JP2018137141A - Method for testing battery - Google Patents
Method for testing battery Download PDFInfo
- Publication number
- JP2018137141A JP2018137141A JP2017031114A JP2017031114A JP2018137141A JP 2018137141 A JP2018137141 A JP 2018137141A JP 2017031114 A JP2017031114 A JP 2017031114A JP 2017031114 A JP2017031114 A JP 2017031114A JP 2018137141 A JP2018137141 A JP 2018137141A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- electrode
- current
- negative electrode
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
本発明は、電池の試験方法、試験装置およびそれらに用いられる電池に関するものである。 The present invention relates to a battery test method, a test apparatus, and a battery used for them.
二次電池の中でもリチウム二次電池は、小型で高エネルギー密度を有することから、主にポータブル機器用の電源や、高容量、高出力を必要とされる電気自動車用の電源として、近年では注目を浴び、各国で開発が盛んに行われ、より安全で高容量の電池の実現が急務となっている。 Among rechargeable batteries, lithium rechargeable batteries are small and have high energy density, so they have been attracting attention in recent years as power sources for portable devices and power sources for electric vehicles that require high capacity and high output. As a result, development has been actively conducted in each country, and there is an urgent need to realize safer and higher capacity batteries.
リチウム二次電池では、正極と負極との間に、それぞれの極板を電気的に絶縁し、さらに電解液を保持する役目をもつ絶縁層がある。
リチウム二次電池を極度な高温環境に長時間保持した場合、上述した絶縁層は収縮しやすいため、正極と負極とが物理的に接触して内部短絡が発生したり、正極、負極、絶縁層の表面に付着した導体粉により、絶縁層が破れ正極、負極間が電気的に導通を起こし内部短絡が発生したりする傾向があった。
In a lithium secondary battery, there is an insulating layer between a positive electrode and a negative electrode that electrically insulates each electrode plate and holds an electrolyte.
When the lithium secondary battery is held in an extremely high temperature environment for a long time, the above-mentioned insulating layer easily contracts, so that the positive electrode and the negative electrode are in physical contact with each other to cause an internal short circuit, or the positive electrode, the negative electrode, and the insulating layer. Due to the conductive powder adhering to the surface, there was a tendency that the insulating layer was broken and the positive electrode and the negative electrode were electrically connected and an internal short circuit occurred.
特に近年、リチウム二次電池の高容量化に伴う絶縁層の薄肉化の傾向と相まって、内部短絡の課題はより一層重大なものになりつつある。一旦内部短絡が発生すると、短絡電流に伴うジュール熱によって短絡部はさらに拡大し、電池が加熱し破壊に至る場合もある。 Particularly in recent years, the problem of internal short-circuiting is becoming more serious, coupled with the trend of thinning of the insulating layer accompanying the increase in capacity of lithium secondary batteries. Once an internal short circuit occurs, the short circuit part may further expand due to Joule heat associated with the short circuit current, and the battery may be heated and destroyed.
電池に内部短絡が生じた場合においても、その安全性を確保することは非常に重要で、電池の内部短絡時の安全性を高める技術について、従来から盛んに開発が進められている。
例えば、極板上にイオン透過性のセラミック粒子とバインダーからなる絶縁層を印刷する技術(特許文献1参照)などが提案されている。
Even when an internal short circuit occurs in a battery, it is very important to ensure its safety, and techniques for improving the safety at the time of internal short circuit of a battery have been actively developed.
For example, a technique for printing an insulating layer made of ion-permeable ceramic particles and a binder on an electrode plate (see Patent Document 1) has been proposed.
一方、内部短絡を生じた際の安全性を確保するためには、内部短絡が発生した際の電池の安全性を正しく評価することが非常に重要である。 On the other hand, in order to ensure safety when an internal short circuit occurs, it is very important to correctly evaluate the safety of the battery when the internal short circuit occurs.
従来、リチウム二次電池などの電池の安全性評価項目として内部短絡時の発熱挙動を評価する電池評価試験がリチウム電池のためのUL規格(UL1642)、電池工業会からの指針(JIS B8714)などで制定されている。 Conventionally, as a safety evaluation item of a battery such as a lithium secondary battery, a battery evaluation test for evaluating a heat generation behavior at the time of an internal short circuit is UL standard for a lithium battery (UL1642), a guideline from a battery industry association (JIS B8714), etc. Has been enacted.
これらの評価試験の中には、例えば、釘刺し試験、圧壊試験などがある。 These evaluation tests include, for example, a nail penetration test and a crush test.
釘刺し試験は外部より釘を突き刺すことにより、電池内部の正極と負極とを釘を介して短絡電流が流れることで発生するジュール発熱に基づく電池温度や電池電圧などの変化を観察するものである。特許の先行事例としては(特許文献2参照)(図4)が最も釘刺し試験方法と近く、釘で絶縁層を貫通し集電体まで到達するまでの絶縁抵抗を測定すると同時に、異物による内部短絡を擬似的に再現する試験方法である。 The nail penetration test is to observe changes in battery temperature, battery voltage, etc. based on Joule heat generated by a short-circuit current flowing through the nail through the nail by piercing the nail from the outside. . As a prior example of the patent (see Patent Document 2) (Fig. 4) is the closest to the nail penetration test method, the insulation resistance until reaching the current collector through the insulating layer with the nail is measured, and at the same time, the inside by foreign matter This is a test method that simulates a short circuit.
また、圧壊試験は丸棒、角棒、平板などにより電池を物理的に変形させて正極、負極間での内部短絡を発生させ電池温度や電池電圧などの変化を観察するものである。 In the crushing test, the battery is physically deformed by a round bar, a square bar, a flat plate or the like to cause an internal short circuit between the positive electrode and the negative electrode to observe changes in battery temperature, battery voltage, and the like.
さらに、電池単品での内部短絡時の発煙、発火などを防止するために電池内部に破壊機
構を設ける構造の電池も提案されている(特許文献3参照)。
Furthermore, a battery having a structure in which a destruction mechanism is provided inside the battery has been proposed in order to prevent smoke generation, ignition, and the like at the time of an internal short circuit in a single battery (see Patent Document 3).
これは、図5に示すように電池内部のハウジングの近傍に設けられたバリに外部圧力が印加されると、バリが第2のセパレータの一部に穴を開けて、らせん状に巻かれた電極アセンブリの正電極の最外層と負電極の最外層との間で内部短絡を生成するよう構成されたものであり、この破壊機構により前述の圧壊試験時においても、負極に設けられた前記バリが前記セパレータに穴を開け正極板との間で短絡を起こすことにより電池電圧が低下するため発煙、発火を起こすことがなくなる。 As shown in FIG. 5, when an external pressure is applied to a burr provided in the vicinity of the housing inside the battery, the burr is formed in a part of the second separator and spirally wound. An internal short circuit is generated between the outermost layer of the positive electrode and the outermost layer of the negative electrode of the electrode assembly, and the burrs provided on the negative electrode are also provided during the above-described crushing test by this destruction mechanism. However, since the battery voltage is lowered by opening a hole in the separator and causing a short circuit with the positive electrode plate, no smoke or ignition occurs.
ただし、この破壊機構を設けた電池は、電池の製造工程を難しくしており、この破壊機構を設けることで、自らの電池の安全性が低下する可能性も否定できない。また、異物混入による内部短絡は電池内部のどの箇所で発生するかは、特定できないため、この破壊機構に寄って評価された電池の内部短絡安全性レベルが、必ずしも電池全体の内部短絡安全性レベルを反映しているとは限らない。加えて、電池内部に仕込んだバリは、電池外部からの僅かな衝撃や、充電による極板膨張によっても短絡を発生させる危険があるため、電池製造後から試験実施までの安全確保に重大な課題が存在する。 However, a battery provided with this destruction mechanism makes the manufacturing process of the battery difficult, and it cannot be denied that the provision of this destruction mechanism may reduce the safety of its own battery. In addition, since it is not possible to specify where in the battery an internal short circuit occurs due to contamination, the internal short circuit safety level of the battery evaluated by this destruction mechanism is not necessarily the internal short circuit safety level of the entire battery. Does not necessarily reflect. In addition, burrs charged inside the battery may cause a short circuit due to slight impact from the outside of the battery or expansion of the electrode plate due to charging, so it is a serious issue to ensure safety from battery manufacture to test execution. Exists.
電池の使用用途を考慮する上で、内部短絡が発生したときの挙動を正しく把握し、安全性のレベルを判断する必要がある。 In considering the intended use of the battery, it is necessary to correctly grasp the behavior when an internal short circuit occurs and determine the level of safety.
しかしながら、前記従来の試験方法では内部短絡の安全性が正確に評価できないという課題を有している。 However, the conventional test method has a problem that the safety of the internal short circuit cannot be accurately evaluated.
