JP2009120661A - Method for producing reclaimed foaming polystyrene-based resin particle and molded article - Google Patents

Method for producing reclaimed foaming polystyrene-based resin particle and molded article Download PDF

Info

Publication number
JP2009120661A
JP2009120661A JP2007294221A JP2007294221A JP2009120661A JP 2009120661 A JP2009120661 A JP 2009120661A JP 2007294221 A JP2007294221 A JP 2007294221A JP 2007294221 A JP2007294221 A JP 2007294221A JP 2009120661 A JP2009120661 A JP 2009120661A
Authority
JP
Japan
Prior art keywords
resin particles
polystyrene resin
regenerated
based resin
polystyrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007294221A
Other languages
Japanese (ja)
Other versions
JP5128246B2 (en
Inventor
Hiroshi Nakakuki
弘 中岫
Kazuki Okamura
和樹 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007294221A priority Critical patent/JP5128246B2/en
Publication of JP2009120661A publication Critical patent/JP2009120661A/en
Application granted granted Critical
Publication of JP5128246B2 publication Critical patent/JP5128246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing reclaimed foaming polystyrene-based resin particles by which the particles can be formed into a spherical shape even when resin particles having a low MFR value are used, to provide the reclaimed foaming polystyrene-based resin particles produced thereby, and to provide a molded article of the reclaimed foaming polystyrene-based resin obtained by using the particles. <P>SOLUTION: The method for producing the reclaimed foaming polystyrene-based resin particles includes suspending reclaimed polystyrene-based resin particles obtained by heating and melting a used polystyrene-based resin and pulverizing the resultant resin in an aqueous medium, impregnating the reclaimed polystyrene-based resin particles with a polymerization initiator and a styrene-based monomer, polymerizing the impregnated product, and impregnating the resultant particles with a foaming agent, wherein the reclaimed polystyrene-based resin particles are obtained by mixing an organic peroxide with the used polystyrene-based resin so as to be contained therein. The amount of the organic peroxide to be mixed is preferably 0.01-3 pts.wt. based on the 100 pts.wt. used polystyrene-based resin, and the ignition point is preferably ≥300°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、使用済みポリスチレン系樹脂を加熱溶融して得られた再生ポリスチレン系樹脂粒子を用いて製造される再生発泡性ポリスチレン系樹脂粒子の製造方法、再生発泡性ポリスチレン系樹脂粒子及びこれを発泡成形して得られる再生発泡ポリスチレン系樹脂成形品に関する。   The present invention relates to a method for producing regenerated expandable polystyrene resin particles produced using regenerated polystyrene resin particles obtained by heating and melting a used polystyrene resin, regenerated expandable polystyrene resin particles, and foaming the same. The present invention relates to a recycled expanded polystyrene resin molded product obtained by molding.

現在、発泡ポリスチレン系樹脂成形品は、一度使用された後、熱収縮されポリスチレン塊として回収し、主に射出成形による雑貨品、押出成形による建材等の用途に再利用されることが行われてきている。   At present, foamed polystyrene resin molded products have been used once and then heat-shrinked and recovered as polystyrene lumps and reused mainly for miscellaneous goods by injection molding and building materials by extrusion molding. ing.

発泡ポリスチレン系樹脂成形品を熱収縮させる減容装置は、従来260〜300℃の高温で処理していたため熱劣化が大きく、MFR(メルトフローレート)値は熱減容前1〜5g/10分に対し、10〜30g/10分であった。このため、再利用した際の成形品物性が著しく低下する問題があった。近年、この問題を解決するため、摩擦熱方式等により230℃以下で処理する減容装置が開発され広く導入され、MFR値は3〜7g/10分の劣化の小さい再生樹脂が作られてきている。   The volume reduction device that thermally shrinks the expanded polystyrene-based resin molded product has been processed at a high temperature of 260 to 300 ° C., so that the thermal deterioration is large, and the MFR (melt flow rate) value is 1 to 5 g / 10 minutes before the heat reduction. In contrast, it was 10 to 30 g / 10 minutes. For this reason, there existed a problem that the physical property of the molded article at the time of reuse falls remarkably. In recent years, in order to solve this problem, a volume reduction device for processing at 230 ° C. or less by a frictional heat method or the like has been developed and widely introduced, and a recycled resin with a small deterioration of 3 to 7 g / 10 min has been made for an MFR value. Yes.

再生発泡性ポリスチレン系樹脂の製造法としては、再生ポリスチレン樹脂を粉砕して得られる再生ポリスチレン系樹脂粒子を分散媒に分散させ、発泡剤を含浸する方法(特許文献1、2)、再生ポリスチレン樹脂を粉砕して得られる再生ポリスチレン系樹脂粒子を懸濁させ、重合開始剤とスチレン系単量体を、前記再生ポリスチレン系樹脂粒子に含浸させ、引き続きスチレン系単量体を加えて重合を行い、その後、発泡剤を含浸させる再生発泡性ポリスチレン樹脂粒子の製造方法(特許文献3、4)が提案されている。
しかし、近年導入が進んでいる処理温度が低い減容装置により処理されたMFR値の低い再生樹脂を用いた場合、粒子が球形化せず、予備発泡時に粒子同士が溶融し塊となるブロッキングが発生したり、金型への充填性が低下し成形品外観が劣る問題があった。
As a method for producing a recycled foamed polystyrene resin, a method of dispersing recycled polystyrene resin particles obtained by pulverizing a recycled polystyrene resin in a dispersion medium and impregnating a foaming agent (Patent Documents 1 and 2), a recycled polystyrene resin The regenerated polystyrene resin particles obtained by pulverizing are suspended, the polymerization initiator and the styrene monomer are impregnated in the regenerated polystyrene resin particles, and then the styrene monomer is added to perform polymerization. Thereafter, a method for producing recycled expandable polystyrene resin particles impregnated with a foaming agent (Patent Documents 3 and 4) has been proposed.
However, when a recycled resin having a low MFR value processed by a volume reduction device having a low processing temperature, which has been introduced in recent years, is used, the particles do not spheroidize, and blocking occurs in which the particles melt and become a lump at the time of preliminary foaming. There was a problem that the appearance of the molded product was inferior due to the occurrence or the filling property to the mold was lowered.

特許第3044921号公報Japanese Patent No. 3044921 特開平5−320406号公報JP-A-5-320406 特開2002−284916号公報JP 2002-284916 A 特開2003−064211号公報Japanese Patent Laid-Open No. 2003-064211

本発明は、MFR値が低い樹脂粒子を用いた場合にも粒子を球形化できる再生発泡性ポリスチレン系樹脂粒子の製造法及び得られる再生発泡性ポリスチレン系樹脂粒子、並びにこれ用いて得られる再生発泡ポリスチレン系樹脂成形品を提供するものである。   The present invention relates to a process for producing regenerated expandable polystyrene resin particles that can be made spherical even when resin particles having a low MFR value are used, the regenerated expandable polystyrene resin particles obtained, and the regenerated expanded foam obtained by using the same A polystyrene-based resin molded product is provided.

