JP2018136099A - Heat pump type water heater - Google Patents

Heat pump type water heater Download PDF

Info

Publication number
JP2018136099A
JP2018136099A JP2017031702A JP2017031702A JP2018136099A JP 2018136099 A JP2018136099 A JP 2018136099A JP 2017031702 A JP2017031702 A JP 2017031702A JP 2017031702 A JP2017031702 A JP 2017031702A JP 2018136099 A JP2018136099 A JP 2018136099A
Authority
JP
Japan
Prior art keywords
compressor
hot water
outside air
water supply
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017031702A
Other languages
Japanese (ja)
Other versions
JP6919780B2 (en
Inventor
久也 武内
Hisaya Takeuchi
久也 武内
将典 野口
Masanori Noguchi
将典 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2017031702A priority Critical patent/JP6919780B2/en
Publication of JP2018136099A publication Critical patent/JP2018136099A/en
Application granted granted Critical
Publication of JP6919780B2 publication Critical patent/JP6919780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To avoid operation in a state where the temperature difference ΔT between a discharge refrigerant temperature and a compressor temperature is small, to secure reliability of a compressor, in the initial stage of start of boiling-up operation with activation control of stepwisely increasing a rotational frequency of the compressor from a low rotational frequency.SOLUTION: A heat pump type water heater is configured to, when activation control of stepwisely increasing a rotational frequency of a compressor from a predetermined rotational frequency according to a detection value of an ambient temperature sensor, is performed in hot water supply operation start, perform, before the activation control, pre-activation control of driving the compressor at a rotational frequency higher than the predetermined rotational frequency, according to an ambient temperature detected by the ambient temperature sensor.SELECTED DRAWING: Figure 2

Description

本発明は、ヒートポンプ式給湯装置に関し、さらに詳しく言えば、給湯運転開始時において圧縮機の起動を制御する技術に関するものである。   The present invention relates to a heat pump hot water supply apparatus, and more particularly to a technique for controlling the start of a compressor at the start of a hot water supply operation.

ヒートポンプ式給湯装置は、基本的な構成として、圧縮機、利用側熱交換部、膨張弁および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、貯湯タンクとを備え、利用側熱交換部は、例えば貯湯タンクの外周に冷媒配管を巻き付けた構成とし、利用側熱交換器が凝縮器として作用するように冷媒回路を切り換えて、貯湯タンク内の水と冷媒との熱交換により貯湯タンク内の水を加熱するようにしている。   The heat pump type hot water supply device includes, as a basic configuration, a refrigerant circuit in which a compressor, a use side heat exchange unit, an expansion valve, and a heat source side heat exchanger are sequentially connected via a refrigerant pipe, and a hot water storage tank. The usage-side heat exchange unit has, for example, a configuration in which a refrigerant pipe is wound around the outer periphery of the hot water storage tank, switches the refrigerant circuit so that the usage-side heat exchanger acts as a condenser, and heats the water and the refrigerant in the hot water storage tank. The water in the hot water storage tank is heated by replacement.

このようなヒートポンプ式給湯装置では、貯湯タンク内の水温が最終的に到達させたい温水温度(目標水温)となるような沸き上げ運転が行われる。沸き上げ運転では、圧縮機から吐出された高温高圧の冷媒が利用側熱交換器に流入し貯湯タンク内の水と熱交換して凝縮する。凝縮した冷媒は膨張弁で減圧され熱源側熱交換器で蒸発し低圧のガス冷媒となって圧縮機に戻る。   In such a heat pump type hot water supply apparatus, a boiling operation is performed such that the water temperature in the hot water storage tank becomes a hot water temperature (target water temperature) that is finally desired to reach. In the boiling operation, the high-temperature and high-pressure refrigerant discharged from the compressor flows into the use-side heat exchanger, exchanges heat with the water in the hot water storage tank, and condenses. The condensed refrigerant is depressurized by the expansion valve and evaporated by the heat source side heat exchanger to return to the compressor as a low-pressure gas refrigerant.

ところで、上記のような沸き上げ運転を行う際、その運転開始時から貯湯タンク内の水温が目標水温に到達する直前まで圧縮機を許容される最大回転数で駆動すると、沸き上げ運転時に凝縮器として機能する利用側熱交換部における凝縮圧力が高圧となる状態が続くことになり、圧縮機の運転負荷が増大する。   By the way, when performing the boiling operation as described above, if the compressor is driven at the maximum allowable rotation speed from the start of the operation until just before the water temperature in the hot water storage tank reaches the target water temperature, a condenser is used during the boiling operation. As a result, the state in which the condensing pressure in the use-side heat exchange unit that functions as a high pressure continues to be high, and the operating load of the compressor increases.

圧縮機の運転負荷が増大すれば、これに伴って圧縮機での消費電力量が増大することから、冷媒回路の運転効率が低下し、沸き上げ運転の効率低下を招くおそれがある。   If the operating load of the compressor increases, the amount of power consumed by the compressor increases accordingly, and the operating efficiency of the refrigerant circuit may decrease, leading to a decrease in efficiency of the boiling operation.

そこで、特許文献1に記載された発明では、沸き上げ運転の立ち上げ時には、圧縮機の回転数を低い回転数(例えば、20rps)から段階的に上昇させる起動制御を行うようにしている。これにより、利用側熱交換器の凝縮圧力が高い状態で維持されないようにして、圧縮機の消費電力が増大するのを防止している。   Therefore, in the invention described in Patent Document 1, at the time of starting up the boiling operation, start-up control is performed in which the rotational speed of the compressor is increased stepwise from a low rotational speed (for example, 20 rps). As a result, the condensing pressure of the use side heat exchanger is not maintained in a high state, thereby preventing the power consumption of the compressor from increasing.

