JP2018135407A - Methyl methacrylate foamed particles - Google Patents

Methyl methacrylate foamed particles Download PDF

Info

Publication number
JP2018135407A
JP2018135407A JP2017028906A JP2017028906A JP2018135407A JP 2018135407 A JP2018135407 A JP 2018135407A JP 2017028906 A JP2017028906 A JP 2017028906A JP 2017028906 A JP2017028906 A JP 2017028906A JP 2018135407 A JP2018135407 A JP 2018135407A
Authority
JP
Japan
Prior art keywords
methyl methacrylate
weight
particles
foamed particles
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017028906A
Other languages
Japanese (ja)
Inventor
忍 落越
Shinobu Ochikoshi
忍 落越
小林 剛
Takeshi Kobayashi
剛 小林
大原 洋一
Yoichi Ohara
洋一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2017028906A priority Critical patent/JP2018135407A/en
Publication of JP2018135407A publication Critical patent/JP2018135407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide methyl methacrylate foamed particles which have good formability with a high expansion ratio, and have no gap (unevenness) of the foamed particles on the surface of a foamed molding, and to provide methyl methacrylate foamed particles suitable for use of a sublimation pattern used in metal casting.SOLUTION: There are provided methyl methacrylate foamed particles, where an average chord length (A) of cells between inside 100 μm and inside 200 μm from the outermost surface layer of the foamed particles is 50-90 μm, an average chord length (B) with a radius of 100 μm from the center point of the foamed particles is 40-80 μm, and an average chord length ratio (A)/(B) of the foamed particles is 0.7-1.3.SELECTED DRAWING: None

Description

本発明は、メタクリルメチル系樹脂発泡粒子に関する。さらには、メタクリル酸メチル系発泡粒子の発泡成形体からなる消失模型に関する。   The present invention relates to a methacrylic methyl resin expanded particle. Furthermore, it is related with the disappearance model which consists of a foaming molding of the methyl methacrylate type | system | group foaming particle.

金属鋳造を行う際、発泡成形体で作製した模型を鋳造砂に埋没し、そこに溶融金属を流し込んで置換することで鋳物を鋳造する消失模型鋳造法(フルモールド法)が知られている。フルモールド法では、メタクリル酸メチル重合体の発泡成形体が、鋳造時の残渣低減の観点から、使用されている。   When performing metal casting, a vanishing model casting method (full mold method) is known in which a model made of a foam molded body is buried in casting sand, and a cast metal is cast by pouring molten metal into the cast sand. In the full mold method, a foamed molded product of methyl methacrylate polymer is used from the viewpoint of reducing residues during casting.

しかしながら、メタクリル酸メチル重合体の発泡は一般に難しく、溶融時の伸長粘度と剪断粘度が発泡挙動に対して不適格であり、気泡の保持能力が不十分である。このため十分に発泡しないばかりでなく、発泡セルが不均一となり、得られた発泡体の表面に凹凸が多く平滑な表面となし難く、且つ若干発泡しても気泡の収縮が激しく、商品価値を有する発泡体を得ることが困難であった。   However, foaming of a methyl methacrylate polymer is generally difficult, the elongational viscosity and the shear viscosity at the time of melting are unsuitable for the foaming behavior, and the ability to retain bubbles is insufficient. For this reason, not only does it not sufficiently foam, the foam cells become uneven, the surface of the obtained foam has a lot of irregularities, and it is difficult to form a smooth surface. It was difficult to obtain a foam having the same.

発泡性能を改善させる手段として、特許文献1には、粒径制御のために熱可塑性重合体粒子を、分散剤を含む水中に懸濁せしめ、これに重合開始剤のもとにメタクリル酸エステル系単量体を熱可塑性重合体に対して特定の割合となるように滴下させ重合することにより、得られる重合体粒子の分子量分布の不均一を減少させる方法が開示されている。また、発泡剤の保持性を高める方法として、特許文献2には、特定の領域に分子量を調整する方法が開示されている。又、発泡成形時に高発泡倍率で、発泡セルが均一で、外観が良好である発泡体を得る方法として、特許文献3に特定の単量体比率から得られる重合体で特定の分子量に調整する方法が開示されている。   As means for improving foaming performance, Patent Document 1 discloses that a thermoplastic polymer particle is suspended in water containing a dispersant for particle size control, and a methacrylic acid ester-based polymer is added to the suspension. A method is disclosed in which the monomer is dropped and polymerized in a specific ratio with respect to the thermoplastic polymer to reduce nonuniformity in the molecular weight distribution of the resulting polymer particles. Moreover, as a method for improving the retention of the foaming agent, Patent Document 2 discloses a method of adjusting the molecular weight in a specific region. In addition, as a method of obtaining a foam having a high foaming ratio, uniform foamed cells, and good appearance at the time of foam molding, the polymer obtained from a specific monomer ratio in Patent Document 3 is adjusted to a specific molecular weight. A method is disclosed.

特許文献4では、発泡成形体の切断気泡の平均弦長が70μm以上200μm以下が開示されているが、発泡成形体を構成する個々の発泡粒子の内部のセル構造を観察すると、発泡粒子の表層部と内部で平均弦長に大きな差が生じ、成形体表面の発泡粒子の隙間に凹凸が存在し、外観を損ねている。   Patent Document 4 discloses that the average chord length of the cut foam of the foamed molded product is 70 μm or more and 200 μm or less. When the cell structure inside each foamed particle constituting the foamed molded product is observed, the surface layer of the foamed particle is disclosed. There is a large difference in the average chord length between the inside and the inside, and there are irregularities in the gaps between the foamed particles on the surface of the molded body, which impairs the appearance.

特許文献5では、スチレン系単量体が含有したアクリル系発泡粒子の平均気泡が30〜70μmと開示されているが、スチレンが含有することによって、消失模型の残渣が多くなり、消失模型鋳造法には好ましくない。   Patent Document 5 discloses that the average bubbles of acrylic foam particles containing a styrene monomer are 30 to 70 μm. However, the inclusion of styrene increases the residue of the disappearance model, and the disappearance model casting method. Is not preferred.

特開昭50−127990号公報JP 50-127990 A 特開2001−123001号公報JP 2001-123001 A 特開2001−233986号公報JP 2001-233986 A 特開2006−241256号公報JP 2006-241256 A 公開2016−160354号公報Publication No. 2006-160354

特許文献1、2、3に記載の樹脂は、高発泡倍率状態で得られる発泡成形体に大きな寸法変化が見られるという問題があった。その要因としては、発泡セルの均一化が不十分であるばかりでなくセルサイズが小さくなり過ぎる為に気泡を構成しているセル膜厚が薄くなり、発泡性能が必ずしも十分でないことが挙げられる。他方、発泡性スチレン系樹脂の発泡セルについては、不均一化し易く、また、粗大化し易いため、その発泡セルを均一、微細化する能力を持つ造核剤を使用する方法等が提題されている。しかし、同様の課題を有していても発泡性スチレン系樹脂における技術を発泡性メタクリル酸メチル系樹脂粒子に転用することでは解決しない。   The resins described in Patent Documents 1, 2, and 3 have a problem that a large dimensional change is observed in a foamed molded product obtained in a high expansion ratio state. The reason for this is that not only the foamed cells are not sufficiently uniform, but also the cell size is too small, so that the film thickness of the cells constituting the bubbles becomes thin, and the foaming performance is not always sufficient. On the other hand, foamed styrenic resin foam cells are prone to non-uniformity and coarsening, so a method of using a nucleating agent having the ability to make the foam cells uniform and fine has been proposed. Yes. However, even if it has the same problem, it cannot be solved by diverting the technology in the expandable styrene resin to the expandable methyl methacrylate resin particles.

