行う。エンジンの冷却水を介して回収された排気熱は、例えばエンジンの暖機運転を早期に完了させるために、エンジンの冷間時に冷却水温度を急激に上昇させることに利用され、あるいは車室内の暖房にも利用される。   2. Description of the Related Art Conventionally, an exhaust heat recovery device is known as a device that recovers the heat of exhaust gas from an automobile internal combustion engine (automobile engine; hereinafter referred to as an engine). Such an exhaust heat recovery device is installed in the middle of the exhaust pipe of the engine, and performs heat exchange between the exhaust from the engine passing through the exhaust pipe and the cooling water of the engine. The exhaust heat recovered via the engine coolant is used to rapidly increase the coolant temperature when the engine is cold, for example, in order to complete the warm-up operation of the engine at an early stage. It is also used for heating.

現在実用化されている排気熱回収装置は、特許文献1に開示された第1従来技術(図5)と、特許文献2に開示された第2従来技術(不図示)に大別されるが、コスト面などの理由から第1従来技術が主流である。   Exhaust heat recovery devices that are currently in practical use are broadly divided into a first prior art disclosed in Patent Document 1 (FIG. 5) and a second prior art disclosed in Patent Document 2 (not shown). The first prior art is mainstream for reasons such as cost.

第1従来技術の排気熱回収器100は、排気を通過させるバイパス流路104を形成する内筒部101と、この内筒部101の下流側でバイパス流路104を開閉する排気バルブ102と、内筒部101の外周側に間隔をもって設けられた外筒部103と、内筒部101と外筒部103との間に設けられた熱交換部(排気熱回収流路105及び106並びに冷却水流路107及び108)とを備えている。   The exhaust heat recovery device 100 of the first prior art includes an inner cylinder portion 101 that forms a bypass passage 104 that allows exhaust to pass through, an exhaust valve 102 that opens and closes the bypass passage 104 on the downstream side of the inner cylinder portion 101, The outer cylinder part 103 provided at intervals on the outer peripheral side of the inner cylinder part 101, and the heat exchange part provided between the inner cylinder part 101 and the outer cylinder part 103 (exhaust heat recovery flow paths 105 and 106, and cooling water flow Roads 107 and 108).

排気熱回収を行う場合には排気バルブ102を閉動作させ、内筒部101内に導入された排気を、内筒部101の側部に設けられた多数の小孔109から、内筒部101の外周に設けられた第1排気熱回収流路105及び第2排気熱回収流路106へ順次流し、内側冷却水流路107及び外側冷却水流路108を流れる冷却水との間で熱交換を行わせる。   When exhaust heat recovery is performed, the exhaust valve 102 is closed, and the exhaust gas introduced into the inner cylinder portion 101 is discharged from a large number of small holes 109 provided on the side of the inner cylinder portion 101. Are sequentially passed through a first exhaust heat recovery flow path 105 and a second exhaust heat recovery flow path 106 provided on the outer periphery, and heat exchange is performed with cooling water flowing through the inner cooling water flow path 107 and the outer cooling water flow path 108. Make it.

この排気熱回収器100は、前述のように、エンジン始動時の暖機や車室内の暖房を主目的とすることから、エンジンの始動から一定時間経過して暖機や暖房のニーズが低下したときには、排気熱の回収を行わず排気を排出(廃棄)している。この排気熱の廃棄時にはバルブ102を開動作して、内筒部101内に導入された排気を直接下流側へ排出し、排気を第1熱回収流路105及び第2熱回収流路106へ流動させないようにして、必要以上の冷却水の温度上昇を抑制すると共に、排気の圧力損失を抑制している。   As described above, the exhaust heat recovery device 100 is mainly used for warming up the engine and heating the vehicle interior, so that the needs for warming up and heating have decreased after a certain period of time since the engine started. Sometimes exhaust is exhausted (discarded) without exhaust heat recovery. When the exhaust heat is discarded, the valve 102 is opened to exhaust the exhaust gas introduced into the inner cylinder portion 101 directly to the downstream side, and the exhaust gas is discharged to the first heat recovery flow path 105 and the second heat recovery flow path 106. In order not to make it flow, while suppressing the temperature rise of the cooling water more than necessary, the pressure loss of the exhaust gas is suppressed.

一方、第2従来技術の排気熱回収装置(車両用蓄熱システム)は、エンジンの冷却水系統に排熱回収手段と蓄熱器を備え、排熱回収手段は、エンジンから排出された排気とエンジンの冷却水の間で熱交換可能に、二股に分岐された一方のエンジンの排気系統に沿って配置されたものである。   On the other hand, the exhaust gas heat recovery device (vehicle heat storage system) of the second prior art is provided with an exhaust heat recovery means and a heat storage device in the engine cooling water system, and the exhaust heat recovery means includes the exhaust discharged from the engine and the engine exhaust. It is arranged along the exhaust system of one of the engines that is bifurcated so that heat can be exchanged between the cooling water.

特開2010−31671号公報JP 2010-31671 A 特開2001−30741号公報JP 2001-30741 A

ところが、排気熱回収装置には、エンジンの暖機や車室内の暖房の目的を達成した後、エンジンの定常運転時や高負荷運転時にも継続的に排気熱を回収できるようにして、燃費を向上させたいとする要請がある。例えば、ランキンサイクルシステムを搭載した車両において、排気の熱を冷却水に常時回収し、その回収熱をランキンサイクル加熱器の熱源とするような場合である。   However, the exhaust heat recovery device achieves the fuel efficiency by enabling the exhaust heat to be recovered continuously even during steady engine operation or high load operation after achieving the purpose of warming up the engine or heating the passenger compartment. There is a request to improve. For example, in a vehicle equipped with a Rankine cycle system, the exhaust heat is always recovered in cooling water, and the recovered heat is used as a heat source for the Rankine cycle heater.