特開2013−155991号公報JP2013-155991A

しかしながら、外気温度が低い環境で圧縮機を起動するとき、圧縮機から吐出される高圧側の冷媒温度と圧縮機自体の温度(例えば密閉容器の温度)の温度差(以降、温度差ΔTと記載する)が小さい場合、冷媒が冷凍機油に多く溶け込んでいる状態での駆動、いわゆる寝込み駆動となって冷凍機油が冷媒回路内に大量に吐出される等、圧縮機の信頼性が損なわれるおそれがある。   However, when the compressor is started in an environment where the outside air temperature is low, the temperature difference between the high-pressure side refrigerant temperature discharged from the compressor and the temperature of the compressor itself (for example, the temperature of the sealed container) (hereinafter referred to as temperature difference ΔT). If it is small, there is a risk that the reliability of the compressor may be impaired, such as driving in a state where the refrigerant is dissolved in the refrigeration oil, that is, so-called stagnation driving, and refrigeration oil being discharged in a large amount into the refrigerant circuit. is there.

上記特許文献1に記載された発明のように、起動制御として、沸き上げ運転の立ち上げ時に圧縮機の回転数を段階的に上昇させる方法によると、圧縮機の回転数が高くなるまで時間がかかり、これに伴って圧縮機から吐出される高圧側の冷媒温度の上昇に時間がかかるので、上記温度差ΔTが大きくなるまでには時間がかかり、上記寝込み駆動による問題が発生する可能性が高くなる。   As in the invention described in Patent Document 1 described above, according to the method of gradually increasing the rotational speed of the compressor at the start-up of the boiling operation as the start-up control, it takes time until the rotational speed of the compressor increases. As a result, it takes time to increase the temperature of the refrigerant on the high pressure side discharged from the compressor. Therefore, it takes time until the temperature difference ΔT becomes large, and there is a possibility that the problem due to the stagnation drive may occur. Get higher.

そこで、本発明の課題は、圧縮機の回転数を低い回転数から段階的に上昇させる起動制御による沸き上げ運転開始時に、上記温度差ΔTが小さい状態での運転を回避して圧縮機の信頼性を確保することにある。   Accordingly, an object of the present invention is to avoid the operation in the state where the temperature difference ΔT is small at the start of the boiling operation by the start control in which the rotation speed of the compressor is increased stepwise from a low rotation speed, and the reliability of the compressor is reduced. It is to ensure sex.

上記課題を解決するため、本発明は、圧縮機、流路切替手段、給湯端末、上記給湯端末内の水と冷媒との熱交換を行う利用側熱交換部および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、外気温度を検出する外気温センサと、制御手段とを含み、上記制御手段は、給湯運転開始時に上記圧縮機の回転数を上記外気温センサの検出値に応じて予め定められた所定回転数から段階的に上昇させる起動制御を行うヒートポンプ式給湯装置において、
上記制御手段は、上記起動制御を行う前に、上記外気温センサにて検出される外気温度に応じて、上記圧縮機を上記所定回転数よりも高い回転数で所定時間駆動する起動前制御を行うことを特徴ことを特徴としている。
In order to solve the above problems, the present invention provides a refrigerant pipe including a compressor, a flow path switching unit, a hot water supply terminal, a use side heat exchange unit that performs heat exchange between water and refrigerant in the hot water supply terminal, and a heat source side heat exchanger. A refrigerant circuit that is sequentially connected via the external air temperature sensor, an outside air temperature sensor that detects the outside air temperature, and a control means, wherein the control means detects the rotational speed of the compressor at the start of the hot water supply operation. In a heat pump type hot water supply apparatus that performs start-up control to increase stepwise from a predetermined number of revolutions determined in advance according to a value,
The control means performs pre-startup control for driving the compressor for a predetermined time at a rotation speed higher than the predetermined rotation speed in accordance with the outside air temperature detected by the outside air temperature sensor before performing the start-up control. It is characterized by what it does.

本発明の好ましい態様によると、上記制御手段は、上記起動前制御の圧縮機回転数を固定の回転数にする。   According to a preferred aspect of the present invention, the control means sets the compressor rotational speed of the pre-startup control to a fixed rotational speed.

また、上記制御手段は、上記外気温度が所定温度以下のときに上記起動前制御を行う。また、その起動前制御時において、上記外気温度が低くなるほど圧縮機回転数を高くし、かつ、その駆動時間を上記外気温度が低くなるほど長くする。   The control means performs the pre-startup control when the outside air temperature is equal to or lower than a predetermined temperature. Further, during the pre-startup control, the compressor rotational speed is increased as the outside air temperature is lowered, and the driving time is lengthened as the outside air temperature is lowered.

本発明によれば、省エネルギー運転として、給湯運転開始時に貯湯タンク内の水温が目標水温に到達するように圧縮機を外気温度に応じた所定の回転数から段階的に上昇させる起動制御を行う前に起動前制御を行うことにより、外気温が低いときに前述したいわゆる寝込み駆動による運転が回避され、圧縮機の信頼性を確保することができる。   According to the present invention, as an energy-saving operation, before performing start-up control in which the compressor is stepped up from a predetermined number of revolutions according to the outside air temperature so that the water temperature in the hot water storage tank reaches the target water temperature at the start of the hot water supply operation. By performing the pre-startup control, the operation by the so-called sleep drive described above when the outside air temperature is low can be avoided, and the reliability of the compressor can be ensured.