以上のような状況に鑑み、本発明は、高発泡倍率での成形性が良好であり、発泡成形体表面の発泡粒子に隙間(凹凸)が少ない、メタクリル酸メチル系発泡粒子を提供することにある。特に、金属鋳造の際に使用する消失模型の使用に適したメタクリル酸メチル系発泡粒子を提供することにある。   In view of the above situation, the present invention is to provide methyl methacrylate-based expanded particles that have good moldability at a high expansion ratio and have few gaps (irregularities) in the expanded particles on the surface of the expanded molded article. is there. In particular, an object of the present invention is to provide methyl methacrylate-based expanded particles suitable for use of disappearance models used in metal casting.

本発明者らは、鋭意検討の結果、本発明の完成に至った。すなわち、本発明は、以下のとおりである。   As a result of intensive studies, the present inventors have completed the present invention. That is, the present invention is as follows.

(1)メタクリル酸メチル系発泡粒子であって、発泡粒子の最外表面層から内側100μmと内側200μm間のセルの平均弦長(A)が50〜90μm、発泡粒子の中心点から半径100μmの平均弦長(B)が40〜80μmであって、発泡粒子の平均弦長比(A)/(B)が、0.7〜1.3であることを特徴とするメタクリル酸メチル系発泡粒子。   (1) Methyl methacrylate-based expanded particles having an average chord length (A) of 50 to 90 μm and a radius of 100 μm from the center point of the expanded particles between the innermost 100 μm and inner 200 μm from the outermost surface layer of the expanded particles Methyl methacrylate-based foamed particles having an average chord length (B) of 40 to 80 μm and an average chord length ratio (A) / (B) of the foamed particles of 0.7 to 1.3 .

(2)メタクリル酸メチル系発泡粒子であって、メタクリル酸メチル90重量%以上98重量%以下とアクリル酸ブチル2重量%以上10重量%以下からなるアクリル系モノマー100重量部と、二官能性単量体0.05重量部以上0.15重量部以下を重合してなることを特徴とする(1)記載のメタクリル酸メチル系発泡粒子。   (2) Methyl methacrylate-based foamed particles, comprising 100 parts by weight of an acrylic monomer comprising 90% by weight to 98% by weight of methyl methacrylate and 2% by weight to 10% by weight of butyl acrylate; The methyl methacrylate-based expanded particles according to (1), wherein 0.05 to 0.15 parts by weight of a polymer is polymerized.

(3)ゲル・パーミエーション・クロマトグラフィー(GPC)で測定したポリスチレン換算重量平均分子量が30万以上40万以下であることを特徴とする(1)〜(2)記載のメタクリル酸メチル系発泡粒子。   (3) The methyl methacrylate-based foamed particles according to (1) to (2), wherein the polystyrene-converted weight average molecular weight measured by gel permeation chromatography (GPC) is from 300,000 to 400,000 .

(4)(1)〜(3)のいずれかに記載のメタクリル酸メチル系発泡粒子を成形してなることを特徴とする発泡成形体。   (4) A foamed molded article obtained by molding the methyl methacrylate-based foamed particles according to any one of (1) to (3).

(5)(4)記載のメタクリル酸メチル系発泡粒子の発泡成形体からなることを特徴とする消失模型。   (5) Disappearance model comprising a foamed molded product of methyl methacrylate-based foamed particles according to (4).

本発明によれば、高発泡倍率での成形性が良好であり、発泡成形体表面の発泡粒子に隙間(凹凸)が少ない、メタクリル酸メチル系発泡粒子を提供できる。特に、金属鋳造の際に使用する消失模型の使用に適したメタクリル酸メチル系発泡粒子を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the moldability in a high expansion ratio is favorable, and the methyl methacrylate type expanded particle which has few crevice (unevenness | corrugation) in the expanded particle on the surface of a foaming molding can be provided. In particular, it is possible to provide methyl methacrylate-based expanded particles suitable for use in the disappearance model used in metal casting.

本発明のメタクリル酸メチル系発泡粒子は、発泡粒子の最外表面層から内側100μmと内側200μm間のセルの平均弦長(A)が50〜90μm、発泡粒子の中心点から半径100μmの平均弦長(B)が40〜80μmであって、発泡粒子の平均弦長比(A)/(B)が、0.7〜1.3であることを特徴とするメタクリル酸メチル系発泡粒子である。   In the methyl methacrylate-based expanded particles of the present invention, the average chord length (A) of the cell between the innermost 100 μm and inner 200 μm from the outermost surface layer of the expanded particles is 50 to 90 μm, and the average chord having a radius of 100 μm from the center point of the expanded particles. A methyl methacrylate-based foamed particle having a length (B) of 40 to 80 μm and an average chord length ratio (A) / (B) of the foamed particle of 0.7 to 1.3 .

本発明の発泡粒子の気泡の平均弦長は、ASTM−D−2842−97に準じて、発泡粒子の切断面を撮影した走査型電子顕微鏡写真を用いて、切断面の一直線上にかかる気泡数から測定することができる。   According to ASTM-D-2842-97, the average chord length of the foamed particles of the present invention is the number of bubbles applied on a straight line of the cut surface using a scanning electron micrograph of the cut surface of the foamed particle. Can be measured from

一般に、ブタン等の発泡剤を、メタクリル酸メチル系重合粒子へ含浸は、スチレン系重合粒子に比べて、難しく含浸ムラとなりやすい。樹脂粒子内部へのブタンの含浸が不十分であれば、発泡粒子にした時、発泡粒子の最外表面層から内側100μmと内側200μm間の平均弦長(A)が100〜130μmと大きく、中心点から半径100μmの平均弦長(B)が50μm以下の細かい気泡径を有する2重セル構造(硬芯と呼ぶ)の発泡粒子がえられる。平均弦長比(A)/(B)が1.3を超えるような、2重セル構造を有する発泡粒子を、発泡成形した場合、成形体表面の発泡粒子同士に隙間(凹凸)が生じ、鋳造用模型型として好ましくない。   In general, it is difficult to impregnate methyl methacrylate polymer particles with a foaming agent such as butane, and impregnation unevenness is more difficult than styrene polymer particles. If the butane impregnation into the resin particles is insufficient, the average chord length (A) between the innermost 100 μm and the inner 200 μm from the outermost surface layer of the expanded particles is as large as 100 to 130 μm when the expanded particles are formed. From this point, foamed particles having a double cell structure (referred to as a hard core) having an average chord length (B) having a radius of 100 μm and a fine cell diameter of 50 μm or less are obtained. When foamed particles having a double cell structure such that the average chord length ratio (A) / (B) exceeds 1.3, a foam (unevenness) occurs between the foamed particles on the surface of the molded body, This is not preferable as a casting model.

