JP7287100B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP7287100B2
JP7287100B2 JP2019090426A JP2019090426A JP7287100B2 JP 7287100 B2 JP7287100 B2 JP 7287100B2 JP 2019090426 A JP2019090426 A JP 2019090426A JP 2019090426 A JP2019090426 A JP 2019090426A JP 7287100 B2 JP7287100 B2 JP 7287100B2
Authority
JP
Japan
Prior art keywords
heat storage
exhaust gas
exhaust
storage member
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019090426A
Other languages
Japanese (ja)
Other versions
JP2020186663A (en
Inventor
忠伸 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2019090426A priority Critical patent/JP7287100B2/en
Publication of JP2020186663A publication Critical patent/JP2020186663A/en
Application granted granted Critical
Publication of JP7287100B2 publication Critical patent/JP7287100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気浄化装置に関する。 The present invention relates to an exhaust purification device.

下記特許文献1には、エンジンの排気通路における触媒よりも上流側に、融解点と凝固点とが触媒の活性温度領域内の設定温度近傍にある物質で構成された蓄熱材を設けたエンジンの排気ガス浄化装置が記載されている。 Patent Document 1 below describes an engine exhaust provided with a heat storage material made of a material having a melting point and a freezing point near a set temperature within the activation temperature range of the catalyst, upstream of the catalyst in the exhaust passage of the engine. A gas purifier is described.

また、下記特許文献2には、排気ガス浄化用の触媒を収容する触媒ケースと、触媒を通過する排気ガスの熱を回収するとともに触媒との間で熱伝達を行う排熱回収部とを持つ触媒ケース装置が記載されている。 Further, Patent Document 2 below discloses a catalyst case that houses a catalyst for purifying exhaust gas, and an exhaust heat recovery unit that recovers the heat of the exhaust gas passing through the catalyst and conducts heat transfer between the catalyst and the catalyst. A catalyst case device is described.

また、下記特許文献3には、排気管における触媒担持体の上流側に、蓄熱材を備えた副流路に排気の流れを切り替える切替手段を備え、切替手段により副流路を通してから排気管における触媒担持体の上流側に排気を流入させる構造が記載されている。 Further, in the following Patent Document 3, switching means for switching the flow of exhaust gas to a sub-flow path provided with a heat storage material is provided on the upstream side of the catalyst carrier in the exhaust pipe, and the switching means passes the exhaust gas through the sub-flow path and then in the exhaust pipe. A structure is described that allows exhaust gas to flow into the upstream side of the catalyst carrier.

特開昭60-212608号公報JP-A-60-212608 特開2000-179338号公報JP-A-2000-179338 特開2018-150915号公報JP 2018-150915 A

しかしながら、上記特許文献1~3に記載の技術は、いずれも排気の浄化用の触媒の反応熱を蓄熱材の昇温に利用する場合と利用しない場合とに切り替えることができず、改善の余地がある。 However, none of the techniques described in Patent Documents 1 to 3 can switch between using and not using the reaction heat of the catalyst for purifying the exhaust gas to raise the temperature of the heat storage material, and there is room for improvement. There is

本発明は上記事実を考慮し、排気の浄化用の触媒の反応熱を蓄熱部材の昇温に利用する場合と利用しない場合とに切り替えることができる排気浄化装置を得ることが目的である。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an exhaust emission control system capable of switching between using and not using the reaction heat of a catalyst for purifying exhaust gas to raise the temperature of a heat storage member.

第1態様に係る排気浄化装置は、排気管内に設けられ、排気を浄化する触媒を担持する触媒担持体と、前記排気管における前記触媒担持体と隣り合う位置に設けられ、排気が流れる副流路と、前記副流路に設けられる蓄熱部材と、前記触媒担持体よりも排気の上流側で前記排気管から前記副流路に排気を導入して前記蓄熱部材を経由させ、かつ前記触媒担持体よりも排気の上流側で前記副流路から前記排気管に排気を戻す第1経路と、前記触媒担持体よりも排気の下流側で前記排気管から前記副流路に排気を導入して前記蓄熱部材を経由させ、かつ前記触媒担持体よりも排気の下流側で前記副流路から前記排気管に排気を戻す第2経路と、に切り替える切替機構と、を有する。 An exhaust purification device according to a first aspect includes a catalyst carrier provided in an exhaust pipe for carrying a catalyst for purifying exhaust gas, and a side stream through which exhaust gas flows, provided at a position adjacent to the catalyst carrier in the exhaust pipe. a heat storage member provided in the sub-flow path; exhaust gas is introduced from the exhaust pipe into the sub-flow path on the upstream side of the exhaust gas with respect to the catalyst carrier, and passes through the heat storage member; a first path that returns the exhaust gas from the secondary flow path to the exhaust pipe upstream of the catalyst carrier, and a first path that introduces the exhaust gas from the exhaust pipe into the secondary flow channel downstream of the catalyst carrier; a switching mechanism for switching between a second path through the heat storage member and returning the exhaust gas from the sub-path to the exhaust pipe on the downstream side of the exhaust gas relative to the catalyst carrier.

第1態様に係る排気浄化装置によれば、排気管内を流れた排気は、触媒担持体に担持された触媒により浄化される。排気管における触媒担持体と隣り合う位置には、蓄熱部材を備えた副流路が設けられており、切替機構により第1経路と第2経路とに切り替えることで、排気を副流路に流すことができる。第1経路では、触媒担持体よりも排気の上流側で排気管から副流路に排気が導入されて蓄熱部材を経由させ、かつ触媒担持体よりも排気の上流側で副流路から排気管に排気が戻される。そして、排気管に戻された排気は、触媒担持体を通過する。すなわち、第1経路では、触媒の反応熱は蓄熱部材の昇温には利用されない。例えば、排気の熱の一部を蓄熱部材に蓄熱することで、排気の温度を低下させる。これにより、排気の温度を、触媒を劣化させる温度に達しない程度に低下させることで、触媒の劣化を抑制し、触媒を保護することができる。また、例えば、エンジンの始動直後等に排気の温度が低い場合に、第1経路にて排気を副流路に導入することで、蓄熱部材により排気の温度が上昇する。 According to the exhaust purification device of the first aspect, the exhaust gas flowing through the exhaust pipe is purified by the catalyst carried on the catalyst carrier. A sub-flow path having a heat storage member is provided at a position adjacent to the catalyst carrier in the exhaust pipe, and the switching mechanism switches between the first and second paths to allow the exhaust gas to flow through the sub-flow path. be able to. In the first route, the exhaust is introduced from the exhaust pipe into the sub-flow path on the upstream side of the catalyst carrier and passes through the heat storage member, and the exhaust gas flows from the sub-flow channel on the upstream side of the catalyst carrier to the exhaust pipe. The exhaust is returned to Then, the exhaust gas returned to the exhaust pipe passes through the catalyst carrier. That is, in the first route, the reaction heat of the catalyst is not used to raise the temperature of the heat storage member. For example, by storing part of the heat of the exhaust in the heat storage member, the temperature of the exhaust is lowered. As a result, the temperature of the exhaust gas is lowered to such an extent that it does not reach a temperature that deteriorates the catalyst, thereby suppressing the deterioration of the catalyst and protecting the catalyst. Further, for example, when the temperature of the exhaust gas is low immediately after the engine is started, the temperature of the exhaust gas is raised by the heat storage member by introducing the exhaust gas into the secondary flow path through the first path.

また、第2経路では、触媒担持体よりも排気の下流側で排気管から副流路に排気が導入されて蓄熱部材を経由させ、かつ触媒担持体よりも排気の下流側で副流路から排気管に排気が戻される。副流路の上流側では、排気管内の排気が触媒担持体に担持された触媒により浄化される際に反応熱が生じる。そして、触媒の反応熱を受けた排気が蓄熱部材を通過することで、触媒の反応熱が排気の流れによって蓄熱部材に作用する。すなわち、触媒の反応熱を利用して、蓄熱部材に短時間で蓄熱して昇温させたり、蓄熱部材の温度を長時間にわたって所定以上に維持したりすることができる。したがって、上記構成によれば、排気の浄化用の触媒の反応熱を蓄熱部材の昇温に利用する場合と利用しない場合とに切り替えることができる。 Further, in the second route, the exhaust gas is introduced from the exhaust pipe into the sub-flow path downstream of the catalyst carrier, passes through the heat storage member, and is downstream of the catalyst support from the sub-flow channel. The exhaust is returned to the exhaust pipe. On the upstream side of the sub-flow path, reaction heat is generated when the exhaust gas in the exhaust pipe is purified by the catalyst carried on the catalyst carrier. Exhaust gas that has received the reaction heat of the catalyst passes through the heat storage member, and the reaction heat of the catalyst acts on the heat storage member due to the flow of the exhaust gas. That is, by utilizing the heat of reaction of the catalyst, heat can be stored in the heat storage member in a short period of time to raise the temperature, or the temperature of the heat storage member can be maintained above a predetermined level for a long period of time. Therefore, according to the above configuration, it is possible to switch between using the reaction heat of the catalyst for purifying the exhaust gas to raise the temperature of the heat storage member and not using it.

第2態様に係る排気浄化装置は、第1態様に係る排気浄化装置において、前記触媒担持体よりも排気の上流側で前記排気管と前記副流路とを接続する第1接続部と、前記触媒担持体よりも排気の下流側で前記排気管と前記副流路とを接続する第2接続部と、を備え、前記切替機構は、前記第1接続部に設けられ、前記副流路を閉鎖する第1位置と、前記排気管を閉鎖すると共に、前記第1接続部における上流側に設けられた第1上流側連通口を開放し、かつ前記第1接続部における下流側に設けられた第1下流側連通口を開放する第2位置と、に切り替える第1切替部材と、前記第2接続部に設けられ、前記副流路を閉鎖する第3位置と、前記排気管を閉鎖すると共に、前記第2接続部における上流側に設けられた第2上流側連通口を開放し、かつ前記第2接続部における下流側に設けられた第2下流側連通口を開放する第4位置と、に切り替える第2切替部材と、を備える。 An exhaust purification device according to a second aspect is the exhaust purification device according to the first aspect, wherein a first connecting portion connecting the exhaust pipe and the sub-flow path upstream of the catalyst carrier in the exhaust gas; a second connection portion that connects the exhaust pipe and the sub-flow path downstream of the catalyst carrier, and the switching mechanism is provided in the first connection portion to switch the sub-flow path. A first position to close, and a first upstream communication port provided on the upstream side of the first connection portion while closing the exhaust pipe, and provided on the downstream side of the first connection portion. a first switching member that switches to a second position that opens the first downstream side communication port; a third position that is provided at the second connection portion and closes the secondary flow path; and a third position that closes the exhaust pipe. , a fourth position for opening a second upstream communication port provided on the upstream side of the second connection portion and opening a second downstream communication port provided on the downstream side of the second connection portion; and a second switching member that switches to

第2態様に係る排気浄化装置によれば、触媒担持体よりも排気の上流側の第1接続部には、第1切替部材が設けられており、第1切替部材が第1位置と第2位置とに切り替えられる。第1位置では、第1切替部材は副流路を閉鎖する。第2位置では、第1切替部材は、排気管を閉鎖すると共に、第1接続部の第1上流側連通口を開放し、かつ第1接続部の第1下流側連通口を開放する。これにより、第1切替部材を第1位置とすることで、排気が排気管を流れる状態を実現できる。また、第1切替部材を第2位置とすることで、触媒担持体よりも排気の上流側で排気管から副流路に排気が流れる状態を実現できる。 According to the exhaust purification device of the second aspect, the first switching member is provided at the first connecting portion on the upstream side of the exhaust gas from the catalyst carrier, and the first switching member is positioned between the first position and the second position. Position and switch. In the first position the first switching member closes the secondary flow path. At the second position, the first switching member closes the exhaust pipe, opens the first upstream communication port of the first connection portion, and opens the first downstream communication port of the first connection portion. Accordingly, by setting the first switching member to the first position, it is possible to realize a state in which the exhaust gas flows through the exhaust pipe. Further, by setting the first switching member to the second position, it is possible to realize a state in which the exhaust flows from the exhaust pipe to the sub-flow path upstream of the catalyst carrier.

また、触媒担持体よりも排気の下流側の第2接続部には、第2切替部材が設けられており、第2切替部材が第3位置と第4位置とに切り替えられる。第3位置では、第2切替部材は副流路を閉鎖する。第4位置では、第2切替部材は、排気管を閉鎖すると共に、第2接続部の第2上流側連通口を開放し、かつ第2接続部の第2下流側連通口を開放する。これにより、第2切替部材を第3位置とすることで、触媒担持体の下流側で排気が排気管に流れる状態を実現できる。また、第2切替部材を第4位置とすることで、触媒担持体よりも排気の下流側で排気管から副流路に排気が流れる状態を実現できる。 A second switching member is provided at the second connecting portion on the downstream side of the exhaust gas relative to the catalyst carrier, and the second switching member is switched between the third position and the fourth position. In the third position the second switching member closes the secondary flow path. At the fourth position, the second switching member closes the exhaust pipe, opens the second upstream communication port of the second connection portion, and opens the second downstream communication port of the second connection portion. Accordingly, by setting the second switching member to the third position, it is possible to realize a state in which the exhaust gas flows into the exhaust pipe on the downstream side of the catalyst carrier. Further, by setting the second switching member to the fourth position, it is possible to realize a state in which exhaust gas flows from the exhaust pipe to the sub-flow path downstream of the catalyst carrier.

第3態様に係る排気浄化装置は、第2態様に係る排気浄化装置において、前記切替機構は、前記第1切替部材を前記第2位置とした状態で、前記第1上流側連通口を介して前記排気管から前記副流路に排気を導入し、かつ前記第1下流側連通口を介して前記副流路から前記排気管に排気を戻す構成とされており、前記第1切替部材を前記第2位置とすると共に、前記第2切替部材を前記第3位置とすることで、前記第1経路に切り替える。 An exhaust gas purification device according to a third aspect is the exhaust gas purification device according to the second aspect, wherein the switching mechanism, with the first switching member in the second position, is connected to the exhaust gas through the first upstream communication port. Exhaust gas is introduced from the exhaust pipe into the sub-channel and is returned to the exhaust pipe from the sub-channel via the first downstream communication port, and the first switching member is configured to be the By setting the second position and setting the second switching member to the third position, the path is switched to the first path.

第3態様に係る排気浄化装置によれば、第1切替部材を第2位置とすることで、第1上流側連通口を介して排気管から副流路に排気が導入され、かつ第1下流側連通口を介して副流路から排気管に排気が戻される。また、第2切替部材を第3位置とすることで、副流路が閉鎖される。これにより、構成を複雑化することなく、切替機構を第1経路に切り替えることができる。 According to the exhaust purification device of the third aspect, by setting the first switching member to the second position, the exhaust gas is introduced from the exhaust pipe into the sub-flow path through the first upstream side communication port, and the first downstream side Exhaust gas is returned from the secondary flow path to the exhaust pipe via the side communication port. Further, the secondary flow path is closed by setting the second switching member to the third position. Thereby, the switching mechanism can be switched to the first path without complicating the configuration.

第4態様に係る排気浄化装置は、第2態様又は第3態様に係る排気浄化装置において、前記切替機構は、前記第2切替部材を前記第4位置とした状態で、前記第2上流側連通口を介して前記排気管から前記副流路に排気を導入し、かつ前記第2下流側連通口を介して前記副流路から前記排気管に排気を戻す構成とされており、前記第1切替部材を前記第1位置とすると共に、前記第2切替部材を前記第4位置とすることで、前記第2経路に切り替える。 An exhaust gas purification device according to a fourth aspect is the exhaust gas purification device according to the second aspect or the third aspect, wherein the switching mechanism, with the second switching member at the fourth position, communicates with the second upstream side. exhaust gas is introduced from the exhaust pipe into the sub-channel through the port, and exhaust gas is returned from the sub-channel through the second downstream communication port to the exhaust pipe; By setting the switching member to the first position and setting the second switching member to the fourth position, the path is switched to the second path.

第4態様に係る排気浄化装置によれば、第2切替部材を第4位置とすることで、第2上流側連通口を介して排気管から副流路に排気が導入され、かつ第2下流側連通口を介して副流路から排気管に排気が戻される。第1切替部材を第1位置とすることで、副流路が閉鎖される。これにより、構成を複雑化することなく、切替機構を第2経路に切り替えることができる。 According to the exhaust purification device of the fourth aspect, by setting the second switching member to the fourth position, the exhaust gas is introduced from the exhaust pipe into the sub-flow path through the second upstream side communication port, and the second downstream side Exhaust gas is returned from the secondary flow path to the exhaust pipe via the side communication port. By setting the first switching member to the first position, the secondary flow path is closed. Thereby, the switching mechanism can be switched to the second path without complicating the configuration.