本発明によるヒートポンプ式給湯装置の構成を示す模式図。The schematic diagram which shows the structure of the heat pump type hot-water supply apparatus by this invention. 本発明の動作を示すタイミングチャート。3 is a timing chart showing the operation of the present invention. 制御手段が備える起動前制御時の参照用テーブルを示す模式図。The schematic diagram which shows the table for a reference at the time of the control before starting with which a control means is provided.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、給湯端末である貯湯タンクを有し、冷媒との熱交換により貯湯タンク内部に貯留された水を加熱するヒートポンプ式給湯装置を例に挙げて説明する。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, a heat pump type hot water supply apparatus that has a hot water storage tank that is a hot water supply terminal and heats water stored in the hot water storage tank by heat exchange with the refrigerant will be described as an example. In addition, this invention is not limited to the following embodiment, A various deformation | transformation is possible in the range which does not deviate from the main point of this invention.

図1は、本発明によるヒートポンプ式給湯装置の構成を示している。このヒートポンプ式給湯装置100は、能力可変型の圧縮機1、流路切替手段である四方弁2、貯湯タンク70の外周に後述する冷媒配管11の一部を巻き付けて構成される利用側の熱交換部3、膨張弁4、熱源側熱交換器5,アキュムレータ6を順に冷媒配管11で接続した冷媒回路10を有しており、四方弁2を切り換えることによって冷媒の循環方向を切り換えることができるようになっている。   FIG. 1 shows a configuration of a heat pump hot water supply apparatus according to the present invention. The heat pump type hot water supply apparatus 100 includes a variable capacity compressor 1, a four-way valve 2 as a flow path switching unit, and a heat on the use side configured by winding a part of a refrigerant pipe 11 (described later) around the outer periphery of a hot water storage tank 70. It has a refrigerant circuit 10 in which the exchange unit 3, the expansion valve 4, the heat source side heat exchanger 5, and the accumulator 6 are connected in order by the refrigerant pipe 11, and the refrigerant circulation direction can be switched by switching the four-way valve 2. It is like that.

この冷媒回路10において、圧縮機1の冷媒吐出口付近の冷媒配管11には、圧縮機1から吐出された冷媒の温度を検出するための吐出温度センサ51が備えられている。また、熱交換部3と膨張弁4との間の冷媒配管11には、熱交換部3が凝縮器として機能しているときに熱交換部3から流出する冷媒の温度を、あるいは、熱交換部3が蒸発器として機能しているときに熱交換部3に流入する冷媒の温度を、各々検出する冷媒温度センサ53が備えられている。   In this refrigerant circuit 10, a refrigerant pipe 11 near the refrigerant outlet of the compressor 1 is provided with a discharge temperature sensor 51 for detecting the temperature of the refrigerant discharged from the compressor 1. Further, the refrigerant pipe 11 between the heat exchange unit 3 and the expansion valve 4 has a temperature of the refrigerant flowing out from the heat exchange unit 3 when the heat exchange unit 3 functions as a condenser, or heat exchange. A refrigerant temperature sensor 53 for detecting the temperature of the refrigerant flowing into the heat exchange unit 3 when the unit 3 functions as an evaporator is provided.

また、膨張弁4と熱源側熱交換器5との間の冷媒配管11には、熱源側熱交換器5が蒸発器として機能しているときに熱源側熱交換器5に流入する冷媒の温度を、あるいは、熱源側熱交換器5が凝縮器として機能しているときに熱源側熱交換器5から流出する冷媒の温度を、各々検出する熱交温度検出手段である熱交温度センサ54が備えられている。   The refrigerant pipe 11 between the expansion valve 4 and the heat source side heat exchanger 5 has a temperature of the refrigerant flowing into the heat source side heat exchanger 5 when the heat source side heat exchanger 5 functions as an evaporator. Or a heat exchange temperature sensor 54, which is a heat exchange temperature detecting means for detecting the temperature of the refrigerant flowing out of the heat source side heat exchanger 5 when the heat source side heat exchanger 5 functions as a condenser. Is provided.

さらには、圧縮機1の吐出側(四方弁2と熱交換部3との間)の冷媒配管11には、沸き上げ運転時、つまり、熱交換部3が凝縮器として機能するときの、熱交換部3における冷媒の凝縮圧力を検出する圧力センサ50が備えられている。また、熱源側熱交換器5の近傍には、外気温度検出手段である外気温度センサ52が設けられている。   Further, the refrigerant pipe 11 on the discharge side of the compressor 1 (between the four-way valve 2 and the heat exchanging unit 3) is heated during the boiling operation, that is, when the heat exchanging unit 3 functions as a condenser. A pressure sensor 50 that detects the condensation pressure of the refrigerant in the exchange unit 3 is provided. In the vicinity of the heat source side heat exchanger 5, an outside air temperature sensor 52, which is an outside air temperature detecting means, is provided.

熱源側熱交換器5の近傍には、ヒートポンプ式給湯装置100の図示しない筐体内部に外気を取り込んで熱源側熱交換器5に外気を流通させるファン7が配置されている。ファン7は、回転数を可変できる図示しないモータの出力軸(回転軸)に取り付けられている。また、膨張弁4は、ステッピングモータを用いて弁の開度をパルス制御可能としたものである。   In the vicinity of the heat source side heat exchanger 5, a fan 7 that takes outside air into a housing (not shown) of the heat pump hot water supply apparatus 100 and distributes the outside air to the heat source side heat exchanger 5 is disposed. The fan 7 is attached to an output shaft (rotary shaft) of a motor (not shown) that can vary the rotational speed. Further, the expansion valve 4 uses a stepping motor to enable pulse control of the opening degree of the valve.