その理由は、内部短絡時の挙動については電池内の短絡箇所、短絡点の抵抗によって大きく変化することが従来からの研究により明らかになっている。 The reason for this is that conventional research has revealed that the behavior at the time of an internal short circuit varies greatly depending on the resistance of the short circuit point and the short circuit point in the battery.
例えば、電極の集電体近傍の抵抗の低い部材の正負極の対向した箇所と、集電体から離れた電極活物質等の抵抗の高い部材の正負極の対向した箇所で同時に短絡が起こった際、短絡に伴う短絡電流は抵抗の低い集電体対向箇所にその多くが流れる。 For example, a short circuit occurred simultaneously at the location where the positive and negative electrodes of the low resistance member in the vicinity of the current collector of the electrode are opposed to the location of the positive and negative electrodes of the high resistance member such as an electrode active material away from the current collector. At that time, most of the short-circuit current due to the short-circuit flows in the location facing the current collector with low resistance.
その結果、熱的な安定の高くない活物質対向部ではなく、集電体の対向部でジュール熱の多くが発生するため、電池機能(電圧)は低下するが、発煙、発火にいたらず、見かけ上内部短絡の安全性を高く判断してしまう。 As a result, the battery function (voltage) is reduced because most of the Joule heat is generated not at the active material facing part, which is not thermally stable, but at the facing part of the current collector, but it does not cause smoke or ignition, Apparently the safety of internal short circuit is judged high.
具体的には、正極板とセパレータと負極板とを対面させ巻回構成された電極群の外周部には、正極板と負極板との双方の集電体のみを対面させた構成を有する電池が存在する。このような構成の場合、釘刺しや圧壊など外部からの衝撃による試験方法では、まず前記の外周部にある集電対同士の短絡が発生する。これにより、抵抗の低い集電体対向箇所に多くの電流が流れ、見かけ上の内部短絡安全性を高く評価することになる。 Specifically, a battery having a configuration in which only the current collectors of both the positive electrode plate and the negative electrode plate are faced to the outer peripheral portion of the electrode group formed by winding the positive electrode plate, the separator, and the negative electrode plate. Exists. In such a configuration, in a test method using an external impact such as nail penetration or crushing, first, a short circuit occurs between the current collectors on the outer peripheral portion. As a result, a large amount of current flows through the current collector facing portion having low resistance, and the apparent internal short circuit safety is highly evaluated.
すなわち、従来の評価方法では短絡の発生する箇所によっては、より危険な状態になる可能性のある電池においても、安全な電池であると間違った評価を下してしまう可能性が
ある。
That is, in the conventional evaluation method, depending on the location where a short circuit occurs, even a battery that may be in a more dangerous state may be erroneously evaluated as a safe battery.
さらには、特許文献3記載のバリも、バリ先端のミクロンレベルの形状の違いによってセパレータや対向電極への貫通レベルが異なるため短絡抵抗の制御が非常に困難である。短絡時の発熱は、前記パリによって発生させられた抵抗値に依存するため、同じ条件で試験を行っても、安定した結果を得ることは非常に困難である。
したがって、電池の内部短絡安全性を正しく評価するためには、電池の形状や構成要素を鑑み、見かけ上安全に評価されてしまう箇所を避け、且つ短絡点で発生する熱量を正確に制御することが重要である。
Furthermore, the burr described in Patent Document 3 is also very difficult to control the short-circuit resistance because the penetration level to the separator and the counter electrode differs depending on the micron-level shape of the burr tip. Since heat generation at the time of a short circuit depends on the resistance value generated by the Paris, it is very difficult to obtain a stable result even if a test is performed under the same conditions.
Therefore, in order to correctly evaluate the internal short-circuit safety of the battery, in view of the shape and components of the battery, avoid locations that would appear to be safely evaluated, and accurately control the amount of heat generated at the short-circuit point. is important.
本発明は、前記従来の課題を解決するもので、内部短絡を想定した発熱を自在に変更可能で、内部短絡が発生した際の挙動を正しく把握でき、内部短絡時の電池の安全性をより正確に評価することを可能とした電池の試験方法であり、安全性の高い電池を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, can freely change the heat generation assuming an internal short circuit, can correctly grasp the behavior when an internal short circuit occurs, and further improve the safety of the battery at the time of the internal short circuit It is a battery testing method that enables accurate evaluation, and an object thereof is to provide a highly safe battery.
上記目的を達成するために、本発明は、正極と、負極と、正極と負極を電気的に絶縁する絶縁層と有する電極群と、電解液と、電極群と電解液とを内包する外装体とを有する電池の安全性を評価する方法であって、正極及び負極の何れか一方に、一部もしくは全部の体積抵抗率が10×10−8Ωm以上の集電端子で接続して、電池を組み立てる工程と、電池に電流を流すことによって前記集電端子を温度上昇させることで電池を発熱させる工程と、電池の発熱状態に応じて、電池の安全性を評価する、電池の評価方法である。 In order to achieve the above object, the present invention provides an outer package that includes a positive electrode, a negative electrode, an electrode group having an insulating layer that electrically insulates the positive electrode and the negative electrode, an electrolytic solution, and the electrode group and the electrolytic solution. A battery having a volume resistivity of 10 × 10 −8 Ωm or more connected to either one of a positive electrode and a negative electrode, A battery evaluation method that evaluates the safety of the battery according to the heat generation state of the battery, and the process of heating the battery by raising the temperature of the current collecting terminal by passing a current through the battery. is there.
電池に電流を流すことによって集電端子を温度上昇させることで内部短絡にて発生するジュール熱と同等の発熱状態を再現することができる。 By raising the temperature of the current collecting terminal by flowing current through the battery, it is possible to reproduce a heat generation state equivalent to Joule heat generated by an internal short circuit.
発熱させる集電端子は、熱が効率よく電極群に伝わるように、体積抵抗率の異なる材料を直列に接続されて構成されており、前記集電端子の体積抵抗の高い部分が前記電極群に熱的に接触していることが好ましい。 The current collecting terminal that generates heat is configured by connecting materials having different volume resistivity in series so that heat is efficiently transmitted to the electrode group, and a portion of the current collecting terminal having a high volume resistance is connected to the electrode group. It is preferably in thermal contact.
また同様に、熱が効率よく電極群に伝わるように、前記発熱させる集電端子の前記電極群と前記外装体とを電気的に接続された間の部分が半分以上前記電極群に接触していることが好ましい。 Similarly, in order to efficiently transfer heat to the electrode group, more than half of the portion between the electrode group and the exterior body of the current collecting terminal that generates heat is in contact with the electrode group. Preferably it is.
さらには、集電端子において、前記電極群及び前記外装体へ電気的に接続された以外の部分が、電極群もしくは外装体に電気的に接触した場合、集電端子の抵抗が小さくなり期待した発熱量を得られず、試験の精度が低下する場合がある。そのため、集電端子の電極群及び前記外装体へ電気的に接続された以外の部分は、電気的に絶縁されていることが好ましい。 Furthermore, in the current collecting terminal, when a portion other than the electrode group and the outer body electrically connected to the electrode group or the outer body is in electrical contact, the resistance of the current collecting terminal is expected to be reduced. The calorific value cannot be obtained, and the accuracy of the test may be reduced. Therefore, it is preferable that the portions other than the electrode group of the current collecting terminal and the externally connected body are electrically insulated.
また、本発明の別の一面は、 正極と、負極と、正極と負極を電気的に絶縁する絶縁層とを有する電極群と、電解液と、電極群と電解液とを内包する外装体とを有する電池の安全性を評価する方法であって、正極及び負極の何れか一方に、正極、負極及び外装体の少なくとも一つと接続する接続部よりも断面が小さい形状を有し、かつ断面積が小さい部分が電極群と接触するように集電端子で接続して、電池を組み立てる工程と、電池に電流を流すことによって集電端子を温度上昇させる、電池を発熱させる工程と、電池の発熱状態に応じて、電池の安全性を評価する、電池の評価方法ある。 Another aspect of the present invention is an electrode group having a positive electrode, a negative electrode, an insulating layer that electrically insulates the positive electrode and the negative electrode, an electrolytic solution, and an outer package containing the electrode group and the electrolytic solution. A method for evaluating the safety of a battery having a positive electrode, a negative electrode, and a cross-sectional area that has a shape smaller in cross section than a connection portion connected to at least one of the positive electrode, the negative electrode, and an outer package. Connecting the current collector terminal so that the small portion of the battery contacts the electrode group, assembling the battery, raising the temperature of the current collector terminal by passing current through the battery, heating the battery, and heating the battery There is a battery evaluation method for evaluating the safety of the battery according to the state.