第5態様に係る排気浄化装置は、第2態様に係る排気浄化装置において、エンジンを停止したときに、前記第1切替部材を前記第2位置とすると共に、前記第2切替部材を前記第4位置とすることで、前記触媒担持体が配置された前記排気管を閉塞する。 An exhaust purification device according to a fifth aspect is the exhaust purification device according to the second aspect, wherein when the engine is stopped, the first switching member is set to the second position, and the second switching member is set to the fourth position. By setting the position, the exhaust pipe in which the catalyst carrier is arranged is closed.

第5態様に係る排気浄化装置によれば、エンジンを停止したときに、第1切替部材を第2位置とすると共に、第2切替部材を第4位置とする。これにより、触媒担持体が配置された排気管が閉塞され、エンジンの停止時に触媒担持体に担持された触媒の温度低下が抑制される。 According to the exhaust gas purification device according to the fifth aspect, when the engine is stopped, the first switching member is set to the second position and the second switching member is set to the fourth position. As a result, the exhaust pipe in which the catalyst carrier is arranged is blocked, and the temperature drop of the catalyst carried by the catalyst carrier is suppressed when the engine is stopped.

第6態様に係る排気浄化装置は、第2態様から第5形態までのいずれか1つの形態に係る排気浄化装置において、前記副流路は、前記触媒担持体が配置された前記排気管の長手方向と交差する方向の一方側に、前記排気管に沿って配置されている。 An exhaust purification device according to a sixth aspect is the exhaust purification device according to any one of the second aspect to the fifth aspect, wherein the secondary flow path is the longitudinal direction of the exhaust pipe in which the catalyst carrier is arranged. It is arranged along the exhaust pipe on one side of the direction intersecting the direction.

第6態様に係る排気浄化装置によれば、副流路は、触媒担持体が配置された排気管の長手方向と交差する方向の一方側に、排気管に沿って配置されている。このため、副流路に設けられた蓄熱部材により、触媒担持体が保温されることで、触媒担持体に担持された触媒の温度低下が抑制される。 According to the exhaust purification device of the sixth aspect, the sub flow path is arranged along the exhaust pipe on one side in the direction intersecting with the longitudinal direction of the exhaust pipe in which the catalyst carrier is arranged. Therefore, the temperature of the catalyst supported on the catalyst carrier is suppressed by keeping the catalyst carrier warm with the heat storage member provided in the sub-flow path.

第7態様に係る排気浄化装置は、第6態様に係る排気浄化装置において、前記蓄熱部材は、前記副流路の内部を前記排気管の長手方向に沿って区画する隔壁とされ、前記第1切替部材は、前記第2位置で前記蓄熱部材の一端部に接触し、前記排気管を閉鎖する構成とされ、前記第2切替部材が前記第3位置に配置されることで、前記蓄熱部材により前記第1経路となる前記副流路の折り返し経路が形成される。 An exhaust purification device according to a seventh aspect is the exhaust purification device according to the sixth aspect, wherein the heat storage member is a partition wall that partitions the inside of the sub-flow path along the longitudinal direction of the exhaust pipe, and the first first aspect is provided. The switching member is configured to contact one end of the heat storage member at the second position and close the exhaust pipe. A turn-back path of the sub-flow path is formed as the first path.

第7態様に係る排気浄化装置によれば、蓄熱部材は、副流路の内部を排気管の長手方向に沿って区画する隔壁とされ、第1切替部材は、第2位置で蓄熱部材の一端部に接触することで、排気管が閉鎖される。また、第2切替部材が第3位置に配置されることで、蓄熱部材により第1経路となる副流路の折り返し経路が形成される。このため、簡単な構成により、切替機構を第1経路に切り替えることができる。 According to the exhaust purification device of the seventh aspect, the heat storage member is the partition wall that partitions the interior of the sub-flow path along the longitudinal direction of the exhaust pipe, and the first switching member is positioned at the second position at one end of the heat storage member. By contacting the part, the exhaust pipe is closed. Further, by arranging the second switching member at the third position, the heat storage member forms a turn-back path of the sub-flow path serving as the first path. Therefore, the switching mechanism can be switched to the first path with a simple configuration.

第8態様に係る排気浄化装置は、第6態様又は第7態様に係る排気浄化装置において、前記第2切替部材は、前記第4位置で前記蓄熱部材の他端部に接触し、前記排気管を閉鎖する構成とされ、前記第1切替部材が前記第1位置に配置されることで、前記蓄熱部材により前記第2経路となる前記副流路の折り返し経路が形成される。 An exhaust gas purification device according to an eighth aspect is the exhaust gas purification device according to the sixth aspect or the seventh aspect, wherein the second switching member contacts the other end of the heat storage member at the fourth position, and the exhaust pipe By arranging the first switching member at the first position, the heat accumulating member forms a turn-back path of the secondary flow path that becomes the second path.

第8態様に係る排気浄化装置によれば、第2切替部材は、第4位置で蓄熱部材の他端部に接触することで、排気管が閉鎖される。また、第1切替部材が第1位置に配置されることで、蓄熱部材により第2経路となる副流路の折り返し経路が形成される。このため、簡単な構成により、切替機構を第2経路に切り替えることができる。 According to the exhaust purification device of the eighth aspect, the second switching member contacts the other end of the heat storage member at the fourth position, thereby closing the exhaust pipe. Further, by arranging the first switching member at the first position, the heat storage member forms a turn-back path of the sub-flow path serving as the second path. Therefore, the switching mechanism can be switched to the second path with a simple configuration.

第9態様に係る排気浄化装置は、第2態様から第5形態までのいずれか1つの形態に係る排気浄化装置において、前記副流路は、前記触媒担持体が配置された前記排気管の周囲に配置されている。 An exhaust purification device according to a ninth aspect is the exhaust purification device according to any one of the second aspect to the fifth aspect, wherein the secondary flow path surrounds the exhaust pipe in which the catalyst carrier is arranged. are placed in

第9態様に係る排気浄化装置によれば、副流路は、触媒担持体が配置された排気管の周囲に配置されている。このため、副流路に設けられた蓄熱部材により、触媒担持体が保温されることで、触媒担持体に担持された触媒の温度低下が抑制される。 According to the exhaust purification device of the ninth aspect, the secondary flow path is arranged around the exhaust pipe in which the catalyst carrier is arranged. Therefore, the temperature of the catalyst supported on the catalyst carrier is suppressed by keeping the catalyst carrier warm with the heat storage member provided in the sub-flow path.

第10態様に係る排気浄化装置は、第9態様に係る排気浄化装置において、前記蓄熱部材は、前記触媒担持体が配置された前記排気管の周囲に配置されると共に前記副流路の内部を区画する筒状の隔壁とされ、前記第1切替部材は、前記第2位置で前記蓄熱部材の一端部に接触し、前記排気管を閉鎖する構成とされ、前記第2切替部材が前記第3位置に配置されることで、前記蓄熱部材により前記第1経路となる前記副流路の折り返し経路が形成される。 An exhaust purification device according to a tenth aspect is the exhaust purification device according to the ninth aspect, wherein the heat storage member is arranged around the exhaust pipe in which the catalyst carrier is arranged and extends inside the sub flow path. The first switching member is configured to be in contact with one end of the heat storage member at the second position to close the exhaust pipe, and the second switching member is the third switching member. By arranging at the position, the heat storage member forms a turn-back path of the sub-flow path serving as the first path.

第10態様に係る排気浄化装置によれば、蓄熱部材は、触媒担持体が配置された排気管の周囲に配置されると共に副流路の内部を区画する筒状の隔壁とされている。このため、排気管の周囲に配置された蓄熱部材により、触媒担持体が保温されることで、触媒担持体に担持された触媒の温度低下がより確実に抑制される。また、第1切替部材は、第2位置で蓄熱部材の一端部に接触することで、排気管が閉鎖される。また、第2切替部材が第3位置に配置されることで、蓄熱部材により第1経路となる副流路の折り返し経路が形成される。このため、切替機構を第1経路に切り替えることができる。 According to the exhaust gas purification apparatus of the tenth aspect, the heat storage member is a cylindrical partition that is arranged around the exhaust pipe in which the catalyst carrier is arranged and partitions the inside of the sub-flow path. Therefore, the heat storage member disposed around the exhaust pipe keeps the catalyst carrier warm, thereby more reliably suppressing the temperature drop of the catalyst carried on the catalyst carrier. Further, the exhaust pipe is closed by the first switching member coming into contact with one end of the heat storage member at the second position. Further, by arranging the second switching member at the third position, the heat storage member forms a turn-back path of the sub-flow path serving as the first path. Therefore, the switching mechanism can be switched to the first path.

第11態様に係る排気浄化装置は、第9態様又は第10態様に係る排気浄化装置において、前記第2切替部材は、前記第4位置で前記蓄熱部材の他端部に接触し、前記排気管を閉鎖する構成とされ、前記第1切替部材が前記第1位置に配置されることで、前記蓄熱部材により前記第2経路となる前記副流路の折り返し経路が形成される。 An exhaust purification device according to an eleventh aspect is the exhaust purification device according to the ninth aspect or the tenth aspect, wherein the second switching member contacts the other end of the heat storage member at the fourth position, and the exhaust pipe By arranging the first switching member at the first position, the heat accumulating member forms a turn-back path of the secondary flow path that becomes the second path.

第11態様に係る排気浄化装置によれば、第2切替部材は、第4位置で蓄熱部材の他端部に接触することで、排気管が閉鎖される。また、第1切替部材が第1位置に配置されることで、蓄熱部材により第2経路となる副流路の折り返し経路が形成される。このため、切替機構を第2経路に切り替えることができる。 According to the exhaust purification device of the eleventh aspect, the exhaust pipe is closed by the second switching member coming into contact with the other end of the heat storage member at the fourth position. Further, by arranging the first switching member at the first position, the heat storage member forms a turn-back path of the sub-flow path serving as the second path. Therefore, the switching mechanism can be switched to the second path.

第12態様に係る排気浄化装置は、第9態様から第11形態までのいずれか1つの形態に係る排気浄化装置において、前記蓄熱部材の外側には、前記蓄熱部材の周方向に沿って配置されると共に、排気を前記蓄熱部材の周方向に沿った一の流れ方向に流し、さらに排気の流れ方向下流側の第1開口を介して排気を前記蓄熱部材の周方向に沿った逆の流れ方向に流す外側仕切板が設けられており、前記蓄熱部材の内側には、前記蓄熱部材の周方向に沿って配置されると共に、排気を前記蓄熱部材の周方向に沿った一の流れ方向に流し、さらに排気の流れ方向下流側の第2開口を介して排気を前記蓄熱部材の周方向に沿った逆の流れ方向に流す内側仕切板が設けられている。 An exhaust gas purification device according to a twelfth aspect is the exhaust gas purification device according to any one of the ninth aspect to the eleventh aspect, and is arranged outside the heat storage member along the circumferential direction of the heat storage member. In addition, the exhaust gas flows in one flow direction along the circumferential direction of the heat storage member, and the exhaust gas flows in the opposite flow direction along the circumferential direction of the heat storage member through the first opening on the downstream side in the flow direction of the exhaust gas. An outer partition plate is provided inside the heat storage member along the circumferential direction of the heat storage member, and the exhaust gas is flowed in one flow direction along the circumferential direction of the heat storage member. Furthermore, an inner partition plate is provided for causing the exhaust gas to flow in the opposite flow direction along the circumferential direction of the heat storage member through a second opening on the downstream side in the flow direction of the exhaust gas.

第12態様に係る排気浄化装置によれば、蓄熱部材の外側には、蓄熱部材の周方向に沿って配置された外側仕切板が設けられており、外側仕切板によって、排気が蓄熱部材の周方向に沿った一の流れ方向に流れる。さらに、排気の流れ方向下流側には、外側仕切板に第1開口が設けられており、第1開口を介して排気が蓄熱部材の周方向に沿った逆の流れ方向に流れる。また、蓄熱部材の内側には、蓄熱部材の周方向に沿って配置された内側仕切板が設けられており、内側仕切板によって、排気が蓄熱部材の周方向に沿った一の流れ方向に流れる。さらに、排気の流れ方向下流側には、内側仕切板に第2開口が設けられており、第2開口を介して排気が蓄熱部材の周方向に沿った逆の流れ方向に流れる。このため、副流路において、排気と蓄熱部材の接触時間を増加させることができる。 According to the exhaust emission purification device of the twelfth aspect, the outer partition plate is provided outside the heat storage member along the circumferential direction of the heat storage member. flow in one flow direction along the direction. Further, a first opening is provided in the outer partition plate on the downstream side in the flow direction of the exhaust gas, and the exhaust gas flows in the opposite flow direction along the circumferential direction of the heat storage member through the first opening. Further, inside the heat storage member, an inner partition plate is provided along the circumferential direction of the heat storage member. . Further, the inner partition plate is provided with a second opening downstream in the flow direction of the exhaust gas, and the exhaust gas flows in the opposite flow direction along the circumferential direction of the heat storage member through the second opening. Therefore, it is possible to increase the contact time between the exhaust gas and the heat storage member in the secondary flow path.

本発明に係る排気浄化装置によれば、排気の浄化用の触媒の反応熱を蓄熱材の昇温に利用する場合と利用しない場合とに切り替えることができる。 According to the exhaust purification device of the present invention, it is possible to switch between using the reaction heat of the catalyst for purifying the exhaust gas to raise the temperature of the heat storage material and not using it.

第1実施形態の排気浄化装置を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the exhaust gas purification device of 1st Embodiment. 第1実施形態の排気浄化装置を示す図1中の2-2線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 1 showing the exhaust gas purification device of the first embodiment; 第1実施形態の排気浄化装置において、排気が触媒担持体のみを通る経路に切り替えられた状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which the exhaust purification device of the first embodiment is switched to a path through which the exhaust gas passes only through the catalyst carrier. 第1実施形態の排気浄化装置において、排気が蓄熱部材から触媒担持体を通る経路に切り替えられた状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which exhaust gas is switched from a heat storage member to a path passing through a catalyst carrier in the exhaust purification device of the first embodiment; 第1実施形態の排気浄化装置において、排気が触媒担持体から蓄熱部材を通る経路に切り替えられた状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state in which exhaust gas is switched from a catalyst carrier to a path passing through a heat storage member in the exhaust purification device of the first embodiment; 第1実施形態の排気浄化装置において、エンジン停止時の状態を示す断面図である。FIG. 2 is a cross-sectional view showing a state when the engine is stopped in the exhaust purification system of the first embodiment; 第1実施形態の排気浄化装置の切り替え状態において、切替バルブの開状態と、切替バルブの閉状態の位置関係を説明する図である。FIG. 4 is a diagram illustrating the positional relationship between the open state and the closed state of the switching valve in the switching state of the exhaust purification system of the first embodiment; 第2実施形態の排気浄化装置を示す斜視図である。It is a perspective view which shows the exhaust gas purification device of 2nd Embodiment. 第2実施形態の排気浄化装置を軸方向に沿った断面で示す斜視図である。It is a perspective view which shows the exhaust gas purification device of 2nd Embodiment in the cross section along the axial direction. 第2実施形態の排気浄化装置の外筒を取り外した内部を示す斜視図である。It is a perspective view showing the inside of the exhaust purification device of the second embodiment from which the outer cylinder is removed. 第2実施形態の排気浄化装置の外筒を取り外した内部を軸方向に沿った断面で示す斜視図である。It is a perspective view which shows the inside which removed the outer cylinder of the exhaust gas purification device of 2nd Embodiment in the cross section along the axial direction. 第2実施形態の排気浄化装置の筒部付近を示す斜視図である。It is a perspective view showing the vicinity of the cylinder portion of the exhaust purification device of the second embodiment. 第2実施形態の排気浄化装置の蓄熱部材及び切替バルブ付近を示す断面図である。FIG. 7 is a cross-sectional view showing the vicinity of a heat storage member and a switching valve of an exhaust gas purification device of a second embodiment; 第2実施形態の排気浄化装置の筒部及び切替バルブを示す斜視図である。FIG. 11 is a perspective view showing a tubular portion and a switching valve of an exhaust purification device of a second embodiment; 第2実施形態の排気浄化装置の筒部を取り外した状態で蓄熱部材の外側流路を示す斜視図である。FIG. 10 is a perspective view showing the outer flow path of the heat storage member in a state where the cylindrical portion of the exhaust purification device of the second embodiment is removed; 第2実施形態の排気浄化装置の蓄熱部材の内側流路を示す斜視図である。FIG. 11 is a perspective view showing an inner flow path of a heat storage member of the exhaust purification device of the second embodiment;

本発明の実施の形態について、図面を基に詳細に説明する。 An embodiment of the present invention will be described in detail with reference to the drawings.