熱交換部3は、冷媒配管11の一部に含まれている。本実施形態において、熱交換部3は貯湯タンク70の外周面の下部側に螺旋状に冷媒配管11の一部を巻き付けて構成され、貯湯タンク70内の水との間で熱交換を行う。   The heat exchange unit 3 is included in a part of the refrigerant pipe 11. In the present embodiment, the heat exchanging unit 3 is configured by spirally winding a part of the refrigerant pipe 11 around the lower side of the outer peripheral surface of the hot water storage tank 70, and performs heat exchange with water in the hot water storage tank 70.

なお、熱交換部3は、貯湯タンク70内に配置されてもよい。また、図示しないが、熱交換部3は、冷媒側流路と水側流路を有する二重管熱交換器のように、貯湯タンク70内の水を熱交換部3に流入させて冷媒と熱交換させるものであってもよい。   The heat exchange unit 3 may be disposed in the hot water storage tank 70. Further, although not shown, the heat exchanging unit 3 causes the water in the hot water storage tank 70 to flow into the heat exchanging unit 3 so that the refrigerant and the refrigerant flow like a double pipe heat exchanger having a refrigerant side channel and a water side channel. Heat exchange may be performed.

貯湯タンク70の上部には、貯湯タンク70の内部に貯留されている温水を浴槽や洗面台蛇口等に供給するための給湯口73が備えられている。また、貯湯タンク70の下部には、貯湯タンク70の内部に水を供給するための入水口72が備えられており、入水口72には図示しない水道管が接続されている。   A hot water supply port 73 for supplying hot water stored in the hot water storage tank 70 to a bathtub, a washbasin faucet or the like is provided at the upper part of the hot water storage tank 70. In addition, a water inlet 72 for supplying water to the hot water storage tank 70 is provided below the hot water storage tank 70, and a water pipe (not shown) is connected to the water inlet 72.

また、貯湯タンク70の内部の上下方向のほぼ中央部には、貯湯タンク70内に滞留する温水の温度を検出する水温センサ58が備えられている。   Further, a water temperature sensor 58 for detecting the temperature of the hot water staying in the hot water storage tank 70 is provided at a substantially central portion in the vertical direction inside the hot water storage tank 70.

以上説明した構成のほかに、ヒートポンプ式給湯装置100は、制御手段60を有している。制御手段60は、各温度センサ51,52,53,54,58で検出した温度や圧力センサ50で検出した沸き上げ運転時の冷媒圧力を取り込み、あるいは、図示しないリモコン等による使用者からの運転要求を取り込み、これらに応じて圧縮機1やファン7の駆動制御、四方弁2の切り換え制御、膨張弁4の開度制御等といった、ヒートポンプ式給湯装置100の運転に関わる様々な制御を行う。   In addition to the configuration described above, the heat pump hot water supply apparatus 100 has a control means 60. The control means 60 takes in the temperature detected by each temperature sensor 51, 52, 53, 54, 58 and the refrigerant pressure during the boiling operation detected by the pressure sensor 50, or the operation from the user by a remote controller (not shown). In response to these requests, various controls relating to the operation of the heat pump hot water supply apparatus 100 such as drive control of the compressor 1 and the fan 7, switching control of the four-way valve 2, opening control of the expansion valve 4 and the like are performed.

なお、図示は省略するが、制御手段60は、時間を計測するタイマー部や各種センサで検出した値やヒートポンプ式給湯装置100の制御プログラム等を記憶する記憶部を有している。   In addition, although illustration is abbreviate | omitted, the control means 60 has a memory | storage part which memorize | stores the timer part which measures time, the value detected with various sensors, the control program of the heat pump type hot-water supply apparatus 100, etc.

次に、本実施形態のヒートポンプ式給湯装置100が備える冷媒回路10における冷媒の流れや各部の動作について説明する。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 provided in the heat pump type hot water supply apparatus 100 of the present embodiment will be described.

本実施形態のヒートポンプ式給湯装置100は、冷媒回路10を暖房サイクルとして貯湯タンク70に貯留されている水を沸き上げる沸き上げ運転と、沸き上げ運転を行っているときに冷媒回路10を冷房サイクルとして熱源側熱交換器5の除霜を行う逆サイクル除霜運転を行うことができる。   The heat pump type hot water supply apparatus 100 according to the present embodiment uses the refrigerant circuit 10 as a heating cycle to boil the water stored in the hot water storage tank 70, and the refrigerant circuit 10 to perform a cooling cycle when performing the boiling operation. The reverse cycle defrost operation which defrosts the heat source side heat exchanger 5 can be performed.

沸き上げ運転時には、冷媒が図1の実線矢印80方向に流れるのに対し、逆サイクル除霜運転には、四方弁2が切り換えられて冷媒が図1の破線矢印81方向に流れるが、本発明において、逆サイクル除霜運転には特に特徴を有していないため、その詳細な説明は省略し、以下に沸き上げ運転時のヒートポンプ式給湯装置100の動作について説明する。   In the boiling operation, the refrigerant flows in the direction of the solid line arrow 80 in FIG. 1, whereas in the reverse cycle defrosting operation, the four-way valve 2 is switched and the refrigerant flows in the direction of the broken line arrow 81 in FIG. In the reverse cycle defrosting operation, since there is no particular feature, a detailed description thereof will be omitted, and the operation of the heat pump hot water supply apparatus 100 during the boiling operation will be described below.

〈沸き上げ運転〉
使用者が図示しないリモコン等を操作して沸き上げ運転の開始を指示すると、制御手段60は、冷媒回路10が暖房サイクルとなるように四方弁2を切り換える。具体的には、制御手段60は、圧縮機1の吐出側と熱交換部3とが接続されるよう、また、圧縮機1の吸入側と熱源側熱交換器5とが接続されるよう、四方弁2を切り換える。これにより、熱交換部3が凝縮器として機能し、また、熱源側熱交換器5が蒸発器として機能する。
<Boiling operation>
When the user operates a remote controller (not shown) to instruct the start of the boiling operation, the control means 60 switches the four-way valve 2 so that the refrigerant circuit 10 enters the heating cycle. Specifically, the control means 60 is connected so that the discharge side of the compressor 1 and the heat exchange unit 3 are connected, and so that the suction side of the compressor 1 and the heat source side heat exchanger 5 are connected. Switch the four-way valve 2. Thereby, the heat exchange part 3 functions as a condenser, and the heat source side heat exchanger 5 functions as an evaporator.

次に、制御手段60は、圧縮機1およびファン7を起動してヒートポンプ式給湯装置100の沸き上げ運転を開始する。制御手段60は、水温センサ58で検出される貯湯タンク70内の現在の水温と沸き上げ目標温度の温度差に応じて、記憶部に記憶されている温度差と圧縮機1の回転数とを関係付けた図示しないテーブルを参照して圧縮機1の回転数を決定し、この回転数で圧縮機を駆動する。   Next, the control means 60 starts the compressor 1 and the fan 7, and starts the boiling operation of the heat pump type hot water supply apparatus 100. The control means 60 determines the temperature difference stored in the storage unit and the rotation speed of the compressor 1 according to the temperature difference between the current water temperature in the hot water storage tank 70 detected by the water temperature sensor 58 and the boiling target temperature. The rotation speed of the compressor 1 is determined with reference to the related table (not shown), and the compressor is driven at this rotation speed.

圧縮機1が駆動すると、図1の実線矢印80に示すように、圧縮機1から吐出された高温高圧の冷媒は四方弁2を通過し、熱交換部3で水と熱交換して凝縮し、さらに膨張弁4で減圧されて熱源側熱交換器5で外気と熱交換して蒸発し、アキュムレータ6で気液分離された後、圧縮機1に吸入されて再び圧縮機1で圧縮される過程を繰り返す。   When the compressor 1 is driven, the high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2 and is condensed by exchanging heat with water in the heat exchange unit 3 as indicated by a solid arrow 80 in FIG. Further, the pressure is reduced by the expansion valve 4, the heat is exchanged with the outside air by the heat source side heat exchanger 5, the gas is evaporated by the accumulator 6, and then sucked into the compressor 1 and compressed again by the compressor 1. Repeat the process.

このようにして、貯湯タンク70内の水が熱交換部3を流れる高温高圧の冷媒により加熱され、貯湯タンク70内の水温が沸き上げ目標温度に到達すると、制御手段60は圧縮機1およびファン7の運転を停止する。   In this way, when the water in the hot water storage tank 70 is heated by the high-temperature and high-pressure refrigerant flowing through the heat exchanging unit 3 and the water temperature in the hot water storage tank 70 reaches the target temperature, the control means 60 is connected to the compressor 1 and the fan. The operation of 7 is stopped.

なお、制御手段60は、水温センサ58で検出した貯湯タンク70内の水温を常時監視しており、その水温が沸き上げ目標温度から予め設定された所定温度(例えば、5℃)低下すると、沸き上げ運転を再開する。   The control means 60 constantly monitors the water temperature in the hot water storage tank 70 detected by the water temperature sensor 58, and when the water temperature drops from a boiling target temperature to a predetermined temperature (for example, 5 ° C.), boiling is performed. Restart the driving operation.

ところで、先にも説明したように、沸き上げ運転開始時から圧縮機1を最大回転数として駆動し続けると、熱交換部3が高温となりその状態が継続されることになる。その一方で、沸き上げ運転の開始直後、すなわち、貯湯タンク内の水温が低くて目標水温との温度差が大きいときは、貯湯タンク70内部の水の熱容量が大きいことに起因して、貯湯タンク70内の水温は熱交換部3の温度に見合うだけ上昇しない。   By the way, as described above, if the compressor 1 is continuously driven at the maximum rotational speed from the start of the boiling operation, the heat exchange unit 3 becomes high temperature and the state is continued. On the other hand, immediately after the start of the boiling operation, that is, when the water temperature in the hot water storage tank is low and the temperature difference from the target water temperature is large, the hot water storage tank 70 is caused by the large heat capacity of the water in the hot water storage tank 70. The water temperature in 70 does not rise as much as the temperature of the heat exchange unit 3.

これにより、熱交換部3における凝縮圧力が高圧となる状態が続くことになり、その結果、圧縮機1の運転負荷が増大して圧縮機1での消費電力が増大するため、冷媒回路10の運転効率が低下して沸き上げ運転の効率低下を招くおそれがある。   As a result, the state in which the condensing pressure in the heat exchanging unit 3 becomes high continues, and as a result, the operating load of the compressor 1 increases and the power consumption in the compressor 1 increases. There is a possibility that the operation efficiency is lowered and the efficiency of the boiling operation is lowered.

そこで、このヒートポンプ式給湯装置100では、沸き上げ運転の開始時は、圧縮機1の起動制御として、図2のタイミングチャートに示すように、まず圧縮機1を例えば20rps程度の低い回転数(本実施形態の所定回転数に相当する出発回転数)で起動し、その後、水温センサ58で検出される貯湯タンク70内の水温の上昇に応じて圧縮機1の回転数を段階的に上昇させるようにしている(この圧縮機1の起動制御の詳細については、例えば特開2013−155991号公報参照)。   Therefore, in the heat pump type hot water supply apparatus 100, at the start of the boiling operation, as shown in the timing chart of FIG. Starting at a predetermined rotational speed corresponding to the predetermined rotational speed in the embodiment), and then the rotational speed of the compressor 1 is increased stepwise in accordance with the rise in the water temperature in the hot water storage tank 70 detected by the water temperature sensor 58. (For details on the startup control of the compressor 1, refer to, for example, Japanese Patent Application Laid-Open No. 2013-155991).

このような圧縮機1の起動制御によれば、熱交換部3の運転が高温状態のまま継続する、すなわち凝縮圧力が高い状態での運転が継続されるのが防止されることから、圧縮機1の消費電力の増大を防ぐことができる。   According to such start-up control of the compressor 1, it is possible to prevent the operation of the heat exchanging unit 3 from being continued in a high temperature state, that is, from continuing the operation in a state where the condensation pressure is high. 1 can be prevented from increasing.

しかしながら、外気温度が低い環境で圧縮機1を起動するとき、圧縮機1から吐出される高圧側の冷媒温度と圧縮機1自体の温度(例えば、密閉容器の温度)の温度差であるΔTが小さい場合、圧縮機1の運転は、冷媒が冷凍機油に多く溶け込んでいる状態での駆動、いわゆる寝込み駆動となって冷凍機油が冷媒回路内に大量に吐出される等、圧縮機の信頼性が損なわれるおそれがある。   However, when the compressor 1 is started in an environment where the outside air temperature is low, ΔT which is a temperature difference between the high-pressure side refrigerant temperature discharged from the compressor 1 and the temperature of the compressor 1 itself (for example, the temperature of the sealed container) is When it is small, the compressor 1 is operated in a state where a large amount of refrigerant is dissolved in the refrigeration oil, that is, a so-called stagnation drive, and a large amount of refrigeration oil is discharged into the refrigerant circuit. There is a risk of damage.

特に、上記の起動制御として、沸き上げ運転の開始時に圧縮機の回転数を低い回転数から段階的に上昇させる方法によると、圧縮機の回転数が高くなるまで時間がかかり、圧縮機1から吐出される高圧側の冷媒温度が高くなって上記温度差ΔTが大きくなるまでには時間がかかるため、上記寝込み駆動による問題(冷凍機油の冷媒回路への流出)が発生する可能性が高くなる。   In particular, according to the above-described start-up control, according to the method of gradually increasing the rotational speed of the compressor from the low rotational speed at the start of the boiling operation, it takes time until the rotational speed of the compressor increases. Since it takes time for the refrigerant temperature on the high-pressure side to be discharged to increase and the temperature difference ΔT to increase, there is a high possibility that problems due to the stagnation drive (flow of refrigeration oil to the refrigerant circuit) will occur. .

そこで、本発明では、外気温度センサ52にて検出される外気温度に応じて、上記起動制御を行う前の起動前制御として、圧縮機1を起動制御時の出発回転数よりも高い回転数で所定時間駆動することにより、上記温度差ΔTが小さい状態での運転を回避して圧縮機1の信頼性を確保するようにしている。   Therefore, in the present invention, as a pre-startup control before performing the start-up control according to the outside air temperature detected by the outside-air temperature sensor 52, the compressor 1 is rotated at a speed higher than the starting speed at the start-up control. By driving for a predetermined time, the operation in a state where the temperature difference ΔT is small is avoided and the reliability of the compressor 1 is ensured.

図2のタイミングチャートを参照して、起動前制御とは、沸き上げ運転時に圧縮機1の回転数を低い回転数(出発回転数)から段階的に上昇させる起動制御の前に行う制御である。   With reference to the timing chart of FIG. 2, the pre-startup control is control performed before start-up control in which the rotational speed of the compressor 1 is increased stepwise from a low rotational speed (starting rotational speed) during the boiling operation. .

その具体例として、外気温度Toに応じて設定される起動前制御時における圧縮機1の回転数およびそのホールド時間、起動制御時の出発回転数を図3に示す。なお、図3に記載の圧縮機回転数、ホールド時間および出発回転数は、予め試験等を行って求められているものであり、寝込み駆動とならないことが確認されているものである。   As a specific example, FIG. 3 shows the number of rotations of the compressor 1 at the time of start-up control set according to the outside air temperature To, its hold time, and the number of start rotations at the time of start-up control. It should be noted that the compressor rotation speed, hold time, and starting rotation speed shown in FIG. 3 are obtained by conducting a test or the like in advance, and it has been confirmed that no sleep driving is performed.

これによると、制御手段60は、ユーザーからの指示もしくは貯湯タンク70内の湯温低下により、沸き上げ運転を開始するにあたって、
外気温度Toが10℃以上の場合(10℃≦To)には、起動前制御は行わず出発回転数を25rpsとして起動制御を実行する。
According to this, when the control means 60 starts the boiling operation in response to an instruction from the user or a decrease in the hot water temperature in the hot water storage tank 70,
When the outside air temperature To is 10 ° C. or higher (10 ° C. ≦ To), the start-up control is executed with the starting rotational speed set at 25 rps without performing the pre-start-up control.

外気温度Toが0℃以上10℃未満の場合(0℃≦To<10℃)には、起動前制御として圧縮機1を回転数30rpsで10分間駆動し、その後、出発回転数を25rpsとして起動制御を実行する。   When the outside air temperature To is 0 ° C. or more and less than 10 ° C. (0 ° C. ≦ To <10 ° C.), the compressor 1 is driven at a rotation speed of 30 rps for 10 minutes as a pre-startup control, and then started at a starting rotation speed of 25 rps. Execute control.

外気温度Toが−10℃以上0℃未満の場合(−10℃≦To<0℃)には、起動前制御として圧縮機1を回転数50rpsで15分間駆動し、その後、出発回転数を30rpsとして起動制御を実行する。   When the outside air temperature To is −10 ° C. or higher and lower than 0 ° C. (−10 ° C. ≦ To <0 ° C.), the compressor 1 is driven at a rotational speed of 50 rps for 15 minutes as a pre-startup control, and then the starting rotational speed is set to 30 rps. Start control is executed as follows.

外気温度Toが−20℃以上−10℃未満の場合(−20℃≦To<−10℃)には、起動前制御として圧縮機1を回転数70rpsで15分間駆動し、その後、出発回転数を40rpsとして起動制御を実行する。   When the outside air temperature To is −20 ° C. or higher and lower than −10 ° C. (−20 ° C. ≦ To <−10 ° C.), the compressor 1 is driven at a rotational speed of 70 rpm for 15 minutes as a pre-startup control, and then the starting rotational speed Is controlled at 40 rps.

外気温度Toが−20℃未満の場合(To<−20℃)には、起動前制御として圧縮機1を回転数90rpsで20分間駆動し、その後、出発回転数を50rpsとして起動制御を実行する。   When the outside air temperature To is less than −20 ° C. (To <−20 ° C.), the compressor 1 is driven at a rotation speed of 90 rps for 20 minutes as a pre-startup control, and then the start-up control is executed at a starting rotation speed of 50 rps. .

このように、外気温度が所定温度(上記の例では10℃)よりも低い場合に起動前制御を行うことにより、寝込み駆動による運転が回避され、圧縮機の信頼性を確保することができる。   Thus, by performing the pre-startup control when the outside air temperature is lower than the predetermined temperature (10 ° C. in the above example), the operation due to the sleep drive is avoided, and the reliability of the compressor can be ensured.

このように、本発明では、外気温度が低く上記温度差ΔTが取れない条件下では、圧縮機を起動制御する前に、起動前制御として、起動制御時の出発回転数よりも高い回転数で所定時間駆動し、上記温度差ΔTが確保されたら(5℃<ΔT)、省エネルギー性に優れた起動制御を行う。これにより、いわゆる寝込み駆動による運転が回避され、圧縮機の信頼性を確保することができる。   As described above, in the present invention, under conditions where the outside air temperature is low and the above temperature difference ΔT cannot be obtained, before starting the compressor, before starting control, the control is performed at a higher rotational speed than the starting rotational speed at the start control. When the temperature difference ΔT is ensured (5 ° C. <ΔT) after driving for a predetermined time, start-up control with excellent energy saving is performed. Thereby, the driving | operation by what is called a sleep drive is avoided and the reliability of a compressor can be ensured.

100 ヒートポンプ式給湯装置
1 圧縮機
2 四方弁
3 熱交換部(利用側熱交換器)
4 膨張弁
5 熱源側熱交換器
6 キュムレータ
7 ファン
10 冷媒回路
11 冷媒配管
51 吐出温度センサ
52 外気温度センサ
53 冷媒温度センサ
58 水温センサ
60 制御手段
70 貯湯タンク
DESCRIPTION OF SYMBOLS 100 Heat pump type hot water supply apparatus 1 Compressor 2 Four-way valve 3 Heat exchange part (use side heat exchanger)
DESCRIPTION OF SYMBOLS 4 Expansion valve 5 Heat source side heat exchanger 6 Cumulator 7 Fan 10 Refrigerant circuit 11 Refrigerant piping 51 Discharge temperature sensor 52 Outside temperature sensor 53 Refrigerant temperature sensor 58 Water temperature sensor 60 Control means 70 Hot water storage tank

Claims (4)

圧縮機、流路切替手段、給湯端末、上記給湯端末内の水と冷媒との熱交換を行う利用側熱交換部および熱源側熱交換器を冷媒配管を介して順次接続してなる冷媒回路と、外気温度を検出する外気温センサと、制御手段とを含み、上記制御手段は、給湯運転開始時に上記圧縮機の回転数を上記外気温センサの検出値に応じて予め定められた所定回転数から段階的に上昇させる起動制御を行うヒートポンプ式給湯装置において、
上記制御手段は、上記起動制御を行う前に、上記外気温センサにて検出される外気温度に応じて、上記圧縮機を上記所定回転数よりも高い回転数で所定時間駆動する起動前制御を行うことを特徴とするヒートポンプ式給湯装置。
A refrigerant circuit formed by sequentially connecting a compressor, a flow path switching unit, a hot water supply terminal, a use side heat exchange unit that performs heat exchange between the water in the hot water supply terminal and the refrigerant, and a heat source side heat exchanger via a refrigerant pipe; And an outside air temperature sensor for detecting the outside air temperature, and a control means, wherein the control means determines the number of revolutions of the compressor at a predetermined number of revolutions according to a detection value of the outside air temperature sensor at the start of the hot water supply operation. In the heat pump type hot water supply device that performs start-up control to raise in stages from
The control means performs pre-startup control for driving the compressor for a predetermined time at a rotation speed higher than the predetermined rotation speed in accordance with the outside air temperature detected by the outside air temperature sensor before performing the start-up control. A heat pump type hot water supply device characterized in that it is performed.
上記制御手段は、上記起動前制御の圧縮機回転数を固定の回転数にすることを特徴とする請求項1に記載のヒートポンプ式給湯装置。   The heat pump type hot water supply apparatus according to claim 1, wherein the control means sets the compressor rotational speed of the pre-startup control to a fixed rotational speed. 上記制御手段は、上記外気温度が所定温度以下のときに上記起動前制御を行うことを特徴とする請求項1または2に記載のヒートポンプ式給湯装置。   The heat pump type hot water supply apparatus according to claim 1 or 2, wherein the control means performs the pre-startup control when the outside air temperature is equal to or lower than a predetermined temperature. 上記起動前制御における上記圧縮機の回転数は、上記外気温度が低くなるほど高くし、かつ、その駆動時間を上記外気温度が低くなるほど長くすることを特徴とする請求項1ないし3のいずれか1項に記載のヒートポンプ式給湯装置。   The rotation speed of the compressor in the pre-startup control is increased as the outside air temperature is lowered, and the driving time is increased as the outside air temperature is lowered. The heat pump type hot water supply apparatus according to item.
JP2017031702A 2017-02-23 2017-02-23 Heat pump type hot water supply device Active JP6919780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017031702A JP6919780B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017031702A JP6919780B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Publications (2)

Publication Number Publication Date
JP2018136099A true JP2018136099A (en) 2018-08-30
JP6919780B2 JP6919780B2 (en) 2021-08-18

Family

ID=63365870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017031702A Active JP6919780B2 (en) 2017-02-23 2017-02-23 Heat pump type hot water supply device

Country Status (1)

Country Link
JP (1) JP6919780B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110030698A (en) * 2019-04-04 2019-07-19 青岛海尔空调器有限总公司 Air conditioning control method and device, air-conditioning
CN110486916A (en) * 2019-09-03 2019-11-22 珠海格力电器股份有限公司 Refrigeration control method, device, equipment, system and storage medium
CN111473466A (en) * 2020-04-21 2020-07-31 宁波奥克斯电气股份有限公司 Frequency control method and air conditioner
JP2020122613A (en) * 2019-01-30 2020-08-13 株式会社富士通ゼネラル Air conditioner, control device for air conditioner, control method thereof and program
CN114234468A (en) * 2021-12-15 2022-03-25 广东芬尼克兹节能设备有限公司 Heat pump device control method, device, unit, computer equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222394A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump type water heater
JP2004353522A (en) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd Method and device for operation control of compressor, refrigerant compressor, and freezer
JP2013155991A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Heat pump cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222394A (en) * 2002-01-30 2003-08-08 Daikin Ind Ltd Heat pump type water heater
JP2004353522A (en) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd Method and device for operation control of compressor, refrigerant compressor, and freezer
JP2013155991A (en) * 2012-01-31 2013-08-15 Fujitsu General Ltd Heat pump cycle device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020122613A (en) * 2019-01-30 2020-08-13 株式会社富士通ゼネラル Air conditioner, control device for air conditioner, control method thereof and program
JP7172664B2 (en) 2019-01-30 2022-11-16 株式会社富士通ゼネラル AIR CONDITIONER, CONTROL DEVICE FOR AIR CONDITIONER, CONTROL METHOD AND PROGRAM THEREOF
CN110030698A (en) * 2019-04-04 2019-07-19 青岛海尔空调器有限总公司 Air conditioning control method and device, air-conditioning
CN110486916A (en) * 2019-09-03 2019-11-22 珠海格力电器股份有限公司 Refrigeration control method, device, equipment, system and storage medium
CN111473466A (en) * 2020-04-21 2020-07-31 宁波奥克斯电气股份有限公司 Frequency control method and air conditioner
CN111473466B (en) * 2020-04-21 2022-03-22 宁波奥克斯电气股份有限公司 Frequency control method and air conditioner
CN114234468A (en) * 2021-12-15 2022-03-25 广东芬尼克兹节能设备有限公司 Heat pump device control method, device, unit, computer equipment and storage medium
CN114234468B (en) * 2021-12-15 2023-08-18 广东芬尼克兹节能设备有限公司 Heat pump device control method, device, unit, computer equipment and storage medium

Also Published As

Publication number Publication date
JP6919780B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP6919780B2 (en) Heat pump type hot water supply device
JP5524571B2 (en) Heat pump equipment
JP2019049393A (en) Hot water heating system
JP2012032091A (en) Heat pump cycle system
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
JP5589607B2 (en) Heat pump cycle equipment
JP2011214736A (en) Heat pump type hot water supply device and method of controlling the same
JP3737414B2 (en) Water heater
JP5194492B2 (en) Heat pump water heater
JP2012007751A (en) Heat pump cycle device
JP6394329B2 (en) Heat pump type hot water heater
JP6428373B2 (en) Heat pump type hot water heater
JP6086074B2 (en) Heat pump type hot water heater
JP6428221B2 (en) Air conditioner
JP3703995B2 (en) Heat pump water heater
JP2015190631A (en) Heat pump type hot water heater and method for controlling heat pump type hot water heater
JP6094518B2 (en) Heat pump type hot water heater
JP2005188923A (en) Heat pump water heater
JP6102794B2 (en) Heat pump type hot water heater
JP3849577B2 (en) Heat pump bath water heater
JP6982272B2 (en) Heat pump type hot water supply device
JP6354574B2 (en) Heat pump type hot water heater
JP6098557B2 (en) Heat pump type hot water heater
JP6086084B2 (en) Heat pump type hot water heater
JP6136158B2 (en) Heat pump cycle equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R151 Written notification of patent or utility model registration

Ref document number: 6919780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151