また、さらに本発明の別の一面は、正極及び負極の何れか一方に、一部もしくは全部の体積抵抗率が10×10−8Ωm以上の集電端子で接続した電池と、電池に電流を流す電
流源と、電池の発熱状態を測定する測定装置とを含む、電池の試験装置である。
Furthermore, another aspect of the present invention provides a battery in which one or all of the positive electrode and the negative electrode are connected by a current collecting terminal having a volume resistivity of 10 × 10 −8 Ωm or more, and a current is supplied to the battery. A battery testing device including a current source for flowing and a measuring device for measuring a heat generation state of the battery.
本構成によって、電池の内部短絡を想定した発熱を自在に変更可能で、内部短絡が発生した際の挙動を正しく把握でき、内部短絡時の電池の安全性を正確に評価することができることを可能とした電池の内部短絡試験方法を実現でき、安全性の高い電池を提供することができる。 With this configuration, it is possible to freely change the heat generation assuming an internal short circuit of the battery, it is possible to correctly grasp the behavior when an internal short circuit occurs, and to accurately evaluate the safety of the battery at the time of the internal short circuit The battery internal short circuit test method can be realized, and a highly safe battery can be provided.
以上のように、本発明の電池の試験方法によれば、内部短絡を想定した発熱を自在に変更可能で、内部短絡が発生した際の挙動をより正確に把握でき、内部短絡時の電池の安全性を正確に評価することができる。 As described above, according to the battery testing method of the present invention, it is possible to freely change the heat generation assuming an internal short circuit, and more accurately grasp the behavior when an internal short circuit occurs, Safety can be accurately evaluated.
(電池)
本発明の電池は、正負極何れか一方の集電端子の一部もしくは全部が体積抵抗率が10×10−8Ωm以上、さらに好ましくは30×10−8Ωm以上の材料を用いていることを特徴とする。一般的に、正極の集電端子は、アルミニウムが用いられ、負極の集電端子としては、銅もしくはニッケルが用いられている。それぞれ体積抵抗率が、アルミニウムが2.8×10−8Ωm、銅が1.7×10−8Ωm、ニッケルが6.9×10−8Ωmであり、電池の出力を向上させ、且つ電池の発熱を低減させるため抵抗の低い金属が用いられている。これに対し、本発明の電池は、体積抵抗率の高い材料を用いて集電端子を発熱させる。用いる材料としては、鉄やSUS、ニクロム、カンタル(鉄クロム)等の材料が挙げられる。
(battery)
In the battery of the present invention, a part or all of the positive and negative current collecting terminals use a material having a volume resistivity of 10 × 10 −8 Ωm or more, more preferably 30 × 10 −8 Ωm or more. It is characterized by. Generally, aluminum is used for the positive current collecting terminal, and copper or nickel is used for the negative current collecting terminal. Each volume resistivity, aluminum 2.8 × 10 -8 Ωm, copper 1.7 × 10 -8 Ωm, nickel is 6.9 × 10 -8 Ωm, to improve the output of the battery, and the battery A metal having a low resistance is used to reduce heat generation. In contrast, the battery of the present invention generates heat at the current collecting terminal using a material having a high volume resistivity. Examples of the material to be used include materials such as iron, SUS, nichrome, and Kanthal (iron chrome).
集電端子の一部を体積抵抗率の高い材料とする場合は、例えばニッケルとニクロムとを超音波溶接や抵抗溶接などの方法で直列に接続して用いる。この場合、体積抵抗率の高い材料が電極群に接触する比率を高くする事が好ましい。すなわち、ニッケルとニクロムを直列に接続した集電端子の場合、電極群と電気的に接合する側に集電端子の体積抵抗率が高い材料すなわちニクロムの方を配置して接合するなどである。 When a part of the current collecting terminal is made of a material having a high volume resistivity, for example, nickel and nichrome are connected in series by a method such as ultrasonic welding or resistance welding. In this case, it is preferable to increase the ratio at which the material having a high volume resistivity contacts the electrode group. That is, in the case of a current collecting terminal in which nickel and nichrome are connected in series, a material having a higher volume resistivity of the current collecting terminal, that is, nichrome, is arranged and joined on the side electrically joined to the electrode group.
体積抵抗率の異なる材料を用いた集電端子の一例を図2に示す。極板の未塗工部である集電体箔露出部202に集電端子の高抵抗材料使用部203が電気的接続部204により接続され、集電端子の低抵抗材料使用部206は、外装体ケースもしくは封口板と電気的接続部207によって接続されている。集電端子の高抵抗材料使用部と低抵抗材料使用部とは、超音波溶着などをもちいた接続部205で接続されている。集電端子の極板集電体箔と外装体ケースとを電気的に接続された間の部分208は、絶縁テープ209にて絶縁されている。
An example of a current collecting terminal using materials having different volume resistivity is shown in FIG. The high resistance
図3に示すように、集電端子の低抵抗材料使用部203の間に高抵抗材料使用部210を挟んだ配置も有効である。
As shown in FIG. 3, an arrangement in which a high resistance
さらには図4に示すように、高抵抗部材210を線材とし、屈曲させることにより抵抗値を増加させ、発熱効率を増加させるとさらに好ましい。
また本発明の正負極何れか一方の集電端子は、前記電極群と前記外装体とを電気的に接続された間の一部において端子断面積が接続部周辺よりも小さい形状を有した集電端子を用いる。
Furthermore, as shown in FIG. 4, it is more preferable that the
In addition, the current collecting terminal of either the positive or negative electrode according to the present invention has a shape in which a terminal cross-sectional area is smaller than that around the connection portion in a part between the electrode group and the exterior body being electrically connected. Use electrical terminals.
上述の形状を有する集電端子の例として、図5に示すように、集電端子の中央部が細くなる形状が挙げられる。このように低断面積部212を作成するに当たり、集電端子を部分的に切り取るか、幅、もしくは厚みの異なる集電端子を超音波溶接や抵抗溶接などで電気的に接続して作成することが出来る。
As an example of the current collecting terminal having the above-described shape, a shape in which the central portion of the current collecting terminal becomes narrow as shown in FIG. In creating the low
さらに発熱させる集電端子は、熱が効率よく電極群に伝わるように、図6に示すように、集電端子と極板の集電体箔露出部202との電気的接合部204の位置を調整し、集電端子の発熱部位が電極群と接触する比率を高めることが好ましい。前記発熱部位とは、前記集電端子の両端にある電気的接合部の間208の体積抵抗率の高い部分もしくは、断面積の小さい部分、もしくは集電端子の中央部分を指す。
Furthermore, the current collecting terminal that generates heat is positioned at the position of the electrical joint 204 between the current collecting terminal and the current collector foil exposed
集電端子の電極群及び外装体へ電気的に接続された以外の部分を電気的に絶縁するための絶縁テープ208には、樹脂製のシートやテープを用いることが出来る。樹脂としては、絶縁性があれば特に指定はされないが、集電端子で発生した熱を効率的に電極群に伝えかつ、高温状態でも絶縁を確保するためにイミド樹脂やアラミド樹脂などの熱伝導度の高く、かつ耐熱性の高い樹脂材料を用いることが好ましい。
A resin sheet or tape can be used for the
電池は、近年、リチウムイオン二次電池が主に利用されている。これらのリチウムイオン二次電池の負極は、負極活物質として黒鉛粒子を含む。ここでは、黒鉛粒子とは、黒鉛構造を有する領域を含む粒子の総称である。よって、黒鉛粒子には、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。 In recent years, lithium ion secondary batteries are mainly used as batteries. The negative electrodes of these lithium ion secondary batteries include graphite particles as a negative electrode active material. Here, the graphite particles are a general term for particles including a region having a graphite structure. Thus, the graphite particles include natural graphite, artificial graphite, graphitized mesophase carbon particles, and the like.
広角X線回折法で測定される黒鉛粒子の回折像は、(101)面に帰属されるピークと、(100)面に帰属されるピークとを有する。ここで、(101)面に帰属されるピークの強度I(101)と、(100)面に帰属されるピークの強度I(100)との比は、0.01<I(101)/I(100)<0.25を満たすことが好ましく、0.08<I(101)/I(100)<0.2を満たすことが更に好ましい。なお、ピークの強度とは、ピークの高さを意味する。 The diffraction image of the graphite particles measured by the wide angle X-ray diffraction method has a peak attributed to the (101) plane and a peak attributed to the (100) plane. Here, the ratio of the peak intensity I (101) attributed to the (101) plane and the peak intensity I (100) attributed to the (100) plane is 0.01 <I (101) / I. (100) <0.25 is preferably satisfied, and 0.08 <I (101) / I (100) <0.2 is more preferably satisfied. The peak intensity means the peak height.