一方、本発明のように、発泡粒子の表層部の平均弦長(A)が50〜90μm、発泡粒子の中心部の平均弦長(B)が40〜80μmであって、発泡粒子の平均弦長比(A)/(B)が、0.7〜1.3であれば、型内発泡成形時に、発泡粒子が均一に発泡し、表面が美麗な発泡成形体が得られる。   On the other hand, as in the present invention, the average chord length (A) of the surface layer portion of the expanded particles is 50 to 90 μm, the average chord length (B) of the center portion of the expanded particles is 40 to 80 μm, and the average chord length of the expanded particles When the length ratio (A) / (B) is 0.7 to 1.3, the foamed particles are uniformly foamed during foam molding in the mold, and a foam molded article having a beautiful surface is obtained.

特に、平均弦長比(A)/(B)が、0.8〜1.2が好ましく、より好ましくは、0.9〜1.1であり、発泡粒子内部の気泡径が均一であれば、より美麗な発泡成形体を得ることができる。   In particular, the average chord length ratio (A) / (B) is preferably 0.8 to 1.2, more preferably 0.9 to 1.1, and the bubble diameter inside the expanded particles is uniform. A more beautiful foam-molded article can be obtained.

本発明のように、気泡径が均一な発泡粒子を得る方法は、メタクリル酸メチル系樹脂粒子が柔らかいときに、発泡剤を含浸させることが重要である。例えば、重合粒子の重合転化率が、80%以上95%以下の時に、発泡剤を樹脂粒子に含浸することが好ましい。重合転化率が80%未満の場合、発泡剤が含浸されやすいが、樹脂の軟化によって、樹脂粒子同士が合一したりして、製品収率が悪化する。一方、重合転化率が95%を超えると、発泡剤が樹脂粒子の内部まで含浸されず、2重の気泡構造(硬芯)が形成され、成形体表面の発泡粒子の隙間が凹凸した発泡成形体が得られる。又、発泡剤を樹脂粒子の中に、より含浸させるためにも、発泡剤の含浸温度を100℃以上120℃以下にすることが好ましい。含浸温度が100℃未満の場合、発泡剤が樹脂粒子内部まで含浸されず、2重の気泡構造(硬芯)が形成され、表面が凹凸した発泡成形体が得られる。含浸温度120℃を超えると、均一な気泡構造を得られるものの、重合機の缶圧が高くなり、重装備な含浸設備が必要となる。   As in the present invention, the method for obtaining foamed particles having a uniform cell diameter is important to impregnate a foaming agent when the methyl methacrylate resin particles are soft. For example, it is preferable to impregnate the resin particles with the foaming agent when the polymerization conversion rate of the polymer particles is 80% or more and 95% or less. When the polymerization conversion rate is less than 80%, the foaming agent is easily impregnated, but the resin particles are united by the softening of the resin, and the product yield is deteriorated. On the other hand, when the polymerization conversion rate exceeds 95%, the foaming agent is not impregnated to the inside of the resin particles, a double cell structure (hard core) is formed, and the foam molding in which the gap between the foam particles on the surface of the molded body is uneven. The body is obtained. In order to further impregnate the foaming agent into the resin particles, the impregnation temperature of the foaming agent is preferably 100 ° C. or higher and 120 ° C. or lower. When the impregnation temperature is less than 100 ° C., the foaming agent is not impregnated to the inside of the resin particles, a double cell structure (hard core) is formed, and a foamed molded article having an uneven surface is obtained. When the impregnation temperature exceeds 120 ° C., a uniform cell structure can be obtained, but the can pressure of the polymerization machine becomes high, and a heavy equipment impregnation facility is required.

本発明の発泡粒子は、メタクリル酸メチル90重量%以上98重量%以下とアクリル酸ブチル2重量%以上10重量%以下からなるアクリル系モノマー100重量部と、二官能性単量体0.05重量部以上0.15重量部以下を重合してなることを特徴とする。   The expanded particles of the present invention are composed of 100 parts by weight of an acrylic monomer consisting of 90% by weight to 98% by weight of methyl methacrylate, 2% by weight to 10% by weight of butyl acrylate, and 0.05% by weight of a bifunctional monomer. It is characterized by polymerizing not less than 0.15 parts by weight.

メタクリル酸メチル単量体とアクリル酸ブチル単量体の比率は、メタクリル酸メチル92重量%以上97重量%以下とアクリル酸ブチル3重量%以上8重量%以下が好ましく、より好ましくはメタクリル酸メチル93重量%以上96重量%以下とアクリル酸ブチル4重量%以上7重量%以下である。メタクリル酸メチル単量体成分比率が多いと、発泡性、成形性に劣る傾向があり、表面が美麗な発泡成形体を得づらく、アクリル酸ブチル単量体成分が多すぎると発泡成形体が収縮しやすい傾向にある。   The ratio of the methyl methacrylate monomer to the butyl acrylate monomer is preferably 92 to 97% by weight of methyl methacrylate and 3 to 8% by weight of butyl acrylate, more preferably methyl methacrylate 93. It is not less than 96% by weight and not more than 96% by weight and not less than 4% by weight and not more than 7% by weight of butyl acrylate. If the ratio of the methyl methacrylate monomer component is large, the foamability and moldability tend to be inferior, making it difficult to obtain a foam molded product having a beautiful surface. If the amount of the butyl acrylate monomer component is excessive, the foam molded product shrinks. It tends to be easy to do.

メタクリル酸メチル単量体とアクリル酸ブチル単量体の合計を100重量部とした場合、燃焼時の残渣低減と分子量の調整のために二官能性単量体を使用する必要がある。二官能性単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等のエチレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したのも、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等の2価のアルコールの水酸基をアクリル酸またはメタクリル酸でエステル化したもの、ジビニルベンゼン等のアルケニル基を2個有するアリール化合物等があげられる。   When the total of the methyl methacrylate monomer and the butyl acrylate monomer is 100 parts by weight, it is necessary to use a bifunctional monomer in order to reduce residues during combustion and to adjust the molecular weight. Examples of the bifunctional monomer include ethylene glycol such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, etc. Esterified with an acid is one obtained by esterifying a hydroxyl group of a divalent alcohol such as neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate, butanediol di (meth) acrylate with acrylic acid or methacrylic acid, And aryl compounds having two alkenyl groups such as divinylbenzene.

二官能性単量体は分子量調整のしやすさからヘキサンジオールジ(メタ)アクリレートが好ましく、使用量はメタクリル酸メチル単量体とアクリル酸ブチル単量体の合計100重量部に対して0.05重量部以上0.15重量部以下が好ましく、0.08重量部以上0.13重量部がより好ましい。二官能性単量体の量が少ないと残渣が残りやすい上に強度に劣る傾向にあり、二官能性単量体の量が多いと発泡性、成形性に劣る傾向にある。   The difunctional monomer is preferably hexanediol di (meth) acrylate in terms of ease of molecular weight adjustment, and the amount used is 0.000 with respect to a total of 100 parts by weight of the methyl methacrylate monomer and the butyl acrylate monomer. 05 parts by weight or more and 0.15 parts by weight or less are preferable, and 0.08 parts by weight or more and 0.13 parts by weight or more are more preferable. If the amount of the bifunctional monomer is small, the residue tends to remain and the strength tends to be inferior. If the amount of the bifunctional monomer is large, the foamability and moldability tend to be inferior.