しかしながら、第1及び第2従来技術では、エンジンの定常運転時に継続的に排気熱を回収しようとすると、次のような課題が生じる。   However, in the first and second conventional techniques, the following problems occur when exhaust heat is continuously collected during steady operation of the engine.

第1に、走行風により冷却水が冷却されて熱回収効率が低下してしまう。つまり、前部にエンジンが搭載されている車両では、排気管が車両前部からフロア下面を通って後方へ延びているため、排気熱回収器100はフロア下面に設置されることになる。ところが、排気熱回収器100では冷却水が外筒部103近傍を流れるため、エンジンの定常運転時や高速運転時のような流れの強い走行風によって、排気熱を回収した冷却水が冷却されやすく、熱損失が発生して排気熱の回収効率が低下してしまう。この点は、第2従来技術においても同様である。   First, the cooling water is cooled by the traveling wind, and the heat recovery efficiency is reduced. That is, in a vehicle in which an engine is mounted on the front, the exhaust pipe extends rearward from the front of the vehicle through the floor lower surface, so that the exhaust heat recovery device 100 is installed on the floor lower surface. However, in the exhaust heat recovery device 100, since the cooling water flows in the vicinity of the outer cylinder portion 103, the cooling water from which the exhaust heat has been recovered is easily cooled by the strong running wind during steady engine operation or high speed operation. As a result, heat loss occurs and exhaust heat recovery efficiency decreases. This also applies to the second prior art.

第2に、排気及び冷却水の圧力損失が大きい。つまり、排気側について、排気熱回収器100は小孔109を通して排気を第1排気熱回収流路105に流出させ、その後更に上流側で排気の流れを折り返して第2排気熱回収流路106へ流すことから、排気の圧力損失が大きい。このため、特にエンジンの高負荷時の出力及び燃費の低下が課題となる。また、冷却水側においても、内側冷却水流路107及び外側冷却水流路108の流路断面が狭小なため、冷却水の圧力損失が大きく、ウォータポンプ負荷が高くなって燃費の低下が課題となる。第2従来技術は、この点においても同様である。   Second, the pressure loss of exhaust and cooling water is large. In other words, on the exhaust side, the exhaust heat recovery device 100 causes the exhaust to flow out to the first exhaust heat recovery flow path 105 through the small hole 109, and then the flow of the exhaust is turned further upstream to return to the second exhaust heat recovery flow path 106. Since it flows, the pressure loss of the exhaust is large. For this reason, the output at the time of high load of an engine and the fall of a fuel consumption become a subject. In addition, on the cooling water side, since the cross sections of the inner cooling water passage 107 and the outer cooling water passage 108 are narrow, the pressure loss of the cooling water is large, the water pump load becomes high, and the fuel consumption decreases. . The second prior art is the same in this respect.

尚、エンジンの定常運転時に継続的に排気熱を回収する排気熱回収装置であっても、ランキンサイクルシステムなどからの要請により、排気熱回収量を容易に制御できる必要がある。   Even in an exhaust heat recovery device that continuously recovers exhaust heat during steady operation of the engine, it is necessary to easily control the exhaust heat recovery amount in response to a request from a Rankine cycle system or the like.

本発明の目的は、上述の事情を考慮してなされたものであり、走行風の影響により回収熱量が低下せず、且つ熱交換を行う排気及び冷媒の圧力損失を低減でき、更に熱回収量を容易に制御できる排気熱回収装置を提供することにある。   The object of the present invention has been made in consideration of the above circumstances, and the amount of recovered heat does not decrease due to the influence of the traveling wind, and the pressure loss of the exhaust and refrigerant for heat exchange can be reduced. It is an object of the present invention to provide an exhaust heat recovery device that can easily control the above.

本発明に係る排気熱回収装置は、内部に冷媒が流動する内筒部と、この内筒部の外側に所定間隔をもって配置され、前記内筒部との間に、導入された排気の熱を前記内筒部内の冷媒に回収させる熱回収流路を形成する中間筒部と、この中間筒部の外側に所定間隔をもって配置され、前記中間筒部との間に、バイパスされた排気を流動させるバイパス流路を形成する外筒部と、前記中間筒部における排気の流れ方向上流端に設置され、排気を前記熱回収流路と前記バイパス流路に切り替えて流す排気バルブと、を有して構成されたことを特徴とするものである。   The exhaust heat recovery apparatus according to the present invention is arranged with a predetermined interval on the outer side of the inner cylinder part through which the refrigerant flows, and between the inner cylinder part. An intermediate cylinder part that forms a heat recovery flow path to be recovered by the refrigerant in the inner cylinder part and an outer side of the intermediate cylinder part are arranged at a predetermined interval, and the bypassed exhaust gas flows between the intermediate cylinder part. An outer cylinder part that forms a bypass flow path, and an exhaust valve that is installed at an upstream end in the flow direction of the exhaust gas in the intermediate cylinder part and flows the exhaust gas by switching to the heat recovery flow path and the bypass flow path. It is characterized by having been comprised.