本発明は、使用済みポリスチレン系樹脂を加熱溶融し、粉砕して得られる再生ポリスチレン系樹脂粒子を、水性媒体中に懸濁させ、重合開始剤とスチレン系単量体を、前記再生ポリスチレン系樹脂粒子に含浸させて重合を行い、発泡剤を含浸させる再生発泡性ポリスチレン樹脂粒子の製造法であって、前記再生ポリスチレン系樹脂粒子が、有機過酸化物を前記使用済みポリスチレン系樹脂に混合し、加熱溶融、粉砕して含有させたものであることを特徴とする再生発泡性ポリスチレン系樹脂粒子の製造法に関する。   In the present invention, regenerated polystyrene resin particles obtained by heating and melting a used polystyrene resin and pulverizing it are suspended in an aqueous medium, and a polymerization initiator and a styrene monomer are added to the regenerated polystyrene resin. It is a method for producing regenerated expandable polystyrene resin particles that are impregnated into particles and polymerized, and impregnated with a foaming agent, wherein the regenerated polystyrene resin particles are mixed with an organic peroxide in the used polystyrene resin, The present invention relates to a process for producing regenerated expandable polystyrene resin particles, which is heated and melted and pulverized.

また本発明は、前記混合する有機過酸化物の量が、使用済みポリスチレン系樹脂100重量部に対して0.01〜3重量部であることを特徴とする再生発泡性ポリスチレン系樹脂粒子の製造法に関する。
また本発明は、前記混合する有機過酸化物が、発火温度が300℃以上であることを特徴とする再生発泡性ポリスチレン系樹脂粒子の製造法に関する。
また本発明は、前記の各再生発泡性ポリスチレン系樹脂粒子の製造法により得られる再生発泡性ポリスチレン系樹脂粒子に関する。
さらに本発明は、前記の再生発泡性ポリスチレン系樹脂粒子を発泡して得られる再生ポリスチレン系発泡ビーズを発泡成形して得られる再生発泡ポリスチレン系樹脂成形品に関する。
In the present invention, the amount of the organic peroxide to be mixed is 0.01 to 3 parts by weight with respect to 100 parts by weight of the used polystyrene resin. Regarding the law.
The present invention also relates to a method for producing regenerated expandable polystyrene resin particles, wherein the organic peroxide to be mixed has an ignition temperature of 300 ° C. or higher.
Moreover, this invention relates to the reproduction | regeneration expandable polystyrene resin particle obtained by the manufacturing method of each said reproduction | regeneration expandable polystyrene resin particle.
Furthermore, the present invention relates to a regenerated expanded polystyrene resin molded product obtained by foam molding of the regenerated polystyrene expanded beads obtained by expanding the regenerated expandable polystyrene resin particles.

本発明によれば、MFR値が低い再生ポリスチレン系樹脂を用いても粒子を球形化でき、予備発泡時のブロッキングが少ない再生発泡性ポリスチレン系樹脂粒子が得られ、またこの粒子を用いることで外観に優れた再生発泡ポリスチレン系樹脂成形品が得られる。   According to the present invention, particles can be spheroidized even if a regenerated polystyrene resin having a low MFR value is used, and regenerated expandable polystyrene resin particles with little blocking at the time of prefoaming can be obtained. Recycled expanded polystyrene-based resin molded products with excellent resistance can be obtained.

本発明の再生発泡性ポリスチレン系樹脂粒子の製造法、得られる再生発泡性ポリスチレン系樹脂粒子及びこれを発泡成形して得られる再生発泡ポリスチレン系樹脂成形品について詳しく説明する。
本発明の再生ポリスチレン系樹脂粒子は、使用済みの発泡ポリスチレン系樹脂を熱減容したのち、有機過酸化物を前記の使用済みポリスチレン系樹脂に混合したものであり、例えば、有機過酸化物とともに熱溶融混合して有機過酸化物を含有させた再生ポリスチレン系樹脂を粉砕することで作製できる。なお、使用済みポリスチレン系樹脂とは、実際に何らかの用途に使用したものに止まらず、一旦は成形されたもので、実際には使用されていないものを含むものである。また、本発明においてポリスチレン系樹脂とは、スチレンのホモポリマーだけではなく、スチレンを主成分とする樹脂であって、その他のモノマ、例えばアクリル酸アルキルエステルやメタクリル酸アルキルエステル、シアン化ビニル等を共重合したものも含む。
The production method of regenerated expandable polystyrene resin particles of the present invention, the regenerated expandable polystyrene resin particles obtained, and the regenerated expanded polystyrene resin molded product obtained by foam molding thereof will be described in detail.
The regenerated polystyrene resin particles of the present invention are obtained by thermally reducing the volume of a used expanded polystyrene resin and then mixing the organic peroxide with the used polystyrene resin. For example, together with the organic peroxide It can be produced by crushing a recycled polystyrene resin containing an organic peroxide by hot melt mixing. The used polystyrene-based resin is not limited to what is actually used for some purpose, but includes one that is once molded and not actually used. In the present invention, the polystyrene-based resin is not only a homopolymer of styrene but also a resin mainly composed of styrene, and other monomers such as alkyl acrylates, alkyl methacrylates, vinyl cyanide, etc. Including those copolymerized.

本発明の再生発泡性ポリスチレン系樹脂粒子の製造法は、使用済みポリスチレン系樹脂を加熱溶融し、粉砕して得られる再生ポリスチレン系樹脂粒子を、水性媒体中に懸濁させ、重合開始剤とスチレン系単量体を、前記再生ポリスチレン系樹脂粒子に含浸させて重合を行い、発泡剤を含浸させるものである。この際、前記再生ポリスチレン系樹脂粒子が、有機過酸化物を前記使用済みポリスチレン系樹脂に混合し、加熱溶融、粉砕して含有させたものであることを特徴とするものである。   The method for producing regenerated expandable polystyrene resin particles according to the present invention comprises the steps of suspending regenerated polystyrene resin particles obtained by heat-melting and crushing a used polystyrene resin in an aqueous medium, a polymerization initiator and styrene. The regenerated polystyrene resin particles are impregnated with a polymer monomer to perform polymerization, and a foaming agent is impregnated. At this time, the recycled polystyrene resin particles are characterized in that an organic peroxide is mixed with the used polystyrene resin, heated and melted and pulverized.

本発明の製造法において用いる有機過酸化物の配合量は、使用済みポリスチレン系樹脂100重量部に対して、0.01〜3重量部が好ましく、0.05〜1重量部がより好ましい。配合量が0.01重量部未満ではMFR値を高くする効果が十分に得られず、3重量部を超えるとMFR値の調整が困難となる傾向がある。取り扱いしやすさから有機過酸化物の性状は、常温(25℃)で粉体状となっているものが好ましい。   The amount of the organic peroxide used in the production method of the present invention is preferably 0.01 to 3 parts by weight and more preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the used polystyrene resin. If the blending amount is less than 0.01 part by weight, the effect of increasing the MFR value cannot be obtained sufficiently, and if it exceeds 3 parts by weight, it tends to be difficult to adjust the MFR value. From the viewpoint of ease of handling, the organic peroxide is preferably in the form of powder at room temperature (25 ° C.).