黒鉛粒子の平均粒径は、14〜25μmが好ましく、16〜23μmが更に好ましい。平均粒径が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子の充填状態が良好となり、黒鉛粒子間の接着強度の向上に有利である。なお、平均粒径とは、黒鉛粒子の体積粒度分布におけるメディアン径(D50)を意味する。黒鉛粒子の体積粒度分布は、例えば市販のレーザー回折式の粒度分布測定装置により測定することができる。 The average particle size of the graphite particles is preferably 14 to 25 μm, and more preferably 16 to 23 μm. When the average particle diameter is within the above range, the slipping property of the graphite particles in the negative electrode mixture layer is improved, the filling state of the graphite particles is improved, and it is advantageous for improving the adhesive strength between the graphite particles. In addition, an average particle diameter means the median diameter (D50) in the volume particle size distribution of a graphite particle. The volume particle size distribution of the graphite particles can be measured by, for example, a commercially available laser diffraction type particle size distribution measuring apparatus.
黒鉛粒子の平均円形度は、0.9〜0.95が好ましく、0.91〜0.94が更に好ましい。平均円形度が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子の充填性の向上や、黒鉛粒子間の接着強度の向上に有利である。なお、平均円形度は、4πS/L2(ただし、Sは黒鉛粒子の正投影像の面積、Lは正投影像の周囲長)で表される。例えば、任意の100個の黒鉛粒子の平均円形度が上記範囲であることが好ましい。 The average circularity of the graphite particles is preferably 0.9 to 0.95, and more preferably 0.91 to 0.94. When the average circularity is included in the above range, the slipping property of the graphite particles in the negative electrode mixture layer is improved, which is advantageous in improving the filling properties of the graphite particles and the adhesion strength between the graphite particles. The average circularity is represented by 4πS / L 2 (where S is the area of the orthographic image of graphite particles, and L is the perimeter of the orthographic image). For example, the average circularity of 100 arbitrary graphite particles is preferably in the above range.
黒鉛粒子の比表面積Sは、3〜5m2/gが好ましく、3.5〜4.5m2/gが更に
好ましい。比表面積が上記範囲に含まれる場合、負極合剤層における黒鉛粒子の滑り性が向上し、黒鉛粒子間の接着強度の向上に有利である。また、黒鉛粒子の表面を被覆する水溶性高分子の好適量を少なくすることができる。
The specific surface area S of the graphite particles is preferably 3 to 5 m 2 / g, more preferably 3.5~4.5m 2 / g. When the specific surface area is included in the above range, the slipperiness of the graphite particles in the negative electrode mixture layer is improved, which is advantageous for improving the adhesive strength between the graphite particles. Further, the preferred amount of the water-soluble polymer that covers the surface of the graphite particles can be reduced.
黒鉛粒子の表面を水溶性高分子で被覆するために、以下の製造方法で負極を製造することが望ましい。 In order to coat the surface of the graphite particles with a water-soluble polymer, it is desirable to produce a negative electrode by the following production method.
好ましい方法は、黒鉛粒子と、水と、水に溶解した水溶性高分子とを混合し、得られた混合物を乾燥させて、乾燥混合物とする工程(工程(i))を含む。例えば、水溶性高分子を水中に溶解させて、水溶性高分子水溶液を調製する。得られた水溶性高分子水溶液と黒鉛粒子とを混合し、その後、水分を除去して、混合物を乾燥させる。このように、混合物を一旦乾燥させることにより、黒鉛粒子の表面に水溶性高分子が効率的に付着し、水溶性高分子による黒鉛粒子表面の被覆率が高められる。 A preferable method includes a step (step (i)) of mixing graphite particles, water, and a water-soluble polymer dissolved in water, and drying the obtained mixture to obtain a dry mixture. For example, a water-soluble polymer is dissolved in water to prepare a water-soluble polymer aqueous solution. The obtained water-soluble polymer aqueous solution and graphite particles are mixed, and then the water is removed and the mixture is dried. Thus, once the mixture is dried, the water-soluble polymer efficiently adheres to the surface of the graphite particles, and the coverage of the graphite particle surface with the water-soluble polymer is increased.
水溶性高分子水溶液の粘度は、25℃において、1000〜10000mPa・sに制御することが好ましい。粘度は、B型粘度計を用い、周速度20mm/sで、5mmφのスピンドルを用いて測定する。また、水溶性高分子水溶液100重量部と混合する黒鉛粒子の量は、50〜150重量部が好適である。 The viscosity of the water-soluble polymer aqueous solution is preferably controlled to 1000 to 10,000 mPa · s at 25 ° C. The viscosity is measured using a B-type viscometer at a peripheral speed of 20 mm / s and using a 5 mmφ spindle. The amount of graphite particles mixed with 100 parts by weight of the water-soluble polymer aqueous solution is preferably 50 to 150 parts by weight.
正極は、非水電解質二次電池の正極として用いることのできるものであれば、特に限定されない。正極は、例えば、正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを含む正極合剤スラリーを、アルミニウム箔などの正極芯材に塗布し、乾燥し、圧延することにより得られる。正極活物質としては、リチウム含有遷移金属複合酸化物が好ましい。リチウム含有遷移金属複合酸化物の代表的な例としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO2などを挙げることができる。 A positive electrode will not be specifically limited if it can be used as a positive electrode of a nonaqueous electrolyte secondary battery. For the positive electrode, for example, a positive electrode mixture slurry containing a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride is applied to a positive electrode core material such as an aluminum foil, dried, and rolled. Can be obtained. As the positive electrode active material, a lithium-containing transition metal composite oxide is preferable. Typical examples of the lithium-containing transition metal composite oxide include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 and the like.
なかでも、高容量を確保しつつ、ガス発生を抑制する効果がより顕著に得られる点から、正極は、リチウムおよびニッケルを含む複合酸化物を含むことが好ましい。この場合、複合酸化物に含まれるニッケルのリチウムに対するモル比が、30〜100モル%であることが好ましい。 Especially, it is preferable that a positive electrode contains the complex oxide containing lithium and nickel from the point from which the effect which suppresses gas generation | occurrence | production while ensuring high capacity | capacitance is acquired more notably. In this case, the molar ratio of nickel to lithium contained in the composite oxide is preferably 30 to 100 mol%.
複合酸化物は、更に、マンガンおよびコバルトよりなる群から選ばれる少なくとも1種を含むことが好ましく、リチウムに対するマンガンおよびコバルトの合計のモル比は70モル%以下であることが好ましい。 The composite oxide preferably further contains at least one selected from the group consisting of manganese and cobalt, and the total molar ratio of manganese and cobalt to lithium is preferably 70 mol% or less.
複合酸化物は、更に、Li、Ni、Mn、CoおよびO以外の元素Mを含むことが好ましく、元素Mのリチウムに対するモル比は1〜10モル%であることが好ましい。 The composite oxide preferably further contains an element M other than Li, Ni, Mn, Co and O, and the molar ratio of the element M to lithium is preferably 1 to 10 mol%.
具体的なリチウムニッケル含有複合酸化物としては、例えば、一般式(1)
LixNiyMzMe1−(y+z)O2+d (1)
(Mは、CoおよびMnよりなる群から選ばれる少なくとも1種の元素であり、Meは、Al、Cr、Fe、Mg、およびZnよりなる群から選ばれる少なくとも1種の元素であり、0.98≦x≦1.1であり、0.3≦y≦1であり、0≦z≦0.7であり、0.9≦(y+z)≦1であり、−0.01≦d≦0.01である)で表されるものが挙げられる。
Specific lithium nickel-containing composite oxides include, for example, the general formula (1)
Li x Ni y M z Me 1- (y + z) O 2 + d (1)
(M is at least one element selected from the group consisting of Co and Mn, Me is at least one element selected from the group consisting of Al, Cr, Fe, Mg, and Zn; 98 ≦ x ≦ 1.1, 0.3 ≦ y ≦ 1, 0 ≦ z ≦ 0.7, 0.9 ≦ (y + z) ≦ 1, −0.01 ≦ d ≦ 0 .01).
セパレータとしては、ポリエチレン、ポリプロピレンなどからなる微多孔性フィルムが一般に用いられている。セパレータの厚みは、例えば10〜30μmである。 As the separator, a microporous film made of polyethylene, polypropylene or the like is generally used. The thickness of the separator is, for example, 10 to 30 μm.
本発明は、円筒型、扁平型、角型など、様々な形状の電池に適用可能であり、電池の形状は特に限定されない。電極群としても、巻回型だけでなく、短冊極板を複数積層された構成の電極群にも適応可能である。
(安全性評価)
かかる構成の電池を製作し、電池に電流を流す電流源と、電池の発熱状態を測定する測定装置とを接続して、電池の安全性を評価する。
具体的には、目的の充電状態に調整した後、次の試験を実施する。
The present invention is applicable to batteries having various shapes such as a cylindrical shape, a flat shape, and a square shape, and the shape of the battery is not particularly limited. The electrode group is applicable not only to a wound type but also to an electrode group having a configuration in which a plurality of strip electrode plates are stacked.