本発明のメタクリル酸メチル系発泡粒子はゲル・パーミエーション・クロマトグラフィー(GPC)で測定したポリスチレン換算重量平均分子量が、30万以上40万以下であることが好ましい。重量平均分子量が低いと鋳造時の残渣が残りやすく、高いと表面性のよい成形体が得られづらい。   The methyl methacrylate-based expanded particles of the present invention preferably have a polystyrene-equivalent weight average molecular weight of 300,000 or more and 400,000 or less as measured by gel permeation chromatography (GPC). If the weight average molecular weight is low, residues during casting are likely to remain, and if it is high, it is difficult to obtain a molded article having good surface properties.

本発明の発泡性樹脂粒子を製造する方法としては水性懸濁液中で重合を行う懸濁重合が挙げられる。   Examples of the method for producing the expandable resin particles of the present invention include suspension polymerization in which polymerization is performed in an aqueous suspension.

本発明における「水性懸濁液」とは、攪拌等を用いて、樹脂粒子および単量体液滴を、水または水溶液に分散させた状態を指し、水中には水溶性の界面活性剤や単量体が溶解していても良く、また、水に不溶の分散剤、開始剤、連鎖移動剤、架橋剤、気泡調整剤、難燃剤、可塑剤等が共に分散していても良い。   The “aqueous suspension” in the present invention refers to a state in which resin particles and monomer droplets are dispersed in water or an aqueous solution by using stirring or the like. The body may be dissolved, or a water-insoluble dispersant, initiator, chain transfer agent, crosslinking agent, bubble regulator, flame retardant, plasticizer, etc. may be dispersed together.

樹脂と水の重量比は、得られるメタクリル酸系樹脂/水の比として、1.0/0.6〜1.0/3.0が好ましい。   The weight ratio of the resin to water is preferably 1.0 / 0.6 to 1.0 / 3.0 as the ratio of the resulting methacrylic resin / water.

懸濁重合に使用できる分散剤としては、例えば、第三リン酸カルシウム、ピロリン酸マグネシウム、ハイドロキシアパタイト、カオリンなどの難水溶性無機塩、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子などが挙げられ、難水溶性無機塩を使用する場合には、α―オレフィンスルホン酸ソーダ、ドデシルベンゼンスルホン酸ソーダなどのアニオン系界面活性剤を併用することが効果的である。これらの分散剤は必要に応じて重合の途中で追加しても良い。   Examples of the dispersant that can be used for suspension polymerization include poorly water-soluble inorganic salts such as tricalcium phosphate, magnesium pyrophosphate, hydroxyapatite, and kaolin, and water-soluble polymers such as polyvinyl alcohol, methyl cellulose, polyacrylamide, and polyvinyl pyrrolidone. In the case of using a poorly water-soluble inorganic salt, it is effective to use an anionic surfactant such as α-olefin sulfonic acid soda and dodecylbenzene sulfonic acid soda together. These dispersants may be added during the polymerization as required.

分散剤の使用量は、種類によるが難水溶性無機塩としては水100重量部に対して0.1重量部以上1.5重量部以下、アニオン系界面活性剤や水溶性高分子としては30ppm以上100ppm以下が好ましい。   The amount of the dispersant used depends on the type, but the water-insoluble inorganic salt is 0.1 to 1.5 parts by weight with respect to 100 parts by weight of water, and 30 ppm for the anionic surfactant or water-soluble polymer. The amount is preferably 100 ppm or less.

本発明の懸濁重合は、一段階目の重合を行い主要な反応を行った後、一段階目よりも高温で二段階目の重合反応で残存モノマーを低減させることが好ましい。   In the suspension polymerization of the present invention, it is preferable to reduce the residual monomer in the second stage polymerization reaction at a higher temperature than the first stage after the first stage polymerization and the main reaction.

重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができ、代表的なものとしては、例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、t−ブチルパーオキシベンゾエート、イソプロピル−t−ブチルパーオキシカーボネート、過安息香酸ブチル、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーピバレート、t−ブチルパーオキシイソプロピルカーボネート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、1,1−ジ(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−アミルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネートなどの有機過酸化物や、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物が挙げられる。これらの重合開始剤は、単独で使用してもよいし、2種以上を併用しても良い。   As the polymerization initiator, radical generating polymerization initiators generally used for the production of thermoplastic polymers can be used. Typical examples include benzoyl peroxide, lauroyl peroxide, t-butylperoxy. Benzoate, isopropyl-t-butylperoxycarbonate, butyl perbenzoate, t-butylperoxy-2-ethylhexanoate, t-butylperpivalate, t-butylperoxyisopropylcarbonate, di-t-butylper Oxyhexahydroterephthalate, 1,1-di (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (t-amylperoxy) -3,3,5-trimethylcyclohexane, 1, 1-di (t-butylperoxy) cyclohexane, t-butylperoxy Organic peroxides and the like 2-ethylhexyl monocarbonate, azobisisobutyronitrile, an azo compound such as azo-bis-dimethyl valeronitrile. These polymerization initiators may be used alone or in combination of two or more.

また本発明における重合においては、連鎖移動剤としてメタクリル酸メチルの重合に用いられる周知のものを使用するのが好ましい。例えば、アルキルメルカプタン類、チオグリコール酸エステル類等の単官能連鎖移動剤、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化した多官能性連鎖移動剤があげられる。   In the polymerization in the present invention, it is preferable to use a known chain transfer agent used for the polymerization of methyl methacrylate. For example, monofunctional chain transfer agents such as alkyl mercaptans and thioglycolic acid esters, and polyhydric alcohol hydroxyl groups such as ethylene glycol, neopentyl glycol, trimethylolpropane and sorbitol are esterified with thioglycolic acid or 3-mercaptopropionic acid. And polyfunctional chain transfer agents.

発泡剤としては、例えば、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタン等の炭素数3以上5以下の炭化水素である脂肪族炭化水素類、例えば、ジフルオロエタン、テトラフルオロエタン等のオゾン破壊係数がゼロであるハイドロフルオロカーボン類等の揮発性発泡剤があげられる。これらの発泡剤は併用しても何ら差し支えない。また、使用量としては、発泡性メタクリル酸メチル系樹脂粒子100重量部に対して、好ましくは5重量部以上12重量部以下、さらに好ましくは7重量部以上10重量部以下である。発泡剤の量が少ないと発泡倍率を得ることが難しく、発泡剤の量が多いと発泡剤の含浸工程で樹脂の凝集が生じやすくなる。   Examples of the blowing agent include aliphatic hydrocarbons that are hydrocarbons having 3 to 5 carbon atoms, such as propane, isobutane, normal butane, isopentane, normal pentane, and neopentane, for example, ozone destruction of difluoroethane, tetrafluoroethane, and the like. Examples thereof include volatile foaming agents such as hydrofluorocarbons having a coefficient of zero. These foaming agents can be used in combination. The amount used is preferably 5 parts by weight or more and 12 parts by weight or less, and more preferably 7 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the expandable methyl methacrylate resin particles. When the amount of the foaming agent is small, it is difficult to obtain the expansion ratio, and when the amount of the foaming agent is large, the resin tends to aggregate in the step of impregnating the foaming agent.