本発明に用いる有機過酸化物の発火温度は300℃以上であることが好ましく、350℃以上がより好ましい。発火温度が300℃未満では溶融時の熱で発火の恐れがあり危険である。なお、発火温度は、ASTM E659に準拠して測定することができる。
このような有機過酸化物としては、ジクミルパーオキサイド(発火温度481℃、日本油脂株式会社製、商品名パークミルD、固体状)、ジ(2−t−ブチルパーオキシイソプロピル)ベンゼン(発火温度479℃、日本油脂株式会社製、商品名パーブチルP、固体状)、ジ−t−ブチルパーオキサイド(発火温度475℃、日本油脂株式会社製、商品名パーブチルD、液体状)、t−ブチルクミルパーオキサイド(発火温度490℃、日本油脂株式会社製、商品名パーブチルC、液体状)等の発火温度300℃以上のジアルキルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート(発火温度442℃、日本油脂株式会社製、商品名パーブチルO、液体状)、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート(発火温度460℃、日本油脂株式会社製、商品名パーブチル355、液体状)、t−ブチルパーオキシベンゾエート(発火温度490℃、日本油脂株式会社製、商品名パーブチルZ、液体状)等のパーオキシエステルなどが好ましいものとしてあげられ、取り扱い性の点からは固体状のものが好ましいものとしてあげられる。
なお発火温度の上限は、制限はないが、用いる使用済みポリスチレン系樹脂の分解温度(300〜400℃)の2、3倍程度であることが好ましく、およそ1000℃以下である。
The ignition temperature of the organic peroxide used in the present invention is preferably 300 ° C. or higher, more preferably 350 ° C. or higher. If the ignition temperature is less than 300 ° C., there is a risk of ignition due to heat at the time of melting, which is dangerous. The ignition temperature can be measured in accordance with ASTM E659.
Examples of such organic peroxides include dicumyl peroxide (ignition temperature 481 ° C., manufactured by NOF Corporation, trade name Park Mill D, solid), di (2-t-butylperoxyisopropyl) benzene (ignition temperature). 479 ° C., manufactured by NOF Corporation, trade name Perbutyl P, solid), di-t-butyl peroxide (ignition temperature 475 ° C., manufactured by NOF Corporation, trade name Perbutyl D, liquid), t-butyl kumi Dialkyl peroxides with an ignition temperature of 300 ° C. or higher, such as ruperoxide (ignition temperature 490 ° C., manufactured by NOF Corporation, trade name Perbutyl C, liquid form), t-butylperoxy-2-ethylhexanoate (ignition temperature 442 ° C, manufactured by NOF Corporation, trade name perbutyl O, liquid), t-butylperoxy-3,5,5-trimethylhexanoate Peroxy such as ignition temperature 460 ° C., manufactured by NOF Corporation, trade name Perbutyl 355, liquid), t-butyl peroxybenzoate (ignition temperature 490 ° C., manufactured by NOF Corporation, trade name Perbutyl Z, liquid) Esters are preferred, and solids are preferred from the viewpoint of handleability.
The upper limit of the ignition temperature is not limited, but is preferably about 2 to 3 times the decomposition temperature (300 to 400 ° C.) of the used polystyrene resin used, and is about 1000 ° C. or less.

本発明において、有機過酸化物の使用済みポリスチレン系樹脂への混合は、例えば、使用済みポリスチレン系樹脂の粗粉砕物に有機過酸化物を配合し、リボンブレンダー、Vブレンダー、ヘンシェルミキサー、レディゲーミキサー等の混合機で一旦混合し、ついで溶融押出機等を用いて溶融混合して行うことができる。
本発明では、使用済みポリスチレン系樹脂の溶融の際に、オレイン酸アミド、ステアリン酸アミド等の脂肪酸モノアミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸ビスアミド、タルクなどの無機物を気泡調整剤として混練することができる。この場合、予め粉砕物と気泡調整剤を混合させた後、押出成形される。減容物粉砕物と気泡調整剤の混合は、従来既知の手段で行うことができる。例えば、リボンブレンダー、Vブレンダー、ヘンシェルミキサー、レディゲーミキサー等の混合機が使用できる。
この気泡調整剤の混合は、有機過酸化物と同時に行うことができる。
In the present invention, the mixing of the organic peroxide with the used polystyrene resin is performed by, for example, blending the organic peroxide with the coarsely pulverized product of the used polystyrene resin, and then mixing the ribbon blender, V blender, Henschel mixer, and ready-made mixer. It can be carried out by once mixing with a mixer such as a mixer and then melt mixing using a melt extruder or the like.
In the present invention, when used polystyrene resin is melted, air bubbles are adjusted for fatty acid monoamides such as oleic acid amide and stearic acid amide, fatty acid bisamides such as methylene bis stearic acid amide and ethylene bis stearic acid amide, and talc. It can be kneaded as an agent. In this case, the pulverized product and the air bubble adjusting agent are mixed in advance and then extruded. Mixing of the reduced product pulverized product and the air bubble adjusting agent can be performed by a conventionally known means. For example, a blender such as a ribbon blender, a V blender, a Henschel mixer, or a ready game mixer can be used.
The mixing of the bubble regulator can be performed simultaneously with the organic peroxide.

本発明におけるポリスチレン系樹脂の減容物は、比重調整を目的に熱溶融される。この工程で、再生ポリスチレン系樹脂の比重を0.6以上に調整することが好ましく、0.9以上に調整することがより好ましい。比重が0.6未満では、樹脂粒子の分散が不安定であるため、重合工程中に過大粒子が発生し歩留まりが低下する傾向がある。スチレン系樹脂の熱溶融は、押出機、熱ロール等の従来既知の手段を使用できる。
スチレン系樹脂の熱溶融は、得られた樹脂にひずみが残留しない、又はひずみが小さい状態で冷却固化することすることが重要である。樹脂粒子にひずみが残っていると、重合工程や発泡剤含浸工程でひずみが緩和され、延伸方向に収縮し、得られた再生発泡性スチレン系樹脂粒子は球形とならず扁平状となる恐れがある。従って、例えば押出機を使用して熱溶融する場合には、押出速度とほぼ同じ速度でシートを引きながら溶融押出することが好ましい。
The volume-reduced product of polystyrene resin in the present invention is heat-melted for the purpose of adjusting specific gravity. In this step, the specific gravity of the recycled polystyrene resin is preferably adjusted to 0.6 or more, and more preferably adjusted to 0.9 or more. When the specific gravity is less than 0.6, the dispersion of the resin particles is unstable, so that excessive particles are generated during the polymerization process, and the yield tends to be lowered. Conventionally known means such as an extruder and a hot roll can be used for the thermal melting of the styrene resin.
In the thermal melting of the styrene resin, it is important that the obtained resin is cooled and solidified with no strain remaining or with a small strain. If the resin particles remain strained, the strain is relaxed in the polymerization step and the foaming agent impregnation step and contracts in the stretching direction, and the obtained regenerated expandable styrene resin particles may not be spherical but flat. is there. Therefore, for example, when heat melting is performed using an extruder, it is preferable to melt and extrude while drawing the sheet at approximately the same speed as the extrusion speed.

本発明に用いる粉砕機は、プラスチック用のものが適用できるが、ポリスチレンを目的とした0.3〜2mmの範囲に粉砕可能なものであれば、必ずしも粉砕機の種類は制限されるものではない。
粉砕によって得られた目的以外の大きさの再生ポリスチレン系樹脂粒子は、ふるい分けされ、再度、押出機等による溶融工程に供することもできる。
Although the thing for plastics can apply the grinder used for this invention, if it can grind | pulverize in the range of 0.3-2 mm aiming at polystyrene, the kind of grinder will not necessarily be restrict | limited. .
Recycled polystyrene resin particles having a size other than the purpose obtained by pulverization can be screened and again subjected to a melting step using an extruder or the like.