(Safety evaluation)
A battery having such a configuration is manufactured, and a current source for supplying a current to the battery and a measuring device for measuring the heat generation state of the battery are connected to evaluate the safety of the battery.
Specifically, after adjusting to the target state of charge, the next test is performed.
充電済み電池を恒温槽にいれ、電池に電流を計測するための電流計と回路の抵抗を調整するための固定抵抗及び回路の接続を制御するスイッチを直列に接続する。環境温度を制御した状態でスイッチにより一定時間回路を短絡させる。回路の固定抵抗を順次低くしてゆくことにより、集電端子の発熱部位での発熱量が増加する。このとき、電池組み立て前に集電端子の発熱部位の抵抗を測定しておく事により、短絡に流れた電流より発熱部位で発生する熱量を算出することが出来る。 A charged battery is placed in a thermostatic chamber, and an ammeter for measuring current in the battery, a fixed resistor for adjusting the resistance of the circuit, and a switch for controlling connection of the circuit are connected in series. The circuit is short-circuited for a certain period of time with a switch while the ambient temperature is controlled. By gradually decreasing the fixed resistance of the circuit, the amount of heat generated at the heat generating portion of the current collecting terminal increases. At this time, by measuring the resistance of the heat generating portion of the current collecting terminal before assembling the battery, the amount of heat generated in the heat generating portion can be calculated from the current flowing in the short circuit.
上記方法により、電池が熱暴走に至る固定抵抗の値を見定め、その時の発熱部位での熱量を算出することにより、正確に電池の安全性を評価することが出来る。 By determining the value of the fixed resistance that leads to thermal runaway by the above method and calculating the amount of heat at the heat generating part at that time, the safety of the battery can be accurately evaluated.
試験を行う上で、電池の充電電圧や環境温度、短絡時間(発熱時間)は、評価の目的に応じ変更することが出来る。 In conducting the test, the battery charging voltage, environmental temperature, and short circuit time (heat generation time) can be changed according to the purpose of the evaluation.
発熱部位に電流を印加する方法としては、回路の短絡だけでなく、固定抵抗の代わりに電源を配置することにより、充電で電流を印加する方法も可能である。 As a method of applying a current to the heat generation part, not only a short circuit of a circuit but also a method of applying a current by charging by arranging a power source instead of a fixed resistor is possible.
発熱部位の抵抗は、効率的な発熱を行うためには、体積抵抗率が高いほどよい。これにより電流の印加により電池の充電状態が大きく変化する事無く、熱暴走を発生することが出来る。しかるに試験前に目的の充電状態に電池を充電する時には、発熱部位の抵抗を高くすることにより充電電流を発火しない電流値まで小さくする必要があるため、充電時間が長くかかることになる。 The resistance of the heat generating part is better as the volume resistivity is higher for efficient heat generation. As a result, thermal runaway can occur without the state of charge of the battery changing significantly due to the application of current. However, when the battery is charged to the target state of charge before the test, it is necessary to reduce the charging current to a current value that does not ignite by increasing the resistance of the heat generating portion, so that a long charging time is required.
上記理由により、発熱部位の抵抗は、電池の容量と熱暴走に至る熱量と充電に必要な時間(試験効率)を鑑み、最適に調整する必要がある。すなわち、上記因子により最適な抵抗値は変化することになる。 For the above reasons, it is necessary to optimally adjust the resistance of the heat generating portion in view of the capacity of the battery, the amount of heat that leads to thermal runaway, and the time required for charging (test efficiency). That is, the optimum resistance value varies depending on the above factors.
なお、集電端子の溶接位置を変更することで、発熱箇所を制御することができる。 In addition, a heat_generation | fever location can be controlled by changing the welding position of a current collection terminal.
さらに、本発明の内部短絡試験方法を用いることにより以下のような電池パックの安全性評価試験も可能となる。 Further, by using the internal short-circuit test method of the present invention, the following battery pack safety evaluation test can be performed.
すなわち電池を多数個、並列、直列に接続したものを電池パックとよんでいるが、背景にも述べたように、近年、ポータブル機器用電源、電気自動車用として開発が盛んにおこなわれており、前述の電池パックが様々な形態で考案されている。 In other words, a battery pack is a battery pack in which a large number of batteries are connected in parallel and in series, but as mentioned in the background, in recent years, it has been actively developed for portable equipment power supplies and electric vehicles. The battery pack has been devised in various forms.
しかしながら、リチウムイオン電池の特徴でもある高エネルギー密度の影響で、1個の電池が内部短絡により破壊、燃焼すると連鎖的に、隣あった電池も破壊、燃焼するという課題が発生している。 However, due to the influence of high energy density, which is also a characteristic of lithium ion batteries, there is a problem that when one battery is destroyed and burned due to an internal short circuit, the adjacent batteries are also broken and burned.
これを電池パックの類焼性と呼んでいるが、一般的にこの類焼性を判定するためには、基点となる電池を熱暴走させる必要がある。 This is called the sinterability of the battery pack. Generally, in order to determine the sinterability of the battery pack, it is necessary to cause the battery serving as the base point to run out of heat.
熱暴走を発生させるために、一般的に用いられている方法として、電池に釘を刺して内部短絡を発生させる方法がある。しかるに、電池パックの形態によっては、2段、3段積みなど様々であり、内部に隠れた電池に釘を刺すことが不可能であり、電池パックの類焼性を正しく判定することができないという課題がある。 In order to generate a thermal runaway, a commonly used method is to pierce the battery with a nail to generate an internal short circuit. However, depending on the form of the battery pack, there are various levels such as two-stage and three-stage stacks, and it is impossible to pierce the battery hidden inside, and the sinterability of the battery pack cannot be correctly determined. There is.
さらには、釘を刺すことによりケースが破損するため、そこを基点に類焼が広がる可能性があり、評価の精度も低下する恐れがある。 Furthermore, since the case is damaged by piercing with a nail, there is a possibility that similar firing spreads from the base point, and the accuracy of evaluation may be lowered.
一方、ヒータを電池側面に装着して熱暴走させる手法があるが、ヒータの熱が基点となる電池以外にもパックの構造体や隣接電池に伝播するため、結果的に厳しい評価となってしまう。 On the other hand, there is a method of mounting the heater on the side of the battery to cause thermal runaway, but the heat of the heater propagates to the pack structure and adjacent batteries in addition to the base battery, resulting in severe evaluation. .
さらには、電池を過充電することにより熱暴走を発生させることが可能であるが、過充電により電池が蓄えるエネルギーが増加し、これにより熱暴走時の発熱が大きくなるため、目的の条件よりも厳しい評価となってしまう。 Furthermore, it is possible to cause thermal runaway by overcharging the battery, but the energy stored in the battery increases due to overcharging, which increases heat generation during thermal runaway, which is higher than the target condition. It becomes severe evaluation.
この電池パックの類焼性の評価手段として、この本発明による内部短絡試験方法に基づいて製作された電池を、電気自動車等に使用する電池パックの任意の箇所に組み込み、前述の試験方法にてこの電池を発火、発煙させ隣接する他の電池が類焼するか否かを評価することにより、目的の充電状態でかつパックの構造体や隣接電池への熱影響を最小限に抑制し、釘を刺せないパックの中心部の電池を基点とした類焼評価が可能となる。 As a means for evaluating the sinterability of this battery pack, a battery manufactured based on the internal short-circuit test method according to the present invention is incorporated in an arbitrary part of a battery pack used for an electric vehicle or the like, and this test method is used. By igniting and smoking the battery and evaluating whether or not other adjacent batteries are burnt down, the thermal effect on the pack structure and adjacent battery can be minimized and the nail can be inserted. It is possible to evaluate the firing based on the battery at the center of the pack that is not present.
この方法を用いて試験を実施することにより、類焼性の合否判定を行うことが可能となり、放熱設計、配置設計の改善により電池パックの安全性向上のための対策をこうじることが出来る。 By performing a test using this method, it is possible to determine whether or not the sinterability is acceptable, and it is possible to take measures to improve the safety of the battery pack by improving the heat dissipation design and the layout design.
以下、実施例に基づいて本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.
図1に示す電池1を、以下のようにして作製した。
正極板101は、アルミニウム箔集電体に正極合剤を塗着したものを用い、負極板103は、銅箔集電体に負極合剤を塗着したものを用いた。
The battery 1 shown in FIG. 1 was produced as follows.
The
また、セパレータ105の厚みを20μmとした。
正極集電端子集電端子102と、アルミニウム箔集電体とはレーザ溶接した。正極集電端子の寸法は、幅3mm、厚み0.3mm、長さ50mmのものを用いた。
The thickness of the
The positive electrode
また、負極集電端子104と、銅箔集電体とは抵抗溶接した。負極集電端子の寸法は、幅3mm、厚み0.3mm、長さ50mmのものを用いた。負極集電端子104は金属製有底ケース108の底部と抵抗溶接により電気的に接続した。
図5に示すように、電気的に接続された銅箔集電体と金属性有底ケースとの負極集電端子上の間208の距離は20mmとなるように形状で電気的な接続点を調整した。それぞれの電気的な接続点の間は、接続点以外での短絡を防止するためイミドテープを用いて絶縁した。
The negative electrode
As shown in FIG. 5, the electrical connection point is formed in a shape so that the
正極集電端子102は金属製有底ケース108の開放端から防爆弁を有した封口板110の金属製フィルターにレーザ溶接により電気的に接続した。集電端子の極板集電体箔と外装体ケースとを電気的に接続204、207された間の部分208の距離は20mmとなるように電気的な接続点の位置を調整した。それぞれの電気的な接続点の間は、負極集
電端子と同様に、接続点以外での短絡を防止するためイミドテープを絶縁テープ209として絶縁した。
The positive electrode current collecting
金属製有底ケース108の開放端から非水電解液を注入した。金属製有底ケース108の開放端には溝を入れて座を形成し、正極集電端子102を折り曲げ、金属製有底ケース108の座部に樹脂製アウターガスケット109と封口板110とを装着して、金属製有底ケース108の開放端全周囲をかしめて封口した。
A non-aqueous electrolyte was injected from the open end of the bottomed
(1)負極板103の作製。
(1) Fabrication of the
工程(i)
まず、水溶性高分子であるカルボキシメチル電池ロース(以下、CMC、分子量40万)を水に溶解し、CMC濃度1重量%の水溶液を得た。天然黒鉛粒子(平均粒径20μm、平均円形度0.92、比表面積4.2m2/g)100重量部と、CMC水溶液100重量部とを混合し、混合物の温度を25℃に制御しながら攪拌した。その後、混合物を120℃で5時間乾燥させ、乾燥混合物を得た。乾燥混合物において、黒鉛粒子100重量部あたりのCMC量は1重量部であった。
Step (i)
First, carboxymethyl cellulose (hereinafter, CMC, molecular weight 400,000), which is a water-soluble polymer, was dissolved in water to obtain an aqueous solution having a CMC concentration of 1% by weight. While mixing 100 parts by weight of natural graphite particles (average particle diameter 20 μm, average circularity 0.92, specific surface area 4.2 m 2 / g) and 100 parts by weight of CMC aqueous solution, the temperature of the mixture is controlled at 25 ° C. Stir. Thereafter, the mixture was dried at 120 ° C. for 5 hours to obtain a dry mixture. In the dry mixture, the amount of CMC per 100 parts by weight of graphite particles was 1 part by weight.
工程(ii)
得られた乾燥混合物101重量部と、平均粒径0.12μmの粒子状であり、スチレン単位およびブタジエン単位を含み、ゴム弾性を有する結着剤(以下、SBR)0.6重量部と、0.9重量部のカルボキシメチル電池ロースと、適量の水とを混合し、負極合剤スラリーを調製した。なお、SBRは水を分散媒とするエマルジョン(日本ゼオン(株)製のBM−400B(商品名)、SBR重量割合40重量%)の状態で他の成分と混合した。
Step (ii)
101 parts by weight of the obtained dry mixture, 0.6 parts by weight of a binder (hereinafter referred to as SBR) having a rubber elasticity, which is in the form of particles having an average particle size of 0.12 μm, and containing styrene units and butadiene units; .9 parts by weight of carboxymethyl cellulose and an appropriate amount of water were mixed to prepare a negative electrode mixture slurry. In addition, SBR was mixed with other components in the state of emulsion (BM-400B (trade name) manufactured by Nippon Zeon Co., Ltd., SBR weight ratio 40% by weight) using water as a dispersion medium.
工程(iii)
得られた負極合剤スラリーを、負極芯材である電解銅箔(厚さ12μm)の両面にダイコートを用いて塗布し、塗膜を120℃で乾燥させた。塗布した負極合剤の重量は、電池を4.2Vで充電したときに1stステージと2ndステージとの切り替わり位置がSOC60%になるように設計して決定した。前記切り替わりの位置は、事前に負極極板を用い、対極にLi金属箔を用いた電池を作成し、その電池で充放電を行い、電圧と容量を測定し、その値を元に設計した。
Step (iii)
The obtained negative electrode mixture slurry was applied to both surfaces of an electrolytic copper foil (thickness 12 μm) as a negative electrode core material using a die coat, and the coating film was dried at 120 ° C. The weight of the applied negative electrode mixture was determined by designing so that the switching position between the 1st stage and the 2nd stage would be SOC 60% when the battery was charged at 4.2V. The switching position was designed based on the value obtained by preparing a battery using a negative electrode plate in advance and using a Li metal foil as a counter electrode, charging and discharging the battery, measuring the voltage and capacity, and the like.
その後、乾燥塗膜を圧延ローラで線圧0.25トン/cmで圧延して、厚さ160μm、黒鉛密度1.65g/cm3の負極合剤層を形成した。負極合剤層を負極芯材とともに所定形状に裁断することにより、負極を得た。 Thereafter, the dried coating film was rolled with a rolling roller at a linear pressure of 0.25 ton / cm to form a negative electrode mixture layer having a thickness of 160 μm and a graphite density of 1.65 g / cm 3 . The negative electrode mixture layer was cut into a predetermined shape together with the negative electrode core material to obtain a negative electrode.
(2)正極板101の作製。
(2) Fabrication of the
正極活物質である100重量部のLiNi0.80Co0.15Al0.05O2に対し、結着剤であるポリフッ化ビニリデン(PVDF)を4重量部添加し、適量のN−メチル−2−ピロ集電端子ン(NMP)とともに混合し、正極合剤スラリーを調製した。得られた正極合剤スラリーを、正極芯材である厚さ20μmのアルミニウム箔の両面に、ダイコートを用いて塗布し、塗膜を乾燥させ、更に、圧延して、正極合剤層を形成した。正極合剤層を正極芯材とともに所定形状に裁断することにより、正極を得た。 4 parts by weight of polyvinylidene fluoride (PVDF) as a binder is added to 100 parts by weight of LiNi 0.80 Co 0.15 Al 0.05 O 2 as a positive electrode active material, and an appropriate amount of N-methyl- It mixed with 2-pyro collector terminal (NMP), and the positive mix slurry was prepared. The obtained positive electrode mixture slurry was applied to both surfaces of a 20 μm thick aluminum foil as a positive electrode core material using a die coat, the coating film was dried, and further rolled to form a positive electrode mixture layer. . The positive electrode mixture layer was cut into a predetermined shape together with the positive electrode core material to obtain a positive electrode.
(3)非水電解質の調製。 (3) Preparation of non-aqueous electrolyte.
エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチル
カーボネート(DMC)とを、VEC:VEMC:VDMC=20:20:60の重量割合で含む混合溶媒に、1モル/リットルの濃度でLiPF6を溶解させ作成した。
1 mol / liter in a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a weight ratio of V EC : V EMC : V DMC = 20: 20: 60 LiPF 6 was dissolved at a concentration of
(4)密閉型二次電池1の作製。 (4) Production of sealed secondary battery 1.
正極板101と負極板103の間に厚み20μmのセパレータ105を配置して捲回し、円筒状の電極群112を構成した後、金属製有底ケース108に挿入、封口して密閉型非水電解質二次電池1を得た。この電池は直径18mm、高さ65mmの円筒型電池で、電池の設計容量は2750mAhであった。完成した電池1に電池缶絶縁体11として、厚み80μmのポリエチレンテレフタレート製の熱収縮チューブを頂面外縁部まで覆い、90℃の温風で熱収縮させ比較例1の電池とした。
評価用組電池の作成。
A
Create evaluation battery pack.
表1に従い負極集電端子の材質、形状(ストレート:図2、切り欠き:図5)および、電気的接続位置(20mm:図7、40mm:図6)、絶縁テープ(貼り付けあり、なし)を調整し、図2に示すような比較例の電池を1〜5、及び実施例の電池を1〜8作成した。 According to Table 1, the material and shape of the negative electrode current collector terminal (straight: Fig. 2, notch: Fig. 5), electrical connection position (20mm: Fig. 7, 40mm: Fig. 6), insulating tape (with or without sticking) As shown in FIG. 2, 1 to 5 batteries of comparative examples and 1 to 8 batteries of examples were prepared.