発泡剤の含浸は、樹脂粒子の重合転化率が、80%以上95%以下の時に、発泡剤を樹脂粒子に含浸することが好ましい。重合転化率が80%未満の場合、発泡剤が含浸されやすいが、樹脂の軟化によって、樹脂粒子同士が凝集したりして、製造収率が悪化する。一方、重合転化率が95%を超えると、発泡剤が樹脂粒子の内部まで含浸されず、2重の気泡構造(硬芯)が形成され、表面が凹凸した発泡成形体が得られる。   The impregnation of the foaming agent is preferably performed by impregnating the resin particles with the foaming agent when the polymerization conversion rate of the resin particles is 80% or more and 95% or less. When the polymerization conversion rate is less than 80%, the foaming agent is easily impregnated, but the resin particles are aggregated due to the softening of the resin, and the production yield deteriorates. On the other hand, when the polymerization conversion rate exceeds 95%, the foaming agent is not impregnated to the inside of the resin particles, a double cell structure (hard core) is formed, and a foamed molded article having an uneven surface is obtained.

発泡剤を樹脂粒子の中に含浸する時の、含浸温度を95℃以上120℃以下ですることが好ましい。更に好ましくは、100℃以上117℃以下が好ましい。含浸温度が95℃未満の場合、発泡剤が樹脂粒子内部まで含浸されず、2重の気泡構造(硬芯)が形成され、表面が凹凸した発泡成形体が得られる。含浸温度120℃を超えると、均一な気泡構造を得られるものの、重合機の缶圧が高くなり、重装備な含浸設備が必要となる。   The impregnation temperature when impregnating the foaming agent into the resin particles is preferably 95 ° C. or higher and 120 ° C. or lower. More preferably, 100 degreeC or more and 117 degrees C or less are preferable. When the impregnation temperature is less than 95 ° C., the foaming agent is not impregnated to the inside of the resin particles, a double cell structure (hard core) is formed, and a foamed molded article having an uneven surface is obtained. When the impregnation temperature exceeds 120 ° C., a uniform cell structure can be obtained, but the can pressure of the polymerization machine becomes high, and a heavy equipment impregnation facility is required.

本発明において使用する添加剤としては、目的に応じて溶剤、可塑剤、気泡調整剤等が使用できる。   As the additive used in the present invention, a solvent, a plasticizer, a bubble regulator and the like can be used depending on the purpose.

溶剤としては沸点50℃以上のものがあげられ、トルエン、へキサン、ヘプタン等のC6以上の脂肪族炭化水素、シクロヘキサン、シクロオクタン等のC6以上の脂環族炭化水素、などが挙げられる。この中でトルエン、シクロヘキサンが発泡性を得る上で好ましく、1.5重量%以上3.0重量%以下含まれることが好ましい。1.5重量%以下であると十分な発泡力を得ることができず、3.0重量部以上だと成形時に成形体表面に膨れが生じやすく、寸法安定性に劣る。沸点50℃以上の溶剤成分を添加するには、発泡剤を樹脂粒子へ含浸させる直前または、同時に添加することが好ましい。   Examples of the solvent include those having a boiling point of 50 ° C. or higher, and C6 or higher aliphatic hydrocarbons such as toluene, hexane, and heptane, and C6 or higher alicyclic hydrocarbons such as cyclohexane and cyclooctane. Among these, toluene and cyclohexane are preferable for obtaining foaming properties, and it is preferable that 1.5 to 3.0% by weight is contained. When the amount is 1.5% by weight or less, sufficient foaming force cannot be obtained. In order to add a solvent component having a boiling point of 50 ° C. or higher, it is preferable to add it immediately before or simultaneously with impregnating the foaming agent into the resin particles.

可塑剤としては、沸点200℃以上の高沸点可塑剤が挙げられ、例えば、ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、ヤシ油、パーム油、パーム核油等の植物油、ジオクチルアジペート、ジブチルセバケート等の脂肪族エステル、流動パラフィン、シクロヘキサン等の有機炭化水素等があげられる。気泡調整剤としては、例えば、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイド、ポリエチレンワックス等が挙げられる。   Examples of the plasticizer include high-boiling plasticizers having a boiling point of 200 ° C. or higher. Examples thereof include vegetable oils such as palm kernel oil, aliphatic esters such as dioctyl adipate and dibutyl sebacate, organic hydrocarbons such as liquid paraffin and cyclohexane. Examples of the air conditioner include aliphatic bisamides such as methylene bis stearic acid amide and ethylene bis stearic acid amide, polyethylene wax, and the like.

得られた発泡性メタクリル酸メチル系樹脂粒子は、一般的な予備発泡方法によって、発泡粒子とすることができる(メタクリル酸メチル系発泡粒子ともいう)。具体的には攪拌機を具備した容器内に入れ水蒸気等の熱源により加熱することで、所望の発泡倍率までに予備発泡を行う。   The obtained expandable methyl methacrylate resin particles can be made into expanded particles (also referred to as methyl methacrylate expanded particles) by a general prefoaming method. Specifically, it is placed in a container equipped with a stirrer and heated by a heat source such as water vapor to perform preliminary foaming up to a desired foaming ratio.

更にメタクリル酸メチル系発泡粒子は、一般的な型内成形方法によって成形し、発泡成形体にすることができる。具体的には、閉鎖し得るが密閉しえない金型内に充填し、水蒸気により加熱融着することで発泡成形体とする。   Further, the methyl methacrylate-based expanded particles can be formed into a foamed molded article by a general in-mold molding method. Specifically, it is filled in a mold that can be closed but cannot be sealed, and heat-sealed with water vapor to obtain a foamed molded article.

本発明のメタクリル酸メチル系発泡粒子の発泡成形体は、メタクリル酸メチル系樹脂自体の天井温度が低いために、発泡成形体を鋳造砂に埋没し、そこに溶融金属を流し込んで置換しても、メタクリル酸メチル系樹脂の残渣が残り難いといったことから消失模型として好適に使用できる。   The foamed molded product of the methyl methacrylate-based expanded particles of the present invention has a low ceiling temperature of the methyl methacrylate-based resin itself, so that the foamed molded product is buried in casting sand, and molten metal is poured into it to replace it. Since the residue of methyl methacrylate resin hardly remains, it can be suitably used as a disappearance model.

以下に実施例、及び比較例を挙げるが、本発明はこれによって限定されるものではない。   Examples and Comparative Examples are given below, but the present invention is not limited thereby.

(重量平均分子量測定)
発泡性メタクリル酸メチル系樹脂粒子0.02gをテトラヒドロフラン20ccに溶解し、GPC(東ソー(株)製HLC−8020、カラム:TSKgel Super HZM−H、カラム温度:40℃、流速:0.35ml/1min.)にて測定した。重量平均分子量は標準ポリスチレンの換算値として求めた。
(Weight average molecular weight measurement)
0.02 g of expandable methyl methacrylate resin particles are dissolved in 20 cc of tetrahydrofuran, and GPC (HLC-8020 manufactured by Tosoh Corporation), column: TSKgel Super HZM-H, column temperature: 40 ° C., flow rate: 0.35 ml / 1 min. )). The weight average molecular weight was determined as a converted value of standard polystyrene.