本発明の製造法において、核として用いる再生ポリスチレン系樹脂粒子の平均径は、0.3〜2mmが好ましく、0.4〜1.0mmがより好ましい。再生ポリスチレン系樹脂粒子の大きさが2mmを超えると製品形状が球形になりにくい傾向があり、0.3mm未満では重合を行った後でも粒子径が小さすぎ、再生発泡性スチレン系樹脂粒子としたときの需要が少ない。   In the production method of the present invention, the average diameter of the regenerated polystyrene resin particles used as the core is preferably 0.3 to 2 mm, and more preferably 0.4 to 1.0 mm. If the size of the regenerated polystyrene resin particles exceeds 2 mm, the product shape tends to be difficult to be spherical. If it is less than 0.3 mm, the particle diameter is too small even after polymerization, and regenerated expandable styrene resin particles are obtained. When demand is low.

核となる再生ポリスチレン系樹脂粒子の比率は、加えるスチレン系単量体との合計量に対して、20重量%以上、70重量%以下とすることが好ましく、25重量%以上、50重量%以下とすることがより好ましい。再生スチレン系樹脂粒子の比率が20重量%未満では、重合過程で粒子同士が合一し易く、70重量%を超えると成形品の強度が不足する傾向がある。   The ratio of the regenerated polystyrene resin particles as the core is preferably 20% by weight or more and 70% by weight or less, and preferably 25% by weight or more and 50% by weight or less, with respect to the total amount with the styrene monomer added. More preferably. If the ratio of the regenerated styrene resin particles is less than 20% by weight, the particles are easily united in the polymerization process, and if it exceeds 70% by weight, the strength of the molded product tends to be insufficient.

本発明の再生発泡性ポリスチレン系樹脂粒子の製造法では、まず、再生ポリスチレン系樹脂粒子を核として水性媒体中に懸濁する。水性媒体中への懸濁、分散は、通常、攪拌翼を備えた装置を用いて行われ、その条件等に制限はない。また、分散剤と共に分散することが分散安定性の点で好ましい。   In the method for producing regenerated expandable polystyrene resin particles of the present invention, first, the regenerated polystyrene resin particles are suspended in an aqueous medium as a core. Suspension and dispersion in an aqueous medium are usually performed using an apparatus equipped with a stirring blade, and there are no restrictions on the conditions. Moreover, it is preferable from the point of dispersion stability to disperse | distribute with a dispersing agent.

本発明に用いる分散剤は、懸濁重合に用いられるものであれば特に制限はない。例えば、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース等の有機系分散剤、リン酸マグネシウム、リン酸三カルシウム等の難溶性無機塩が挙げられる。さらに界面活性剤も用いることができる。この界面活性剤としては、オレイン酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、その他懸濁重合で一般的に使用されるアニオン系界面活性剤、ノニオン系界面活性剤のいずれでも使用できる。これらの分散剤の中では、スチレン系単量体の油滴の安定性から、有機系分散剤を使用することが好ましい。   The dispersant used in the present invention is not particularly limited as long as it is used for suspension polymerization. Examples thereof include organic dispersants such as polyvinyl alcohol, polyvinyl pyrrolidone, and methyl cellulose, and poorly soluble inorganic salts such as magnesium phosphate and tricalcium phosphate. Further, a surfactant can also be used. As this surfactant, any of sodium oleate, sodium dodecylbenzenesulfonate, and other anionic surfactants and nonionic surfactants generally used in suspension polymerization can be used. Among these dispersants, it is preferable to use an organic dispersant from the viewpoint of the stability of the oil droplets of the styrene monomer.

次に、上記懸濁液に、重合開始剤とスチレン系単量体を加え、重合する。この場合、予め重合開始剤を溶解したスチレン系単量体を加え、核となる再生ポリスチレン系樹脂粒子に含浸させ、引き続きスチレン系単量体を加えて重合を行うことが好ましい。
本発明で使用するスチレン系単量体は、スチレン、α−メチルスチレン、ビニルトルエン等のスチレン誘導体の1種または2種以上だけではなく、これらと、メチルメタクリレート、エチルメタクリレート等のメタクリル酸アルキルエステル、対応するアルキル基を有するアクリル酸アルキルエステル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、塩化ビニル等その他の重合可能な単量体との混合物も含む。また、ジビニルベンゼン、ジアリルフタレート等の架橋剤を併用しても差し支えなく、これも含む。
Next, a polymerization initiator and a styrenic monomer are added to the suspension to polymerize. In this case, it is preferable to carry out the polymerization by adding a styrene monomer in which a polymerization initiator is dissolved in advance, impregnating the regenerated polystyrene resin particles as the core, and subsequently adding the styrene monomer.
The styrenic monomer used in the present invention is not only one or two or more styrene derivatives such as styrene, α-methylstyrene, and vinyltoluene, and these and alkyl methacrylates such as methyl methacrylate and ethyl methacrylate. And mixtures with other polymerizable monomers such as vinyl cyanide, vinyl chloride such as acrylic acid alkyl ester having a corresponding alkyl group, acrylonitrile, methacrylonitrile and the like. Further, a crosslinking agent such as divinylbenzene and diallyl phthalate may be used in combination, and these are also included.

重合反応に用いる重合開始剤としては、懸濁重合法に用いられるものであれば特に制限はなく、例えば、t−ブチルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキシルカーボネート、t−ブチルパーベンゾエート等の有機過酸化物、アゾビスイソブチロニトリル等のアゾ化合物の1種または2種以上を使用することができる。   The polymerization initiator used in the polymerization reaction is not particularly limited as long as it is used in the suspension polymerization method. For example, t-butyl peroxide, benzoyl peroxide, t-butylperoxy-2-ethylhexyl carbonate, t -One or more organic peroxides such as butyl perbenzoate and azo compounds such as azobisisobutyronitrile can be used.

重合開始剤は、溶剤に溶解して加え、再生スチレン系樹脂粒子に含浸させてもよい。この場合、重合開始剤を溶解する溶剤としては、エチルベンゼン、トルエン等の芳香族炭化水素、ヘプタン、オクタン等の脂肪族炭化水素等が用いられる。これらを用いる場合は、通常、スチレン系単量体に対して3重量%以下で使用される。重合開始剤の使用量は、重合開始剤の種類により異なるが、一般的に単量体に対して0.1〜0.5重量%の範囲が好ましい。
全体の分子量は、重合開始剤の濃度を調整するか、連鎖移動剤を併用するか、又はこれら両方により調整できる。連鎖移動剤としては、オクチルメルカプタン、ドデシルメルカプタン、α−メチルスチレンダイマー等の従来公知のものが使用できる。
The polymerization initiator may be added after being dissolved in a solvent, and the regenerated styrene resin particles may be impregnated. In this case, as a solvent for dissolving the polymerization initiator, aromatic hydrocarbons such as ethylbenzene and toluene, aliphatic hydrocarbons such as heptane and octane, and the like are used. When these are used, they are usually used at 3% by weight or less based on the styrene monomer. Although the usage-amount of a polymerization initiator changes with kinds of polymerization initiator, generally the range of 0.1 to 0.5 weight% is preferable with respect to a monomer.
The total molecular weight can be adjusted by adjusting the concentration of the polymerization initiator, using a chain transfer agent together, or both. As the chain transfer agent, conventionally known ones such as octyl mercaptan, dodecyl mercaptan, α-methylstyrene dimer can be used.