本発明によれば、冷媒が流れる内筒部は、内筒部と中間筒部により形成される熱回収流路、中間筒部と外筒部により形成されるバイパス流路により順次覆われることになるので、冷媒に回収された回収熱量が走行風の影響により低下することを防止できる。また、熱回収流路が直線形状に形成されて、この熱回収流路内を流れる排気の流れがスムーズであり、また冷媒が流れる内筒部の流路断面積も確保されるので、排気及び冷媒の圧力損失を共に低減できる。更に、排気バルブの開度を調節して、熱回収流路内へ流れる排気の流量を調整することで、冷媒による熱回収量を容易に制御できる。   According to the present invention, the inner cylinder part through which the refrigerant flows is sequentially covered by the heat recovery channel formed by the inner cylinder part and the intermediate cylinder part and the bypass channel formed by the intermediate cylinder part and the outer cylinder part. Therefore, it is possible to prevent the recovered heat amount recovered by the refrigerant from being lowered due to the influence of the traveling wind. Further, since the heat recovery flow path is formed in a linear shape, the flow of the exhaust flowing through the heat recovery flow path is smooth, and the flow path cross-sectional area of the inner cylinder portion through which the refrigerant flows is ensured. Both the pressure loss of the refrigerant can be reduced. Furthermore, the amount of heat recovered by the refrigerant can be easily controlled by adjusting the opening of the exhaust valve and adjusting the flow rate of the exhaust flowing into the heat recovery flow path.

本発明に係る排気熱回収装置の第1実施形態における非熱回収状態を示し、(A)は横断面図、(B)は図1(A)のI−I線に沿う断面図。The non-heat recovery state in 1st Embodiment of the exhaust heat recovery apparatus which concerns on this invention is shown, (A) is a cross-sectional view, (B) is sectional drawing which follows the II line | wire of FIG. 1 (A). 図1の排気熱回収装置における熱回収状態を示し、(A)は横断面図、(B)は図2(A)のII−II線に沿う断面図。The heat recovery state in the exhaust heat recovery apparatus of FIG. 1 is shown, (A) is a cross-sectional view, (B) is sectional drawing which follows the II-II line | wire of FIG. 2 (A). 本発明に係る排気熱回収装置の第2実施形態における非熱回収状態を示し、(A)は横断面図、(B)は図3(A)のIII−III線に沿う断面図。The non-heat recovery state in 2nd Embodiment of the exhaust heat recovery apparatus which concerns on this invention is shown, (A) is a cross-sectional view, (B) is sectional drawing which follows the III-III line | wire of FIG. 3 (A). 図3の排気熱回収装置における熱回収状態を示し、(A)は横断面図、(B)は図4(A)のIV−IV線に沿う断面図。The heat recovery state in the exhaust heat recovery apparatus of FIG. 3 is shown, (A) is a cross-sectional view, (B) is sectional drawing which follows the IV-IV line | wire of FIG. 4 (A). 第1従来技術の排熱回収器を示す断面図。Sectional drawing which shows the waste heat recovery device of 1st prior art.

以下、本発明を実施するための実施形態を図面に基づき説明する。
[A]第1実施形態(図1、図2)
図1は、本発明に係る排気熱回収装置の第1実施形態における非熱回収状態を示し、(A)は横断面図、(B)は図1(A)のI−I線に沿う断面図である。また、図2は、図1の排気熱回収装置における熱回収状態を示し、(A)は横断面図、(B)は図2(A)のII−II線に沿う断面図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First embodiment (FIGS. 1 and 2)
FIG. 1 shows a non-heat recovery state in the first embodiment of the exhaust heat recovery apparatus according to the present invention, where (A) is a cross-sectional view, and (B) is a cross section taken along the line I-I in FIG. FIG. 2 shows a heat recovery state in the exhaust heat recovery apparatus of FIG. 1, (A) is a cross-sectional view, and (B) is a cross-sectional view taken along line II-II in FIG. 2 (A).

図1及び図2に示す排気熱回収装置10は、図示しないエンジンの始動時のほか、エンジンの定常運転時や高負荷運転時にも継続的に、エンジンからの排気1の熱を冷媒(本実施形態ではエンジンの冷却水2)に回収して、その回収熱をエンジンの暖機運転、車室内の暖房、ランキンサイクル加熱器の熱源に利用するものであり、内筒部11、中間筒部12、外筒部13及び排気バルブ14を有して構成される。   The exhaust heat recovery device 10 shown in FIG. 1 and FIG. 2 continuously cools the heat of the exhaust 1 from the engine (not shown) when the engine (not shown) is started, or during steady engine operation or high load operation. In the embodiment, it is recovered in the engine cooling water 2), and the recovered heat is used for warming up the engine, heating the passenger compartment, and the heat source of the Rankine cycle heater. The outer cylinder portion 13 and the exhaust valve 14 are configured.

内筒部11は例えば円筒形状であって、内部に冷却水2が流動するものであり、スタティックミキサー15が内蔵されている。このスタティックミキサー15は、右方向に捩られた右捩り羽根15Aと、左方向に捩られた左捩り羽根15Bとが、軸方向に交互に複数接合されて構成されたものである。隣接する右捩り羽根15Aと左捩り羽根15Bとの交叉角度は例えば90度である。従って、内筒部11に内蔵されたスタティックミキサー15によって、内筒部11内を流れる冷却水2は撹拌される。   The inner cylinder portion 11 has, for example, a cylindrical shape, in which the cooling water 2 flows, and a static mixer 15 is incorporated. This static mixer 15 is configured by joining a plurality of right twist blades 15A twisted in the right direction and left twist blades 15B twisted in the left direction alternately in the axial direction. The crossing angle between the adjacent right twist blade 15A and left twist blade 15B is, for example, 90 degrees. Therefore, the cooling water 2 flowing in the inner cylinder portion 11 is agitated by the static mixer 15 incorporated in the inner cylinder portion 11.

中間筒部12は例えば円筒形状であって、内筒部11の外周側に所定間隔をもって配置される。この中間筒部12と内筒部11との間に熱回収流路16が形成される。この熱回収流路16は、導入される排気1の熱を、熱交換によって内筒部11内の冷却水2に回収させるものである。   The intermediate cylinder part 12 has, for example, a cylindrical shape, and is arranged at a predetermined interval on the outer peripheral side of the inner cylinder part 11. A heat recovery channel 16 is formed between the intermediate cylinder portion 12 and the inner cylinder portion 11. The heat recovery flow path 16 is for recovering the heat of the introduced exhaust 1 to the cooling water 2 in the inner cylinder portion 11 by heat exchange.

外筒部13は例えば円筒形状であって、中間筒部12の外周側に所定間隔をもって配置される。この外筒部13と中間筒部12との間に、熱回収流路16内に導入されずにバイパスされた排気1を流動させるバイパス流路17が形成される。   The outer cylinder part 13 is, for example, a cylindrical shape, and is arranged at a predetermined interval on the outer peripheral side of the intermediate cylinder part 12. Between the outer cylinder part 13 and the intermediate cylinder part 12, a bypass channel 17 is formed for flowing the exhaust 1 bypassed without being introduced into the heat recovery channel 16.

排気バルブ14は、例えば円板形状の弁体18と、この弁体18の略中央位置(例えば直径位置)に設けられた弁体棒19と、を有して構成される。この排気バルブ14は、中間筒部12における排気1の流れ方向上流端に設置される。具体的には、排気バルブ14の弁体棒19は、中間筒部12における排気1の流れ方向上流端であって、中間筒部12の直径方向または幅方向(本実施形態では直径方向D)略中央位置に、回転可能に枢支される。   The exhaust valve 14 includes, for example, a disc-shaped valve body 18 and a valve body rod 19 provided at a substantially central position (for example, a diameter position) of the valve body 18. The exhaust valve 14 is installed at the upstream end of the intermediate cylinder portion 12 in the flow direction of the exhaust 1. Specifically, the valve body rod 19 of the exhaust valve 14 is the upstream end in the flow direction of the exhaust 1 in the intermediate cylinder part 12, and the diameter direction or the width direction of the intermediate cylinder part 12 (diameter direction D in this embodiment). It is pivotally supported at a substantially central position.

排気バルブ14の弁体18が中間筒部12の軸心Oに対し直交して位置づけられることで、排気バルブ14はその開度が全閉となる(図1)。このとき、外筒部13内に導入された排気1は、排気バルブ14の弁体18に遮られて中間筒部12内の熱回収流路16には流入せず、図1の矢印Aに示すように、略全量が外筒部13内のバイパス流路17を流動する。従って、排気1の熱は、内筒部11内の冷却水にほとんど回収されない。   Since the valve body 18 of the exhaust valve 14 is positioned perpendicular to the axis O of the intermediate cylinder portion 12, the opening degree of the exhaust valve 14 is fully closed (FIG. 1). At this time, the exhaust gas 1 introduced into the outer cylinder portion 13 is blocked by the valve body 18 of the exhaust valve 14 and does not flow into the heat recovery flow path 16 in the intermediate cylinder portion 12, and the arrow 1 in FIG. As shown, substantially the entire amount flows through the bypass channel 17 in the outer cylinder part 13. Accordingly, the heat of the exhaust 1 is hardly recovered by the cooling water in the inner cylinder portion 11.

排気バルブ14の弁体18が中間筒部12の軸心Oに対し平行に位置づけられると、排気バルブ14はその開度が全開となる(図2)。このとき、外筒部13内に導入された排気1は、図2の矢印B、Cにそれぞれ示すように、中間筒部12内の熱回収流路16と外筒部13内のバイパス流路17とを流れ、熱回収流路16を流動する排気1の熱が、内筒部11内を流動する冷却水2に回収される。   When the valve body 18 of the exhaust valve 14 is positioned parallel to the axis O of the intermediate cylinder portion 12, the exhaust valve 14 is fully opened (FIG. 2). At this time, the exhaust 1 introduced into the outer cylinder part 13 is converted into the heat recovery flow path 16 in the intermediate cylinder part 12 and the bypass flow path in the outer cylinder part 13 as shown by arrows B and C in FIG. 17 and the heat of the exhaust 1 flowing through the heat recovery passage 16 is recovered by the cooling water 2 flowing in the inner cylinder portion 11.

排気バルブ14の弁体18が中間筒部12の軸心Oに対し直交状態から平行状態までの所定の位置に位置づけられる排気バルブ14の開度で、外筒部13内の排気1は、排気バルブ14の開度に応じて中間筒部12内の熱回収流路16に流入し、この排気1の熱が、内筒部11内を流動する冷却水2に回収される。   The exhaust 1 in the outer cylinder portion 13 is exhausted by the opening degree of the exhaust valve 14 where the valve body 18 of the exhaust valve 14 is positioned at a predetermined position from the orthogonal state to the parallel state with respect to the axis O of the intermediate cylinder portion 12. Depending on the opening degree of the valve 14, it flows into the heat recovery passage 16 in the intermediate cylinder portion 12, and the heat of the exhaust 1 is recovered in the cooling water 2 flowing in the inner cylinder portion 11.

以上のように構成されたことから、本実施形態によれば、次の効果(1)〜(5)を奏する。
(1)冷却水2が流れる内筒部11が、この内筒部11と中間筒部12により形成される熱回収流路16により覆われ、この更にこの熱回収流路16が、中間筒部12と外筒部13により形成されるバイパス流路17により覆われているので、冷却水2に回収された回収熱が、外筒部13の外側を流れる走行風の影響により低下することを防止できる。この結果、排気熱の回収効率が向上する。
With the configuration as described above, according to the present embodiment, the following effects (1) to (5) are obtained.
(1) The inner cylinder part 11 through which the cooling water 2 flows is covered with a heat recovery flow path 16 formed by the inner cylinder part 11 and the intermediate cylinder part 12, and this heat recovery flow path 16 is further connected to the intermediate cylinder part. 12 is covered with a bypass passage 17 formed by the outer cylinder portion 13, so that the recovered heat recovered in the cooling water 2 is prevented from being lowered by the influence of traveling wind flowing outside the outer cylinder portion 13. it can. As a result, exhaust heat recovery efficiency is improved.

(2)内筒部11と中間筒部12とにより形成される熱回収流路16が直線形状に形成されて、この熱回収流路16内を流れる排気1の流れがスムーズあることと、冷却水2が流れる内筒部11が、スタティックミキサー15を内蔵するに十分な流路断面積に確保されていることとから、排気1及び冷却水2の圧力損失を共に低減できる。この結果、エンジンの定常運転時や高負荷運転時における出力及び燃費の低下を防止でき、エンジンの定常運転時や高負荷運転時に継続的に熱回収を行うに適した排気熱回収装置10とすることができる。   (2) The heat recovery passage 16 formed by the inner cylinder portion 11 and the intermediate cylinder portion 12 is formed in a linear shape, and the flow of the exhaust gas 1 flowing through the heat recovery passage 16 is smooth, and cooling Since the inner cylinder portion 11 through which the water 2 flows is ensured to have a flow path cross-sectional area sufficient to incorporate the static mixer 15, both the pressure loss of the exhaust 1 and the cooling water 2 can be reduced. As a result, it is possible to prevent a decrease in output and fuel consumption during steady operation or high load operation of the engine, and to provide an exhaust heat recovery device 10 suitable for continuously recovering heat during steady operation or high load operation of the engine. be able to.

(3)排気バルブ14の開度を調整して、熱回収流路16内へ流れる排気1の流量を調整することで、内筒部11内を流動する冷却水2による熱回収量を容易に制御できる。この結果、排気回収熱をランキンサイクル加熱器の熱源として利用する場合にも、そのランキンサイクルシステムの要請である熱量の制御に対応することができる。   (3) By adjusting the opening degree of the exhaust valve 14 and adjusting the flow rate of the exhaust 1 flowing into the heat recovery flow path 16, the amount of heat recovered by the cooling water 2 flowing in the inner cylinder portion 11 can be easily achieved. Can be controlled. As a result, even when the exhaust recovery heat is used as a heat source for the Rankine cycle heater, it is possible to cope with the control of the amount of heat, which is a requirement of the Rankine cycle system.

(4)内筒部11には、冷却水2を撹拌して流動させるスタティックミキサー15が内蔵されたので、内筒部11の外側の熱回収流路16を流れる排気1と、内筒部11内の冷却水2との熱交換効率が向上して、冷却水2による排気1の回収熱量を増大させることができる。   (4) Since the static mixer 15 that stirs and flows the cooling water 2 is incorporated in the inner cylinder portion 11, the exhaust 1 flowing through the heat recovery flow path 16 outside the inner cylinder portion 11 and the inner cylinder portion 11. The heat exchange efficiency with the internal cooling water 2 is improved, and the amount of heat recovered from the exhaust 1 by the cooling water 2 can be increased.

(5)排気バルブ14は、中間筒部12における排気1の流れ方向上流端に設置されるが、このとき弁体18の略中央位置に設けられた弁体棒19が、中間筒部12の直径方向Dの略中央位置に配置されている。このため、排気1は、中間筒部12内の熱回収流路16に流入する際に、弁体18及び弁体棒19により撹拌されて乱流状態になる。この結果、熱回収流路16における乱流状態の排気1の熱を、内筒部11内を流動する冷却水2に回収させる熱回収量を増大させることができる。   (5) The exhaust valve 14 is installed at the upstream end of the intermediate cylinder 12 in the flow direction of the exhaust 1. At this time, the valve body rod 19 provided at a substantially central position of the valve body 18 is connected to the intermediate cylinder 12. It is arranged at a substantially central position in the diameter direction D. For this reason, the exhaust gas 1 is agitated by the valve body 18 and the valve body rod 19 into a turbulent state when flowing into the heat recovery flow path 16 in the intermediate cylinder portion 12. As a result, it is possible to increase the amount of heat recovery for recovering the heat of the turbulent exhaust 1 in the heat recovery flow path 16 to the cooling water 2 flowing in the inner cylinder portion 11.

[B]第2実施形態(図3、図4)
図3は、本発明に係る排気熱回収装置の第2実施形態における非熱回収状態を示し、(A)は横断面図、(B)は図3(A)のIII−III線に沿う断面図である。また、図4は、図3の排気熱回収装置における熱回収状態を示し、(A)は横断面図、(B)は図4(A)のIV−IV線に沿う断面図である。この第2実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 3 and 4)
FIG. 3 shows a non-heat recovery state in the second embodiment of the exhaust heat recovery apparatus according to the present invention, where (A) is a cross-sectional view, and (B) is a cross section taken along the line III-III in FIG. FIG. 4 shows a heat recovery state in the exhaust heat recovery apparatus of FIG. 3, wherein (A) is a cross-sectional view, and (B) is a cross-sectional view taken along line IV-IV in FIG. 4 (A). In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本第2実施形態の排気熱回収装置20が前記第1実施形態と異なる点は、中間筒部21及び外筒部22が角筒形状に形成された点と、排気バルブ23が複数のバルブアッセンブリ24を備えて構成された点である。   The exhaust heat recovery apparatus 20 of the second embodiment is different from the first embodiment in that the intermediate cylinder portion 21 and the outer cylinder portion 22 are formed in a rectangular tube shape, and the exhaust valve 23 has a plurality of valve assemblies. 24 is configured.

各バルブアッセンブリ24は、例えば四角板形状の弁体25と、この弁体25の端部に設けられた弁体棒26とを有して構成される。このバルブアッセンブリ24が観音開き構造に複数、例えば本実施形態では一対配置されて排気バルブ23が構成される。このとき、各バルブアッセンブリ24の弁体棒26は、中間筒部21における排気1の流れ方向上流端であって、中間筒部21の幅方向または直径方向(本実施形態では幅方向W)の端部に配置される。   Each valve assembly 24 includes, for example, a square plate-shaped valve body 25 and a valve body rod 26 provided at an end of the valve body 25. A plurality of valve assemblies 24, for example, a pair in the present embodiment, are arranged in a double door structure to constitute the exhaust valve 23. At this time, the valve body rod 26 of each valve assembly 24 is the upstream end in the flow direction of the exhaust 1 in the intermediate cylinder portion 21, and is in the width direction or diameter direction (width direction W in the present embodiment) of the intermediate cylinder portion 21. Arranged at the end.

具体的には、一方のバルブアッセンブリ24の弁体棒26と他方のバルブアッセンブリ24の弁体棒26は、中間筒部21の幅方向Wにおける対向する両端部にそれぞれ配置されて、両バルブアッセンブリ24が観音開き構造に構成される。   Specifically, the valve body rod 26 of one valve assembly 24 and the valve body rod 26 of the other valve assembly 24 are respectively disposed at opposite ends of the intermediate cylinder portion 21 in the width direction W, and both valve assemblies are arranged. Reference numeral 24 is configured in a double door structure.

更に、排気バルブ23を構成する全てのバルブアッセンブリ24の弁体25は、その面積及び形状が、中間筒部21における排気1の流れ方向上流端の流路断面と同等以上に設定される。従って、排気バルブ23の全閉時(図3)には、複数の全てのバルブアッセンブリ24の弁体25によって、中間筒部21における排気1の流れ方向上流端の流路断面が閉塞される。このとき、外筒部22内に導入された排気1は、図3の矢印Pに示すようにバイパス流路17を流れ、熱回収流路16には流れない。   Further, the valve bodies 25 of all the valve assemblies 24 constituting the exhaust valve 23 are set to have the same or larger area and shape as the flow path cross section at the upstream end of the intermediate cylinder portion 21 in the flow direction of the exhaust 1. Therefore, when the exhaust valve 23 is fully closed (FIG. 3), the flow path section at the upstream end in the flow direction of the exhaust 1 in the intermediate cylinder portion 21 is closed by the valve bodies 25 of all the plurality of valve assemblies 24. At this time, the exhaust 1 introduced into the outer cylindrical portion 22 flows through the bypass flow path 17 as shown by the arrow P in FIG. 3 and does not flow into the heat recovery flow path 16.

また、図4に示すように、排気バルブ23を構成する全てのバルブアッセンブリ24の弁体25は、その先端部分25Aが、排気バルブ23の全開時に外筒部22に接近して、バイパス流路17における排気1の流れ方向上流端が略閉塞されるよう構成される。このため、排気バルブ23の全開時には、外筒部22内の排気1はバイパス流路17内へ流入せず、図4の矢印Qに示すように、バルブアッセンブリ24の弁体25に案内されて熱回収流路16内へ略全量流れる。ここで、本実施形態においても、熱回収流路16は内筒部11と中間筒部21との間に形成され、バイパス流路17は中間筒部21と外筒部22との間に形成される。   Further, as shown in FIG. 4, the valve bodies 25 of all the valve assemblies 24 constituting the exhaust valve 23 have their tip portions 25A approaching the outer cylinder portion 22 when the exhaust valve 23 is fully opened, 17 is configured so that the upstream end in the flow direction of the exhaust 1 is substantially closed. For this reason, when the exhaust valve 23 is fully opened, the exhaust 1 in the outer cylinder portion 22 does not flow into the bypass flow path 17 but is guided to the valve body 25 of the valve assembly 24 as indicated by an arrow Q in FIG. Almost the entire amount flows into the heat recovery flow path 16. Here, also in this embodiment, the heat recovery flow path 16 is formed between the inner cylinder part 11 and the intermediate cylinder part 21, and the bypass flow path 17 is formed between the intermediate cylinder part 21 and the outer cylinder part 22. Is done.

以上のように構成されたことから、本第2実施形態においても、前記第1実施形態の効果(1)〜(4)と同様な効果を奏するほか、次の効果(6)を奏する。   Due to the above configuration, the second embodiment also provides the following effect (6) in addition to the same effects as the effects (1) to (4) of the first embodiment.

(6)排気バルブ23の全開時に、全てのバルブアッセンブリ24の弁体25の先端部分25Aが外筒部22に接近して、バイパス流路17における排気1の流れ方向上流端が、全てのバルブアッセンブリ24の弁体25によって略閉塞される。このため、外筒部22内からバイパス流路17へ流れる排気1の流量を略ゼロとし、外筒部22内の全ての排気1を熱回収流路16へ導くことができる。この結果、内筒部11内を流れる冷却水2による排気1の熱回収量を著しく増大させることができる。   (6) When the exhaust valve 23 is fully opened, the tip portions 25A of the valve bodies 25 of all the valve assemblies 24 approach the outer cylinder portion 22, and the upstream end in the flow direction of the exhaust 1 in the bypass flow path 17 is all the valves. The valve body 25 of the assembly 24 is substantially closed. For this reason, the flow rate of the exhaust gas 1 flowing from the outer cylinder part 22 to the bypass flow path 17 can be made substantially zero, and all the exhaust gas 1 in the outer cylinder part 22 can be guided to the heat recovery flow path 16. As a result, the heat recovery amount of the exhaust 1 by the cooling water 2 flowing in the inner cylinder portion 11 can be remarkably increased.

以上各実施形態について説明してきたが、本発明は、上述したような各実施形態の具体的構成に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々変形することができる。例えば、第1及び第2実施形態において、内筒部11の外表面にフィンなどの凹凸を設けて、排気1の熱回収量を更に増大させてもよい。また、内筒部11、中間筒部12、21、外筒部13、22は、断面形状が円形状または多角形状の何れであってもよい。   Each embodiment has been described above, but the present invention is not limited to the specific configuration of each embodiment as described above, and can be variously modified without departing from the gist of the present invention. For example, in the first and second embodiments, the heat recovery amount of the exhaust 1 may be further increased by providing irregularities such as fins on the outer surface of the inner cylinder portion 11. Further, the inner cylindrical portion 11, the intermediate cylindrical portions 12, 21, and the outer cylindrical portions 13, 22 may have a circular or polygonal cross-sectional shape.

1 排気
2 冷却水(冷媒)
10 排気熱回収装置
11 内筒部
12 中間筒部
13 外筒部
14 排気バルブ
15 スタティックミキサー
16 熱回収流路
17 バイパス流路
18 弁体
19 弁体棒
20 排気熱回収装置
21 中間筒部
22 外筒部
23 排気バルブ
24 バルブアッセンブリ
25 弁体
25A 先端部分
26 弁体棒
1 Exhaust 2 Cooling water (refrigerant)
DESCRIPTION OF SYMBOLS 10 Exhaust heat recovery apparatus 11 Inner cylinder part 12 Intermediate cylinder part 13 Outer cylinder part 14 Exhaust valve 15 Static mixer 16 Heat recovery flow path 17 Bypass flow path 18 Valve body 19 Valve body rod 20 Exhaust heat recovery apparatus 21 Intermediate cylinder part 22 Outside Tube portion 23 Exhaust valve 24 Valve assembly 25 Valve body 25A Tip portion 26 Valve body rod

Claims (4)

内部に冷媒が流動する内筒部と、
この内筒部の外側に所定間隔をもって配置され、前記内筒部との間に、導入された排気の熱を前記内筒部内の冷媒に回収させる熱回収流路を形成する中間筒部と、
この中間筒部の外側に所定間隔をもって配置され、前記中間筒部との間に、バイパスされた排気を流動させるバイパス流路を形成する外筒部と、
前記中間筒部における排気の流れ方向上流端に設置され、排気を前記熱回収流路と前記バイパス流路に切り替えて流す排気バルブと、を有して構成されたことを特徴とする排気熱回収装置。
An inner cylinder part in which refrigerant flows,
An intermediate cylinder portion that is disposed outside the inner cylinder portion at a predetermined interval, and forms a heat recovery flow path for recovering the heat of the introduced exhaust gas to the refrigerant in the inner cylinder portion between the inner cylinder portion,
An outer cylinder portion that is disposed outside the intermediate cylinder portion at a predetermined interval, and forms a bypass flow path for allowing the bypassed exhaust to flow between the intermediate cylinder portion,
An exhaust heat recovery system comprising an exhaust valve installed at an upstream end in the exhaust gas flow direction in the intermediate cylinder portion and configured to switch exhaust gas to the heat recovery flow path and the bypass flow path. apparatus.
前記内筒部には、冷媒を撹拌して流動させるスタティックミキサーが内蔵されたことを特徴とする請求項1に記載の排気熱回収装置。 The exhaust heat recovery apparatus according to claim 1, wherein a static mixer that stirs and flows the refrigerant is built in the inner cylinder portion. 前記排気バルブは、弁体と、この弁体の略中央位置に設けられた弁体棒とを有し、この弁体棒が、中間筒部の幅方向または直径方向の略中央位置に配置されたことを特徴とする請求項1または2に記載の排気熱回収装置。 The exhaust valve includes a valve body and a valve body rod provided at a substantially central position of the valve body, and the valve body rod is disposed at a substantially central position in the width direction or the diameter direction of the intermediate cylinder portion. The exhaust heat recovery apparatus according to claim 1 or 2, characterized in that. 前記排気バルブは、弁体と、この弁体の端部に設けられた弁体棒とを備えてなるバルブアッセンブリが観音開き構造に複数配設されて構成され、前記各バルブアッセンブリの前記弁体棒が、中間筒部における幅方向または直径方向の端部に配置され、
全閉時には、複数の前記バルブアッセンブリの前記弁体により前記中間筒部における排気の流れ方向上流端が閉塞され、全開時には、複数の前記バルブアッセンブリにおける前記弁体の先端部分が外筒部に接近して、バイパス流路における排気の流れ方向上流端が略閉塞されるよう構成されたことを特徴とする請求項1または2に記載の排気熱回収装置。
The exhaust valve is configured by a plurality of valve assemblies each including a valve body and a valve body rod provided at an end of the valve body in a double door structure, and the valve body rod of each valve assembly. Is disposed at the end of the intermediate tube portion in the width direction or the diametrical direction,
When fully closed, the upstream ends of the intermediate cylinder portions in the exhaust flow direction are closed by the valve bodies of the plurality of valve assemblies, and when fully opened, the tip portions of the valve bodies of the plurality of valve assemblies approach the outer cylinder portions. The exhaust heat recovery apparatus according to claim 1, wherein an upstream end in a flow direction of the exhaust gas in the bypass flow path is substantially closed.
JP2012176351A 2012-08-08 2012-08-08 Exhaust heat recovery device Pending JP2014034922A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012176351A JP2014034922A (en) 2012-08-08 2012-08-08 Exhaust heat recovery device
DE102013107868.0A DE102013107868B4 (en) 2012-08-08 2013-07-23 Exhaust heat recovery device
CN201310332131.5A CN103573355B (en) 2012-08-08 2013-08-01 Exhaust gas heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012176351A JP2014034922A (en) 2012-08-08 2012-08-08 Exhaust heat recovery device

Publications (1)

Publication Number Publication Date
JP2014034922A true JP2014034922A (en) 2014-02-24

Family

ID=49999302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012176351A Pending JP2014034922A (en) 2012-08-08 2012-08-08 Exhaust heat recovery device

Country Status (3)

Country Link
JP (1) JP2014034922A (en)
CN (1) CN103573355B (en)
DE (1) DE102013107868B4 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137020A1 (en) * 2014-03-14 2015-09-17 フタバ産業株式会社 Heat recovery device
CN113586217A (en) * 2020-10-30 2021-11-02 中国重型汽车集团有限公司 Multi-section type tail gas aftertreatment control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725204B2 (en) * 2014-12-03 2020-07-15 フタバ産業株式会社 Exhaust heat recovery device
JPWO2017126118A1 (en) * 2016-01-22 2018-03-08 フタバ産業株式会社 Exhaust heat recovery device
JP6954138B2 (en) * 2018-01-15 2021-10-27 株式会社デンソー Heat storage device
JP2019193353A (en) * 2018-04-19 2019-10-31 スズキ株式会社 Rotary electric machine
CN109000493A (en) * 2018-08-27 2018-12-14 瑞安市阀门厂 Compact high efficient vertical heat exchanging device
CN116517662B (en) * 2023-05-06 2024-02-06 江苏乾景环保科技有限公司 Tail gas separation and filtration device and application method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29714478U1 (en) * 1997-08-13 1997-10-09 Heinrich Gillet Gmbh & Co Kg, 67480 Edenkoben Heat exchangers in exhaust systems of internal combustion engines
FR2776015B1 (en) * 1998-03-11 2000-08-11 Ecia Equip Composants Ind Auto HEAT EXCHANGER EXHAUST MEMBER
US6330910B1 (en) 1999-03-03 2001-12-18 Easton Bennett Heat exchanger for a motor vehicle exhaust
JP4034010B2 (en) 1999-07-23 2008-01-16 カルソニックカンセイ株式会社 Vehicle heat storage system
DE10303910A1 (en) * 2003-01-31 2004-08-12 Arvin Technologies Inc., Columbus Assembly consisting of exhaust gas heat exchanger and bypass
JP4821816B2 (en) 2008-07-25 2011-11-24 トヨタ自動車株式会社 Exhaust heat recovery unit
US8341951B2 (en) * 2009-11-04 2013-01-01 GM Global Technology Operations LLC Vehicle exhaust heat recovery with multiple coolant heating modes and method of managing exhaust heat recovery
DE102011117362A1 (en) 2011-10-29 2013-05-02 Volkswagen Ag Heat exchanger of exhaust gas recirculation for use in motor car, has closure element comprising arcuate circumferential surface that is arranged coaxial to pivot axis and pivoted about pivot axis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137020A1 (en) * 2014-03-14 2015-09-17 フタバ産業株式会社 Heat recovery device
JP2015175286A (en) * 2014-03-14 2015-10-05 フタバ産業株式会社 Heat recovery device
CN113586217A (en) * 2020-10-30 2021-11-02 中国重型汽车集团有限公司 Multi-section type tail gas aftertreatment control device

Also Published As

Publication number Publication date
CN103573355A (en) 2014-02-12
CN103573355B (en) 2016-01-20
DE102013107868A1 (en) 2014-02-13
DE102013107868B4 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP2014034922A (en) Exhaust heat recovery device
US8910471B2 (en) Structure of exhaust pipe for exhaust heat recovery
JP2008038723A (en) Supporting structure for exhaust system heat exchanger
JP4821816B2 (en) Exhaust heat recovery unit
JP6308053B2 (en) Exhaust gas recirculation device for internal combustion engine
JP6358938B2 (en) Exhaust heat recovery device
JP2017008868A (en) Exhaust heat recovery device structure
JP2007247638A (en) Exhaust heat recovery device
JP2008101496A (en) Exhaust system heat exchanger
JP2011214537A (en) Exhaust gas heat recovery device
JP2007285264A (en) Heat exchanger
KR20130012998A (en) Exhaust heat recovery device for atf warmup
JP2007100665A (en) Exhaust gas passage structure for internal combustion engine
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP6455159B2 (en) Vehicle exhaust heat recovery device
KR101307322B1 (en) Exhaust heat recovery device in automobile
KR102451877B1 (en) Engine system having coolant control valve
JP4998390B2 (en) Cooling water circulation device
JP6164568B2 (en) Exhaust system heat exchanger layout
JP2017082706A (en) Exhaust heat recovery device
JP2007085724A (en) Heat exchanger
JP4400351B2 (en) Exhaust device for multi-cylinder internal combustion engine
JP2009114885A (en) Exhaust gas passage structure
CN202325765U (en) Heat transfer unit for internal combustion engine and heat transfer unit for machine oil circulation of internal combustion engine
JP2008025557A (en) Exhaust heat recovery device