メタクリル酸メチル系発泡粒子の分子量は、発泡性メタクリル酸メチル系樹脂粒子の分子量とかわらないので、これを代用した。   Since the molecular weight of the methyl methacrylate-based expanded particles was not different from the molecular weight of the expandable methyl methacrylate-based resin particles, this was substituted.

(重合転化率の測定)
発泡剤添加直前の耐圧容器から重合樹脂粒子を採取し、ろ紙で、樹脂粒子表面の水分を拭き取った後、塩化メチレン(内部標準シクロペンタノール)に溶解し、(株)島津製作所製ガスクロマトグラフィーGC−2014(キャピラリーカラム:GLサイエンス製Rtx−1、カラム温度条件:50→80℃(3℃/min)後、80→180℃昇温(10℃/min)、キャリアガス:ヘリウム)を用いて、発泡性スチレン系樹脂粒子中に含まれる残存モノマー量を定量した。残存モノマー量より、重合転化率を測定した。
(Measurement of polymerization conversion)
Collect polymerized resin particles from a pressure vessel immediately before adding a foaming agent, wipe the water on the surface of the resin particles with filter paper, dissolve in methylene chloride (internal standard cyclopentanol), and gas chromatography manufactured by Shimadzu Corporation. GC-2014 (capillary column: Rtx-1 manufactured by GL Sciences, column temperature condition: 50 → 80 ° C. (3 ° C./min), 80 → 180 ° C. temperature increase (10 ° C./min), carrier gas: helium) The amount of residual monomer contained in the expandable styrene resin particles was quantified. The polymerization conversion rate was measured from the residual monomer amount.

(発泡粒子の製造)
発泡性メタクリル酸メチル系樹脂粒子を篩い分けして粒子径0.5〜1.4mmの発泡性メタクリル酸メチル系樹脂粒子を分取した。
(Manufacture of expanded particles)
The expandable methyl methacrylate resin particles were sieved to obtain expandable methyl methacrylate resin particles having a particle diameter of 0.5 to 1.4 mm.

分取した発泡性メタクリル酸メチル系樹脂粒子を、加圧式予備発泡機「大開工業製、BHP」を用いて、吹き込み蒸気圧0.09〜0.10MPaの条件でかさ倍率65倍への予備発泡し、その後、常温下で1日放置して、メタクリル酸メチル系発泡粒子を得た。   The foamed methyl methacrylate resin particles thus separated are pre-foamed to a bulk magnification of 65 times under a condition of a blowing vapor pressure of 0.09 to 0.10 MPa using a pressure type pre-foaming machine “BHP” manufactured by Daikai Kogyo. Then, it was allowed to stand at room temperature for 1 day to obtain methyl methacrylate-based expanded particles.

(発泡粒子の気泡径の平均弦長)
発泡粒子の平均気泡径はASTM−D−2842−97に準じて、発泡粒子の切断面を投影した写真から、切断面の一直線上にかかる気泡径から平均弦長を測定した。表層部は、発泡粒子の最外表面層から内側100μmと内側200μm間のセルの平均弦長(A)を、発泡粒子の中心点から半径100μmの平均弦長(B)を測定した。発泡粒子の硬芯の度合として、発泡粒子の平均弦長比(A)/(B)を試算した。
(Average chord length of bubble diameter of expanded particles)
The average cell diameter of the expanded particles was measured according to ASTM-D-2842-97, from the photograph of the cut surface of the expanded particles projected, and the average chord length was measured from the cell diameter on a straight line of the cut surface. As for the surface layer portion, the average chord length (A) of the cell between the inner 100 μm and the inner 200 μm from the outermost surface layer of the expanded particles, and the average chord length (B) with a radius of 100 μm from the center point of the expanded particles were measured. The average chord length ratio (A) / (B) of the foam particles was estimated as the degree of the hard core of the foam particles.

(発泡成形体の製造)
得られたメタクリル酸メチル系発泡粒子を、成形機「ダイセン製、KR−57」を用いて吹き込み蒸気圧0.05MPaで型内成形を行うことで、厚み150mmで長さ400mm×幅350mmの平板状の発泡成形体を得た。
(Manufacture of foam moldings)
The obtained methyl methacrylate-based expanded particles were blown in-mold at a blown vapor pressure of 0.05 MPa using a molding machine “Daisen, KR-57”, so that a flat plate having a thickness of 150 mm and a length of 400 mm × width of 350 mm A foamed molded product was obtained.

(発泡成形体の表面性)
発泡成形体の表面の状態を目視観察にて評価した。数値が大きいほうが粒子同士の隙間に凹凸が少ない美麗な表面状態であり、5点満点で表現した3以上を合格とした。
(Surface properties of foamed molded product)
The state of the surface of the foamed molded product was evaluated by visual observation. A larger numerical value indicates a beautiful surface state with less irregularities in the gaps between the particles, and a score of 3 or more expressed as a perfect score of 5 was accepted.

5:凹凸が見当たらない
4:部分的に凹凸があるが、ほとんどわからない
3:ところどころ凹凸があるが、全体としては許容できる
2:凹凸が目立つ
1:凹凸が多い。
5: Unevenness is not found 4: There is unevenness partially, but is hardly understood 3: Although there are unevenness in some places, it is acceptable as a whole 2: Unevenness is conspicuous 1: There are many unevennesses.

(実施例1)
撹拌機付き6Lオートクレーブに水150重量部、第3リン酸カルシウム0.105重量部、α−オレインスルフォン酸ソーダ0.0075重量部、及び、ラウロイルパーオキサイド0.08重量部、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.1重量部、1,6−ヘキサンジオールジアクリレート0.1重量部(メタクリル酸メチル系単量体に対して0.09ビニル基mol%)、n−ドデシルメルカプタン0.24重量部を仕込んだ後、メタクリル酸メチル95重量部、アクリル酸ブチル5重量部、トルエン1重量部を仕込み、80℃で、4時間20分重合を行った。その時の重合転化率は88%であった。その後、シクロヘキサン1.5重量部、ノルマルリッチブタン(ノルマル/イソ=70/30)9部を仕込んだ後、102℃に昇温して10時間重合を行い、冷却後、洗浄・脱水・乾燥することにより発泡性メタクリル酸メチル系樹脂粒子を得た。
Example 1
In a 6 L autoclave with a stirrer, 150 parts by weight of water, 0.105 part by weight of tribasic calcium phosphate, 0.0075 part by weight of sodium α-olein sulfonate, 0.08 part by weight of lauroyl peroxide, 1,1-bis (t -Butylperoxy) cyclohexane 0.1 part by weight, 1,6-hexanediol diacrylate 0.1 part by weight (0.09 vinyl group mol% with respect to methyl methacrylate monomer), n-dodecyl mercaptan 0 After charging 24 parts by weight, 95 parts by weight of methyl methacrylate, 5 parts by weight of butyl acrylate and 1 part by weight of toluene were charged, and polymerization was carried out at 80 ° C. for 4 hours and 20 minutes. The polymerization conversion at that time was 88%. Thereafter, 1.5 parts by weight of cyclohexane and 9 parts of normal rich butane (normal / iso = 70/30) are charged, the temperature is raised to 102 ° C., polymerization is performed for 10 hours, and after cooling, washing, dehydration and drying are performed. Thus, expandable methyl methacrylate resin particles were obtained.