水性媒体中に懸濁、分散された再生ポリスチレン系樹脂粒子からなる核に、スチレン系単量体を含浸させる方法としては、スチレン系単量体を単独で添加する方法と、水性媒体中にスチレン単量体、分散剤等を添加し微細に分散させた分散液として添加する方法がある。また、これらの方法を組み合わせてもよい。
スチレン系単量体、分散剤等を水性媒体に添加し微細に分散する方法は、通常、撹拌翼を備えた装置を用いて行なわれる。その条件等に制限はないが、より微細に分散する方法としては、ホモミキサーを用いるのが好ましい。このときスチレン系単量体を分散した分散液の油滴径が、核の粒子径以下になるまで分散するのが好ましい。油滴径が核の粒子径よりも大きい状態で水性媒体中に添加されると、スチレン系単量体を分散した分散液の油滴に複数の樹脂粒子が取り込まれ、樹脂粒子の粘着、可塑化、合一が起こり、過大粒子が発生しやすいためである。
As a method of impregnating a styrene monomer into a core composed of regenerated polystyrene resin particles suspended and dispersed in an aqueous medium, a method in which a styrene monomer is added alone, or a styrene monomer in an aqueous medium is used. There is a method in which a monomer, a dispersant, and the like are added and added as a finely dispersed dispersion. Moreover, you may combine these methods.
A method of adding a styrenic monomer, a dispersant, or the like to an aqueous medium to finely disperse is usually performed using an apparatus equipped with a stirring blade. The conditions are not limited, but it is preferable to use a homomixer as a method for finer dispersion. At this time, it is preferable to disperse until the oil droplet diameter of the dispersion liquid in which the styrene monomer is dispersed is equal to or smaller than the particle diameter of the core. When added to an aqueous medium in a state where the oil droplet size is larger than the core particle size, a plurality of resin particles are taken into the oil droplets of the dispersion liquid in which the styrenic monomer is dispersed, and the resin particles are adhered and plasticized. This is because crystallization and coalescence occur and excessive particles are easily generated.

スチレン系単量体の添加は、分割して行っても連続的に行ってもよい。また、添加速度は、重合装置の容量、形状、重合温度等によって異なり適宜選択される。また、重合温度は、60〜105℃の範囲が好ましい。   The addition of the styrenic monomer may be performed separately or continuously. Further, the addition rate varies depending on the capacity, shape, polymerization temperature and the like of the polymerization apparatus and is appropriately selected. The polymerization temperature is preferably in the range of 60 to 105 ° C.

本発明で発泡剤の含浸は、重合中または重合後に発泡剤を容器内に圧入し、通常再生スチレン系樹脂粒子の軟化点以上の温度に上げ、樹脂粒子中に含浸させる。発泡剤としては、樹脂粒子を溶かさないか、または僅かに膨潤させるものが好ましく、具体的にはプロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン等の脂肪族炭化水素、シクロヘキサン、シクロペンタン等の脂環式炭化水素が用いられる。これらの発泡剤は、通常再生スチレン樹脂粒子に対して3〜15重量%使用される。
発泡剤の含浸温度は、一般的には90℃以上であり、好ましくは100〜140℃であり、より好ましくは100〜120℃である。発泡剤の含浸温度が90℃未満では、粒子が球形化し難くなる。140℃を超えると合一ビーズが発生し易くなり好ましくない。発泡剤の含浸が完了した後、重合系内より排出することによって、発泡性スチレン系樹脂粒子を得ることができる。
In the present invention, the foaming agent is impregnated by press-fitting the foaming agent into the container during or after the polymerization, raising the temperature to a temperature above the softening point of the regenerated styrene resin particles, and impregnating the resin particles. As the foaming agent, those that do not dissolve or slightly swell resin particles are preferable. Specifically, aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, cyclopentane, etc. An alicyclic hydrocarbon such as is used. These foaming agents are usually used in an amount of 3 to 15% by weight based on the regenerated styrene resin particles.
The impregnation temperature of the foaming agent is generally 90 ° C. or higher, preferably 100 to 140 ° C., more preferably 100 to 120 ° C. When the impregnation temperature of the foaming agent is less than 90 ° C., the particles are difficult to spheroidize. If it exceeds 140 ° C., coalescence beads are likely to be generated, which is not preferable. After the impregnation with the foaming agent is completed, the expandable styrene resin particles can be obtained by discharging from the polymerization system.

再生発泡性ポリスチレン系樹脂粒子は、発泡剤の含浸が完了し、重合系内より排出され、さらに脱水乾燥した後、必要に応じて表面被覆剤を被覆することができる。かかる被覆剤は、従来公知である発泡性ポリスチレン系樹脂粒子に用いられるものが適用できる。例えば、ジンクステアレート、ステアリン酸トリグリセライド、ステアリン酸モノグリセライド、ひまし硬化油、牛脂硬化油、シリコーン類、静電気防止剤等である。   The regenerated expandable polystyrene resin particles can be coated with a surface coating agent as necessary after impregnation with the foaming agent, discharged from the polymerization system, and dehydrated and dried. As such a coating agent, those used for conventionally known expandable polystyrene resin particles can be applied. For example, zinc stearate, stearic acid triglyceride, stearic acid monoglyceride, castor hardened oil, beef tallow hardened oil, silicones, antistatic agent and the like.

本発明の再生発泡ポリスチレン系樹脂成形品は、再生発泡性ポリスチレン系樹脂粒子を発泡成形して製造する。一般には、再生発泡性ポリスチレン系樹脂粒子を、スチーム等により加熱して所定の嵩密度まで予備発泡し、熟成工程を経た発泡ビーズを成形金型に充填し再度スチーム等で加熱発泡成形して、発泡成形品を製造する。   The regenerated expanded polystyrene resin molded article of the present invention is produced by expansion molding regenerated expandable polystyrene resin particles. In general, regenerated expandable polystyrene resin particles are heated with steam or the like to be pre-foamed to a predetermined bulk density, filled with foam beads that have undergone an aging process, and again heated and foamed with steam or the like, Manufacture foam molded products.

本発明の成形品は外観、融着に優れ、強度が高く、食品容器、梱包材、緩衝材等に好適に使用できる。   The molded product of the present invention is excellent in appearance and fusion, has high strength, and can be suitably used for food containers, packing materials, cushioning materials and the like.