〔第1実施形態〕
以下、図1~図7を用いて、第1実施形態に係る排気浄化装置12を説明する。
[First Embodiment]
An exhaust purification device 12 according to the first embodiment will be described below with reference to FIGS. 1 to 7. FIG.

図1及び図2に示すように、排気浄化装置12は、排気管14の内部に取り付けられる触媒担持体16を有している。本実施形態では、排気管14は略円筒形であるが、長手方向の一部分は他の部分よりも径が太い太径配管14Bとされており、太径配管14Bは略U字状に形成されている(図2参照)。触媒担持体16は太径配管14Bに配置されている。 As shown in FIGS. 1 and 2, the exhaust purification device 12 has a catalyst carrier 16 attached inside the exhaust pipe 14 . In this embodiment, the exhaust pipe 14 has a substantially cylindrical shape, but a portion in the longitudinal direction is a large-diameter pipe 14B having a larger diameter than the other portion, and the large-diameter pipe 14B is formed in a substantially U shape. (See Figure 2). The catalyst carrier 16 is arranged in the large-diameter pipe 14B.

以下において、単に「上流側」及び「下流側」というときは、排気管14内での排気の流れ方向(矢印F1方向)における上流側及び下流側をそれぞれいうものとする。 In the following description, the terms "upstream side" and "downstream side" respectively refer to the upstream side and the downstream side in the flow direction of exhaust gas in the exhaust pipe 14 (arrow F1 direction).

排気管14において、太径配管14Bよりも上流側の部分は略円筒状の上流配管14Aであり、下流側の部分は略円筒状の下流配管14Cである。そして、上流配管14Aから太径配管14Bを経て下流配管14Cに至る部分が、エンジンからの排気が流れる主流路22である。太径配管14Bと上流配管14Aの間は、径が徐々に変化するテーパー配管14Dにより連続しており、太径配管14Bと下流配管14Cとの間は、径が徐々に変化するテーパー配管14Eにより連続している。 In the exhaust pipe 14, the upstream portion of the large-diameter pipe 14B is a substantially cylindrical upstream pipe 14A, and the downstream portion thereof is a substantially cylindrical downstream pipe 14C. A portion from the upstream pipe 14A to the downstream pipe 14C via the large-diameter pipe 14B is a main flow path 22 through which the exhaust gas from the engine flows. The large-diameter pipe 14B and the upstream pipe 14A are connected by a tapered pipe 14D whose diameter gradually changes, and the large-diameter pipe 14B and the downstream pipe 14C are connected by a tapered pipe 14E whose diameter gradually changes. Contiguous.

触媒担持体16は、薄板を、たとえばハニカム状とすることで、表面積が増大された構造であり、この表面に、触媒が担持されている。触媒は、排気管14内を流れる排気中の物質(炭化水素等)を浄化する作用を有している。このような作用を奏する触媒としては、白金、パラジウム、ロジウム等を挙げることができる。なお、触媒担持体16の表面積を増大させる構造は、上記したハニカム状に限定られず、波状又は他の形状でもよい。 The catalyst carrier 16 has a structure in which a surface area is increased by forming a thin plate into, for example, a honeycomb shape, and a catalyst is carried on this surface. The catalyst has the effect of purifying substances (hydrocarbons, etc.) in the exhaust gas flowing through the exhaust pipe 14 . Platinum, palladium, rhodium and the like can be given as examples of catalysts that exhibit such effects. The structure for increasing the surface area of the catalyst carrier 16 is not limited to the honeycomb shape described above, and may be a wavy shape or other shapes.

触媒担持体16は、排気管14の内部に収容されるように、全体として円柱状に形成されている(図2参照)。なお、触媒担持体16は、円筒状に形成してもよい。 The catalyst carrier 16 is formed in a cylindrical shape as a whole so as to be accommodated inside the exhaust pipe 14 (see FIG. 2). Incidentally, the catalyst carrier 16 may be formed in a cylindrical shape.

排気管14の太径配管14Bの長手方向(すなわち、軸方向)と交差する方向の一方側には、太径配管14Bから外側に突出した突設部18が設けられている。突設部18は、排気管14の太径配管14Bの周方向の一部に設けられている。突設部18は、排気管14に沿って配置されている。太径配管14Bにおける突設部18の上流側と下流側は、略平面状の壁部15とされている。突設部18の半径方向内側の端部は、壁部15に繋がっている。 On one side of the exhaust pipe 14 in a direction crossing the longitudinal direction (that is, the axial direction) of the large-diameter pipe 14B, a projecting portion 18 is provided that protrudes outward from the large-diameter pipe 14B. The projecting portion 18 is provided at a portion of the large-diameter pipe 14B of the exhaust pipe 14 in the circumferential direction. The projecting portion 18 is arranged along the exhaust pipe 14 . The upstream side and the downstream side of the projecting portion 18 of the large-diameter pipe 14B are substantially flat wall portions 15 . A radially inner end portion of the projecting portion 18 is connected to the wall portion 15 .

突設部18は、触媒担持体16と隣り合う位置に設けられている。突設部18は、略直方体状に形成されており、図2に示す排気管14の軸方向と直交する方向の断面にて、太径配管14Bの接線方向に延びている。 The projecting portion 18 is provided at a position adjacent to the catalyst carrier 16 . The projecting portion 18 is formed in a substantially rectangular parallelepiped shape, and extends in the tangential direction of the large-diameter pipe 14B in a cross section perpendicular to the axial direction of the exhaust pipe 14 shown in FIG.

より具体的には、突設部18は、排気の上流側で太径配管14Bの軸方向と略直交する方向に配置された上流壁部18Aと、排気の下流側で太径配管14Bの軸方向と略直交する方向に配置された下流壁部18Bと、を備えている(図1参照)。また、太径配管14Bの接線方向に配置された一対の側壁部18C、18Dを備えている(図2参照)。さらに、突設部18は、上流壁部18Aの端部と下流壁部18Bの端部と一対の側壁部18C、18Dの端部とを繋ぐと共に太径配管14Bに沿って配置された上壁部18Eを備えている。 More specifically, the projecting portion 18 includes an upstream wall portion 18A arranged in a direction substantially perpendicular to the axial direction of the large-diameter pipe 14B on the upstream side of the exhaust gas, and an upstream wall portion 18A arranged in a direction substantially perpendicular to the axial direction of the large-diameter pipe 14B on the exhaust downstream side. and a downstream wall portion 18B arranged in a direction substantially orthogonal to the direction (see FIG. 1). It also has a pair of side walls 18C and 18D arranged tangentially to the large-diameter pipe 14B (see FIG. 2). Furthermore, the projecting portion 18 connects the ends of the upstream wall portion 18A, the downstream wall portion 18B, and the pair of side wall portions 18C and 18D and is arranged along the large-diameter pipe 14B. A portion 18E is provided.

突設部18の内部には、排気が流れる副流路20が形成されている。突設部18の内部における副流路20と触媒担持体16との間には、触媒担持体16の周面の一部を覆うシール部21が設けられている。シール部21は、突設部18と太径配管14Bとの境界部分を構成している(図2参照)。シール部21の副流路20側のシール面21Aは、略平面状とされている。本実施形態では、シール部21は、真空断熱部で構成されているが、他の部材により構成してもよい。 A secondary flow path 20 through which the exhaust gas flows is formed inside the projecting portion 18 . A sealing portion 21 that covers a part of the peripheral surface of the catalyst carrier 16 is provided between the secondary flow path 20 and the catalyst carrier 16 inside the projecting portion 18 . The seal portion 21 constitutes a boundary portion between the projecting portion 18 and the large-diameter pipe 14B (see FIG. 2). A seal surface 21A of the seal portion 21 on the side of the sub-channel 20 is substantially planar. In this embodiment, the seal portion 21 is composed of a vacuum heat insulating portion, but may be composed of other members.

突設部18の副流路20には、排気管14の軸方向に沿って蓄熱部材24が配置されている。蓄熱部材24は、一対の側壁部18C、18Dに掛け渡されている。言い換えると、蓄熱部材24は、副流路20の内部を排気管14の軸方向に沿って区画する隔壁とされている。蓄熱部材24は、上流壁部18Aと下流壁部18Bとは離間している。すなわち、蓄熱部材24と上流壁部18Aとの間には、排気を流すための隙間が形成されており、蓄熱部材24と下流壁部18Bとの間には、排気を流すための隙間が形成されている。 A heat storage member 24 is arranged along the axial direction of the exhaust pipe 14 in the secondary flow path 20 of the projecting portion 18 . The heat storage member 24 spans the pair of side wall portions 18C and 18D. In other words, the heat storage member 24 is a partition wall that partitions the interior of the sub-flow path 20 along the axial direction of the exhaust pipe 14 . The heat storage member 24 is separated from the upstream wall portion 18A and the downstream wall portion 18B. That is, a gap for exhaust gas is formed between the heat storage member 24 and the upstream wall portion 18A, and a gap for exhaust gas is formed between the heat storage member 24 and the downstream wall portion 18B. It is

図示を省略するが、蓄熱部材24は、排気管14の軸方向に沿って配置された板状部と交差する方向に複数のフィンが配置された収容部材を備えている。蓄熱部材24は、収容部材の内部に蓄熱材が収容された構成とされている。収容部材には、複数のフィンが設けられることで、実質的な表面積が増大されている。蓄熱部材24は、内部の蓄熱材に対して外部と熱交換を行う熱交換器である。すなわち、副流路20を流れる排気と、蓄熱部材24の収容部材内の蓄熱材とで熱交換がなされる。例えば、副流路20を流れる排気が蓄熱部材24の蓄熱材より高温である場合は、排気の熱が蓄熱材に移動し、蓄熱材に蓄熱されると共に、排気の温度が低下する。これとは逆に、副流路20を流れる排気が蓄熱部材24の蓄熱材より低温である場合は、蓄熱材の熱が排気に移動し、排気の温度が上昇する。 Although illustration is omitted, the heat storage member 24 includes a housing member in which a plurality of fins are arranged in a direction intersecting with the plate-shaped portion arranged along the axial direction of the exhaust pipe 14 . The heat storage member 24 is configured such that a heat storage material is housed inside the housing member. The accommodation member is provided with a plurality of fins to increase its substantial surface area. The heat storage member 24 is a heat exchanger that exchanges heat with the outside with respect to the heat storage material inside. That is, heat is exchanged between the exhaust gas flowing through the sub-flow path 20 and the heat storage material in the storage member of the heat storage member 24 . For example, when the temperature of the exhaust gas flowing through the secondary flow path 20 is higher than that of the heat storage material of the heat storage member 24, the heat of the exhaust gas moves to the heat storage material and is stored in the heat storage material, thereby decreasing the temperature of the exhaust gas. Conversely, if the exhaust gas flowing through the sub-flow path 20 has a lower temperature than the heat storage material of the heat storage member 24, the heat of the heat storage material is transferred to the exhaust gas, and the temperature of the exhaust gas rises.

排気浄化装置12には、触媒担持体16よりも排気の上流側で排気管14と副流路20とを接続する上流側接続部26と、触媒担持体16よりも排気の下流側で排気管14と副流路とを接続する下流側接続部28とが設けられている。排気浄化装置12には、排気の流路を切り替える切替機構30が設けられている。切替機構30は、上流側接続部26に設けられた上流切替バルブ32と、下流側接続部28に設けられた下流切替バルブ34と、を備えている。上流側接続部26は、第1接続部の一例であり、下流側接続部28は、第2接続部の一例である。また、上流切替バルブ32は、第1切替部材の一例であり、下流切替バルブ34は、第2切替部材の一例である。 The exhaust purification device 12 includes an upstream connection portion 26 that connects the exhaust pipe 14 and the sub-channel 20 upstream of the catalyst carrier 16 and an exhaust pipe downstream of the catalyst carrier 16. A downstream connecting portion 28 is provided to connect the channel 14 and the secondary channel. The exhaust purification device 12 is provided with a switching mechanism 30 for switching the exhaust flow path. The switching mechanism 30 includes an upstream switching valve 32 provided at the upstream connection portion 26 and a downstream switching valve 34 provided at the downstream connection portion 28 . The upstream connection portion 26 is an example of a first connection portion, and the downstream connection portion 28 is an example of a second connection portion. The upstream switching valve 32 is an example of a first switching member, and the downstream switching valve 34 is an example of a second switching member.

上流切替バルブ32は、排気の流れ方向と直交する軸32Aと、軸32Aから一方側に延びると共に長さが短い弁体32Bと、軸32Aから他方側に延びると共に長さが長い弁体32Cと、を備えている。上流切替バルブ32は、軸32Aを中心として弁体32B、32Cが回転する。弁体32Bは、排気管14の軸方向視にて略矩形状とされており、蓄熱部材24の上流側端部24Aと接触する形状とされている。また、弁体32Cは、排気管14の軸方向視にて略U字状とされており、太径配管14Bの内壁面と接触する形状とされている。上流側端部24Aは、一端部の一例である。 The upstream switching valve 32 includes a shaft 32A orthogonal to the flow direction of the exhaust gas, a valve body 32B extending from the shaft 32A in one direction and having a short length, and a valve body 32C extending in the other direction from the shaft 32A and having a long length. , is equipped with The upstream switching valve 32 has valve bodies 32B and 32C that rotate around a shaft 32A. The valve body 32B has a substantially rectangular shape when viewed in the axial direction of the exhaust pipe 14 and is shaped to contact the upstream end portion 24A of the heat storage member 24 . Further, the valve body 32C is substantially U-shaped when viewed in the axial direction of the exhaust pipe 14, and is shaped to contact the inner wall surface of the large-diameter pipe 14B. The upstream end 24A is an example of one end.

上流切替バルブ32の回転位置は、制御装置40によって制御される。そして、上流切替バルブ32は、弁体32B、32Cの回転位置により、図1に実線で示す開状態KS1と、二点鎖線で示す閉状態HS1とを採り得る。 The rotational position of the upstream switching valve 32 is controlled by the controller 40 . The upstream switching valve 32 can take an open state KS1 indicated by a solid line and a closed state HS1 indicated by a two-dot chain line in FIG. 1 depending on the rotational positions of the valve bodies 32B and 32C.

上流切替バルブ32が開状態KS1にあるときは、弁体32Bは、シール部21のシール面21Aと接触し、弁体32Cは、壁部15の内側面に接触する。これにより、副流路20の上流側接続部26が閉鎖され、排気は太径配管14Bへ流れ、触媒担持体16を通過する。ここで、上流切替バルブ32の開状態KS1は、第1位置の一例である。 When the upstream switching valve 32 is in the open state KS1, the valve body 32B contacts the seal surface 21A of the seal portion 21, and the valve body 32C contacts the inner surface of the wall portion 15. As shown in FIG. As a result, the upstream connection portion 26 of the sub-flow path 20 is closed, and the exhaust gas flows to the large-diameter pipe 14B and passes through the catalyst carrier 16 . Here, the open state KS1 of the upstream switching valve 32 is an example of the first position.

上流切替バルブ32が閉状態HS1にあるときは、弁体32Bは、蓄熱部材24の上流側端部24Aと接触し、弁体32Cは、太径配管14Bの内壁面と接触する。これにより、排気管14の太径配管14Bが閉鎖され、上流側接続部26における上流側に配置された上流側連通口36Aが開放され、上流側接続部26における下流側に配置された下流側連通口36Bが開放される。ここで、上流側連通口36Aは、第1上流側連通口の一例であり、下流側連通口36Bは、第1下流側連通口の一例である。これにより、触媒担持体16の上流側で、排気が上流側連通口36Aを介して副流路20に導入される。上流切替バルブ32の閉状態HS1は、第2位置の一例である。 When the upstream switching valve 32 is in the closed state HS1, the valve body 32B contacts the upstream end 24A of the heat storage member 24, and the valve body 32C contacts the inner wall surface of the large-diameter pipe 14B. As a result, the large-diameter pipe 14B of the exhaust pipe 14 is closed, the upstream communication port 36A arranged on the upstream side of the upstream connection portion 26 is opened, and the downstream side of the upstream connection portion 26 arranged on the downstream side is opened. The communication port 36B is opened. Here, the upstream communication port 36A is an example of a first upstream communication port, and the downstream communication port 36B is an example of a first downstream communication port. As a result, on the upstream side of the catalyst carrier 16, the exhaust gas is introduced into the secondary flow path 20 via the upstream communication port 36A. The closed state HS1 of the upstream switching valve 32 is an example of the second position.

下流切替バルブ34は、図1に示す断面視にて上流切替バルブ32と左右対称に形成されている。下流切替バルブ34は、軸34Aと、弁体34Bと、弁体34Cとを備えている。下流切替バルブ34は、軸34Aを中心として弁体34B、34Cが回転する。 The downstream switching valve 34 is formed symmetrically with the upstream switching valve 32 in the cross-sectional view shown in FIG. The downstream switching valve 34 includes a shaft 34A, a valve body 34B, and a valve body 34C. The downstream switching valve 34 has valve bodies 34B and 34C that rotate around a shaft 34A.

下流切替バルブ34の回転位置は、制御装置40によって制御される。そして、下流切替バルブ34は、弁体34B、34Cの回転位置により、図1に実線で示す閉状態HS2と、二点鎖線で示す開状態KS2とを採り得る。 The rotational position of the downstream switching valve 34 is controlled by the controller 40 . The downstream switching valve 34 can take a closed state HS2 indicated by a solid line and an open state KS2 indicated by a two-dot chain line in FIG. 1 depending on the rotational positions of the valve bodies 34B and 34C.

下流切替バルブ34が開状態KS2にあるときは、弁体34Bは、シール部21のシール面21Aと接触し、弁体34Cは、壁部15の内側面に接触する。これにより、副流路20の下流側接続部28が閉鎖され、排気は排気管14の太径配管14Bを流れる。ここで、下流切替バルブ34の開状態KS2は、第3位置の一例である。 When the downstream switching valve 34 is in the open state KS<b>2 , the valve body 34</b>B contacts the seal surface 21</b>A of the seal portion 21 and the valve body 34</b>C contacts the inner surface of the wall portion 15 . As a result, the downstream connection portion 28 of the sub-flow path 20 is closed, and the exhaust gas flows through the large-diameter pipe 14B of the exhaust pipe 14 . Here, the open state KS2 of the downstream switching valve 34 is an example of the third position.

下流切替バルブ34が閉状態HS2にあるときは、弁体34Bは、蓄熱部材24の下流側端部24Bと接触し、弁体34Cは、太径配管14Bの内壁面と接触する。これにより、排気管14の太径配管14Bが閉鎖され、下流側接続部28における上流側に配置された上流側連通口38Aが開放され、上流側接続部26における下流側に配置された下流側連通口38Bが開放される。ここで、上流側連通口36Aは、第2上流側連通口の一例であり、下流側連通口38Bは、第2下流側連通口の一例である。これにより、触媒担持体16の下流側で、排気が上流側連通口38Aを介して副流路20に導入される。下流切替バルブ34の閉状態HS2は、第4位置の一例である。また、下流側端部24Bは、他端部の一例である。 When the downstream switching valve 34 is in the closed state HS2, the valve body 34B contacts the downstream end 24B of the heat storage member 24, and the valve body 34C contacts the inner wall surface of the large-diameter pipe 14B. As a result, the large-diameter pipe 14B of the exhaust pipe 14 is closed, the upstream communication port 38A arranged on the upstream side of the downstream connection portion 28 is opened, and the downstream side of the upstream connection portion 26 arranged on the downstream side is opened. The communication port 38B is opened. Here, the upstream communication port 36A is an example of a second upstream communication port, and the downstream communication port 38B is an example of a second downstream communication port. As a result, on the downstream side of the catalyst carrier 16, the exhaust gas is introduced into the secondary flow path 20 via the upstream communication port 38A. The closed state HS2 of the downstream switching valve 34 is an example of the fourth position. Also, the downstream end 24B is an example of the other end.

制御装置40には、エンジンの作動及び停止を検知するエンジン作動センサ42が接続されている。なお、制御装置40が、エンジンの状態を制御することも可能な構成としてもよく、この場合は、制御装置が、エンジン作動センサを兼ねる。 An engine operation sensor 42 is connected to the control device 40 to detect the operation and stop of the engine. Note that the control device 40 may also be configured to control the state of the engine, in which case the control device also serves as an engine operation sensor.

排気浄化装置12には、排気温度センサ44、蓄熱部材温度センサ46及び触媒担持体温度センサ48が設けられている。 The exhaust purification device 12 is provided with an exhaust temperature sensor 44 , a heat storage member temperature sensor 46 and a catalyst carrier temperature sensor 48 .

排気温度センサ44は、排気管14の上流配管14A側に設けられており、排気の温度を検出して制御装置40に送信する。 The exhaust temperature sensor 44 is provided on the upstream pipe 14A side of the exhaust pipe 14 , detects the temperature of the exhaust gas, and transmits the detected temperature to the control device 40 .

蓄熱部材温度センサ46は、蓄熱部材24に接触配置されており、蓄熱部材24の温度を検出して、制御装置40に送信する。 The heat storage member temperature sensor 46 is arranged in contact with the heat storage member 24 , detects the temperature of the heat storage member 24 , and transmits the detected temperature to the control device 40 .

触媒担持体温度センサ48は、触媒担持体16に接触配置されており、触媒担持体16の温度を検出して、制御装置40に送信する。触媒担持体の温度は、実質的に触媒の温度に等しいので、以下では、触媒担持体温度センサ48で検出した温度は、単に触媒温度とする。 A catalyst carrier temperature sensor 48 is arranged in contact with the catalyst carrier 16 to detect the temperature of the catalyst carrier 16 and transmit it to the controller 40 . Since the temperature of the catalyst carrier is substantially equal to the temperature of the catalyst, the temperature detected by the catalyst carrier temperature sensor 48 will be simply the catalyst temperature hereinafter.

制御装置40は、エンジンの動作に加えて、排気温度、蓄熱部材温度及び触媒温度に基づき、上流切替バルブ32及び下流切替バルブ34を制御する。排気浄化装置12では、切替機構30の上流切替バルブ32及び下流切替バルブ34の回転位置により、後述する4通りの流路(図3~図6参照)に切り替えられる。 The control device 40 controls the upstream switching valve 32 and the downstream switching valve 34 based on the exhaust temperature, the heat storage member temperature and the catalyst temperature in addition to the operation of the engine. In the exhaust purification device 12, the flow path is switched between four flow paths (see FIGS. 3 to 6), which will be described later, depending on the rotational positions of the upstream switching valve 32 and the downstream switching valve 34 of the switching mechanism 30. FIG.

次に、本実施形態の作用及び効果について説明する。 Next, the operation and effects of this embodiment will be described.

まず、切替機構30によって切り替えられる4通りの流路(図3~図6参照)について説明する。 First, the four flow paths (see FIGS. 3 to 6) that are switched by the switching mechanism 30 will be described.

図3に示すように、上流切替バルブ32を開状態KS1(すなわち、第1位置)とし、下流切替バルブ34を開状態KS2(すなわち、第3位置)としたときは、排気は矢印F3に示すように副流路20に導入されずに排気管14の太径配管14Bを流れ、排気は触媒担持体16を通過する。すなわち、排気は、副流路20の蓄熱部材24を通過せずに、触媒担持体16のみを通過する。これにより、触媒担持体16に担持された触媒によって排気が浄化され、浄化された排気は、下流配管14Cからさらに下流へ流れる。このような流路では、例えば、排気が副流路20を流れる構造と比較して、排気の熱を触媒に作用させて、短時間で触媒を昇温する(昇温速度を向上させる)ことが可能である。 As shown in FIG. 3, when the upstream switching valve 32 is in the open state KS1 (that is, the first position) and the downstream switching valve 34 is in the open state KS2 (that is, the third position), the exhaust is indicated by an arrow F3. Thus, the exhaust gas flows through the large-diameter pipe 14B of the exhaust pipe 14 without being introduced into the sub-flow path 20, and passes through the catalyst carrier 16. As shown in FIG. That is, the exhaust passes only through the catalyst carrier 16 without passing through the heat storage member 24 of the sub-flow path 20 . As a result, the exhaust gas is purified by the catalyst supported on the catalyst support 16, and the purified exhaust gas flows further downstream from the downstream pipe 14C. In such a channel, for example, compared to a structure in which the exhaust flows through the sub-channel 20, the heat of the exhaust acts on the catalyst to raise the temperature of the catalyst in a short time (improve the rate of temperature increase). is possible.

図4に示すように、上流切替バルブ32を閉状態HS1(すなわち、第2位置)とし、下流切替バルブ34を開状態KS2(すなわち、第3位置)としたときは、排気は、矢印F4に示すように上流側接続部26の上流側連通口36Aを介して副流路20に導入される。この状態では、下流切替バルブ34が下流側接続部28を閉鎖することで、蓄熱部材24により第1経路となる副流路20の折り返し経路が形成される。これにより、排気は、矢印F4に示すように副流路20を蓄熱部材24の外側から内側に沿って流れ、さらに、排気は、上流側接続部26の下流側連通口36Bを介して排気管14の太径配管14Bに導入される。そして、排気は触媒担持体16を通過する。すなわち、図4では、排気浄化装置12は、排気が副流路20の蓄熱部材24を経由した(蓄熱部材24の周りを通過した)後、触媒担持体16を通過する第1経路を切り替えられる。 As shown in FIG. 4, when the upstream switching valve 32 is in the closed state HS1 (that is, the second position) and the downstream switching valve 34 is in the open state KS2 (that is, the third position), the exhaust is directed to the arrow F4. As shown, it is introduced into the sub-channel 20 via the upstream communication port 36A of the upstream connection portion 26 . In this state, the downstream switching valve 34 closes the downstream connecting portion 28 , so that the heat storage member 24 forms a turn-back path of the sub-flow path 20 serving as the first path. As a result, the exhaust gas flows from the outside to the inside of the heat storage member 24 along the secondary flow path 20 as indicated by the arrow F4. It is introduced into 14 large-diameter pipes 14B. The exhaust then passes through the catalyst carrier 16 . That is, in FIG. 4 , the exhaust purification device 12 switches the first route through which the exhaust passes through the catalyst support 16 after passing through the heat storage member 24 of the sub-flow path 20 (passing around the heat storage member 24). .

排気浄化装置12では、構成を複雑化することなく、切替機構30を第1経路に切り替えることができる。第1流路では、排気の熱の一部が副流路20の蓄熱部材24に蓄熱される。そして、温度が低下した状態の排気が、排気管14の太径配管14Bに導入され、触媒担持体16を通過する。排気の温度が低下しているので、例えば、高温の排気の熱が触媒担持体16に担持された触媒に作用せず、触媒の劣化を抑制できる。 In the exhaust purification device 12, the switching mechanism 30 can be switched to the first path without complicating the configuration. Part of the heat of the exhaust gas is stored in the heat storage member 24 of the sub-channel 20 in the first channel. Then, the exhaust gas whose temperature has been lowered is introduced into the large-diameter pipe 14B of the exhaust pipe 14 and passes through the catalyst carrier 16 . Since the temperature of the exhaust gas is lowered, for example, the heat of the high-temperature exhaust gas does not act on the catalyst supported on the catalyst support 16, and deterioration of the catalyst can be suppressed.

図5に示すように、上流切替バルブ32を開状態KS1(すなわち、第1位置)とし、下流切替バルブ34を閉状態HS2(すなわち、第4位置)としたときは、排気は、排気管14の触媒担持体16を通過する。その後、排気は、矢印F5に示すように下流側接続部28の上流側連通口38Aを介して副流路20に導入される。この状態では、上流切替バルブ32が上流側接続部26を閉鎖することで、蓄熱部材24により第2経路となる副流路20の折り返し経路が形成される。これにより、排気は、矢印F5に示すように副流路20を蓄熱部材24の内側から外側に沿って流れ、さらに、排気は、下流側接続部28の下流側連通口38Bを介して排気管14に導入される。すなわち、図5では、排気浄化装置12は、排気が触媒担持体16を通過した後、副流路20の蓄熱部材24を経由する(蓄熱部材24の周りを通過する)第2経路に切り替えられる。 As shown in FIG. 5, when the upstream switching valve 32 is in the open state KS1 (that is, the first position) and the downstream switching valve 34 is in the closed state HS2 (that is, the fourth position), the exhaust is directed to the exhaust pipe 14. of catalyst support 16 . After that, the exhaust gas is introduced into the secondary flow path 20 via the upstream communication port 38A of the downstream connection portion 28 as indicated by an arrow F5. In this state, the upstream switching valve 32 closes the upstream connection portion 26 , so that the heat storage member 24 forms a turn-back path of the sub-flow path 20 serving as the second path. As a result, the exhaust gas flows along the secondary flow path 20 from the inside to the outside of the heat storage member 24 as indicated by the arrow F5, and the exhaust gas flows through the downstream communication port 38B of the downstream connection portion 28 to the exhaust pipe. Introduced in 14. That is, in FIG. 5 , the exhaust emission control device 12 is switched to the second route through the heat storage member 24 in the secondary flow path 20 (passing around the heat storage member 24) after the exhaust gas passes through the catalyst carrier 16. .

排気浄化装置12では、構成を複雑化することなく、切替機構30を第2経路に切り替えることができる。第2流路では、触媒担持体16の触媒で生じた反応熱によって排気が昇温されているので、排気の熱の一部が副流路20の蓄熱部材24に蓄熱される。これにより、触媒で生じた反応熱を蓄熱部材24に作用させない場合と比較して、蓄熱部材24に短時間で蓄熱させて昇温させたり、蓄熱部材24の温度を長時間にわたって所定温度以上に維持したりすることができる。 In the exhaust purification device 12, the switching mechanism 30 can be switched to the second path without complicating the configuration. In the second channel, the temperature of the exhaust gas is raised by reaction heat generated by the catalyst of the catalyst carrier 16 , so part of the heat of the exhaust gas is stored in the heat storage member 24 of the secondary channel 20 . As a result, compared to the case where the heat of reaction generated by the catalyst is not applied to the heat storage member 24, the heat is stored in the heat storage member 24 in a short time to raise the temperature, or the temperature of the heat storage member 24 is kept above a predetermined temperature for a long time. can be maintained.

図6に示すように、例えばエンジンの停止時には、上流切替バルブ32を閉状態HS1(すなわち、第2位置)とし、下流切替バルブ34を閉状態HS2(すなわち、第4位置)とする。これにより、触媒担持体16が配置された排気管14の太径配管14Bが上流切替バルブ32と下流切替バルブ34により閉塞される。これにより、エンジンが停止し、排気が触媒担持体16に導入されない状態でも、触媒担持体16に担持された触媒を保温でき、触媒の温度低下を抑制できる。 As shown in FIG. 6, for example, when the engine is stopped, the upstream switching valve 32 is closed HS1 (ie, second position), and the downstream switching valve 34 is closed HS2 (ie, fourth position). As a result, the large-diameter pipe 14B of the exhaust pipe 14 in which the catalyst carrier 16 is arranged is blocked by the upstream switching valve 32 and the downstream switching valve 34 . As a result, even when the engine is stopped and the exhaust gas is not introduced into the catalyst carrier 16, the catalyst carried on the catalyst carrier 16 can be kept warm, and the temperature drop of the catalyst can be suppressed.

したがって、排気浄化装置12では、排気の浄化用の触媒の反応熱を蓄熱部材の昇温に利用する場合と利用しない場合とに切り替えることができる。また、副流路20は、触媒担持体16が配置された太径配管14Bの長手方向(すなわち、軸方向)と交差する方向の一方側に、太径配管14Bに沿って配置されている。このため、副流路20に設けられた蓄熱部材24により、触媒担持体16が保温されることで、触媒担持体16に担持された触媒の温度低下が抑制される。 Therefore, in the exhaust purification device 12, it is possible to switch between using the reaction heat of the catalyst for purifying the exhaust gas to raise the temperature of the heat storage member and not using it. Further, the sub-flow path 20 is arranged along the large-diameter pipe 14B on one side in a direction crossing the longitudinal direction (that is, the axial direction) of the large-diameter pipe 14B in which the catalyst carrier 16 is arranged. Therefore, the temperature of the catalyst supported on the catalyst carrier 16 is suppressed by keeping the catalyst carrier 16 warm by the heat storage member 24 provided in the sub-flow path 20 .

次に、切替機構30の上流切替バルブ32と下流切替バルブ34の制御の一例を詳述する。 Next, an example of control of the upstream switching valve 32 and the downstream switching valve 34 of the switching mechanism 30 will be described in detail.

Figure 0007287100000001
Figure 0007287100000001

この制御では、排気温度、蓄熱部材温度及び触媒温度に閾値温度が設定されており、これら閾値温度との関係において、上流切替バルブ32と下流切替バルブ34の開閉が制御される。表1において、排気温度、蓄熱部材温度及び触媒温度のそれぞれにつき、設定されている閾値温度よりも高い状態を「高」、低い状態を「低」とする。この閾値温度は、触媒活性温度であり、この閾値温度よりも高い温度であれば、触媒は排気を浄化する能力を高く発揮する。 In this control, threshold temperatures are set for the exhaust temperature, the heat storage member temperature, and the catalyst temperature, and opening and closing of the upstream switching valve 32 and the downstream switching valve 34 are controlled in relation to these threshold temperatures. In Table 1, each of the exhaust temperature, the heat storage member temperature, and the catalyst temperature is "high" when it is higher than the set threshold temperature, and "low" when it is lower than the set threshold temperature. This threshold temperature is a catalyst activation temperature, and if the temperature is higher than this threshold temperature, the catalyst exhibits a high ability to purify exhaust gas.

また、表1では、図7に示すように、上流切替バルブ32が横方向に配置されている場合(すなわち、図1に示す排気管14の太径配管14Bが開放されている場合)を開状態とし、上流切替バルブ32が縦方向に配置されている場合(すなわち、図1に示す排気管14の太径配管14Bが閉鎖されている場合)を閉状態とする。同様に、下流切替バルブ34が横方向に配置されている場合(すなわち、図1に示す排気管14の太径配管14Bが開放されている場合)を開状態とし、下流切替バルブ34が縦方向に配置されている場合(すなわち、図1に示す排気管14の太径配管14Bが閉鎖されている場合)を閉状態とする。 Further, in Table 1, as shown in FIG. 7, when the upstream switching valve 32 is arranged in the horizontal direction (that is, when the large-diameter pipe 14B of the exhaust pipe 14 shown in FIG. 1 is open), A state in which the upstream switching valve 32 is arranged in the vertical direction (that is, a case in which the large-diameter pipe 14B of the exhaust pipe 14 shown in FIG. 1 is closed) is defined as a closed state. Similarly, when the downstream switching valve 34 is arranged in the horizontal direction (that is, when the large-diameter pipe 14B of the exhaust pipe 14 shown in FIG. 1 is open), it is opened, and the downstream switching valve 34 is in the vertical direction. (ie, when the large-diameter pipe 14B of the exhaust pipe 14 shown in FIG. 1 is closed) is defined as a closed state.

表1の条件(1)は、エンジンが停止している状態である。この場合、図6に示されるように、上流切替バルブ32と下流切替バルブ34はいずれも閉状態とされる。上流配管14A内や下流配管14C内の低温空気の流入が抑制され、また、蓄熱部材24と触媒担持体16との間の対流も抑制される。そして、蓄熱部材24に蓄熱された熱が放熱されて触媒担持体16に作用することで、触媒担持体16の温度低下が抑制される。 Condition (1) in Table 1 is a state in which the engine is stopped. In this case, as shown in FIG. 6, both the upstream switching valve 32 and the downstream switching valve 34 are closed. Inflow of low-temperature air into the upstream pipe 14A and the downstream pipe 14C is suppressed, and convection between the heat storage member 24 and the catalyst carrier 16 is also suppressed. Then, the heat stored in the heat storage member 24 is radiated and acts on the catalyst carrier 16 , thereby suppressing the temperature drop of the catalyst carrier 16 .

条件(2)は、エンジン作動時で、排気温度、触媒温度及び蓄熱部材温度のいずれも、閾値温度より低い場合である。この場合、排気温度が蓄熱部材温度より高ければ、上流切替バルブ32と下流切替バルブ34はいずれも開状態とされる。この場合、排気が触媒担持体16に導入されるので、短時間で触媒担持体16を昇温することができる。ただし、排気温度が蓄熱部材温度よりも低い場合は、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされる。これにより、排気は触媒担持体16に導入されず、副流路20において、蓄熱部材24の熱を受けて昇温される。昇温された排気が触媒担持体16に導入されるので、触媒担持体16を昇温することができる。すなわち、蓄熱部材24よりも排気が高温であれば、排気を触媒担持体16に導入し、蓄熱部材24が排気よりも高温であれば、排気が蓄熱部材24によって昇温された後に触媒担持体16に導入される。 Condition (2) is when the engine is running and all of the exhaust temperature, the catalyst temperature, and the heat storage member temperature are lower than the threshold temperature. In this case, if the exhaust gas temperature is higher than the heat storage member temperature, both the upstream switching valve 32 and the downstream switching valve 34 are opened. In this case, since the exhaust gas is introduced into the catalyst carrier 16, the temperature of the catalyst carrier 16 can be raised in a short time. However, when the exhaust gas temperature is lower than the heat storage member temperature, the upstream switching valve 32 is closed and the downstream switching valve 34 is opened. As a result, the exhaust gas is not introduced into the catalyst carrier 16 and is heated in the secondary flow path 20 by receiving the heat of the heat storage member 24 . Since the heated exhaust gas is introduced into the catalyst carrier 16, the temperature of the catalyst carrier 16 can be raised. That is, if the temperature of the exhaust gas is higher than that of the heat storage member 24, the exhaust gas is introduced into the catalyst carrier 16. If the temperature of the heat storage member 24 is higher than that of the exhaust gas, the temperature of the exhaust gas is raised by the heat storage member 24 before 16.

条件(3)は、エンジン作動時で、排気温度及び触媒温度は閾値温度よりも低く、蓄熱部材温度は閾値温度よりも高い場合である。この場合は、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされ、排気が副流路20に流れる。排気は、蓄熱部材24によって昇温され、昇温された排気が触媒担持体16に導入されるので、触媒担持体16を短時間で昇温することができる。このため、低温の排気が触媒担持体16に導入されることによる触媒の温度低下を抑制できる。 Condition (3) is when the engine is operating, the exhaust temperature and the catalyst temperature are lower than the threshold temperature, and the heat storage member temperature is higher than the threshold temperature. In this case, the upstream switching valve 32 is closed, the downstream switching valve 34 is open, and the exhaust gas flows into the secondary flow path 20 . The temperature of the exhaust gas is raised by the heat storage member 24, and the heated exhaust gas is introduced into the catalyst carrier 16, so that the temperature of the catalyst carrier 16 can be raised in a short time. Therefore, it is possible to suppress the temperature drop of the catalyst due to the introduction of the low-temperature exhaust gas into the catalyst carrier 16 .

条件(4)は、エンジン作動時で、排気温度及び蓄熱部材温度が閾値温度よりも低く、触媒温度が閾値温度よりも高い場合である。この場合、排気温度が蓄熱部材温度よりも高ければ、上流切替バルブ32は開状態とされ、下流切替バルブ34は閉状態とされ、排気が触媒担持体16に導入される。蓄熱部材24よりも相対的に高温である排気が蓄熱部材24で温度低下されることなく触媒担持体16に導入されることで、触媒の温度低下を抑制できる。これに対し、排気温度が蓄熱部材温度よりも低い場合は、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされる。排気は触媒担持体16に導入されず、副流路20において、蓄熱部材24の熱を受けて昇温される。昇温された排気が触媒担持体16に導入されるので、排気が蓄熱部材24で昇温されない場合と比較して、触媒担持体16の温度低下を抑制できる。 Condition (4) is when the engine is operating, the exhaust temperature and the heat storage member temperature are lower than the threshold temperature, and the catalyst temperature is higher than the threshold temperature. In this case, if the exhaust gas temperature is higher than the heat storage member temperature, the upstream switching valve 32 is opened, the downstream switching valve 34 is closed, and the exhaust gas is introduced into the catalyst carrier 16 . Exhaust gas having a relatively higher temperature than the heat storage member 24 is introduced into the catalyst carrier 16 without being lowered in temperature by the heat storage member 24, thereby suppressing the temperature drop of the catalyst. On the other hand, when the exhaust gas temperature is lower than the heat storage member temperature, the upstream switching valve 32 is closed and the downstream switching valve 34 is opened. The exhaust gas is not introduced into the catalyst carrier 16 and is heated by the heat of the heat storage member 24 in the secondary flow path 20 . Since the exhaust gas whose temperature has been raised is introduced into the catalyst carrier 16 , the temperature drop of the catalyst carrier 16 can be suppressed compared to the case where the temperature of the exhaust gas is not raised by the heat storage member 24 .

条件(5)は、エンジン作動時で、排気温度が閾値温度よりも低く、触媒温度及び蓄熱部材温度が閾値温度よりも高い場合である。この場合、触媒温度が蓄熱部材温度よりも高ければ、上流切替バルブ32は開状態とされ、下流切替バルブ34は閉状態とされる。排気は触媒担持体16に導入されるので、触媒の過度の昇温を抑制できる。すなわち、排気によって触媒担持体16が冷却される。これに対し、触媒温度が蓄熱部材温度よりも低い場合は、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされる。副流路20において、蓄熱部材24により昇温された排気が触媒担持体16に導入されるので、触媒担持体16を昇温することができる。ただし、触媒の耐熱温度を超えない範囲での動作とする。 Condition (5) is when the engine is operating, the exhaust temperature is lower than the threshold temperature, and the catalyst temperature and the heat storage member temperature are higher than the threshold temperature. In this case, if the catalyst temperature is higher than the heat storage member temperature, the upstream switching valve 32 is opened and the downstream switching valve 34 is closed. Since the exhaust gas is introduced into the catalyst carrier 16, excessive temperature rise of the catalyst can be suppressed. That is, the catalyst carrier 16 is cooled by the exhaust gas. On the other hand, when the catalyst temperature is lower than the heat storage member temperature, the upstream switching valve 32 is closed and the downstream switching valve 34 is opened. In the secondary flow path 20, the exhaust gas whose temperature has been raised by the heat storage member 24 is introduced into the catalyst carrier 16, so that the temperature of the catalyst carrier 16 can be raised. However, it should be operated within the range not exceeding the heat resistance temperature of the catalyst.

条件(6)は、エンジン作動時で、排気温度、触媒温度及び蓄熱部材温度のいずれも、閾値温度よりも高い場合である。この場合、触媒温度が排気温度よりも高く、排気温度が蓄熱部材温度よりも高ければ、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされる。蓄熱部材24によって温度低下された排気が触媒担持体16に導入され、触媒の過度の昇温を抑制できる。また、触媒温度が蓄熱部材温度よりも高く、蓄熱部材温度が排気温度よりも高ければ、上流切替バルブ32は開状態とされ、下流切替バルブ34は閉状態とされるので、排気により、触媒の過度の昇温を抑制できる。すなわち、排気によって触媒担持体16が冷却される。また、蓄熱部材温度が排気温度よりも高く、排気温度が触媒温度よりも高い場合は、上流切替バルブ32は開状態とされ、下流切替バルブ34は閉状態とされるので、排気を触媒担持体16に導入して触媒を昇温できる。また、排気温度が蓄熱部材温度よりも高く、蓄熱部材温度が触媒温度よりも高い場合は、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされる。蓄熱部材24によって昇温された排気が触媒担持体16に導入されることで、触媒を昇温できる。ただし、これらは、触媒の耐熱温度を超えない範囲での動作とする。 Condition (6) is when the engine is running and all of the exhaust temperature, the catalyst temperature, and the heat storage member temperature are higher than the threshold temperature. In this case, if the catalyst temperature is higher than the exhaust temperature and the exhaust temperature is higher than the heat storage member temperature, the upstream switching valve 32 is closed and the downstream switching valve 34 is opened. Exhaust gas whose temperature has been lowered by the heat storage member 24 is introduced into the catalyst carrier 16, and excessive temperature rise of the catalyst can be suppressed. Further, when the catalyst temperature is higher than the heat storage member temperature and the heat storage member temperature is higher than the exhaust temperature, the upstream switching valve 32 is opened and the downstream switching valve 34 is closed. Excessive temperature rise can be suppressed. That is, the catalyst carrier 16 is cooled by the exhaust gas. When the heat storage member temperature is higher than the exhaust temperature and the exhaust temperature is higher than the catalyst temperature, the upstream switching valve 32 is opened and the downstream switching valve 34 is closed. 16 to raise the temperature of the catalyst. When the exhaust gas temperature is higher than the heat storage member temperature and the heat storage member temperature is higher than the catalyst temperature, the upstream switching valve 32 is closed and the downstream switching valve 34 is opened. By introducing the exhaust gas whose temperature has been raised by the heat storage member 24 into the catalyst carrier 16, the temperature of the catalyst can be raised. However, these are operated within a range that does not exceed the heat resistance temperature of the catalyst.

条件(7)は、エンジン作動時で、排気温度が閾値温度よりも高く、触媒温度及び蓄熱部材温度が閾値温度よりも低い場合である。この場合は、上流切替バルブ32は開状態とされ、下流切替バルブ34は閉状態とされる。排気が触媒担持体16に導入されることで、触媒を昇温できる。 Condition (7) is when the engine is operating, the exhaust temperature is higher than the threshold temperature, and the catalyst temperature and the heat storage member temperature are lower than the threshold temperature. In this case, the upstream switching valve 32 is opened and the downstream switching valve 34 is closed. By introducing the exhaust gas into the catalyst carrier 16, the temperature of the catalyst can be raised.

条件(8)は、エンジン作動時で、排気温度及び蓄熱部材温度が閾値温度よりも高く、触媒温度が閾値温度よりも低い場合である。この場合、排気温度が蓄熱部材温度よりも低い場合は、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされる。排気が触媒担持体16に導入されず、副流路20において、蓄熱部材24の熱を受けて昇温される。昇温された排気が触媒担持体16に導入されるので、排気が蓄熱部材24で昇温されない場合と比較して、触媒担持体16の昇温を促進することができる。これに対し、排気温度が蓄熱部材温度よりも高ければ、上流切替バルブ32は開状態とされ、下流切替バルブ34は閉状態とされるので、排気が触媒担持体16に導入される。蓄熱部材24よりも相対的に高温である排気が蓄熱部材24で温度低下されることなく触媒担持体16に導入されることで、触媒の温度低下を抑制できる。 Condition (8) is when the engine is operating, the exhaust temperature and the heat storage member temperature are higher than the threshold temperature, and the catalyst temperature is lower than the threshold temperature. In this case, when the exhaust gas temperature is lower than the heat storage member temperature, the upstream switching valve 32 is closed and the downstream switching valve 34 is opened. The exhaust gas is not introduced into the catalyst carrier 16 and is heated by the heat of the heat storage member 24 in the secondary flow path 20 . Since the exhaust gas whose temperature has been raised is introduced into the catalyst carrier 16 , the temperature rise of the catalyst carrier 16 can be accelerated compared to the case where the temperature of the exhaust gas is not raised by the heat storage member 24 . On the other hand, if the exhaust gas temperature is higher than the heat storage member temperature, the upstream switching valve 32 is opened and the downstream switching valve 34 is closed. Exhaust gas having a relatively higher temperature than the heat storage member 24 is introduced into the catalyst carrier 16 without being lowered in temperature by the heat storage member 24, thereby suppressing the temperature drop of the catalyst.

条件(9)は、エンジン作動時で、排気温度及び触媒温度が閾値温度よりも高く、蓄熱部材温度が閾値温度よりも低い場合である。この場合、排気温度が触媒温度よりも高ければ、上流切替バルブ32は閉状態とされ、下流切替バルブ34は開状態とされる。蓄熱部材24によって温度低下された排気が触媒担持体16に導入され、触媒の過度の昇温を抑制できる。また、触媒温度が排気温度よりも高ければ、上流切替バルブ32は開状態とされ、下流切替バルブ34は閉状態とされる。排気が蓄熱部材24で温度低下されることなく触媒担持体16に導入されることで、触媒の温度低下を抑制できる。 Condition (9) is when the engine is operating, the exhaust temperature and the catalyst temperature are higher than the threshold temperature, and the heat storage member temperature is lower than the threshold temperature. In this case, if the exhaust temperature is higher than the catalyst temperature, the upstream switching valve 32 is closed and the downstream switching valve 34 is opened. Exhaust gas whose temperature has been lowered by the heat storage member 24 is introduced into the catalyst carrier 16, and excessive temperature rise of the catalyst can be suppressed. When the catalyst temperature is higher than the exhaust temperature, the upstream switching valve 32 is opened and the downstream switching valve 34 is closed. Since the exhaust gas is introduced into the catalyst carrier 16 without being lowered in temperature by the heat storage member 24, the temperature drop of the catalyst can be suppressed.

排気浄化装置12では、表1に示す制御により、排気温度、蓄熱部材温度及び触媒温度に基づき、上流切替バルブ32と下流切替バルブ34を制御することで、触媒の温度を適切に制御できる。 In the exhaust purification device 12, the temperature of the catalyst can be appropriately controlled by controlling the upstream switching valve 32 and the downstream switching valve 34 based on the exhaust gas temperature, the heat storage member temperature, and the catalyst temperature according to the control shown in Table 1.

〔第2実施形態〕
次に、図8~図16を用いて、第2実施形態の排気浄化装置について説明する。なお、前述した第1実施形態と同一構成部分については、同一番号を付してその説明を省略する。
[Second embodiment]
Next, an exhaust purification system of a second embodiment will be described with reference to FIGS. 8 to 16. FIG. In addition, about the same component part as 1st Embodiment mentioned above, the same number is attached and the description is abbreviate|omitted.

図8及び図9に示すように、排気浄化装置72では、排気管74における触媒担持体16が配置された太径配管74Aの上流側及び下流側を含む所定範囲は、太径配管74Aよりも太径の外筒76で覆われている。外筒76は、太径配管74Aを周方向に取り囲む円筒状とされている。 As shown in FIGS. 8 and 9, in the exhaust purification device 72, the predetermined range including the upstream side and the downstream side of the large-diameter pipe 74A in which the catalyst carrier 16 is arranged in the exhaust pipe 74 is larger than the large-diameter pipe 74A. It is covered with an outer cylinder 76 having a large diameter. The outer cylinder 76 has a cylindrical shape surrounding the large-diameter pipe 74A in the circumferential direction.

外筒76の上流端部76Aは、径が上流側へと漸減する上流テーパー部76Bにより排気管74の上流配管14Aに接続されている。外筒76の中間部には、上流テーパー部76Bと繋がる太径配管76Cが設けられている。また、太径配管76Cは、径が下流側へと漸減する下流テーパー部76Dに繋がっており、外筒76の下流端部76Eは、下流テーパー部76Dにより下流配管14Cに接続されている。 An upstream end portion 76A of the outer cylinder 76 is connected to the upstream pipe 14A of the exhaust pipe 74 by an upstream tapered portion 76B whose diameter gradually decreases toward the upstream side. A large-diameter pipe 76C connected to the upstream tapered portion 76B is provided in the intermediate portion of the outer cylinder 76 . The large-diameter pipe 76C is connected to a downstream taper portion 76D whose diameter gradually decreases downstream, and the downstream end portion 76E of the outer cylinder 76 is connected to the downstream pipe 14C by the downstream taper portion 76D.

図9~図11に示すように、外筒76の太径配管76Cの内側には、太径配管76Cに接触する略円筒状の筒部78が設けられている。筒部78の上流側には、筒部78の周方向の一部から延出された流路ガイド80が設けられており、筒部78の下流側には、筒部78の周方向の一部から延出された流路ガイド82が設けられている。流路ガイド80と流路ガイド82とは筒部78の軸方向と直交する方向から見て左右対称とされている。 As shown in FIGS. 9 to 11, inside the large-diameter pipe 76C of the outer cylinder 76, a substantially cylindrical tubular portion 78 is provided in contact with the large-diameter pipe 76C. A flow path guide 80 is provided on the upstream side of the cylindrical portion 78 and extends from a portion of the cylindrical portion 78 in the circumferential direction. A flow path guide 82 is provided extending from the portion. The flow path guide 80 and the flow path guide 82 are symmetrical when viewed from a direction perpendicular to the axial direction of the tubular portion 78 .

流路ガイド80は、太径配管74Aの側が開放された箱状とされている。より具体的には、流路ガイド80は、筒部78と連続する湾曲部80Aと、湾曲部80Aの上流側端部から半径方向内側に延びた上流壁部80Bと、湾曲部80Aの周方向両側に配置されると共に上流壁部80Bと接続される一対の側壁部80Cと、を備えている。なお、図10等では、奥側の側壁部82Cは図示されていない。 The flow path guide 80 has a box shape that is open on the side of the large-diameter pipe 74A. More specifically, the flow path guide 80 includes a curved portion 80A that is continuous with the cylindrical portion 78, an upstream wall portion 80B that extends radially inward from the upstream end of the curved portion 80A, and a circumferential and a pair of side wall portions 80C arranged on both sides and connected to the upstream wall portion 80B. In addition, in FIG. 10 and the like, the side wall portion 82C on the far side is not illustrated.

流路ガイド82は、流路ガイド80と同様に、太径配管74Aの側が開放された箱状とされており、湾曲部82Aと、下流壁部82Bと、一対の側壁部82Cと、を備えている。なお、図10等では、奥側の側壁部82Cは図示されていない。 Similar to the flow path guide 80, the flow path guide 82 has a box-like shape with the side of the large-diameter pipe 74A open, and includes a curved portion 82A, a downstream wall portion 82B, and a pair of side wall portions 82C. ing. In addition, in FIG. 10 and the like, the side wall portion 82C on the far side is not illustrated.

筒部78と流路ガイド80と流路ガイド82の内側であって、太径配管74Aの外側には、副流路84が形成されている。副流路84には、蓄熱部材86が配置されている。蓄熱部材86は、筒状に形成されており、太径配管74Aと筒部78との間に配置されている。すなわち、蓄熱部材86は、太径配管74B及び外筒76と離間している。言い換えると、蓄熱部材86は、触媒担持体16が配置された太径配管74Aの周囲に配置されると共に副流路84の内部を区画する筒状の隔壁とされている。 A secondary flow path 84 is formed inside the cylindrical portion 78, the flow path guide 80, and the flow path guide 82 and outside the large-diameter pipe 74A. A heat storage member 86 is arranged in the sub-flow path 84 . The heat storage member 86 is formed in a tubular shape and arranged between the large-diameter pipe 74A and the tubular portion 78 . That is, the heat storage member 86 is separated from the large-diameter pipe 74B and the outer cylinder 76 . In other words, the heat storage member 86 is arranged around the large-diameter pipe 74A in which the catalyst carrier 16 is arranged, and is a cylindrical partition wall that partitions the inside of the sub-flow path 84 .

流路ガイド80の内側には、触媒担持体16よりも排気の上流側で排気管74と副流路84とを接続する上流側接続部90が設けられている。流路ガイド82の内側には、触媒担持体16よりも排気の下流側で排気管74と副流路84とを接続する下流側接続部92とが設けられている。排気浄化装置72には、排気の流路を切り替える切替機構94が設けられている。切替機構94は、上流側接続部90に設けられた上流切替バルブ96と、下流側接続部92に設けられた下流切替バルブ98と、を備えている。上流側接続部90は、第1接続部の一例であり、下流側接続部92は、第2接続部の一例である。また、上流切替バルブ96は、第1切替部材の一例であり、下流切替バルブ98は、第2切替部材の一例である。 Inside the flow path guide 80 , an upstream connection portion 90 is provided that connects the exhaust pipe 74 and the sub-flow path 84 upstream of the catalyst carrier 16 with respect to the exhaust gas. Inside the flow path guide 82 , a downstream connection portion 92 is provided that connects the exhaust pipe 74 and the sub-flow path 84 downstream of the catalyst carrier 16 in the exhaust. The exhaust purification device 72 is provided with a switching mechanism 94 that switches the exhaust flow path. The switching mechanism 94 includes an upstream switching valve 96 provided at the upstream connection portion 90 and a downstream switching valve 98 provided at the downstream connection portion 92 . The upstream connection portion 90 is an example of a first connection portion, and the downstream connection portion 92 is an example of a second connection portion. Also, the upstream switching valve 96 is an example of a first switching member, and the downstream switching valve 98 is an example of a second switching member.

上流切替バルブ96は、排気の流れ方向と直交する軸96Aと、軸96Aから一方側に延びると共に大きさが小さい弁体96Bと、軸96Aから他方側に延びると共に大きさが大きい弁体96Cと、を備えている。上流切替バルブ96は、軸96Aを中心として弁体96B、96Cが回転する。排気管14の軸方向視にて弁体96B及び弁体96Cの外形は略円板状に形成されている。 The upstream switching valve 96 includes a shaft 96A perpendicular to the flow direction of the exhaust gas, a small valve body 96B extending from the shaft 96A on one side, and a large valve body 96C extending from the shaft 96A to the other side. , is equipped with The upstream switching valve 96 has valve bodies 96B and 96C that rotate around a shaft 96A. When viewed in the axial direction of the exhaust pipe 14, the outer shape of the valve body 96B and the valve body 96C is formed in a substantially disk shape.

上流切替バルブ96の回転位置は、制御装置(図示省略)よって制御される。上流切替バルブ96は、弁体96B、96Cの回転位置により、閉状態HS1(図9~図11参照)と、開状態KS1(図12参照)とを採り得る。 The rotational position of the upstream switching valve 96 is controlled by a controller (not shown). The upstream switching valve 96 can take a closed state HS1 (see FIGS. 9 to 11) and an open state KS1 (see FIG. 12) depending on the rotational positions of the valve bodies 96B and 96C.

触媒担持体16の上流側には、上流切替バルブ96の開状態KS1のときに、弁体96Bと接触する略平面状のシール部100Aが設けられている。上流切替バルブ96が開状態KS1にあるときは、弁体96Bは、シール部100Aと接触し、弁体96Cは、流路ガイド80の上流壁部80Bと接触する。これにより、副流路84の上流側接続部90が閉鎖され、排気は太径配管74Aへ流れ、触媒担持体16を通過する。ここで、上流切替バルブ96の開状態KS1は、第1位置の一例である。 A substantially planar seal portion 100A is provided on the upstream side of the catalyst carrier 16 and contacts the valve body 96B when the upstream switching valve 96 is in the open state KS1. When the upstream switching valve 96 is in the open state KS1, the valve body 96B contacts the seal portion 100A and the valve body 96C contacts the upstream wall portion 80B of the flow path guide 80. As shown in FIG. As a result, the upstream connection portion 90 of the sub-flow path 84 is closed, and the exhaust gas flows to the large-diameter pipe 74A and passes through the catalyst carrier 16 . Here, the open state KS1 of the upstream switching valve 96 is an example of the first position.

上流切替バルブ96が閉状態HS1にあるときは、弁体96B、96Cは、蓄熱部材86の上流側端部86Aと接触する。これにより、排気管74が閉鎖され、上流側接続部90における上流側に配置された上流側連通口102Aが開放され、上流側接続部90における下流側に配置された下流側連通口102Bが開放される(図13参照)。ここで、上流側連通口102Aは、第1上流側連通口の一例であり、下流側連通口102Bは、第1下流側連通口の一例である。これにより、触媒担持体16の上流側で、排気が上流側連通口102Aを介して副流路84に導入される。上流切替バルブ96の閉状態HS1は、第2位置の一例である。 When the upstream switching valve 96 is in the closed state HS1, the valve bodies 96B and 96C are in contact with the upstream end portion 86A of the heat storage member 86. As shown in FIG. As a result, the exhaust pipe 74 is closed, the upstream communication port 102A arranged on the upstream side of the upstream connection portion 90 is opened, and the downstream communication port 102B arranged on the downstream side of the upstream connection portion 90 is opened. (See FIG. 13). Here, the upstream communication port 102A is an example of a first upstream communication port, and the downstream communication port 102B is an example of a first downstream communication port. As a result, on the upstream side of the catalyst carrier 16, the exhaust gas is introduced into the secondary flow path 84 via the upstream communication port 102A. The closed state HS1 of the upstream switching valve 96 is an example of the second position.

下流切替バルブ98は、図13に示す断面視にて上流切替バルブ96と左右対称に形成されている。下流切替バルブ98は、軸98Aと、弁体98Bと、弁体98Cとを備えている。下流切替バルブ98は、軸98Aを中心として弁体98B、98Cが回転する。 The downstream switching valve 98 is formed symmetrically with the upstream switching valve 96 in the cross-sectional view shown in FIG. The downstream switching valve 98 includes a shaft 98A, a valve body 98B, and a valve body 98C. The downstream switching valve 98 has valve bodies 98B and 98C that rotate around a shaft 98A.

下流切替バルブ98の回転位置は、制御装置(図示省略)よって制御される。下流切替バルブ98は、弁体98B、98Cの回転位置により、閉状態HS2(図示省略)と、開状態KS2(図9~図13参照)とを採り得る。 The rotational position of the downstream switching valve 98 is controlled by a controller (not shown). The downstream switching valve 98 can take a closed state HS2 (not shown) and an open state KS2 (see FIGS. 9 to 13) depending on the rotational positions of the valve bodies 98B and 98C.

触媒担持体16の下流側には、下流切替バルブ98の開状態KS2のときに、弁体96Bと接触する略平面状のシール部100Bが設けられている。下流切替バルブ98が開状態KS2にあるときは、弁体98Bは、シール部100Bと接触し、弁体98Cは、流路ガイド82の下流壁部82Bと接触する(図13参照)。これにより、副流路84の下流側接続部92が閉鎖され、排気は排気管74を流れる。ここで、下流切替バルブ98の開状態KS2は、第3位置の一例である。 A substantially planar seal portion 100B is provided on the downstream side of the catalyst carrier 16 and contacts the valve body 96B when the downstream switching valve 98 is in the open state KS2. When the downstream switching valve 98 is in the open state KS2, the valve body 98B contacts the seal portion 100B, and the valve body 98C contacts the downstream wall portion 82B of the flow path guide 82 (see FIG. 13). As a result, the downstream connection portion 92 of the secondary flow path 84 is closed, and the exhaust flows through the exhaust pipe 74 . Here, the open state KS2 of the downstream switching valve 98 is an example of the third position.

図示を省略するが、下流切替バルブ98が閉状態HS2にあるときは、弁体98B、98Cは、蓄熱部材86の下流側端部86Bと接触する。これにより、排気管74が閉鎖され、下流側接続部92における上流側に配置された上流側連通口104Aが開放され、下流側接続部92における下流側に配置された下流側連通口104Bが開放される。ここで、上流側連通口104Aは、第2上流側連通口の一例であり、下流側連通口104Bは、第2下流側連通口の一例である。これにより、触媒担持体16の下流側で、排気が上流側連通口104Aを介して副流路84に導入される。下流切替バルブ98の閉状態HS2は、第4位置の一例である。 Although not shown, when the downstream switching valve 98 is in the closed state HS2, the valve bodies 98B and 98C contact the downstream end 86B of the heat storage member 86. As shown in FIG. As a result, the exhaust pipe 74 is closed, the upstream communication port 104A arranged on the upstream side of the downstream connection portion 92 is opened, and the downstream communication port 104B arranged on the downstream side of the downstream connection portion 92 is opened. be done. Here, the upstream communication port 104A is an example of a second upstream communication port, and the downstream communication port 104B is an example of a second downstream communication port. As a result, on the downstream side of the catalyst carrier 16, the exhaust gas is introduced into the secondary flow path 84 via the upstream communication port 104A. The closed state HS2 of the downstream switching valve 98 is an example of the fourth position.

副流路84には、筒部78の内周面の上流側端部に、筒部78の周方向に沿って配置された上流壁部110が設けられている。上流壁部110の半径方向内側端部は、蓄熱部材86の外面に接触している。また、副流路84には、筒部78の内周面の下流側端部に、筒部78の周方向に沿って配置された下流壁部112が設けられている。下流壁部112の半径方向内側端部は、蓄熱部材86の外面に接触している。 The secondary flow path 84 is provided with an upstream wall portion 110 arranged along the circumferential direction of the tubular portion 78 at the upstream end portion of the inner peripheral surface of the tubular portion 78 . A radially inner end of the upstream wall portion 110 contacts the outer surface of the heat storage member 86 . Further, the secondary flow path 84 is provided with a downstream wall portion 112 arranged along the circumferential direction of the tubular portion 78 at the downstream end portion of the inner peripheral surface of the tubular portion 78 . The radially inner end of the downstream wall portion 112 contacts the outer surface of the heat storage member 86 .

また、筒部78の内周面の中間部には、蓄熱部材86の外側で筒部78及び蓄熱部材86の周方向に沿って配置される外側仕切板114が設けられている(図11、図13及び図15参照)。外側仕切板114は、蓄熱部材86の外面に接触している。また、筒部78の内周面には、筒部78の軸方向に沿って配置される縦壁部116が設けられている(図15参照)。筒部78の周方向における外側仕切板114の一端部は、縦壁部116に接続されている。筒部78の周方向における外側仕切板114の他端部は、縦壁部116と離間しており、外側仕切板114と縦壁部116との間に開口118が設けられている。開口118は、第1開口の一例である。 In addition, an outer partition plate 114 is provided at an intermediate portion of the inner peripheral surface of the cylindrical portion 78 and is arranged along the circumferential direction of the cylindrical portion 78 and the heat accumulating member 86 outside the heat accumulating member 86 (FIGS. 11 and 12). 13 and 15). The outer partition plate 114 is in contact with the outer surface of the heat storage member 86 . A vertical wall portion 116 arranged along the axial direction of the tubular portion 78 is provided on the inner peripheral surface of the tubular portion 78 (see FIG. 15). One end of the outer partition plate 114 in the circumferential direction of the tubular portion 78 is connected to the vertical wall portion 116 . The other end of the outer partition plate 114 in the circumferential direction of the tubular portion 78 is separated from the vertical wall portion 116 , and an opening 118 is provided between the outer partition plate 114 and the vertical wall portion 116 . Opening 118 is an example of a first opening.

縦壁部116の上流側端部は上流壁部110と接続されており、縦壁部116の下流側端部は下流壁部112と接続されている(図15参照)。上流壁部110における縦壁部116と隣接する位置には、縦壁部116を挟んで開口118と反対側に上流開口120が設けられている。また、下流壁部112における縦壁部116と隣接する位置には、縦壁部116を挟んで開口118と反対側に下流開口122が設けられている。 The upstream end of the vertical wall portion 116 is connected to the upstream wall portion 110, and the downstream end of the vertical wall portion 116 is connected to the downstream wall portion 112 (see FIG. 15). At a position adjacent to the vertical wall portion 116 in the upstream wall portion 110 , an upstream opening 120 is provided on the side opposite to the opening 118 with the vertical wall portion 116 interposed therebetween. A downstream opening 122 is provided at a position adjacent to the vertical wall portion 116 in the downstream wall portion 112 on the side opposite to the opening 118 with the vertical wall portion 116 interposed therebetween.

また、副流路84には、太径配管74Aの外周面の上流側端部に、太径配管74Aの周方向に沿って配置された上流壁部130が設けられている。上流壁部130の半径方向外側端部は、蓄熱部材86の内面に接触している。また、副流路84には、太径配管74Aの外周面の下流側端部に、太径配管74Aの周方向に沿って配置された下流壁部132が設けられている。下流壁部132の半径方向外側端部は、蓄熱部材86の内面に接触している。 Further, the secondary flow path 84 is provided with an upstream wall portion 130 arranged along the circumferential direction of the large-diameter pipe 74A at the upstream end of the outer peripheral surface of the large-diameter pipe 74A. A radially outer end of the upstream wall portion 130 contacts the inner surface of the heat storage member 86 . Further, the secondary flow path 84 is provided with a downstream wall portion 132 arranged along the circumferential direction of the large-diameter pipe 74A at the downstream end portion of the outer peripheral surface of the large-diameter pipe 74A. A radially outer end of the downstream wall portion 132 contacts the inner surface of the heat storage member 86 .

また、太径配管74Aの外周面の中間部には、蓄熱部材86の内側で太径配管74A及び蓄熱部材86の周方向に沿って配置される内側仕切板134が設けられている(図11、図13及び図16参照)。内側仕切板134は、蓄熱部材86の内面に接触している。また、太径配管74Aの外周面には、太径配管74Aの軸方向に沿って配置される縦壁部136が設けられている(図16参照)。太径配管74Aの周方向にける内側仕切板134の一端部は、縦壁部136に接続されている。太径配管74Aの周方向にける内側仕切板134の他端部は、縦壁部136と離間しており、内側仕切板134と縦壁部136との間に開口138が設けられている。開口138は、第2開口の一例である。縦壁部136の上流側と下流側には、開口138と対向する位置に配置されると共に蓄熱部材86との間を塞ぐ壁部140が設けられている。また、縦壁部136の上流側と下流側には、壁部140と反対側に上流開口142と下流開口144が設けられている。 In addition, an inner partition plate 134 is provided inside the heat storage member 86 along the circumferential direction of the large diameter pipe 74A and the heat storage member 86 at an intermediate portion of the outer peripheral surface of the large diameter pipe 74A (see FIG. 11). , see FIGS. 13 and 16). The inner partition plate 134 is in contact with the inner surface of the heat storage member 86 . A vertical wall portion 136 arranged along the axial direction of the large-diameter pipe 74A is provided on the outer peripheral surface of the large-diameter pipe 74A (see FIG. 16). One end of the inner partition plate 134 in the circumferential direction of the large-diameter pipe 74A is connected to the vertical wall portion 136 . The other end of the inner partition plate 134 in the circumferential direction of the large-diameter pipe 74A is separated from the vertical wall portion 136, and an opening 138 is provided between the inner partition plate 134 and the vertical wall portion 136. Opening 138 is an example of a second opening. A wall portion 140 is provided on the upstream side and the downstream side of the vertical wall portion 136 so as to face the opening 138 and block the heat storage member 86 . Further, an upstream opening 142 and a downstream opening 144 are provided on the side opposite to the wall portion 140 on the upstream side and the downstream side of the vertical wall portion 136 .

次に、本実施形態の作用及び効果について説明する。 Next, the operation and effects of this embodiment will be described.

図9に示すように、上流切替バルブ96を閉状態HS1(すなわち、第2位置)とし、下流切替バルブ98を開状態KS2(すなわち、第3位置)としたときは、排気は、上流側接続部90の上流側連通口102Aを介して副流路84に導入される。この状態では、下流切替バルブ98が下流側接続部92を閉鎖することで、蓄熱部材86と流路ガイド82により第1経路となる副流路84の折り返し経路が形成される。 As shown in FIG. 9, when the upstream switching valve 96 is in the closed state HS1 (that is, the second position) and the downstream switching valve 98 is in the open state KS2 (that is, the third position), the exhaust is connected to the upstream side. It is introduced into the secondary channel 84 via the upstream communication port 102A of the portion 90 . In this state, the downstream switching valve 98 closes the downstream connection portion 92 , so that the heat storage member 86 and the flow path guide 82 form a turn-back path of the secondary flow path 84 serving as the first path.

図15に示すように、上流側接続部90の上流側連通口102Aを介して副流路84に導入された排気は、矢印F11に示すように、上流壁部110の上流開口120から上流壁部110と外側仕切板114との間に導入され、矢印F12に示すように排気は蓄熱部材86の外側を周方向に沿った一の流れ方向に流れる。さらに、排気は、矢印F12に示すように、縦壁部116の位置で開口118から外側仕切板114と下流壁部112との間に導入され、蓄熱部材86の外側を周方向に沿った逆の流れ方向に流れる。そして、排気は、矢印F13に示すように、縦壁部116の位置で下流壁部112の下流開口122から下流壁部112の後側に流れる。 As shown in FIG. 15, the exhaust gas introduced into the sub-flow path 84 through the upstream communication port 102A of the upstream connecting portion 90 flows from the upstream opening 120 of the upstream wall portion 110 to the upstream wall as indicated by an arrow F11. The exhaust gas is introduced between the portion 110 and the outer partition plate 114, and flows in one flow direction along the circumferential direction outside the heat storage member 86 as indicated by the arrow F12. Further, as indicated by arrow F12, the exhaust gas is introduced from the opening 118 at the position of the vertical wall portion 116 between the outer partition plate 114 and the downstream wall portion 112, and flows backward along the outer side of the heat storage member 86 in the circumferential direction. flows in the direction of flow. Then, the exhaust gas flows from the downstream opening 122 of the downstream wall portion 112 to the rear side of the downstream wall portion 112 at the position of the vertical wall portion 116, as indicated by arrow F13.

さらに、図16に示すように、排気は、矢印F14に示すように、蓄熱部材86の内側で下流開口144から内側仕切板134と下流壁部132との間に導入される。そして、矢印F14に示すように、排気は蓄熱部材86の外側を周方向に沿った一の流れ方向に流れる。さらに、排気は、矢印F15に示すように、縦壁部136の位置で開口138から内側仕切板134と上流壁部130との間に導入され、蓄熱部材86の内側を周方向に沿った逆の流れ方向に流れる。そして、排気は、矢印F16に示すように、蓄熱部材86の内側で上流開口142から上流壁部130の前側に流れる。 Further, as shown in FIG. 16, exhaust gas is introduced between the inner partition plate 134 and the downstream wall portion 132 from the downstream opening 144 inside the heat storage member 86 as indicated by an arrow F14. Then, as indicated by an arrow F14, the exhaust gas flows outside the heat storage member 86 in one flow direction along the circumferential direction. Furthermore, as indicated by arrow F15, the exhaust gas is introduced between the inner partition plate 134 and the upstream wall portion 130 from the opening 138 at the position of the vertical wall portion 136, and flows backward along the inner side of the heat storage member 86 in the circumferential direction. flows in the direction of flow. Then, the exhaust gas flows inside the heat storage member 86 from the upstream opening 142 to the front side of the upstream wall portion 130 as indicated by an arrow F16.

さらに、排気は、上流側接続部90の下流側連通口102Bを介して排気管74の太径配管74Aに導入され(図13参照)、排気は触媒担持体16を通過する。すなわち、図9では、排気浄化装置72は、排気が副流路84の蓄熱部材86の周りを通過した後、触媒担持体16を通過する第1経路に切り替えられる。 Further, the exhaust gas is introduced into the large-diameter pipe 74A of the exhaust pipe 74 via the downstream communication port 102B of the upstream connection portion 90 (see FIG. 13), and passes through the catalyst carrier 16. That is, in FIG. 9 , the exhaust emission control device 72 is switched to the first route through which the exhaust gas passes through the catalyst carrier 16 after passing around the heat storage member 86 in the secondary flow channel 84 .

図示を省略するが、上流切替バルブ96を開状態KS1(すなわち、第1位置)とし、下流切替バルブ98を閉状態HS2(すなわち、第4位置)としたときは、排気は、排気管74の太径配管74Aの触媒担持体16を通過する。そして、排気は、下流側接続部92の上流側連通口104Aを介して副流路84に導入される。この状態では、上流切替バルブ96が上流側接続部90を閉鎖することで、蓄熱部材86と流路ガイド80により第2経路となる副流路84の折り返し経路が形成される。下流側接続部92の上流側連通口104Aを介して副流路84に導入された排気は、図15及び図16に示す排気の流れ方向と逆方向に流れる。そして、排気は、下流側接続部92の下流側連通口104Bを介して排気管14に導入される。すなわち、上記状態では、排気浄化装置72は、排気が触媒担持体16を通過した後、副流路84の蓄熱部材86の周りを通過する第2経路に切り替えられる。 Although not shown, when the upstream switching valve 96 is in the open state KS1 (that is, the first position) and the downstream switching valve 98 is in the closed state HS2 (that is, the fourth position), the exhaust is directed to the exhaust pipe 74. It passes through the catalyst carrier 16 of the large-diameter pipe 74A. Then, the exhaust gas is introduced into the secondary flow path 84 via the upstream communication port 104A of the downstream connection portion 92 . In this state, the upstream switching valve 96 closes the upstream connection portion 90 , so that the heat storage member 86 and the flow path guide 80 form a turn-back path of the sub-flow path 84 serving as the second path. Exhaust gas introduced into the secondary flow path 84 through the upstream communication port 104A of the downstream connection portion 92 flows in a direction opposite to the flow direction of the exhaust gas shown in FIGS. 15 and 16 . Exhaust gas is then introduced into the exhaust pipe 14 via the downstream communication port 104B of the downstream connection portion 92 . That is, in the above state, the exhaust emission control device 72 is switched to the second path in which the exhaust passes around the heat storage member 86 in the secondary flow path 84 after passing through the catalyst carrier 16 .

切替機構94の上流切替バルブ96と下流切替バルブ98は、例えば、第1実施形態の表1と同様に制御することができる。 The upstream switching valve 96 and the downstream switching valve 98 of the switching mechanism 94 can be controlled in the same manner as Table 1 of the first embodiment, for example.

したがって、排気浄化装置72では、排気の浄化用の触媒の反応熱を蓄熱部材の昇温に利用する場合と利用しない場合とに切り替えることができる。また、排気浄化装置72では、蓄熱部材86は、触媒担持体16が配置された排気管14の太径配管74Aの周囲に配置されると共に副流路84の内部を区画する筒状の隔壁とされている。このため、蓄熱部材86により、触媒担持体16が保温されることで、触媒担持体16に担持された触媒の温度低下がより確実に抑制される。また、排気浄化装置72では、排気が蓄熱部材86の内側と外側で蓄熱部材86の周方向に沿って流れるため、副流路84において、排気と蓄熱部材86の接触時間を増加させることができる。 Therefore, in the exhaust purification device 72, it is possible to switch between using the reaction heat of the exhaust purification catalyst for raising the temperature of the heat storage member and not using it. Further, in the exhaust purification device 72, the heat storage member 86 is arranged around the large-diameter pipe 74A of the exhaust pipe 14 in which the catalyst carrier 16 is arranged, and is a cylindrical partition wall that partitions the inside of the sub-channel 84. It is Therefore, the catalyst carrier 16 is kept warm by the heat storage member 86, so that the temperature drop of the catalyst carried by the catalyst carrier 16 is more reliably suppressed. In addition, in the exhaust purification device 72, the exhaust gas flows along the circumferential direction of the heat storage member 86 inside and outside the heat storage member 86, so that the contact time between the exhaust gas and the heat storage member 86 can be increased in the secondary flow path 84. .

上記した各実施形態の排気浄化装置12、72において、蓄熱材としては、高温の排気からの熱を受けて蓄熱することができると共に、低温の排気に対して放熱できれば特に限定されない。たとえば、100℃以上600℃以下の範囲に融点がある溶融塩を用いることができる。溶融塩は、常温で固体の塩や酸化物を、加熱により融解して液体にした物質であり、陽イオンと陰イオンとで構成されている。そして、相変化(融解、一次転移又は二次転移)に伴ってエンタルピーが変化し、蓄熱及び放熱する。 In the exhaust purification devices 12 and 72 of the above-described embodiments, the heat storage material is not particularly limited as long as it can receive and store heat from high-temperature exhaust gas and can dissipate heat to low-temperature exhaust gas. For example, a molten salt having a melting point in the range of 100° C. or higher and 600° C. or lower can be used. Molten salt is a substance that melts salts and oxides that are solid at room temperature to liquid by heating, and is composed of cations and anions. Then, the enthalpy changes with the phase change (melting, primary transition, or secondary transition) to store and release heat.

Figure 0007287100000002
Figure 0007287100000002

上記の表2から分かるように、上記各実施形態において実際に蓄熱及び放熱する際の相変化は、固相と液相との相転移を伴う融解であってもよく、相変化時には蓄熱材は潜熱として蓄熱及び放熱する。これに対し、固相と液相との相転移を伴わない相変化で蓄熱及び放熱してもよい。 As can be seen from Table 2 above, the phase change during actual heat storage and heat dissipation in each of the above embodiments may be melting accompanied by a phase transition between a solid phase and a liquid phase, and during the phase change, the heat storage material Heat is stored and released as latent heat. Alternatively, heat may be stored and released by a phase change that does not involve a phase transition between a solid phase and a liquid phase.

これらの溶融塩において、特に、相変化温度が100℃以上600℃以下の範囲の溶融塩は、排気との熱交換を効率よく行うことができ、各実施形態及び変形例の排気浄化装置に好ましく適用できる。 Among these molten salts, a molten salt having a phase change temperature in the range of 100° C. or higher and 600° C. or lower can efficiently perform heat exchange with the exhaust gas, and is preferable for the exhaust gas purifier of each embodiment and modification. Applicable.

なお、溶融塩の種類によっては、相変化によって体積変化する溶融塩もある。体積変化する溶融塩を用いる場合は、蓄熱部材の収容部材において、溶融塩の体積変化を吸収できるように十分な容積を確保しておけばよい。 Note that, depending on the type of molten salt, there is also a molten salt that undergoes a volume change due to a phase change. In the case of using a molten salt whose volume changes, the storage member of the heat storage member should have a sufficient capacity to absorb the volume change of the molten salt.

上記第2実施形態では、蓄熱部材86の周方向に沿って外側仕切板114と内側仕切板134を配置したが、本発明は、この構成に限定するものではない。例えば、筒状の蓄熱部材の外側に螺旋状の外側仕切板を設け、排気を蓄熱部材の外側で螺旋状に流し、筒状の蓄熱部材の内側に螺旋状の内側仕切板を設け、排気を蓄熱部材の内側で螺旋状に流すようにしてもよい。 In the second embodiment, the outer partition plate 114 and the inner partition plate 134 are arranged along the circumferential direction of the heat storage member 86, but the present invention is not limited to this configuration. For example, a spiral outer partition plate is provided outside the cylindrical heat storage member so that the exhaust gas flows spirally outside the heat storage member, and a spiral inner partition plate is provided inside the cylindrical heat storage member to allow the exhaust air to flow. You may make it flow spirally inside a heat-storage member.

なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。 Although the present invention has been described in detail with respect to particular embodiments, it should be understood that the invention is not limited to such embodiments and that various other embodiments are possible within the scope of the invention. clear to the trader.

12 排気浄化装置
14 排気管
16 触媒担持体
18 突設部
20 副流路
24 蓄熱部材
24A 上流側端部(一端部の一例)
24B 下流側端部(他端部の一例)
26 上流側接続部(第1接続部の一例)
28 下流側接続部(第2接続部の一例)
30 切替機構
32 上流切替バルブ(第1切替部材の一例)
34 下流切替バルブ(第2切替部材の一例)
36A 上流側連通口(第1上流側連通口の一例)
36B 下流側連通口(第1下流側連通口の一例)
38A 上流側連通口(第2上流側連通口の一例)
38B 下流側連通口(第2下流側連通口の一例)
72 排気浄化装置
74 排気管
84 副流路
86 蓄熱部材
86A 上流側端部(一端部の一例)
86B 下流側端部(他端部の一例)
90 上流側接続部(第1接続部の一例)
92 下流側接続部(第2接続部の一例)
94 切替機構
96 上流切替バルブ(第1切替部材の一例)
98 下流切替バルブ(第2切替部材の一例)
102A 上流側連通口(第1上流側連通口の一例)
102B 下流側連通口(第1下流側連通口の一例)
104A 上流側連通口(第2上流側連通口の一例)
104B 下流側連通口(第2下流側連通口の一例)
114 外側仕切板
118 開口(第1開口の一例)
134 内側仕切板
138 開口(第2開口の一例)
12 Exhaust purification device 14 Exhaust pipe 16 Catalyst carrier 18 Protruding portion 20 Secondary flow path 24 Heat storage member 24A Upstream end (an example of one end)
24B downstream end (an example of the other end)
26 upstream connection (an example of the first connection)
28 downstream connection (an example of a second connection)
30 switching mechanism 32 upstream switching valve (an example of a first switching member)
34 downstream switching valve (an example of a second switching member)
36A upstream communication port (an example of the first upstream communication port)
36B downstream communication port (an example of the first downstream communication port)
38A upstream communication port (an example of a second upstream communication port)
38B downstream communication port (an example of a second downstream communication port)
72 Exhaust purification device 74 Exhaust pipe 84 Secondary flow path 86 Heat storage member 86A Upstream end (an example of one end)
86B downstream end (an example of the other end)
90 upstream connection part (an example of the first connection part)
92 downstream connection (an example of a second connection)
94 switching mechanism 96 upstream switching valve (an example of a first switching member)
98 downstream switching valve (an example of a second switching member)
102A upstream communication port (an example of a first upstream communication port)
102B downstream communication port (an example of a first downstream communication port)
104A upstream communication port (an example of a second upstream communication port)
104B downstream communication port (an example of a second downstream communication port)
114 outer partition plate 118 opening (an example of a first opening)
134 inner partition plate 138 opening (an example of a second opening)

Claims (11)

排気管内に設けられ、排気を浄化する触媒を担持する触媒担持体と、
前記排気管における前記触媒担持体と隣り合う位置に設けられ、排気が流れる副流路と、
前記副流路に設けられる蓄熱部材と、
前記触媒担持体よりも排気の上流側で前記排気管から前記副流路に排気を導入して前記蓄熱部材を経由させ、かつ前記触媒担持体よりも排気の上流側で前記副流路から前記排気管に排気を戻す第1経路と、前記触媒担持体よりも排気の下流側で前記排気管から前記副流路に排気を導入して前記蓄熱部材を経由させ、かつ前記触媒担持体よりも排気の下流側で前記副流路から前記排気管に排気を戻す第2経路と、に切り替える切替機構と、
前記触媒担持体よりも排気の上流側で前記排気管と前記副流路とを接続する第1接続部と、
前記触媒担持体よりも排気の下流側で前記排気管と前記副流路とを接続する第2接続部と、
を有し、
前記切替機構は、
前記第1接続部に設けられ、前記副流路を閉鎖する第1位置と、前記排気管を閉鎖すると共に、前記第1接続部における上流側に設けられた第1上流側連通口を開放し、かつ前記第1接続部における下流側に設けられた第1下流側連通口を開放する第2位置と、に切り替える第1切替部材と、
前記第2接続部に設けられ、前記副流路を閉鎖する第3位置と、前記排気管を閉鎖すると共に、前記第2接続部における上流側に設けられた第2上流側連通口を開放し、かつ前記第2接続部における下流側に設けられた第2下流側連通口を開放する第4位置と、に切り替える第2切替部材と、
を備える排気浄化装置。
a catalyst carrier that is provided in the exhaust pipe and carries a catalyst that purifies exhaust gas;
a secondary flow path provided adjacent to the catalyst carrier in the exhaust pipe, through which exhaust gas flows;
a heat storage member provided in the sub-channel;
Exhaust gas is introduced from the exhaust pipe into the secondary flow path on the upstream side of the exhaust gas from the catalyst carrier and passes through the heat storage member, and from the secondary flow channel on the upstream side of the exhaust gas from the catalyst carrier. a first route for returning exhaust gas to an exhaust pipe; introducing exhaust gas from the exhaust pipe into the sub-flow channel downstream of the catalyst carrier, passing through the heat storage member, and further from the catalyst carrier; a switching mechanism for switching to a second path for returning the exhaust gas from the secondary flow path to the exhaust pipe on the downstream side of the exhaust gas;
a first connecting portion that connects the exhaust pipe and the sub-flow path upstream of the catalyst carrier;
a second connecting portion that connects the exhaust pipe and the sub-flow path downstream of the catalyst carrier;
has
The switching mechanism is
A first position provided in the first connecting portion for closing the secondary flow path, and a first upstream communication port provided on the upstream side of the first connecting portion while closing the exhaust pipe and opening the and a second position for opening a first downstream communication port provided on the downstream side of the first connection portion;
A third position provided in the second connection portion for closing the secondary flow path, and a second upstream communication port provided on the upstream side of the second connection portion while closing the exhaust pipe. and a fourth position for opening the second downstream side communication port provided downstream in the second connection portion;
Exhaust gas purification device.
前記切替機構は、前記第1切替部材を前記第2位置とした状態で、前記第1上流側連通口を介して前記排気管から前記副流路に排気を導入し、かつ前記第1下流側連通口を介して前記副流路から前記排気管に排気を戻す構成とされており、
前記第1切替部材を前記第2位置とすると共に、前記第2切替部材を前記第3位置とすることで、前記第1経路に切り替える請求項に記載の排気浄化装置。
The switching mechanism introduces exhaust gas from the exhaust pipe into the secondary flow path through the first upstream communication port in a state where the first switching member is in the second position, and the first downstream side exhaust gas is returned from the secondary flow path to the exhaust pipe through the communication port,
2. The exhaust purification device according to claim 1 , wherein switching to the first path is performed by setting the first switching member to the second position and setting the second switching member to the third position.
前記切替機構は、前記第2切替部材を前記第4位置とした状態で、前記第2上流側連通口を介して前記排気管から前記副流路に排気を導入し、かつ前記第2下流側連通口を介して前記副流路から前記排気管に排気を戻す構成とされており、
前記第1切替部材を前記第1位置とすると共に、前記第2切替部材を前記第4位置とすることで、前記第2経路に切り替える請求項又は請求項に記載の排気浄化装置。
The switching mechanism introduces exhaust gas from the exhaust pipe into the sub-flow path through the second upstream side communication port in a state where the second switching member is in the fourth position, and the second downstream side exhaust gas is returned from the secondary flow path to the exhaust pipe through the communication port,
3. The exhaust purification device according to claim 1 , wherein switching to the second path is performed by setting the first switching member to the first position and setting the second switching member to the fourth position.
エンジンを停止したときに、前記第1切替部材を前記第2位置とすると共に、前記第2切替部材を前記第4位置とすることで、前記触媒担持体が配置された前記排気管を閉塞する請求項に記載の排気浄化装置。 When the engine is stopped, the first switching member is set to the second position and the second switching member is set to the fourth position, thereby closing the exhaust pipe in which the catalyst carrier is arranged. The exhaust purification device according to claim 1 . 前記副流路は、前記触媒担持体が配置された前記排気管の長手方向と交差する方向の一方側に、前記排気管に沿って配置されている請求項から請求項までのいずれか1項に記載の排気浄化装置。 5. The secondary flow path is arranged along the exhaust pipe on one side in a direction crossing the longitudinal direction of the exhaust pipe in which the catalyst carrier is arranged. 1. The exhaust purification device according to item 1. 前記蓄熱部材は、前記副流路の内部を前記排気管の長手方向に沿って区画する隔壁とされ、
前記第1切替部材は、前記第2位置で前記蓄熱部材の一端部に接触し、前記排気管を閉鎖する構成とされ、
前記第2切替部材が前記第3位置に配置されることで、前記蓄熱部材により前記第1経路となる前記副流路の折り返し経路が形成される請求項に記載の排気浄化装置。
The heat storage member is a partition wall that partitions the interior of the secondary flow path along the longitudinal direction of the exhaust pipe,
The first switching member is configured to contact one end of the heat storage member at the second position to close the exhaust pipe,
6. The exhaust gas purification device according to claim 5 , wherein the second switching member is arranged at the third position so that the heat storage member forms a turn-back path of the sub-flow path serving as the first path.
前記第2切替部材は、前記第4位置で前記蓄熱部材の他端部に接触し、前記排気管を閉鎖する構成とされ、
前記第1切替部材が前記第1位置に配置されることで、前記蓄熱部材により前記第2経路となる前記副流路の折り返し経路が形成される請求項又は請求項に記載の排気浄化装置。
The second switching member is configured to contact the other end of the heat storage member at the fourth position to close the exhaust pipe,
7. The exhaust gas purification system according to claim 5 , wherein the first switching member is arranged at the first position, so that the heat storage member forms a turn-back path of the sub-flow path serving as the second path. Device.
前記副流路は、前記触媒担持体が配置された前記排気管の周囲に配置されている請求項から請求項までのいずれか1項に記載の排気浄化装置。 5. The exhaust purification device according to any one of claims 1 to 4 , wherein the sub-flow path is arranged around the exhaust pipe in which the catalyst carrier is arranged. 前記蓄熱部材は、前記触媒担持体が配置された前記排気管の周囲に配置されると共に前記副流路の内部を区画する筒状の隔壁とされ、
前記第1切替部材は、前記第2位置で前記蓄熱部材の一端部に接触し、前記排気管を閉鎖する構成とされ、
前記第2切替部材が前記第3位置に配置されることで、前記蓄熱部材により前記第1経路となる前記副流路の折り返し経路が形成される請求項に記載の排気浄化装置。
The heat storage member is a cylindrical partition that is arranged around the exhaust pipe in which the catalyst carrier is arranged and that partitions the inside of the secondary flow path,
The first switching member is configured to contact one end of the heat storage member at the second position to close the exhaust pipe,
9. The exhaust purification device according to claim 8 , wherein the second switching member is arranged at the third position, so that the heat storage member forms a turn-back path of the sub-flow path serving as the first path.
前記第2切替部材は、前記第4位置で前記蓄熱部材の他端部に接触し、前記排気管を閉鎖する構成とされ、
前記第1切替部材が前記第1位置に配置されることで、前記蓄熱部材により前記第2経路となる前記副流路の折り返し経路が形成される請求項又は請求項に記載の排気浄化装置。
The second switching member is configured to contact the other end of the heat storage member at the fourth position to close the exhaust pipe,
10. The exhaust purification system according to claim 8 , wherein the first switching member is arranged at the first position, so that the heat storage member forms a turn-back path of the secondary flow path serving as the second path. Device.
前記蓄熱部材の外側には、前記蓄熱部材の周方向に沿って配置されると共に、排気を前記蓄熱部材の周方向に沿った一の流れ方向に流し、さらに排気の流れ方向下流側の第1開口を介して排気を前記蓄熱部材の周方向に沿った逆の流れ方向に流す外側仕切板が設けられており、
前記蓄熱部材の内側には、前記蓄熱部材の周方向に沿って配置されると共に、排気を前記蓄熱部材の周方向に沿った一の流れ方向に流し、さらに排気の流れ方向下流側の第2開口を介して排気を前記蓄熱部材の周方向に沿った逆の流れ方向に流す内側仕切板が設けられている請求項から請求項10までのいずれか1項に記載の排気浄化装置。
Outside the heat storage member, the exhaust gas is arranged along the circumferential direction of the heat storage member, the exhaust gas flows in one flow direction along the circumferential direction of the heat storage member, and a first flow direction downstream side of the exhaust gas flow direction an outer partition plate is provided for causing the exhaust gas to flow in the opposite flow direction along the circumferential direction of the heat storage member through the opening,
Inside the heat storage member, the exhaust gas is arranged along the circumferential direction of the heat storage member, the exhaust gas flows in one flow direction along the circumferential direction of the heat storage member, and a second flow direction downstream side of the exhaust gas flows. 11. The exhaust purification device according to any one of claims 8 to 10 , further comprising an inner partition plate that allows the exhaust gas to flow in a direction opposite to the circumferential direction of the heat storage member through the opening.
JP2019090426A 2019-05-13 2019-05-13 Exhaust purification device Active JP7287100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019090426A JP7287100B2 (en) 2019-05-13 2019-05-13 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090426A JP7287100B2 (en) 2019-05-13 2019-05-13 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2020186663A JP2020186663A (en) 2020-11-19
JP7287100B2 true JP7287100B2 (en) 2023-06-06

Family

ID=73220940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019090426A Active JP7287100B2 (en) 2019-05-13 2019-05-13 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP7287100B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239732A (en) 2002-02-13 2003-08-27 Toyota Motor Corp Exhaust emission control device and control method thereof
JP2012512994A (en) 2008-12-12 2012-06-07 ウエスキャスト インダストリーズ インク. Liquid-cooled exhaust valve assembly
JP2016143677A (en) 2015-01-29 2016-08-08 株式会社デンソー Thermoelectric power generation device
JP2016186300A (en) 2015-03-27 2016-10-27 富士重工業株式会社 Exhaust emission control device
JP2018150915A (en) 2017-03-15 2018-09-27 株式会社豊田中央研究所 Exhaust emission control device
JP2019011717A (en) 2017-06-30 2019-01-24 ダイムラー・アクチェンゲゼルシャフトDaimler AG Thermoelectric device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239732A (en) 2002-02-13 2003-08-27 Toyota Motor Corp Exhaust emission control device and control method thereof
JP2012512994A (en) 2008-12-12 2012-06-07 ウエスキャスト インダストリーズ インク. Liquid-cooled exhaust valve assembly
JP2016143677A (en) 2015-01-29 2016-08-08 株式会社デンソー Thermoelectric power generation device
JP2016186300A (en) 2015-03-27 2016-10-27 富士重工業株式会社 Exhaust emission control device
JP2018150915A (en) 2017-03-15 2018-09-27 株式会社豊田中央研究所 Exhaust emission control device
JP2019011717A (en) 2017-06-30 2019-01-24 ダイムラー・アクチェンゲゼルシャフトDaimler AG Thermoelectric device

Also Published As

Publication number Publication date
JP2020186663A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
CN103026163B (en) Annular heat exchanger
KR101740479B1 (en) Exhaust heat recovery system with bypass
JP2007032561A (en) Exhaust gas heat recovery device
US20200223293A1 (en) Air purification apparatus for vehicle
EP2543950A2 (en) Phase change material heat sink
JP2018115660A (en) Exhaust gas device
JP7287100B2 (en) Exhaust purification device
JP6824423B2 (en) Exhaust gas treatment equipment, exhaust pipelines and corresponding manufacturing methods
JP6812863B2 (en) Exhaust purification device
JP5291656B2 (en) Waste heat recovery device
JP6250576B2 (en) Engine and exhaust system
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP7063069B2 (en) Exhaust gas purification device
JP2003515042A (en) Device for selectively cooling automobile engine exhaust gas
JP6462903B2 (en) Integrated exhaust heat recovery device
GB2246715A (en) Reducing light-off time in a catalytic converter
JP7159553B2 (en) Exhaust purification device
JP2008101479A (en) Exhaust valve structure, exhaust system heat exchanger, and exhaust system structure
JP2019199852A (en) Composite device for heat recovery from and clarification of exhaust
JP2000008841A (en) Exhaust emission control device
JP2871344B2 (en) Engine heat storage device
JPH03222810A (en) Exhaust gas leading out device for vehicle
JP2014181879A (en) Chemical heat storage system
JPH05272334A (en) Engine exhaust device
JPS5849516Y2 (en) Bypass prevention device for full-type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7287100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150