得られた発泡性メタクリル酸メチル系樹脂粒子を篩い分けして粒子径0.5〜1.4mmの発泡性メタクリル酸メチル系樹脂粒子を採取し、重量平均分子量を測定した。加圧式予備発泡機「大開工業製、BHP」を用いて、樹脂粒子を予備発泡し、倍率65倍の発泡粒子を得た。得られた発泡粒子を室温で1日養生させた後、発泡粒子のセルの平均弦長を測定したところ、表層部の平均セル弦長(A)は75μm、中心部の平均弦長(B)は65μmである。   The obtained expandable methyl methacrylate resin particles were sieved to collect expandable methyl methacrylate resin particles having a particle diameter of 0.5 to 1.4 mm, and the weight average molecular weight was measured. The resin particles were prefoamed using a pressure type prefoaming machine “BHP, manufactured by Daikai Kogyo Co., Ltd.” to obtain expanded particles having a magnification of 65 times. After the obtained expanded particles were cured at room temperature for 1 day, the average chord length of the cells of the expanded particles was measured. The average cell chord length (A) of the surface layer was 75 μm, and the average chord length (B) of the center portion was measured. Is 65 μm.

次いで、ダイセンKR−57成形機を用いて300×450×150(t)mmサイズの金型にて発泡成形品を得、成形体の表面性を目視で評価した。その結果を表1に示す。   Next, using a Daisen KR-57 molding machine, a foam molded product was obtained with a 300 × 450 × 150 (t) mm size mold, and the surface property of the molded product was visually evaluated. The results are shown in Table 1.

(実施例2)
表1に示すように、メタクリル酸メチル92重量部、アクリル酸ブチル8重量部に変更した以外は、実施例1と同様の操作をし、発泡性メタクリル酸メチル系樹脂粒子、発泡粒子、発泡成形体を得、同様に評価した。評価結果は表1に示した。
(Example 2)
As shown in Table 1, the same operation as in Example 1 was performed except that methyl methacrylate was changed to 92 parts by weight and butyl acrylate was changed to 8 parts by weight, and expandable methyl methacrylate resin particles, expanded particles, and expanded molding were performed. A body was obtained and evaluated similarly. The evaluation results are shown in Table 1.

(実施例3)
表1に示すように、メタクリル酸メチル97重量部、アクリル酸ブチル3重量部に変更した以外は、実施例1と同様の操作をし、発泡性メタクリル酸メチル系樹脂粒子、発泡粒子、発泡成形体を得、同様に評価した。評価結果は表1に示した。
Example 3
As shown in Table 1, except for changing to 97 parts by weight of methyl methacrylate and 3 parts by weight of butyl acrylate, the same operation as in Example 1 was carried out to obtain expandable methyl methacrylate resin particles, expanded particles, and expanded molding. A body was obtained and evaluated similarly. The evaluation results are shown in Table 1.

(実施例4)
表1に示すように、発泡剤の含浸温度を120℃に変更した以外は、実施例1と同様の操作をし、発泡性メタクリル酸メチル系樹脂粒子、発泡粒子、発泡成形体を得、同様に評価した。評価結果は表1に示した。
Example 4
As shown in Table 1, except that the impregnation temperature of the foaming agent was changed to 120 ° C., the same operation as in Example 1 was carried out to obtain expandable methyl methacrylate resin particles, expanded particles, and expanded molded articles. Evaluated. The evaluation results are shown in Table 1.

(実施例5)
表1に示すように、重合時間を4時間50分として、重合転化率を94%に変更した以外は、実施例1と同様の操作をし、発泡性メタクリル酸メチル系樹脂粒子、発泡粒子、発泡成形体を得、同様に評価した。評価結果は表1に示した。
(Example 5)
As shown in Table 1, the same procedure as in Example 1 was carried out except that the polymerization time was 4 hours and 50 minutes and the polymerization conversion rate was changed to 94%, and expandable methyl methacrylate resin particles, expanded particles, A foam molded article was obtained and evaluated in the same manner. The evaluation results are shown in Table 1.

(比較例1)
表1に示すように、実施例1と同様の操作を行い、重合時間を4時間00分で、重合転化率75%であった。発泡剤を添加後、含浸温度102℃に到達してから、樹脂粒子同士のアグロメが観察された為、重合を中止した。アグロメとは、重合粒子同士が合一した状態である。
(Comparative Example 1)
As shown in Table 1, the same operation as in Example 1 was performed, the polymerization time was 4:00 hours, and the polymerization conversion rate was 75%. After the foaming agent was added, the temperature reached an impregnation temperature of 102 ° C., and agglomeration between the resin particles was observed, so the polymerization was stopped. Agglomerate is a state in which polymer particles are united.

(比較例2)
表1に示すように、実施例1と同様の操作を行い、重合時間を4時間00分で、重合転化率75%であった。発泡剤を添加後、含浸温度120℃に到達してから、樹脂粒子同士のアグロメが観察された為、重合を中止した。
(Comparative Example 2)
As shown in Table 1, the same operation as in Example 1 was performed, the polymerization time was 4:00 hours, and the polymerization conversion rate was 75%. After the foaming agent was added, the agglomeration between the resin particles was observed after reaching the impregnation temperature of 120 ° C., and thus the polymerization was stopped.

(比較例3)
表1に示すように、実施例1と同様の操作を行い、重合時間を5時間10分で、重合転化率98%であった。その後、発泡剤を添加し、含浸温度102℃として、発泡性メタクリル酸メチル系樹脂粒子、発泡粒子、発泡成形体を得、同様に評価した。評価結果は表1に示した。
(Comparative Example 3)
As shown in Table 1, the same operation as in Example 1 was performed, the polymerization time was 5 hours and 10 minutes, and the polymerization conversion rate was 98%. Thereafter, a foaming agent was added to obtain an expandable methyl methacrylate resin particle, foamed particle, and foamed molded article at an impregnation temperature of 102 ° C. and evaluated in the same manner. The evaluation results are shown in Table 1.

(比較例4)
表1に示すように、実施例1と同様の操作を行い、重合時間を5時間10分で、重合転化率98%であった。その後、発泡剤を添加し、含浸温度120℃として、発泡性メタクリル酸メチル系樹脂粒子、発泡粒子、発泡成形体を得、同様に評価した。評価結果は表1に示した。
(Comparative Example 4)
As shown in Table 1, the same operation as in Example 1 was performed, the polymerization time was 5 hours and 10 minutes, and the polymerization conversion rate was 98%. Thereafter, a foaming agent was added, and an impregnation temperature of 120 ° C. was obtained to obtain expandable methyl methacrylate resin particles, expanded particles, and a foamed molded product, and evaluated in the same manner. The evaluation results are shown in Table 1.

Figure 2018135407
Figure 2018135407

Claims (5)

メタクリル酸メチル系発泡粒子であって、発泡粒子の最外表面層から内側100μmと内側200μm間のセルの平均弦長(A)が50〜90μm、発泡粒子の中心点から半径100μmの平均弦長(B)が40〜80μmであって、発泡粒子の平均弦長比(A)/(B)が、0.7〜1.3であることを特徴とするメタクリル酸メチル系発泡粒子。 An average chord length (A) of cells between the innermost 100 μm and the inner 200 μm from the outermost surface layer of the expanded foam of methyl methacrylate, with an average chord length of 50 to 90 μm and a radius of 100 μm from the center point of the foamed particles (B) is 40 to 80 μm, and the average chord length ratio (A) / (B) of the expanded particles is 0.7 to 1.3. メタクリル酸メチル系発泡粒子であって、メタクリル酸メチル90重量%以上98重量%以下とアクリル酸ブチル2重量%以上10重量%以下からなるアクリル系モノマー100重量部と、二官能性単量体0.05重量部以上0.15重量部以下を重合してなることを特徴とする請求項1記載のメタクリル酸メチル系発泡粒子。 100 parts by weight of an acrylic monomer comprising 90 to 98% by weight of methyl methacrylate and 2 to 10% by weight of butyl acrylate, and bifunctional monomer 0 2. The methyl methacrylate-based foamed particles according to claim 1, wherein 0.05 to 0.15 parts by weight are polymerized. ゲル・パーミエーション・クロマトグラフィー(GPC)で測定したポリスチレン換算重量平均分子量が30万以上40万以下であることを特徴とする請求項1または2記載のメタクリル酸メチル系発泡粒子。 3. The methyl methacrylate-based foamed particles according to claim 1, wherein the polystyrene-reduced weight average molecular weight measured by gel permeation chromatography (GPC) is from 300,000 to 400,000. 請求項1〜3のいずれかに記載のメタクリル酸メチル系発泡粒子を成形してなることを特徴とする発泡成形体。 A foamed molded article obtained by molding the methyl methacrylate-based foamed particles according to any one of claims 1 to 3. 請求項4記載のメタクリル酸メチル系発泡粒子の発泡成形体からなることを特徴とする消失模型。 A disappearance model comprising a foamed molded product of the methyl methacrylate-based foamed particles according to claim 4.
JP2017028906A 2017-02-20 2017-02-20 Methyl methacrylate foamed particles Pending JP2018135407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028906A JP2018135407A (en) 2017-02-20 2017-02-20 Methyl methacrylate foamed particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028906A JP2018135407A (en) 2017-02-20 2017-02-20 Methyl methacrylate foamed particles

Publications (1)

Publication Number Publication Date
JP2018135407A true JP2018135407A (en) 2018-08-30

Family

ID=63365281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028906A Pending JP2018135407A (en) 2017-02-20 2017-02-20 Methyl methacrylate foamed particles

Country Status (1)

Country Link
JP (1) JP2018135407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203537A1 (en) 2019-03-29 2020-10-08 株式会社カネカ Expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate expansion-molded body, and method for producing expandable methyl methacrylate resin particles
WO2023054017A1 (en) * 2021-09-29 2023-04-06 株式会社カネカ Expandable methyl methacrylate resin particles

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281372A (en) * 1995-04-07 1996-10-29 Achilles Corp Lost foam prototype for casting
JPH1160784A (en) * 1997-08-12 1999-03-05 Mitsubishi Chem Basf Co Ltd Styrene-based expandable resin particle and its production
JP2006241256A (en) * 2005-03-02 2006-09-14 Kaneka Corp Expandable methyl methacrylate resin particle and foam obtained using the same
JP2013199548A (en) * 2012-03-23 2013-10-03 Sekisui Plastics Co Ltd Foamable styrene resin particle and method for manufacturing the same
WO2016047490A1 (en) * 2014-09-22 2016-03-31 株式会社カネカ Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and evaporative pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281372A (en) * 1995-04-07 1996-10-29 Achilles Corp Lost foam prototype for casting
JPH1160784A (en) * 1997-08-12 1999-03-05 Mitsubishi Chem Basf Co Ltd Styrene-based expandable resin particle and its production
JP2006241256A (en) * 2005-03-02 2006-09-14 Kaneka Corp Expandable methyl methacrylate resin particle and foam obtained using the same
JP2013199548A (en) * 2012-03-23 2013-10-03 Sekisui Plastics Co Ltd Foamable styrene resin particle and method for manufacturing the same
WO2016047490A1 (en) * 2014-09-22 2016-03-31 株式会社カネカ Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and evaporative pattern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203537A1 (en) 2019-03-29 2020-10-08 株式会社カネカ Expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate expansion-molded body, and method for producing expandable methyl methacrylate resin particles
WO2023054017A1 (en) * 2021-09-29 2023-04-06 株式会社カネカ Expandable methyl methacrylate resin particles

Similar Documents

Publication Publication Date Title
JP6670245B2 (en) Expandable methyl methacrylate resin particles, pre-expanded particles, expanded molded article, and disappearance model
JP7019410B2 (en) Effervescent methyl methacrylate resin particles
JP2018135408A (en) Method for producing expandable methyl methacrylate resin particles
JP4835007B2 (en) Expandable methyl methacrylate resin particles and foam using the same
TWI816030B (en) Method for producing expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate expanded molded articles, and expandable methyl methacrylate resin particles
JP6514928B2 (en) Expandable polystyrene-based resin particles, polystyrene-based pre-expanded particles and expanded molded articles
JP2018135407A (en) Methyl methacrylate foamed particles
JP2008260928A (en) Method for producing styrene modified polyethylene based resin pre-expansion particle
JP3987261B2 (en) Expandable methyl methacrylate resin particles and foam using the same
JP7196078B2 (en) EXPANDABLE POLYSTYRENE-BASED RESIN PARTICLES, POLYSTYRENE-BASED PRE-EXPANDED PARTICLES AND EXPANDED MOLDED PRODUCTS
JP5664238B2 (en) Styrene-modified polyethylene resin pre-expanded particles and foam-molded article comprising the styrene-modified polyethylene resin pre-expanded particles
JP2018145285A (en) Expandable polystyrene-based resin particle, polystyrene-based pre-expanded particle and expansion-molded body
JP5824263B2 (en) Expandable thermoplastic resin particles
JP5422970B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin
JP2009120661A (en) Method for producing reclaimed foaming polystyrene-based resin particle and molded article
JP2010222490A (en) Foamable styrenic resin particle
JP6679390B2 (en) Expandable styrene resin particles
JP4578129B2 (en) Expandable thermoplastic resin particles and thermoplastic resin expanded particles
JP2001302733A (en) Methyl methacrylate resin particle, its manufacturing method, expandable methyl methacrylate resin particle using the same and foam
JP2010043195A (en) Method for producing pre-expanded particle of styrene-modified polyethylene-based resin and foamed molding of styrene-modified polyethylene-based resin
JP4832716B2 (en) Small particle size styrenic expandable resin particles, expanded beads and molded products
JP6677974B2 (en) Method for producing expandable styrene resin particles
WO2023189759A1 (en) Expandable particles of methyl-methacrylate-based resin, expanded particles of methyl-methacrylate-based resin, molded foam of methyl-methacrylate-based resin, and evaporative pattern
JP2023049915A (en) Expandable methyl methacrylate resin particles
JP2019156901A (en) Expandable styrene-based resin particle, pre-expanded particle, and method for producing expanded formed body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622