次に実施例により、本発明をさらに詳細に説明する。
(実施例1)
[再生スチレン系樹脂粒子からなる核の製造]
使用済みポリスチレン成形品として、発泡スチレン系樹脂成形品(日立化成工業(株)製ハイビーズ3SB−TX−7より得られた成形品)を210℃の熱風で収縮させ、見かけ比重0.8、大きさ500mm×400mm×100mm及び重さ約16kgの収縮物を得た。この収縮物を10mmのスクリーンをとりつけた粉砕機(ZA−560型粉砕機、株式会社ホーライ商品名)で粗粉砕した。このとき得られた粗粉砕物のMFR値は3.9g/10分、最大長さは約10mm、嵩比重0.65であった。ついで、ヘンシェルミキサー(三井三池化工製、FM10B)にこの粗粉砕物1800g及びジクミルパーオキサイド(日本油脂株式会社製 パークミルD、発火温度481℃)5.4g、平均粒子径が10μmのタルク(林化成株式会社製、ミクロホワイト#5000)18g及びエチレンビスステアリルアミド9.0gを入れ、2000rpmで2分間混合した。
次いで、この粗粉砕物1800gをベント付き30mm押出機(T型ダイス、シート幅300mm、シート肉圧1mm)を用い、シリンダー温度230℃、押出速度とほぼ同じ速度でシートを引きながら溶融押出した。
さらに、冷却固化前に、押出方向に対し水平に、1mm間隔、深さ0.5mmのスリットをロールで設け、冷却固化後、切断機で約10〜15cmに切断した。引き続き、得られたシート状スチレン系樹脂の切断片を、1.5mmのスクリーンをとりつけた粉砕機(VM−16型粉砕機、株式会社オリエント商品名)で細粉砕した。細粉砕物を、0.4〜1.0mmの範囲に篩で分級し再生ポリスチレン系樹脂粒子を得た。この再生ポリスチレン系樹脂粒子のMFR値は15.4g/10分であった。
Next, the present invention will be described in more detail by way of examples.
Example 1
[Manufacture of nuclei made of regenerated styrene resin particles]
As used polystyrene molded products, foamed styrene resin molded products (molded products obtained from Hitachi Chemical Co., Ltd. High Beads 3SB-TX-7) were shrunk with hot air at 210 ° C., and apparent specific gravity 0.8, large A shrinkage having a thickness of 500 mm × 400 mm × 100 mm and a weight of about 16 kg was obtained. The shrinkage was roughly pulverized with a pulverizer (ZA-560 type pulverizer, trade name of Horai Co., Ltd.) equipped with a 10 mm screen. The coarsely pulverized product obtained at this time had an MFR value of 3.9 g / 10 min, a maximum length of about 10 mm, and a bulk specific gravity of 0.65. Next, 1800 g of this coarsely pulverized product and 5.4 g of dicumyl peroxide (Park Mill D, ignition temperature 481 ° C., manufactured by Nippon Oil & Fats Co., Ltd.) and talc (Hayashi Hayashi) with an average particle diameter of 10 μm were added to a Henschel mixer (FM10B, Mitsui Miike). 18 g of Micro white # 5000) manufactured by Kasei Co., Ltd. and 9.0 g of ethylenebisstearylamide were added and mixed at 2000 rpm for 2 minutes.
Next, 1800 g of this coarsely pulverized product was melt-extruded while pulling the sheet at a cylinder temperature of 230 ° C. and at almost the same speed as the extrusion speed using a vented 30 mm extruder (T-type die, sheet width 300 mm, sheet wall pressure 1 mm).
Furthermore, before cooling and solidification, a slit having a 1 mm interval and a depth of 0.5 mm was provided by a roll horizontally with respect to the extrusion direction. Subsequently, the cut piece of the obtained sheet-like styrene resin was finely pulverized by a pulverizer (VM-16 type pulverizer, Orient product name) equipped with a 1.5 mm screen. The finely pulverized product was classified with a sieve in the range of 0.4 to 1.0 mm to obtain recycled polystyrene resin particles. The regenerated polystyrene resin particles had an MFR value of 15.4 g / 10 minutes.

[再生発泡性ポリスチレン系樹脂粒子の製造]
5リットルの耐圧撹拌容器に脱イオン水1900g、上記方法で得られた再生ポリスチレン系樹脂粒子(核)1100g、リン酸三カルシウム12.0g、ドデシルベンゼンスルホン酸ナトリウム0.09gを仕込んだ。次いで耐圧攪拌容器内を窒素パージし、酸素濃度を0.5〜1体積%とした。その後、攪拌しながら75℃に昇温した。
次いで、単量体分散容器に脱イオン水400gとポリビニルアルコール1.3gを入れ混合し、これにt−ブチルパーオキサイド0.2g、ベンゾイルパーオキサイド2.9gを溶解したスチレン単量体200gを加え、ホモミキサー(特殊機化工業株式会社(プライミクス株式会社)製)を用いて5800rpmで120秒撹拌してスチレン単量体を微細(単量体油滴の平均径10〜100μm)に分散させた。このスチレン単量体分散液を容器内に30分かけて添加し、その後60分保温したのち、90℃に昇温した。
その後、スチレン単量体900gを連続的に5時間かけて等速度(3.0g/分)で添加した。この際、耐圧攪拌容器内を窒素パージし酸素濃度を0.5〜1体積%に保った。このときの重合率は90%であった。
次いで、リン酸三カルシウム2.2g、ドデシルベンゼンスルホン酸ナトリウム0.05gを添加した後、115℃に昇温して2時間保温した。ついで、100℃まで冷却し、発泡剤としてペンタン(i/n比=2/8、重量比以下同じ)150gを2回に分けて圧入して10時間保持して発泡剤の含浸を行った。
室温(25℃)まで冷却後、発泡剤が含浸された再生発泡性スチレン系樹脂粒子を取り出し、脱水乾燥した。次いでこの樹脂粒子を目開き0.6mm〜1.7mmの篩で分級し、得られた樹脂粒子に対しステアリン酸亜鉛0.1重量%、硬化ひまし油0.1重量%を加え表面被覆し再生発泡性スチレン系樹脂粒子を得た。
[Manufacture of regenerated expandable polystyrene resin particles]
In a 5 liter pressure-resistant stirring vessel, 1900 g of deionized water, 1100 g of regenerated polystyrene resin particles (core) obtained by the above method, 12.0 g of tricalcium phosphate, and 0.09 g of sodium dodecylbenzenesulfonate were charged. Subsequently, the inside of the pressure-resistant stirring vessel was purged with nitrogen to adjust the oxygen concentration to 0.5 to 1% by volume. Then, it heated up at 75 degreeC, stirring.
Next, 400 g of deionized water and 1.3 g of polyvinyl alcohol are mixed in a monomer dispersion container, and 200 g of styrene monomer in which 0.2 g of t-butyl peroxide and 2.9 g of benzoyl peroxide are dissolved is added. The styrene monomer was finely dispersed (average monomer oil droplet diameter of 10 to 100 μm) by stirring at 5800 rpm for 120 seconds using a homomixer (made by Tokushu Kika Kogyo Co., Ltd. (Primics Co., Ltd.)). . This styrene monomer dispersion was added to the container over 30 minutes, and then kept warm for 60 minutes, and then heated to 90 ° C.
Thereafter, 900 g of styrene monomer was continuously added at a constant rate (3.0 g / min) over 5 hours. At this time, the inside of the pressure-resistant stirring vessel was purged with nitrogen to keep the oxygen concentration at 0.5 to 1% by volume. At this time, the polymerization rate was 90%.
Next, after adding 2.2 g of tricalcium phosphate and 0.05 g of sodium dodecylbenzenesulfonate, the temperature was raised to 115 ° C. and kept for 2 hours. Subsequently, it was cooled to 100 ° C., and 150 g of pentane (i / n ratio = 2/8, the same as the weight ratio below) as a blowing agent was injected in two portions and held for 10 hours to impregnate the blowing agent.
After cooling to room temperature (25 ° C.), the regenerated expandable styrene resin particles impregnated with the foaming agent were taken out and dehydrated and dried. Next, the resin particles are classified with a sieve having an aperture of 0.6 mm to 1.7 mm, and 0.1% by weight of zinc stearate and 0.1% by weight of hardened castor oil are added to the obtained resin particles to cover the surface and regenerate foaming. Styrenic resin particles were obtained.