(試験)
(1)電池の充電。
(test)
(1) Battery charging.
表1の比較例及び実施例の電池に対し、放電状態から1.375A(0.5It)の電流値で充電方向へ定電流充電を行い4.2V到達後、4.2Vで電圧が維持できるように電流を絞り、定電圧充電を行った。電流値が0.05Aとなった時点で充電を終了した。(2)発熱試験。 The batteries of Comparative Examples and Examples in Table 1 can be charged at a constant current of 1.375 A (0.5 It) from the discharged state in the charging direction, and after 4.2 V is reached, the voltage can be maintained at 4.2 V. Thus, the current was reduced and constant voltage charging was performed. Charging was terminated when the current value reached 0.05A. (2) Exothermic test.
前記充電済み電池を恒温槽に入れ、電池に充放電を行うための電源装置を接続し、電池表面温度を測定できるようケース中央部に熱電対を貼り付け、25℃に安定するまで30〜60分放置した。 The charged battery is placed in a thermostatic chamber, a power supply device for charging and discharging is connected to the battery, a thermocouple is attached to the center of the case so that the battery surface temperature can be measured, and 30 to 60 until it is stabilized at 25 ° C. Left for a minute.
上記準備が完了後、表1の比較例および実施例の電池に対し、電流を印加して発熱試験を実施した。実施した試験条件とその結果を表2に示す。 After the above preparation was completed, an exothermic test was performed by applying current to the batteries of Comparative Examples and Examples in Table 1. The test conditions performed and the results are shown in Table 2.
比較例1,2は、従来一般的に用いられている材料を用い、3It相当の10Aの定電流を流したが、熱暴走を発生させることが出来なかった。同様に、比較例3では、電流値と通電時間を長くしたが、電池の温度は上昇するものの、放電によりセルの充電状態が変化し、安全な状態(SOC31%=SOC100%−ΔSOC69%)になったため熱暴走に至らなかった。さらに電流値を増加させると、電池の安全機構により電流が遮断され試験を実施できなくなった。実施例4では、熱暴走の電流印加で電池のSOCが変化しないように、充電と放電を5秒ずつ繰り返して試験を実施した。これにより、熱暴走を発生させることが出来たが、電池の温度が150℃以上まで到達し、25℃での環境での安全性評価とは言い難い試験となった。 In Comparative Examples 1 and 2, a material generally used in the past was used and a constant current of 10 A corresponding to 3 It was passed, but thermal runaway could not be generated. Similarly, in Comparative Example 3, although the current value and the energization time were increased, the battery temperature increased, but the state of charge of the cell changed due to the discharge, and the battery became safe (SOC 31% = SOC 100% −ΔSOC 69%). As a result, thermal runaway did not occur. When the current value was further increased, the current was interrupted by the safety mechanism of the battery and the test could not be performed. In Example 4, the test was carried out by repeating charging and discharging for 5 seconds each so that the SOC of the battery did not change due to thermal runaway current application. As a result, although the thermal runaway could be generated, the temperature of the battery reached 150 ° C. or higher, which was a test that is difficult to say as safety evaluation in an environment at 25 ° C.
これに対し、本発明の実施例1の電池は、負極のリードをニクロム材に置き換えることにより、電流値10Aを2秒通電させることで熱暴走を発生させることが出来た。非常に短時間で熱暴走を発生させることが出来たため、電池温度、SOC共に、通電前とほぼ変わらない状態での試験を実施出来た。 On the other hand, the battery of Example 1 of the present invention was able to generate thermal runaway by replacing the negative electrode lead with a nichrome material and energizing the current value 10A for 2 seconds. Since the thermal runaway could be generated in a very short time, the battery temperature and SOC could be tested in the same state as before energization.
実施例1と同様に、実施例2〜5は、体積抵抗率の異なる金属材料を負極の集電端子に用いて作成した電池に対し熱暴走試験を実施した。表2に示す条件により熱暴走を発生さ
せることが出来たが、実施例2の様に体積抵抗率の10×10−8Ωm以上30×10−8Ωm以下の材料の場合、電流値を大きくかつ通電時間を長くする必要があり、その結果、電池の充電状態や温度に少なからず影響を与えることが確認できた。また、電流が大きくなると放電方向では、電池電圧の関係で十分な電流を印加することが困難であるため、充電方向での電流印加を行った。しかるに発熱部位にとって、充電方向でも放電方向でも発熱としては等価である。上記したように、SOCや温度など電池の状態への影響が懸念されるため、体積抵抗率としては、30×10−8Ωm以上がより好ましい。
一方、実施例6では、3mm幅のリードを1mm幅に切り欠き、断面積を減少させることにより線抵抗を増加させている。この方法においても、熱暴走を発生させ得ることが出来た。
In the same manner as in Example 1, in Examples 2 to 5, a thermal runaway test was performed on a battery prepared using metal materials having different volume resistivity for the current collector terminal of the negative electrode. Thermal runaway could be generated under the conditions shown in Table 2, but in the case of a material having a volume resistivity of 10 × 10 −8 Ωm to 30 × 10 −8 Ωm as in Example 2, the current value was increased. In addition, it was necessary to lengthen the energization time, and as a result, it was confirmed that the charging state and temperature of the battery were not affected. In addition, when the current is increased, it is difficult to apply a sufficient current in the discharging direction due to the battery voltage, and thus the current is applied in the charging direction. However, heat generation is equivalent to heat generation in both the charging direction and the discharging direction. As described above, since there is a concern about the influence on the state of the battery such as SOC and temperature, the volume resistivity is more preferably 30 × 10 −8 Ωm or more.
On the other hand, in Example 6, a lead having a width of 3 mm is cut out to a width of 1 mm, and the line resistance is increased by reducing the cross-sectional area. Even with this method, thermal runaway could be generated.
実施例7において、集電端子の絶縁を取り去ることにより、熱暴走に必要な電流値が大きくなることを確認した。これは、集電端子がケースや集電体箔に接触して短絡することにより、集電端子に流れるべき電流が分流してしまい、集電端子の発熱が減少したためと考えられる。このことから、より効率的に熱暴走を発生させるためには、集電端子は絶縁することが好ましい。 In Example 7, it was confirmed that the current value required for the thermal runaway increased by removing the insulation of the current collecting terminal. This is presumably because the current that should flow to the current collector terminal is shunted when the current collector terminal comes into contact with the case or the current collector foil to cause a short circuit, and the heat generation at the current collector terminal is reduced. For this reason, it is preferable to insulate the current collecting terminal in order to generate thermal runaway more efficiently.
実施例8は、充電と放電を5秒ずつ繰り返して行うことにより電池のSOCの変化を最小限に抑制し、熱暴走を発生させることが出来た。 In Example 8, the change in the SOC of the battery was suppressed to the minimum by repeating the charging and discharging every 5 seconds, and a thermal runaway could be generated.
このように、本発明の試験方法を用いることにより、電池の異物混入による内部短絡と同等の現象が再現できることを確認することができた。 Thus, it was confirmed that by using the test method of the present invention, it was possible to reproduce a phenomenon equivalent to an internal short circuit due to contamination of a battery.
実施例では、負極側の集電端子を検討したが、正極側の集電端子においても同様の効果を得ることが出来る。 In the examples, the negative electrode side current collecting terminal was examined, but the same effect can be obtained also in the positive electrode side current collecting terminal.
以上のように、本発明によれば、電池安全性評価の内部短絡試験を想定した評価を精度良く実施できる電池を提供するものである。 As described above, according to the present invention, there is provided a battery capable of accurately performing an evaluation assuming an internal short circuit test for battery safety evaluation.
1 電池
11 電池缶絶縁体
101 正極板
102 正極集電端子集電体
103 負極板
104 負極集電端子集電体
105 セパレータ
106 上部絶縁板
107 下部絶縁板
108 ケース
109 ガスケット
109 樹脂製アウターガスケット
110 封口板
111 正極端子
112 極板群
113 溝
114 ガス排出口
201 合剤塗布部
202 集電体箔露出部
203 高抵抗材料使用部
204 電気的接続部
205 接続部
207 溶接部
209 絶縁テープ
210 高抵抗部材
212 集電端子の低断面積部
DESCRIPTION OF SYMBOLS 1
Claims (8)
前記正極及び前記負極の何れか一方に、一部もしくは全部の体積抵抗率が10×10−8Ωm以上の集電端子で接続して、電池を組み立てる工程と、
前記電池に電流を流すことによって前記集電端子を温度上昇させることで、前記電池を発熱させる工程と、
前記電池の発熱状態に応じて、電池の安全性を評価する工程とを含む、電池の試験方法。 Safety of a battery having a positive electrode, a negative electrode, an electrode group in which the positive electrode and an insulating layer that electrically insulates the negative electrode are laminated, an electrolytic solution, and an outer package containing the electrode group and the electrolytic solution A method for evaluating sex,
A process of assembling a battery by connecting to either one of the positive electrode and the negative electrode with a current collecting terminal having a volume resistivity of 10 × 10 −8 Ωm or more.
Causing the battery to generate heat by raising the temperature of the current collector terminal by passing an electric current through the battery;
And a step of evaluating the safety of the battery according to the heat generation state of the battery.
前記正極及び前記負極の何れか一方に、前記正極、前記負極及び前記外装体の少なくとも一つと接続する接続部よりも断面が小さい形状を有し、かつ断面積が小さい部分が前記電極群と接触するように集電端子で接続して、電池を組み立てる工程と、
前記電池に電流を流すことによって前記集電端子を温度上昇させる、前記電池を発熱させる工程と、
前記電池の発熱状態に応じて、電池の安全性を評価する工程とを含む、電池の試験方法。 Safety of a battery having a positive electrode, a negative electrode, an electrode group in which the positive electrode and an insulating layer that electrically insulates the negative electrode are laminated, an electrolytic solution, and an outer package containing the electrode group and the electrolytic solution A method for evaluating sex,
Either one of the positive electrode and the negative electrode has a shape having a smaller cross section than a connecting portion connected to at least one of the positive electrode, the negative electrode, and the outer package, and a portion having a small cross-sectional area is in contact with the electrode group. Connecting the current collector terminals to assemble the battery,
Increasing the temperature of the current collecting terminal by passing an electric current through the battery, and heating the battery;
And a step of evaluating the safety of the battery according to the heat generation state of the battery.
前記正極及び負極のいずれか一方に、一部もしくは全部の体積抵抗率が10×10−8Ωm以上の集電端子を接続した電池。 A battery having a positive electrode, a negative electrode, an electrode group in which the positive electrode and an insulating layer that electrically insulates the negative electrode are laminated, an electrolytic solution, and an outer package containing the electrode group and the electrolytic solution. And
A battery in which a current collector terminal having a volume resistivity of 10 × 10 −8 Ωm or more is connected to one of the positive electrode and the negative electrode.
前記電池に電流を流す電流源と、
前記電池の発熱状態を測定する測定装置とを含む、電池の試験装置。 A battery in which a collector terminal having a volume resistivity of 10 × 10 −8 Ωm or more is connected to either one of the positive electrode and the negative electrode;
A current source for passing current through the battery;
A battery testing device including a measuring device for measuring a heat generation state of the battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017031114A JP2018137141A (en) | 2017-02-22 | 2017-02-22 | Method for testing battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017031114A JP2018137141A (en) | 2017-02-22 | 2017-02-22 | Method for testing battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018137141A true JP2018137141A (en) | 2018-08-30 |
Family
ID=63367079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017031114A Pending JP2018137141A (en) | 2017-02-22 | 2017-02-22 | Method for testing battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018137141A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018190590A (en) * | 2017-05-02 | 2018-11-29 | トヨタ自動車株式会社 | Smoke generation method for battery pack |
WO2020091238A1 (en) * | 2018-11-02 | 2020-05-07 | 주식회사 엘지화학 | Method for evaluating internal short of secondary battery |
JP2021504923A (en) * | 2018-08-01 | 2021-02-15 | エルジー・ケム・リミテッド | Secondary battery for internal short circuit test, secondary battery internal short circuit test method and equipment using it |
WO2021054636A1 (en) * | 2019-09-20 | 2021-03-25 | 주식회사 엘지화학 | Battery cell comprising separator having magnetic body formed therein and method for evaluating battery cell safety against internal short circuit by using same |
JP2021535568A (en) * | 2019-04-09 | 2021-12-16 | エルジー・ケム・リミテッド | Battery cell including short-circuit induction member and safety evaluation method using it |
US11728534B2 (en) | 2018-11-30 | 2023-08-15 | Lg Energy Solution, Ltd. | Electrode assembly and rechargeable battery including the same |
WO2024198858A1 (en) * | 2023-03-27 | 2024-10-03 | 中国华能集团清洁能源技术研究院有限公司 | Test system and method for thermal runaway performance of immersion-type cooled battery |
-
2017
- 2017-02-22 JP JP2017031114A patent/JP2018137141A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018190590A (en) * | 2017-05-02 | 2018-11-29 | トヨタ自動車株式会社 | Smoke generation method for battery pack |
JP2021504923A (en) * | 2018-08-01 | 2021-02-15 | エルジー・ケム・リミテッド | Secondary battery for internal short circuit test, secondary battery internal short circuit test method and equipment using it |
US11635473B2 (en) | 2018-08-01 | 2023-04-25 | Lg Energy Solution, Ltd. | Secondary battery for testing internal short, method and apparatus for testing internal short of secondary battery using the same |
JP7065962B2 (en) | 2018-08-01 | 2022-05-12 | エルジー エナジー ソリューション リミテッド | Secondary battery for internal short circuit test, secondary battery using it Internal short circuit test method and equipment |
US11404727B2 (en) | 2018-11-02 | 2022-08-02 | Lg Energy Solution, Ltd. | Method for evaluating internal short of secondary battery |
WO2020091238A1 (en) * | 2018-11-02 | 2020-05-07 | 주식회사 엘지화학 | Method for evaluating internal short of secondary battery |
US11728534B2 (en) | 2018-11-30 | 2023-08-15 | Lg Energy Solution, Ltd. | Electrode assembly and rechargeable battery including the same |
JP7159455B2 (en) | 2019-04-09 | 2022-10-24 | エルジー エナジー ソリューション リミテッド | BATTERY CELL INCLUDING SHORT-CIRCUIT INDUCTIVE MEMBER AND SAFETY EVALUATION METHOD USING THE SAME |
JP2021535568A (en) * | 2019-04-09 | 2021-12-16 | エルジー・ケム・リミテッド | Battery cell including short-circuit induction member and safety evaluation method using it |
US11990588B2 (en) | 2019-04-09 | 2024-05-21 | Lg Energy Solution, Ltd. | Battery cell including short-circuit inducing member and safety evaluation method using same |
WO2021054636A1 (en) * | 2019-09-20 | 2021-03-25 | 주식회사 엘지화학 | Battery cell comprising separator having magnetic body formed therein and method for evaluating battery cell safety against internal short circuit by using same |
US12009484B2 (en) | 2019-09-20 | 2024-06-11 | Lg Energy Solution, Ltd. | Battery cell comprising separator having magnetic body formed therein and method for evaluating battery cell safety against internal short circuit by using same |
WO2024198858A1 (en) * | 2023-03-27 | 2024-10-03 | 中国华能集团清洁能源技术研究院有限公司 | Test system and method for thermal runaway performance of immersion-type cooled battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2018137141A (en) | Method for testing battery | |
KR101410166B1 (en) | Secondary cell and method for testing secondary cell | |
US11069916B2 (en) | Cylindrical battery | |
US8163409B2 (en) | Evaluation method for safety upon battery internal short circuit, evaluation device for safety upon battery internal short circuit, battery, battery pack, and manufacturing method for battery and battery pack | |
US11749843B2 (en) | Battery module having improved safety, battery pack including battery module, and vehicle including battery pack | |
WO2009144919A1 (en) | Cylindrical nonaqueous electrolytic secondary battery | |
JP2007200795A (en) | Lithium ion secondary battery | |
WO2012042830A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2009054297A (en) | Battery pack | |
JPH07249405A (en) | Battery | |
JPWO2010052786A1 (en) | Battery, vehicle and battery-equipped equipment | |
US20150010794A1 (en) | Battery pack | |
CN114824260A (en) | Safety lithium ion battery | |
JP2009009812A (en) | Evaluation method of separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
KR20200118958A (en) | Battery Cell Comprising Short Circuit Induction Member and Method of Evaluation for Battery Safety Using Thereof | |
JP2020173941A (en) | Non-aqueous electrolyte secondary battery | |
JP5232751B2 (en) | Lithium ion secondary battery | |
KR20200053782A (en) | Battery internal short circuit inductive device, battery having the same, and battery internal short circuit safety evaluating method | |
JP3700683B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2019185893A (en) | Evaluation method of power storage device | |
JP7430665B2 (en) | Secondary battery current collector and its manufacturing method, and secondary battery | |
JP4439870B2 (en) | Nonaqueous electrolyte secondary battery | |
CN113767517B (en) | Electrochemical device including short-circuit inducing member and safety evaluation method using the same | |
KR20140072794A (en) | Non-aqueous electrolyte rechargeable battery pack | |
JP2003243037A (en) | Lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170419 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20170419 |