得られた再生発泡性スチレン系樹脂粒子を、50ml/gに予備発泡し、約18時間熟成後、株式会社ダイセン工業製発泡スチレン系樹脂成型機VS−300を用い、成形圧力0.08MPaで成形し、成形品を得た。   The regenerated foamable styrene resin particles obtained were prefoamed to 50 ml / g, and after aging for about 18 hours, molded using a foamed styrene resin molding machine VS-300 manufactured by Daisen Industry Co., Ltd. at a molding pressure of 0.08 MPa. As a result, a molded product was obtained.

(実施例2)
[再生スチレン系樹脂粒子からなる核の製造]
実施例1において用いたジクミルパーオキサイドの配合量5.4gを2.7gとした以外は実施例1と同様の方法で再生ポリスチレン系樹脂粒子とした。
この再生ポリスチレン系樹脂粒子のMFR値は7.1g/10分であった。
[再生発泡性ポリスチレン系樹脂粒子の製造]
上記方法で得られた再生ポリスチレン系樹脂粒子(核)を用いて実施例1と同様の方法で再生発泡性ポリスチレン系樹脂粒子及びその成形品を得た。
(Example 2)
[Manufacture of nuclei made of regenerated styrene resin particles]
Recycled polystyrene resin particles were obtained in the same manner as in Example 1 except that 5.4 g of dicumyl peroxide used in Example 1 was changed to 2.7 g.
The regenerated polystyrene resin particles had an MFR value of 7.1 g / 10 minutes.
[Manufacture of regenerated expandable polystyrene resin particles]
Regenerated expandable polystyrene resin particles and molded products thereof were obtained in the same manner as in Example 1 using the regenerated polystyrene resin particles (nuclei) obtained by the above method.

(比較例1)
[再生ポリスチレン系樹脂粒子からなる核の製造]
実施例1においてジクミルパーオキサイドを使用しない以外は実施例1と同様の方法で再生ポリスチレン系樹脂粒子とした。
この再生ポリスチレン系樹脂粒子のMFR値は4.6g/10分であった。
[再生発泡性ポリスチレン系樹脂粒子の製造]
上記方法で得られた再生ポリスチレン系樹脂粒子(核)を用いて実施例1と同様の方法で再生発泡性ポリスチレン系樹脂粒子及びその成形品を得た。
(Comparative Example 1)
[Manufacture of nuclei made of recycled polystyrene resin particles]
Recycled polystyrene resin particles were obtained in the same manner as in Example 1 except that dicumyl peroxide was not used in Example 1.
The regenerated polystyrene resin particles had an MFR value of 4.6 g / 10 minutes.
[Manufacture of regenerated expandable polystyrene resin particles]
Regenerated expandable polystyrene resin particles and molded products thereof were obtained in the same manner as in Example 1 using the regenerated polystyrene resin particles (nuclei) obtained by the above method.

実施例1〜2及び比較例1で得た再生発泡性ポリスチレン系樹脂粒子の評価結果を表1に示した。表1における特性評価の方法は以下の通りである。
(1)MFR
JIS K7210に準拠、測定温度200℃
(2)発火温度
ASTM E659法に準拠
500mlフラスコを電気炉で適当な温度に設定し、試料0.1mlを投入し、発火が認められる最低温度を発火温度とした。
(3)ブロッキング
ブロッキング(重量%)
=(粒子同士が合一した塊の重量/発泡機に投入したビーズの重量)×100
(4)表面平滑率
成形品の表面平滑率は、まず成形品の表面に印刷用インクをローラーで薄く塗り、この表面部分を画像処理装置にかけ、全面積に対する黒色部分の面積を求め、表面平滑率とした。
(5)粒子形状
得られた再生ポリスチレン系樹脂粒子の形状を顕微鏡により観察し、球形状のものを「球形」、扁平状のものを「扁平」として評価した。
Table 1 shows the evaluation results of the regenerated expandable polystyrene resin particles obtained in Examples 1 and 2 and Comparative Example 1. The characteristic evaluation method in Table 1 is as follows.
(1) MFR
Conforms to JIS K7210, measuring temperature 200 ° C
(2) Ignition temperature Compliant with ASTM E659 method A 500 ml flask was set to an appropriate temperature with an electric furnace, 0.1 ml of a sample was added, and the lowest temperature at which ignition was observed was defined as the ignition temperature.
(3) Blocking Blocking (wt%)
= (Weight of lump where particles are united / Weight of beads put into foaming machine) × 100
(4) Surface smoothness The surface smoothness of a molded product is as follows. First, the surface of the molded product is thinly coated with printing ink with a roller, and this surface portion is applied to an image processing apparatus to determine the area of the black portion relative to the total area. Rate.
(5) Particle Shape The shape of the obtained recycled polystyrene resin particles was observed with a microscope, and the spherical one was evaluated as “spherical” and the flat one was evaluated as “flat”.

Figure 2009120661
Figure 2009120661

表1から明らかなように、本発明によれば、MFR値が低い再生樹脂を用いても粒子を球形化でき、予備発泡時のブロッキングが少ない再生発泡性ポリスチレン系樹脂粒子、外観に優れた再生ポリスチレン系樹脂発泡成形品が得られる。   As can be seen from Table 1, according to the present invention, the regenerated expandable polystyrene resin particles can be made spherical even if a regenerated resin having a low MFR value is used, and the regenerated expandable polystyrene resin particles have little blocking during pre-foaming, and are regenerated with excellent appearance. A polystyrene resin foam molded product is obtained.

Claims (5)

使用済みポリスチレン系樹脂を加熱溶融し、粉砕して得られる再生ポリスチレン系樹脂粒子を、水性媒体中に懸濁させ、重合開始剤とスチレン系単量体を、前記再生ポリスチレン系樹脂粒子に含浸させて重合を行い、発泡剤を含浸させる再生発泡性ポリスチレン系樹脂粒子の製造法であって、前記再生ポリスチレン系樹脂粒子が、有機過酸化物を前記使用済みポリスチレン系樹脂に混合し、加熱溶融、粉砕して含有させたものであることを特徴とする再生発泡性ポリスチレン系樹脂粒子の製造法。 Recycled polystyrene resin particles obtained by heat-melting and pulverizing used polystyrene resin are suspended in an aqueous medium, and the recycled polystyrene resin particles are impregnated with a polymerization initiator and a styrene monomer. Is a method for producing regenerated expandable polystyrene resin particles that are polymerized and impregnated with a foaming agent, wherein the regenerated polystyrene resin particles are mixed with an organic peroxide in the used polystyrene resin, heated and melted, A method for producing regenerated expandable polystyrene resin particles, characterized by being pulverized and contained. 混合する有機過酸化物の量が、使用済みポリスチレン系樹脂100重量部に対して0.01〜3重量部であることを特徴とする請求項1に記載の再生発泡性ポリスチレン系樹脂粒子の製造法。 The amount of the organic peroxide to be mixed is 0.01 to 3 parts by weight with respect to 100 parts by weight of the used polystyrene resin, The production of regenerated expandable polystyrene resin particles according to claim 1, Law. 混合する有機過酸化物が、発火温度が300℃以上であることを特徴とする請求項1又は2に記載の再生発泡性ポリスチレン系樹脂粒子の製造法。 The method for producing regenerated expandable polystyrene resin particles according to claim 1 or 2, wherein the organic peroxide to be mixed has an ignition temperature of 300 ° C or higher. 請求項1、2又は3のいずれかに記載の再生発泡性ポリスチレン系樹脂粒子の製造法により得られる再生発泡性ポリスチレン系樹脂粒子。 Regenerated expandable polystyrene resin particles obtained by the method for producing regenerated expandable polystyrene resin particles according to claim 1, 2 or 3. 請求項4に記載の再生発泡性ポリスチレン系樹脂粒子を発泡して得られる再生ポリスチレン系発泡ビーズを発泡成形して得られる再生発泡ポリスチレン系樹脂成形品。 A regenerated expanded polystyrene resin molded product obtained by expansion molding of regenerated polystyrene expanded beads obtained by expanding the regenerated expandable polystyrene resin particles according to claim 4.
JP2007294221A 2007-11-13 2007-11-13 Manufacturing method and molded product of recycle foamable polystyrene resin particles Expired - Fee Related JP5128246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294221A JP5128246B2 (en) 2007-11-13 2007-11-13 Manufacturing method and molded product of recycle foamable polystyrene resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294221A JP5128246B2 (en) 2007-11-13 2007-11-13 Manufacturing method and molded product of recycle foamable polystyrene resin particles

Publications (2)

Publication Number Publication Date
JP2009120661A true JP2009120661A (en) 2009-06-04
JP5128246B2 JP5128246B2 (en) 2013-01-23

Family

ID=40813186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294221A Expired - Fee Related JP5128246B2 (en) 2007-11-13 2007-11-13 Manufacturing method and molded product of recycle foamable polystyrene resin particles

Country Status (1)

Country Link
JP (1) JP5128246B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196096A1 (en) * 2019-03-25 2020-10-01 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product
RU2768145C1 (en) * 2021-04-28 2022-03-23 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Method for spheroidization of polystyrene powder particles using a gas discharge unit
WO2022185844A1 (en) * 2021-03-03 2022-09-09 株式会社カネカ Method for producing modified polystyrene resin particles, method for producing expandable modified polystyrene resin particles, and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348400A (en) * 2001-05-24 2002-12-04 Hitachi Chem Co Ltd Foamable recycled styrene resin particle, and its production method and molded article
JP2006028373A (en) * 2004-07-16 2006-02-02 Hitachi Chem Co Ltd Production method for expandable styrene-based resin particle, expandable styrene-based particle obtained by the production method, expandable styrene-based bead, foamed styrene-based resin molded article and regenerated styrene-based resin particle used for production of the expandable styrene-based resin particle
JP2006193550A (en) * 2005-01-11 2006-07-27 Hitachi Chem Co Ltd Styrenic foamable resin particle, its manufacturing method, prefoamed particle and foamed molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348400A (en) * 2001-05-24 2002-12-04 Hitachi Chem Co Ltd Foamable recycled styrene resin particle, and its production method and molded article
JP2006028373A (en) * 2004-07-16 2006-02-02 Hitachi Chem Co Ltd Production method for expandable styrene-based resin particle, expandable styrene-based particle obtained by the production method, expandable styrene-based bead, foamed styrene-based resin molded article and regenerated styrene-based resin particle used for production of the expandable styrene-based resin particle
JP2006193550A (en) * 2005-01-11 2006-07-27 Hitachi Chem Co Ltd Styrenic foamable resin particle, its manufacturing method, prefoamed particle and foamed molded article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196096A1 (en) * 2019-03-25 2020-10-01 株式会社カネカ Foamable polystyrene resin particles, polystyrene pre-foamed particles, and foamed molded product
WO2022185844A1 (en) * 2021-03-03 2022-09-09 株式会社カネカ Method for producing modified polystyrene resin particles, method for producing expandable modified polystyrene resin particles, and use thereof
RU2768145C1 (en) * 2021-04-28 2022-03-23 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Method for spheroidization of polystyrene powder particles using a gas discharge unit

Also Published As

Publication number Publication date
JP5128246B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5352233B2 (en) Expandable polyethylene resin particles and method for producing the same
KR20110058095A (en) Heat-expandable microparticles having good expandability and even particle diameter
JP4056087B2 (en) Expandable polystyrene resin particles, process for producing the same, and foam using the same
JP5089920B2 (en) Expandable polyethylene resin particles and method for producing the same
JP5128246B2 (en) Manufacturing method and molded product of recycle foamable polystyrene resin particles
JP4912567B2 (en) Recycled expandable styrene resin particles, expanded beads and expanded molded products
JP5013529B2 (en) Slowly-flammable polyethylene resin particles, method for producing the same, polyethylene foam beads using the same, and resin molded products
JP5009681B2 (en) Regenerated expandable styrene resin particles and production method thereof
JP2018135408A (en) Method for producing expandable methyl methacrylate resin particles
JP2007211230A (en) Recycling process for collected styrenic resin
JP2004250655A (en) Expandable styrene resin particle, expandable bead, and expansion molded article
JP2022153315A (en) Expandable styrene resin particle, preliminary expandable styrene resin particle, styrenic resin expandable molding, and, manufacturing method of expandable styrenic resin particle
JP2003064211A (en) Regenerated, flame-retarding, foamable styrenic resin particle, its manufacturing method and foam product
JP4052193B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JP2006028373A (en) Production method for expandable styrene-based resin particle, expandable styrene-based particle obtained by the production method, expandable styrene-based bead, foamed styrene-based resin molded article and regenerated styrene-based resin particle used for production of the expandable styrene-based resin particle
JP2002348400A (en) Foamable recycled styrene resin particle, and its production method and molded article
JP4052234B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JP5089919B2 (en) Expandable polyethylene resin particles and method for producing the same
JP2005206739A (en) Method for producing regenerated expandable styrenic resin particle and shaped article
JP4801801B2 (en) Expandable polyethylene resin particles and method for producing the same
JP2003089728A (en) Recyclable expandable styrene-based resin particle and resin molded product using the same
JP2002284916A (en) Recycled expandable styrenic resin particle, method for producing the same and molded product
JP4659462B2 (en) Styrenic expandable resin particles, method for producing the same, pre-expanded particles, and expanded molded article
WO2024071231A1 (en) Recycled foamable styrene-based resin particle manufacturing method, recycled foamable styrene-based resin particles, recycled pre-foamed styrene-based resin particles, and recycled styrene-based resin-foamed molded body
JP2006160905A (en) Reclaimed foamable sytrenic resin particle, method for producing the same, reclaimed styrenic foamed bead and reclaimed foamed styrenic resin molded article

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090730

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees