JP2023049915A - Expandable methyl methacrylate resin particles - Google Patents

Expandable methyl methacrylate resin particles Download PDF

Info

Publication number
JP2023049915A
JP2023049915A JP2021159937A JP2021159937A JP2023049915A JP 2023049915 A JP2023049915 A JP 2023049915A JP 2021159937 A JP2021159937 A JP 2021159937A JP 2021159937 A JP2021159937 A JP 2021159937A JP 2023049915 A JP2023049915 A JP 2023049915A
Authority
JP
Japan
Prior art keywords
methyl methacrylate
resin particles
expandable
weight
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021159937A
Other languages
Japanese (ja)
Inventor
剛 小林
Takeshi Kobayashi
基理人 鈴木
Kirito Suzuki
充宏 田村
Mitsuhiro Tamura
有一 上田
Yuichi Ueda
利猛 菅野
Toshitake Sugano
明弘 高原
Akihiro Takahara
太志 福尾
Futoshi Fukuo
悠作 気田
Yusaku Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Kimura Foundry Co Ltd
Original Assignee
Kaneka Corp
Kimura Foundry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp, Kimura Foundry Co Ltd filed Critical Kaneka Corp
Priority to JP2021159937A priority Critical patent/JP2023049915A/en
Priority to CN202280065411.1A priority patent/CN118019786A/en
Priority to PCT/JP2022/034741 priority patent/WO2023054017A1/en
Publication of JP2023049915A publication Critical patent/JP2023049915A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide expandable methyl methacrylate resin particles capable of efficiently providing an expanded molding having excellent internal fusion properties and castability.SOLUTION: There are provided expandable methyl methacrylate resin particles which contain a base resin containing a methyl methacrylate unit and an acrylic ester unit and having a specific glass transition temperature and a foaming agent and can provide expanded particles having excellent foaming property, low foaming property and excellent shrinkage suppressing property after heating.SELECTED DRAWING: None

Description

本発明は、発泡性メタクリル酸メチル系樹脂粒子に関する。 TECHNICAL FIELD The present invention relates to expandable methyl methacrylate-based resin particles.

金属鋳造を行うとき、発泡成形体で作製した模型を鋳造砂に埋没し、当該発泡成形体に対して溶融金属を流し込んで発泡成形体と金属とを置換することにより、鋳物を鋳造する消失模型鋳造法(フルモールド法)が知られている。フルモールド法では、メタクリル酸メチル系重合体の発泡成形体が、鋳造時の残渣低減の観点から、使用されている。また、鋳物用の発泡成形体は大型のブロック成形体から切削加工したものが多く用いられている。 When performing metal casting, a model made of a foam molded body is buried in casting sand, and molten metal is poured into the foam molded body to replace the foam molded body with the metal, thereby casting a casting. A casting method (full mold method) is known. In the full mold method, a foam molded product of a methyl methacrylate polymer is used from the viewpoint of reducing residue during casting. In addition, foamed moldings for casting are often cut from large block moldings.

メタクリル酸メチル系重合体の発泡成形体を製造するための発泡性メタクリル酸メチル系樹脂粒子として幾つかの技術が知られている。 Several techniques are known as expandable methyl methacrylate-based resin particles for producing foamed moldings of methyl methacrylate-based polymers.

特許文献1には、メタクリル酸エステル成分と、特定のアクリル酸エステル成分とを各々特定量含有し、ガラス転移温度が112~125℃である発泡性アクリル系樹脂粒子が開示されている。 Patent Document 1 discloses expandable acrylic resin particles containing specific amounts of a methacrylic acid ester component and a specific acrylic acid ester component and having a glass transition temperature of 112 to 125°C.

特許文献2には、メタクリル酸メチル単位およびアクリル酸エステル単位を各々特定量含有し、平均粒径が0.6~1.0mmであり、粒径の変動係数が20%以下である発泡性メタクリル酸メチル系樹脂粒子が開示されている。 Patent Document 2 discloses an expandable methacrylic acid containing specific amounts of methyl methacrylate units and acrylic acid ester units, having an average particle size of 0.6 to 1.0 mm, and having a particle size variation coefficient of 20% or less. Methyl acid based resin particles are disclosed.

特許文献3には、メタクリル酸メチルとアクリル酸エステルとを、各々特定量含むアクリル系モノマーを懸濁重合することによって得られる発泡性メタクリル酸メチル系樹脂粒子の製造方法が開示されている。 Patent Document 3 discloses a method for producing expandable methyl methacrylate-based resin particles obtained by suspension polymerization of acrylic monomers containing specific amounts of methyl methacrylate and acrylic ester.

特許文献4には、メタクリル酸メチルとアクリル酸エステルと多官能性単量体とを各々特定量重合してなる発泡性メタクリル酸メチル系樹脂粒子が開示されている。 Patent Document 4 discloses expandable methyl methacrylate-based resin particles obtained by polymerizing specific amounts of methyl methacrylate, an acrylic ester, and a polyfunctional monomer.

特開2015-183111JP 2015-183111 WO2020/203537WO2020/203537 特開2018-135407JP 2018-135407 WO2016/047490WO2016/047490

しかしながら、上述のような従来技術は、メタクリル酸メチル系樹脂発泡成形体の内部融着性、鋳造性および生産効率の観点から、改善の余地がある。 However, the conventional techniques described above have room for improvement from the viewpoint of internal fusion bondability, castability, and production efficiency of the methyl methacrylate-based resin foam molded product.

以上のような状況に鑑み、本発明の一実施形態の目的は、内部融着性および鋳造性に優れたメタクリル酸メチル系樹脂発泡成形体を効率よく提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することにある。 In view of the above circumstances, an object of one embodiment of the present invention is to provide an expandable methyl methacrylate resin that can efficiently provide a methyl methacrylate resin foam molded article having excellent internal fusion bondability and castability. It is to provide particles.

発明者らは、前記課題を解決するため鋭意検討した結果、本発明を完成させるに至った。 The inventors have completed the present invention as a result of intensive studies to solve the above problems.

すなわち、本発明の一実施形態は、以下の構成を含むものである。
〔1〕構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含み、以下(a)~(d)を満たす、発泡性メタクリル酸メチル系樹脂粒子:
(a)前記発泡性メタクリル酸メチル系樹脂粒子を100℃の水蒸気で300秒間加熱して得られるメタクリル酸メチル系樹脂発泡粒子の嵩密度(A)が0.0285g/cm以下である;
(b)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で30秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(B)が140cm以下である;
(c)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で180秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(C)が160cm超である;および
(d)前記基材樹脂のガラス転移温度が114.5℃以上である。
〔2〕前記基材樹脂の重量平均分子量は、22.0万~31.0万である、〔1〕に記載の発泡性メタクリル酸メチル系樹脂粒子。
〔3〕構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含み、
前記基材樹脂の重量平均分子量は22.0万~31.0万であり、
前記基材樹脂のガラス転移温度は114.5℃以上である、発泡性メタクリル酸メチル系樹脂粒子。
〔4〕前記アクリル酸エステル単位はアクリル酸ブチル単位である、〔1〕~〔3〕の何れか1つに記載の発泡性メタクリル酸メチル系樹脂粒子。
〔5〕前記基材樹脂において、
前記メタクリル酸メチル単位および前記アクリル酸エステル単位の合計量100重量部に対する、(a)前記メタクリル酸メチル単位の含有量は97.0重量部より多く99.0重量部以下であり、(b)前記アクリル酸エステル単位の含有量は1.0重量部以上3.0重量部未満である、〔1〕~〔4〕の何れか1つに記載の発泡性メタクリル酸メチル系樹脂粒子。
That is, one embodiment of the present invention includes the following configurations.
[1] Expandable methyl methacrylate-based resin particles containing a base resin containing methyl methacrylate units and acrylic acid ester units as structural units and a foaming agent and satisfying the following (a) to (d):
(a) The bulk density (A) of the expanded methyl methacrylate resin particles obtained by heating the expandable methyl methacrylate resin particles with water vapor at 100° C. for 300 seconds is 0.0285 g/cm 3 or less;
(b) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 30 seconds, and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. The volume (B) of the expanded resin particles is 140 cm 3 or less;
(c) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 180 seconds and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. and (d) the base resin has a glass transition temperature of 114.5° C. or higher.
[2] The expandable methyl methacrylate resin particles according to [1], wherein the base resin has a weight average molecular weight of 220,000 to 310,000.
[3] including a base resin containing methyl methacrylate units and acrylic acid ester units as structural units, and a foaming agent,
The weight average molecular weight of the base resin is 220,000 to 310,000,
The expandable methyl methacrylate-based resin particles, wherein the base resin has a glass transition temperature of 114.5° C. or higher.
[4] The expandable methyl methacrylate-based resin particles according to any one of [1] to [3], wherein the acrylate unit is a butyl acrylate unit.
[5] In the base resin,
(a) the content of the methyl methacrylate unit is more than 97.0 parts by weight and not more than 99.0 parts by weight, and (b) The expandable methyl methacrylate-based resin particles according to any one of [1] to [4], wherein the content of the acrylate unit is 1.0 parts by weight or more and less than 3.0 parts by weight.

本発明の一実施形態によれば、内部融着性および鋳造性に優れたメタクリル酸メチル系樹脂発泡成形体を効率よく提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することができるという効果を奏する。 According to one embodiment of the present invention, it is possible to provide expandable methyl methacrylate-based resin particles that can efficiently provide a methyl methacrylate-based resin expansion molded article having excellent internal fusion bondability and castability. Effective.

本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、請求の範囲に示した範囲で種々の変更が可能である。また、異なる実施形態または実施例にそれぞれ開示された技術的手段を組み合わせて得られる実施形態または実施例についても、本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。なお、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 An embodiment of the invention will be described below, but the invention is not limited thereto. The present invention is not limited to each configuration described below, and various modifications are possible within the scope of the claims. Further, embodiments or examples obtained by combining technical means disclosed in different embodiments or examples are also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment. In addition, all the scientific literatures and patent documents described in this specification are used as references in this specification. In addition, unless otherwise specified in this specification, "A to B" representing a numerical range means "A or more (including A and greater than A) and B or less (including B and less than B)".

本明細書において、「発泡性メタクリル酸メチル系樹脂粒子」を「発泡性樹脂粒子」と称する場合もあり、「メタクリル酸メチル系樹脂発泡粒子」を「発泡粒子」と称する場合もあり、「メタクリル酸メチル系樹脂発泡成形体」を「発泡成形体」と称する場合もある。 In this specification, "expandable methyl methacrylate-based resin particles" may be referred to as "expandable resin particles", and "methyl methacrylate-based resin expanded particles" may be referred to as "expanded particles". A "methyl acid-based resin foam molded product" may also be referred to as a "foam molded product".

〔1.本発明の一実施形態の技術的思想〕
内部融着性に劣るメタクリル酸メチル系樹脂発泡成形体は、当該メタクリル酸メチル系樹脂発泡成形体の切削に伴い、メタクリル酸メチル系樹脂発泡成形体の切削面からメタクリル酸メチル系樹脂発泡粒子が脱落するなど、加工性に劣るものである。
[1. Technical idea of one embodiment of the present invention]
In the methyl methacrylate resin foam molded product with poor internal fusion bondability, methyl methacrylate resin foam particles are released from the cut surface of the methyl methacrylate resin foam molded product as the methyl methacrylate resin foam mold is cut. It is inferior in workability, such as falling off.

また、メタクリル酸メチル系樹脂発泡成形体の主な使用用途として、金属鋳造時の鋳物用途が挙げられる。鋳物として用いる場合に、メタクリル酸メチル系樹脂発泡成形体には、特に鋳造性が求められる。 In addition, the main use of the methyl methacrylate-based resin foam molded product is casting use during metal casting. When used as a casting, the methyl methacrylate-based resin foam molded article is particularly required to have castability.

本発明者らが検討したところ、特許文献1~5に開示された発泡性樹脂粒子を用いて得られる発泡成形体は、内部融着性、鋳造性および生産効率の観点から、改善の余地がある。 As a result of studies by the present inventors, there is room for improvement in the foam molded articles obtained using the expandable resin particles disclosed in Patent Documents 1 to 5 from the viewpoint of internal fusion bondability, castability, and production efficiency. be.

以上のような状況に鑑み、内部融着性および鋳造性に優れたメタクリル酸メチル系樹脂発泡成形体を効率よく提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することを目的として、本発明者は、鋭意検討を行った。 In view of the above circumstances, the present invention aims to provide expandable methyl methacrylate-based resin particles capable of efficiently providing a methyl methacrylate-based resin expansion molded article having excellent internal fusion bondability and castability. The inventor has made extensive studies.

本発明者は、鋭意検討の結果に以下の点を見出し、本発明を完成するに至った:(a)発泡速度(発泡性)に優れる発泡性メタクリル酸メチル系樹脂粒子はメタクリル酸メチル系樹脂発泡粒子を効率よく提供し得、その結果、メタクリル酸メチル系樹脂発泡成形体を効率よく提供し得ること、(b)発泡速度が遅くかつ加熱後の収縮が小さいメタクリル酸メチル系樹脂発泡粒子は内部融着性に優れるメタクリル酸メチル系樹脂発泡成形体を提供し得ること、および(c)基材樹脂のガラス転移温度が高い発泡性メタクリル酸メチル系樹脂粒子は、鋳造性に優れるメタクリル酸メチル系樹脂発泡成形体を提供し得ること。 The inventors of the present invention found the following points as a result of intensive studies and completed the present invention: (a) The expandable methyl methacrylate-based resin particles having an excellent foaming rate (expandability) is a methyl methacrylate-based resin. (b) Methyl methacrylate-based resin foamed particles having a slow foaming speed and little shrinkage after heating are provided. It is possible to provide a methyl methacrylate-based resin foam molded article having excellent internal fusion bondability, and (c) the expandable methyl methacrylate-based resin particles having a high glass transition temperature of the base resin are formed by To be able to provide a system resin foam molded product.

〔2.発泡性メタクリル酸メチル系樹脂粒子〕
本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子は、構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含み、以下(a)~(d)を満たす、発泡性メタクリル酸メチル系樹脂粒子である:
(a)前記発泡性メタクリル酸メチル系樹脂粒子を100℃の水蒸気で300秒間加熱して得られるメタクリル酸メチル系樹脂発泡粒子の嵩密度(A)が0.0285g/cm以下である;
(b)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で30秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(B)が140cm以下である;
(c)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で180秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(C)が160cm超である;および
(d)前記基材樹脂のガラス転移温度が114.5℃以上である。
[2. Expandable methyl methacrylate-based resin particles]
An expandable methyl methacrylate-based resin particle according to one embodiment of the present invention includes a base resin containing methyl methacrylate units and acrylic acid ester units as structural units, and a foaming agent. ) is an expandable methyl methacrylate-based resin particle that satisfies:
(a) The bulk density (A) of the expanded methyl methacrylate resin particles obtained by heating the expandable methyl methacrylate resin particles with water vapor at 100° C. for 300 seconds is 0.0285 g/cm 3 or less;
(b) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 30 seconds, and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. The volume (B) of the expanded resin particles is 140 cm 3 or less;
(c) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 180 seconds and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. and (d) the base resin has a glass transition temperature of 114.5° C. or higher.

「本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子」を、以下「本発泡性樹脂粒子」と称する場合もある。 The "expandable methyl methacrylate-based resin particles according to one embodiment of the present invention" may be hereinafter referred to as "present expandable resin particles".

本発泡性樹脂粒子を公知の方法により発泡することにより、発泡粒子を提供できる。本発泡性樹脂粒子を発泡してなる発泡粒子を公知の方法により型内成形することにより、発泡成形体を提供できる。 Expanded beads can be provided by expanding the present expandable resin beads by a known method. A foam-molded product can be provided by subjecting the foamed particles obtained by foaming the present expandable resin particles to in-mold molding by a known method.

本発泡性樹脂粒子は、前記構成を有するため、内部融着性および鋳造性に優れる発泡成形体を、効率的に提供できるという利点を有する。 Since the present expandable resin particles have the above-described structure, they have the advantage of being able to efficiently provide a foamed molded article having excellent internal fusion bondability and castability.

本発泡性樹脂粒子は、当該発泡性樹脂粒子を特定の条件で発泡して得られる発泡粒子の嵩密度(A)が0.0285g/cm以下であるである。嵩密度(A)が小さいほど、高嵩倍率の発泡粒子が得られることを意図し、すなわち発泡性樹脂粒子が発泡性に優れることを意図する。発泡性に優れる発泡性樹脂粒子は、当該発泡性樹脂粒子を用いて発泡粒子を製造するときの製造時間および製造コストを削減できる。それ故、本発泡性樹脂粒子は、効率よく発泡粒子を提供でき、その結果、効率よく発泡成形体を提供できる、という利点を有する。 The present expandable resin particles are such that the bulk density (A) of expanded particles obtained by expanding the expandable resin particles under specific conditions is 0.0285 g/cm 3 or less. It is intended that the smaller the bulk density (A), the higher the bulk ratio of the expanded beads, that is, the better the expandability of the expandable resin beads. Expandable resin particles with excellent expandability can reduce production time and production costs when producing expanded particles using the expandable resin particles. Therefore, the present expandable resin particles have the advantage of being able to efficiently provide expanded particles and, as a result, efficiently provide foam molded articles.

本発泡性樹脂粒子は、当該発泡性樹脂粒子を発泡してなる発泡粒子の体積(B)が140cm以下である。体積(B)は、発泡粒子が一定時間内に発泡する度合いを示しており、発泡粒子の発泡速度を反映し得る。体積(B)が小さいほど、発泡粒子の発泡速度が遅いことを意図し、発泡粒子の発泡性が低いことを意図する。発泡性が低い発泡粒子は、当該発泡粒子を用いる型内成形において、金型内部の中心部の発泡粒子まで蒸気が十分に行きわたることにより、内部融着性に優れる発泡成形体を提供できる。それ故、本発泡性樹脂粒子は、内部融着性に優れる発泡成形体を提供できる、という利点を有する。 The volume (B) of the expandable resin particles obtained by expanding the expandable resin particles is 140 cm 3 or less. The volume (B) indicates the extent to which the expanded beads are expanded within a certain period of time, and can reflect the expansion speed of the expanded beads. The smaller the volume (B), the slower the expansion rate of the expanded beads, and the lower the expandability of the expanded beads. Expanded beads with low expandability can provide a foamed molded product with excellent internal fusion bondability by allowing steam to sufficiently reach the expanded beads in the center of the mold during in-mold molding using the expanded beads. Therefore, the present expandable resin particles have the advantage of being able to provide a foam molded article having excellent internal fusion bondability.

本発泡性樹脂粒子は、当該発泡性樹脂粒子を発泡してなる発泡粒子の体積(C)が160cm超である。体積(C)は、加熱後の発泡粒子の収縮の度合いを示している。体積(C)が大きいほど、発泡粒子が加熱後に収縮しにくいことを意図し、発泡粒子が収縮抑制性に優れることを意図する。収縮抑制性に優れる発泡粒子は、当該発泡粒子を用いる型内成形中、または型内成形で得られる発泡成形体において、発泡成形体内部の発泡粒子同士の接着(融着)が維持され易く、その結果、内部融着性に優れる発泡成形体を提供できる。それ故、本発泡性樹脂粒子は、内部融着性に優れる発泡成形体を提供できる、という利点を有する。 The volume (C) of the expandable resin particles obtained by expanding the expandable resin particles is more than 160 cm 3 . Volume (C) indicates the degree of contraction of the expanded beads after heating. The larger the volume (C), the more difficult it is for the expanded beads to shrink after heating, and the better the shrinkage-suppressing property of the expanded beads. The foamed beads having excellent shrinkage-suppressing properties easily maintain adhesion (fusion) between the foamed particles inside the foamed molded product during in-mold molding using the expanded beads or in the foamed molded product obtained by the in-mold molding. As a result, it is possible to provide a foam molded article having excellent internal fusion bondability. Therefore, the present expandable resin particles have the advantage of being able to provide a foam molded article having excellent internal fusion bondability.

本発泡性樹脂粒子は、基材樹脂のガラス転移温度が114.5℃以上である。本発明者らは、鋭意検討の過程において、発泡性樹脂粒子の基材樹脂のガラス転移温度が114.5℃以上である場合、驚くべきことに、当該発泡性樹脂粒子を用いてなる発泡成形体が鋳造性に優れるという知見を独自に見出した。すなわち、本発泡性樹脂粒子は、鋳造性に優れる発泡成形体を提供できる、という利点を有する。 The base resin of the expandable resin particles has a glass transition temperature of 114.5° C. or higher. In the course of intensive studies, the present inventors surprisingly discovered that when the base resin of the expandable resin particles has a glass transition temperature of 114.5°C or higher, expansion molding using the expandable resin particles We have independently discovered that the body has excellent castability. That is, the present expandable resin particles have the advantage of being able to provide a foam molded article with excellent castability.

発泡性樹脂粒子の発泡は、「一次発泡」ともいえる。それ故、発泡性樹脂粒子の発泡速度および発泡性は、それぞれ、一次発泡の発泡速度および発泡性ともいえる。一方、発泡粒子の発泡は、「二次発泡」ともいえる。それ故、発泡粒子の発泡速度および発泡性は、それぞれ、二次発泡の発泡速度および発泡性ともいえる。 Foaming of the expandable resin particles can also be called “primary foaming”. Therefore, the foaming speed and foamability of the expandable resin particles can also be said to be the foaming speed and foamability of primary foaming, respectively. On the other hand, foaming of foamed particles can also be called "secondary foaming". Therefore, the foaming speed and foamability of the expanded beads can also be said to be the foaming speed and foamability of secondary foaming, respectively.

(基材樹脂)
基材樹脂は、発泡性樹脂粒子における発泡剤および後述する外添剤以外の部分ともいえ、発泡性樹脂粒子を実質的に構成する部分ともいえる。本発泡性樹脂粒子が含む基材樹脂は、構成単位として、メタクリル酸メチル単位およびアクリル酸エステル単位を含む。本明細書において、「メタクリル酸メチル単位」とは、メタクリル酸メチル単量体に由来する構成単位であり、「アクリル酸エステル単位」とは、アクリル酸エステル単量体に由来する構成単位である。本明細書において、「単量体」の表記は省略する場合がある。故に、本明細書において、例えば、単に「メタクリル酸メチル」および「アクリル酸エステル」と表記した場合は、それぞれ、「メタクリル酸メチル単量体」および「アクリル酸エステル単量体」を意図する。
(Base resin)
The base resin can be said to be a portion of the expandable resin bead other than the foaming agent and the external additive described later, and can also be said to be a portion that substantially constitutes the expandable resin bead. The base resin contained in the present expandable resin particles contains methyl methacrylate units and acrylate units as structural units. As used herein, the term "methyl methacrylate unit" refers to a structural unit derived from a methyl methacrylate monomer, and the term "acrylic acid ester unit" refers to a structural unit derived from an acrylic acid ester monomer. . In this specification, the notation of "monomer" may be omitted. Therefore, in this specification, for example, when simply described as "methyl methacrylate" and "acrylic acid ester", they are intended to mean "methyl methacrylate monomer" and "acrylic acid ester monomer", respectively.

本発泡性樹脂粒子が含む基材樹脂では、メタクリル酸メチル単位およびアクリル酸エステル単位の合計量100重量部に対する、(a)メタクリル酸メチル単位の含有量は97.0重量部より多く99.0重量部以下であり、かつアクリル酸エステル単位の含有量は1.0重量部以上3.0重量部未満であることが好ましく、(b)メタクリル酸メチル単位の含有量は97.0重量部より多く98.5重量部以下であり、かつアクリル酸エステル単位の含有量は1.5重量部以上3.0重量部未満であることがより好ましく、(c)メタクリル酸メチル単位の含有量は97.0重量部より多く98.0重量部以下であり、かつアクリル酸エステル単位の含有量は2.0重量部以上3.0重量部未満であることがさらに好ましく、(d)メタクリル酸メチル単位の含有量は97.5重量部であり、かつアクリル酸エステル単位の含有量は2.5重量部であることが特に好ましい。発泡性樹脂粒子の基材樹脂におけるメタクリル酸メチル単位の含有量、およびアクリル酸エステル単位の含有量が、各々上述した範囲内である場合、当該発泡性樹脂粒子は、内部融着性および鋳造性に優れる発泡成形体を効率的に提供できるという利点を有する。より具体的に、基材樹脂において、メタクリル酸メチル単位およびアクリル酸エステル単位の合計量100重量部に対するアクリル酸エステル単位の含有量が1.0重量部以上である場合、発泡性樹脂粒子の発泡性が優れる傾向がある。基材樹脂において、メタクリル酸メチル単位およびアクリル酸エステル単位の合計量100重量部に対するアクリル酸エステル単位の含有量が3.0重量部以下である場合、(a)発泡性樹脂粒子を発泡してなる発泡粒子の収縮抑制性が優れる傾向、および(b)基材樹脂のガラス転移温度が114.5℃以上となる傾向があるため、最終的に得られる発泡成形体の鋳造性が優れる傾向がある。 In the base resin contained in the present expandable resin particles, the content of (a) methyl methacrylate units is more than 97.0 parts by weight and 99.0 parts by weight with respect to 100 parts by weight of the total amount of methyl methacrylate units and acrylate units. It is not more than parts by weight, and the content of acrylic acid ester units is preferably 1.0 parts by weight or more and less than 3.0 parts by weight, and the content of (b) methyl methacrylate units is more than 97.0 parts by weight. It is more preferably 98.5 parts by weight or less, and the content of the acrylic acid ester unit is 1.5 parts by weight or more and less than 3.0 parts by weight. 0 parts by weight or more and 98.0 parts by weight or less, and the content of the acrylic acid ester unit is more preferably 2.0 parts by weight or more and less than 3.0 parts by weight, and (d) the methyl methacrylate unit is 97.5 parts by weight, and the content of acrylate units is particularly preferably 2.5 parts by weight. When the content of the methyl methacrylate unit and the content of the acrylate unit in the base resin of the expandable resin particle are within the respective ranges described above, the expandable resin particle has good internal fusion bondability and castability. It has the advantage of being able to efficiently provide a foamed molded article having excellent properties. More specifically, in the base resin, when the content of the acrylate unit is 1.0 parts by weight or more with respect to 100 parts by weight of the total amount of the methyl methacrylate unit and the acrylate unit, the expandable resin particles are expanded. tend to be superior. In the base resin, when the content of the acrylate unit is 3.0 parts by weight or less with respect to 100 parts by weight of the total amount of the methyl methacrylate unit and the acrylate unit, (a) the expandable resin particles are expanded to (b) The glass transition temperature of the base resin tends to be 114.5° C. or higher, so the castability of the finally obtained foamed product tends to be excellent. be.

本発明の一実施形態に係るアクリル酸エステル単位としては、アクリル酸メチル単位、アクリル酸エチル単位、アクリル酸プロピル単位、アクリル酸ブチル単位などが挙げられる。アクリル酸エステル単位としては、アクリル酸ブチル単位が特に好ましい。当該構成によると、発泡性および成形性(例えば、発泡粒子の収縮抑制性)に優れる発泡性樹脂粒子を提供できる。なお、アクリル酸ブチル単位は、基材樹脂のガラス転移温度を低下させる効果が大きく、鋳造性の改善効果が高い。 Acrylate ester units according to one embodiment of the present invention include methyl acrylate units, ethyl acrylate units, propyl acrylate units, butyl acrylate units, and the like. A butyl acrylate unit is particularly preferred as the acrylate unit. According to this configuration, it is possible to provide expandable resin beads that are excellent in foamability and moldability (for example, shrinkage-suppressing property of expanded beads). In addition, the butyl acrylate unit has a large effect of lowering the glass transition temperature of the base resin, and has a large effect of improving castability.

本発泡性樹脂粒子の基材樹脂は、架橋剤に由来する構成単位(以下、架橋剤単位とも称する)を含んでいてもよい。本発泡性樹脂粒子の基材樹脂が架橋剤単位を含む場合、(a)発泡性樹脂粒子は発泡性に優れ、(b)当該発泡性樹脂粒子を発泡してなる発泡粒子は発泡性が低く、かつ収縮抑制性が良好となり、さらに(c)当該発泡粒子を型内成形してなる発泡成形体は内部融着性に優れ、かつ燃焼時の残渣が少なくなることから鋳造性に優れる、という利点を有する。また、構成単位として架橋剤に由来する構成単位を含む基材樹脂を含む発泡性樹脂粒子は、製造過程において分子量を調整しやすいという利点も有する。 The base resin of the present expandable resin particles may contain structural units derived from a cross-linking agent (hereinafter also referred to as cross-linking agent units). When the base resin of the expandable resin bead contains a cross-linking agent unit, (a) the expandable resin bead has excellent expandability, and (b) the expanded bead obtained by expanding the expandable resin bead has low expandability. Furthermore, (c) a foamed molded article obtained by molding the foamed particles in a mold has excellent internal fusion bonding and has excellent castability due to less residue at the time of combustion. have advantages. Moreover, the expandable resin particles containing a base resin containing a structural unit derived from a cross-linking agent as a structural unit also has the advantage that the molecular weight can be easily adjusted in the manufacturing process.

架橋剤としては、例えば、ラジカル反応性を示す官能基を2つ以上有する化合物が挙げられる。ラジカル反応性を示す官能基を2つ以上有する化合物の中でも、架橋剤としては、官能基を2つ有する二官能性単量体を用いることが好ましい。換言すれば、本発泡性樹脂粒子の基材樹脂は、架橋剤に由来する構成単位として、二官能性単量体に由来する構成単位である二官能性単量体単位を含むことが好ましい。当該構成によると、(a)発泡性樹脂粒子は発泡性により優れ、(b)当該発泡性樹脂粒子を発泡してなる発泡粒子は発泡性がより低く、かつ収縮抑制性により優れ、さらに(c)当該発泡粒子を型内成形してなる発泡成形体は内部融着性に優れ、かつ燃焼時の残渣がより少なくなることから鋳造性により優れる、という利点を有する。 Examples of cross-linking agents include compounds having two or more functional groups exhibiting radical reactivity. Among compounds having two or more functional groups exhibiting radical reactivity, it is preferable to use a bifunctional monomer having two functional groups as the cross-linking agent. In other words, the base resin of the present expandable resin particles preferably contains a bifunctional monomer unit, which is a structural unit derived from a bifunctional monomer, as a structural unit derived from a cross-linking agent. According to this configuration, (a) the expandable resin particles have superior expandability, (b) the expanded beads obtained by expanding the expandable resin particles have lower expandability and superior shrinkage suppression properties, and (c ) A foamed molded product obtained by molding the foamed particles in a mold has the advantage of being excellent in internal fusion bondability and being excellent in castability due to less residue during combustion.

二官能性単量体としては、例えば、(a)エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等のエチレングリコールまたは当該エチレングリコールのオリゴマーの、両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの、(b)ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート(例えば1,6-ヘキサンジオールジアクリレートなど)、ブタンジオールジ(メタ)アクリレート等の2価のアルコールの水酸基をアクリル酸またはメタクリル酸でエステル化したもの、(c)ジビニルベンゼン等のアルケニル基を2個有するアリール化合物、等があげられる。二官能性単量体としては、分子量の調整のしやすさから、ヘキサンジオールジ(メタ)アクリレートが好ましい。なお、本明細書において「(メタ)アクリレート」とは、「アクリレートおよび/またはメタクリレート」を意図する。例えば、ヘキサンジオールジ(メタ)アクリレートは、ヘキサンジオールジアクリレートおよび/またはヘキサンジオールジメタクリレートと意図する。 Examples of the bifunctional monomer include (a) ethylene glycol such as ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, and triethylene glycol di(meth)acrylate, and oligomers of the ethylene glycol. (b) neopentyl glycol di(meth)acrylate, hexanediol di(meth)acrylate (e.g. 1,6-hexanediol diacrylate), butanediol di( Examples include meth) acrylates and other dihydric alcohols whose hydroxyl groups are esterified with acrylic acid or methacrylic acid, and (c) aryl compounds having two alkenyl groups such as divinylbenzene. As the bifunctional monomer, hexanediol di(meth)acrylate is preferred because of ease of molecular weight adjustment. In addition, in this specification, "(meth)acrylate" intends "acrylate and/or methacrylate." For example, hexanediol di(meth)acrylate is intended as hexanediol diacrylate and/or hexanediol dimethacrylate.

本発泡樹脂粒子における二官能性単量体単位の含有量は、メタクリル酸メチル単位およびアクリル酸エステル単位の合計含有量100重量部対して0.05重量部以上0.15重量部以下が好ましく、0.08重量部以上0.13重量部がより好ましい。前記構成によると、(a)発泡性樹脂粒子は発泡性にさらに優れ、(b)当該発泡性樹脂粒子を発泡してなる発泡粒子は発泡性がさらに低く、かつ収縮抑制性にさらに優れ、さらに(c)当該発泡粒子を型内成形してなる発泡成形体は内部融着性にさらに優れ、かつ燃焼時の残渣がさらに少なくなることから鋳造性により優れるという利点を有する。 The content of the bifunctional monomer units in the foamed resin particles is preferably 0.05 parts by weight or more and 0.15 parts by weight or less with respect to 100 parts by weight of the total content of the methyl methacrylate units and the acrylic acid ester units. 0.08 parts by weight or more and 0.13 parts by weight is more preferable. According to the above configuration, (a) the expandable resin particles are more excellent in expandability, (b) the expanded beads obtained by expanding the expandable resin particles are even lower in expandability and more excellent in shrinkage suppression, and (c) A foamed molded product obtained by molding the foamed particles in a mold has the advantage of being more excellent in internal fusion bondability and being more excellent in castability due to further reduced residue during combustion.

本発泡性樹脂粒子の基材樹脂は、構成単位として、さらに、芳香族系単量体に由来する構成単位(芳香族系単位)を含有していても良い。芳香族系単量体としては、スチレン、α-メチルスチレン、パラメチルスチレン、t-ブチルスチレンおよびクロルスチレン等の芳香族ビニル化合物等が挙げられる。本発泡性樹脂粒子の基材樹脂が芳香族系単位を含む場合、強度に優れる発泡成形体を得ることができる。 The base resin of the present expandable resin particles may further contain, as structural units, structural units derived from aromatic monomers (aromatic units). Examples of aromatic monomers include aromatic vinyl compounds such as styrene, α-methylstyrene, paramethylstyrene, t-butylstyrene and chlorostyrene. When the base resin of the present expandable resin particles contains an aromatic unit, a foam molded article having excellent strength can be obtained.

一方、燃焼時の残渣の少ない発泡成形体を得る観点から、本発泡性樹脂粒子に含まれる、芳香族系単量体に由来する構造(例えば芳香環)の量はできる限り少ないことが好ましい。具体的に、本発泡性樹脂粒子の基材樹脂が含む芳香族系単位の量はできる限り少ないことが好ましい。例えば、発泡性樹脂粒子の基材樹脂が含む芳香族系単位の量は、基材樹脂100重量部に対して、2.5重量部以下が好ましく、2.5重量部未満がより好ましく、2.0重量部以下がより好ましく、1.5重量部以下がより好ましく、1.0重量部以下がさらに好ましく、0重量部が特に好ましい。すなわち、本発泡性樹脂粒子の基材樹脂は、芳香族系単位を含有しないことが特に好ましい。 On the other hand, from the viewpoint of obtaining a foamed molded product with little residue upon combustion, it is preferable that the amount of the structure (for example, aromatic ring) derived from the aromatic monomer contained in the present expandable resin particles is as small as possible. Specifically, the amount of aromatic units contained in the base resin of the expandable resin particles is preferably as small as possible. For example, the amount of aromatic units contained in the base resin of the expandable resin particles is preferably 2.5 parts by weight or less, more preferably less than 2.5 parts by weight, with respect to 100 parts by weight of the base resin. 0 parts by weight or less is more preferred, 1.5 parts by weight or less is more preferred, 1.0 parts by weight or less is even more preferred, and 0 parts by weight is particularly preferred. That is, it is particularly preferable that the base resin of the expandable resin particles does not contain aromatic units.

なお、基材樹脂に含まれる構成単位の種類および量は、基材樹脂の重合(例えば後述する共重合工程)で使用する単量体混合物に含まれる単量体の種類および量と同じである(但し、重合転化率が100%である場合)。 The types and amounts of the structural units contained in the base resin are the same as the types and amounts of the monomers contained in the monomer mixture used in the polymerization of the base resin (for example, the copolymerization step described later). (However, when the polymerization conversion rate is 100%).

(発泡剤)
本発泡性樹脂粒子に含まれる発泡剤は、特に限定されない。発泡剤としては、例えば、(a)プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタン等の炭素数3以上5以下の炭化水素である脂肪族炭化水素類、および(b)ジフルオロエタン、テトラフルオロエタン等のオゾン破壊係数がゼロであるハイドロフルオロカーボン類、等の揮発性発泡剤があげられる。これらの発泡剤は1種を単独で使用してもよく、2種以上を組み合わせて使用しても何ら差し支えない。
(foaming agent)
The foaming agent contained in the present expandable resin particles is not particularly limited. Examples of foaming agents include (a) aliphatic hydrocarbons having 3 to 5 carbon atoms such as propane, isobutane, normal butane, isopentane, normal pentane, and neopentane; and (b) difluoroethane and tetrafluoro Volatile foaming agents such as hydrofluorocarbons with zero ozone depletion potential such as ethane can be mentioned. One of these foaming agents may be used alone, or two or more of them may be used in combination.

本発泡性樹脂粒子において、基材樹脂100重量部に対する、発泡剤の含有量は、5重量部~12重量部が好ましく、7重量部~10重量部がより好ましい。当該構成によると、十分な発泡性を有する発泡性樹脂粒子を提供でき、かつ重厚な重合設備が不要となる、という利点を有する。 In the present expandable resin particles, the content of the foaming agent is preferably 5 to 12 parts by weight, more preferably 7 to 10 parts by weight, based on 100 parts by weight of the base resin. This configuration has the advantage of being able to provide expandable resin particles having sufficient expandability and of eliminating the need for heavy polymerization equipment.

(その他の添加剤)
本発泡性樹脂粒子は、基材樹脂および発泡剤に加えて、さらに任意でその他の添加剤を含んでいてもよい。上記その他の添加剤としては、気泡調整剤、溶剤、可塑剤、難燃剤、難燃助剤、熱線輻射抑制剤、顔料、染料および帯電防止剤などが挙げられる。
(Other additives)
The expandable resin particles may optionally contain other additives in addition to the base resin and the foaming agent. Examples of the other additives include cell control agents, solvents, plasticizers, flame retardants, flame retardant aids, heat radiation inhibitors, pigments, dyes and antistatic agents.

溶剤および可塑剤については、下記〔3.発泡性メタクリル酸メチル系樹脂粒子の製造方法〕の項にて詳述する。発泡性樹脂粒子における溶剤および可塑剤の含有量については、後述する溶剤および可塑剤の使用量と同じ量であってもよい。 Solvents and plasticizers are described in [3. Method for producing expandable methyl methacrylate-based resin particles] section. The contents of the solvent and the plasticizer in the expandable resin particles may be the same amounts as the amounts of the solvent and the plasticizer used, which will be described later.

(気泡調整剤)
気泡調整剤としては、例えば、(a)メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイド、および(b)ポリエチレンワックス、などが挙げられる。基材樹脂100重量部に対する、気泡調整剤の含有量は、0.01重量部~0.50重量部であることが好ましい。
(Air bubble control agent)
Examples of cell control agents include (a) aliphatic bisamides such as methylenebisstearate amide and ethylenebisstearate amide, and (b) polyethylene wax. The content of the cell control agent is preferably 0.01 to 0.50 parts by weight with respect to 100 parts by weight of the base resin.

(重量平均分子量)
本発泡性樹脂粒子が含む基材樹脂の重量平均分子量は、22.0万~31.0万であることが好ましく、23.0万~31.0万であることがより好ましく、24.0万~30.0万であることがさらに好ましい。当該構成によると、驚くべきことに、(a)発泡性樹脂粒子は発泡性が良好となり、(b)当該発泡性樹脂粒子を発泡してなる発泡粒子は発泡性が低く、かつ収縮抑制性が良好となり、さらに(c)当該発泡粒子を型内成形してなる発泡成形体は内部融着性に優れる、という利点を有する。本発明者は、鋭意検討の結果、基材樹脂におけるメタクリル酸メチル単位の量およびアクリル酸エステル単位の量を調節することに加えて、重量平均分子量を31.0万以下とすることにより、驚くべきことに、内部融着性に優れる発泡成形体を効率的に提供することができるという新規知見を得た。
(Weight average molecular weight)
The weight average molecular weight of the base resin contained in the present expandable resin particles is preferably 220,000 to 310,000, more preferably 230,000 to 310,000, and 24.0. It is more preferably 10,000 to 300,000. According to this configuration, surprisingly, (a) the expandable resin particles have good expandability, and (b) the expanded beads obtained by expanding the expandable resin particles have low expandability and shrinkage-suppressing properties. Furthermore, there is an advantage that (c) a foam molded article obtained by molding the foamed particles in a mold has excellent internal fusion bondability. As a result of intensive studies, the present inventors have found that, in addition to adjusting the amount of methyl methacrylate units and the amount of acrylic acid ester units in the base resin, the weight average molecular weight is set to 310,000 or less. As a matter of fact, the present inventors have obtained new knowledge that a foam molded article having excellent internal fusion bondability can be efficiently provided.

本明細書では、以下の方法により測定して得られる重量平均分子量を、発泡性樹脂粒子が含む基材樹脂の重量平均分子量とする:(1)発泡性樹脂粒子0.02gをテトラヒドロフラン(以下、「THF」と略す場合がある)20mlに溶解させる;(2)その後、得られる溶解液中のゲル成分をろ過する;(3)次いで、THFに可溶な成分(すなわちろ液)のみを試料として、ゲルパーミェーションクロマトグラフ(GPC)を用いて、GPC測定を行う;(4)GPC測定により得られるGPC測定チャートから、重量平均分子量(Mw)および数平均分子量(Mn)を算出する。なお、重量平均分子量(Mw)および数平均分子量(Mn)はポリスチレン換算の相対値である。 In this specification, the weight average molecular weight obtained by measuring by the following method is defined as the weight average molecular weight of the base resin contained in the expandable resin particles: (1) 0.02 g of expandable resin particles is added to tetrahydrofuran (hereinafter referred to as (sometimes abbreviated as “THF”)) is dissolved in 20 ml; (2) then the gel component in the resulting solution is filtered; (4) Calculate the weight average molecular weight (Mw) and number average molecular weight (Mn) from the GPC measurement chart obtained by GPC measurement. . The weight average molecular weight (Mw) and number average molecular weight (Mn) are relative values in terms of polystyrene.

基材樹脂の重量平均分子量は、基材樹脂の重合(共重合)過程で使用する単量体の組成(種類および量)、連鎖移動剤の種類および量、重合温度および時間、開始剤の種類および量、並びに架橋剤の種類および量などを変更することで、調節できる。 The weight average molecular weight of the base resin depends on the composition (type and amount) of the monomers used in the polymerization (copolymerization) process of the base resin, the type and amount of the chain transfer agent, the polymerization temperature and time, and the type of initiator. and amount, and by changing the type and amount of the cross-linking agent.

(ガラス転移温度)
本発泡性樹脂粒子が含む基材樹脂のガラス転移温度は114.5℃以上である。当該構成により、本発泡性樹脂粒子は、鋳造性に優れる発泡成形体を提供できる、という利点を有する。鋳造性により優れる発泡成形体を提供できることから、前記ガラス転移温度は、114.6℃以上が好ましく、114.8℃以上がより好ましく、115.0℃以上が特に好ましい。鋳造性の観点からはガラス転移温度は高いほど好ましく、その上限値は特に限定されないが、前記ガラス転移温度は、例えば150.0℃以下である。
(Glass-transition temperature)
The base resin contained in the present expandable resin particles has a glass transition temperature of 114.5° C. or higher. With this configuration, the present expandable resin particles have the advantage of being able to provide a foam molded article with excellent castability. The glass transition temperature is preferably 114.6° C. or higher, more preferably 114.8° C. or higher, and particularly preferably 115.0° C. or higher, since a foamed molded article having excellent castability can be provided. From the viewpoint of castability, a higher glass transition temperature is more preferable, and the upper limit is not particularly limited.

本明細書では、以下の方法により測定して得られるガラス転移温度を、発泡性樹脂粒子が含む基材樹脂のガラス転移温度とする:(1)発泡性樹脂粒子を150℃で30分間乾燥処理して得られる樹脂を試料とする;(2)当該試料4mgをアルミ容器に入れた後、アルミ容器に圧縮機を用いてアルミの蓋を取り付け、測定サンプルを得る;(3)当該測定サンプルについて、DSC測定機(例えば、日立製DSC7000X)を用いて、50℃から150℃まで昇温(昇温速度10℃/分)し、150℃から50℃まで降温(降温速度10℃/分)し、再度50℃から150℃まで昇温(昇温速度10℃/分)する;(4)2回目の昇温時に得られるDSC曲線を用いてガラス転移温度を算出する。なお、ここでのガラス転移温度はJIS K7121に定められた中間点ガラス転移温度を意図する。 In this specification, the glass transition temperature obtained by measuring by the following method is defined as the glass transition temperature of the base resin contained in the expandable resin particles: (1) Dry treatment of the expandable resin particles at 150° C. for 30 minutes. (2) After placing 4 mg of the sample in an aluminum container, attach an aluminum lid to the aluminum container using a compressor to obtain a measurement sample; (3) About the measurement sample , Using a DSC measuring machine (for example, Hitachi DSC7000X), the temperature was raised from 50 ° C. to 150 ° C. (heating rate 10 ° C./min), and the temperature was lowered from 150 ° C. to 50 ° C. (cooling rate 10 ° C./min). , again from 50° C. to 150° C. (heating rate of 10° C./min); (4) using the DSC curve obtained at the second heating, the glass transition temperature is calculated. In addition, the glass transition temperature here intends the midpoint glass transition temperature defined in JIS K7121.

基材樹脂のガラス転移温度は、基材樹脂の重合(共重合)過程で使用する単量体の組成(種類および量)を変更することで、調節できる。 The glass transition temperature of the base resin can be adjusted by changing the composition (kind and amount) of the monomers used in the polymerization (copolymerization) process of the base resin.

発泡性樹脂粒子を用いて製造された発泡粒子において、当該発泡性樹脂粒子の構造は変化するが、発泡性樹脂粒子の組成は変化しない。また、発泡粒子を用いて製造された発泡成形体において、当該発泡粒子の構造は変化するが、発泡粒子の組成は変化しない。それ故、発泡粒子または発泡成形体の重量平均分子量およびガラス転移温度を、当該発泡粒子または発泡成形体、の原料である発泡性樹脂粒子が含む基材樹脂の重量平均分子量およびガラス転移温度と見做すことができる。なお、発泡粒子または発泡成形体の重量平均分子量は、上述した発泡性樹脂粒子の基材樹脂の重量平均分子量の測定方法において、「発泡性樹脂粒子」を「発泡粒子」または「発泡成形体」に置き換えた測定方法により、測定できる。また、発泡粒子または発泡成形体のガラス転移温度は、上述した発泡性樹脂粒子の基材樹脂のガラス転移温度の測定方法において、「発泡性樹脂粒子」を「発泡粒子」または「発泡成形体」に置き換えた測定方法により、測定できる。 In the expanded beads produced using the expandable resin beads, the structure of the expandable resin beads changes, but the composition of the expandable resin beads does not change. In addition, in the foamed molded article manufactured using the expanded beads, the structure of the expanded beads changes, but the composition of the expanded beads does not change. Therefore, the weight-average molecular weight and glass transition temperature of the foamed beads or the foamed molded product are regarded as the weight-average molecular weight and the glass transition temperature of the base resin contained in the expandable resin beads, which are the raw materials of the foamed beads or the foamed molded product. can be made. The weight-average molecular weight of the expanded beads or the foamed molded product is determined by changing the term "expanded resin particles" to "expanded beads" or "expanded molded body" in the method for measuring the weight-average molecular weight of the base resin of the expandable resin beads described above. It can be measured by the measurement method replaced with Further, the glass transition temperature of the expanded beads or the foamed molded article is determined by changing the term "expanded resin particles" to "expanded particles" or "expanded molded article" in the method for measuring the glass transition temperature of the base resin of the expandable resin particles described above. It can be measured by the measurement method replaced with

(体積平均粒子径)
本発泡性樹脂粒子の体積平均粒子径は0.5mm~1.4mmであることが好ましく、0.6mm~1.2mmであることがより好ましく、0.6mmより大きく1.0mm以下であることがより好ましく、0.7mm~0.9mmであることがより好ましい。当該体積平均粒子径が0.5mm以上である場合、発泡性樹脂粒子は、発泡時の発泡性が低下する虞および/またはブロッキングが増加する虞がない。当該体積平均粒径が1.4mm以下である場合、発泡性樹脂粒子を発泡してなる発泡粒子の発泡性が高くなりすぎる虞がなく、当該発泡粒子を用いる成形のときに成形体表面がゆっくりと形成されることで発泡成形体内部まで蒸気が入る。その結果、発泡成形体内部の融着性が良好となる。本明細書において、発泡性樹脂粒子の体積平均粒子径とは、粒度分析計(例えば画像処理方式ミリトラックJPA粒度分析計)を用いて、発泡性樹脂粒子の粒径を体積基準で測定し、得られた結果を累積分布で表示し、体積累積50%となる粒径とする。
(Volume average particle size)
The volume average particle diameter of the expandable resin particles is preferably 0.5 mm to 1.4 mm, more preferably 0.6 mm to 1.2 mm, and more than 0.6 mm and 1.0 mm or less. is more preferable, and 0.7 mm to 0.9 mm is more preferable. When the volume average particle diameter is 0.5 mm or more, the expandability of the expandable resin particles during expansion does not decrease and/or blocking does not increase. When the volume average particle diameter is 1.4 mm or less, there is no fear that the expandability of the expanded beads obtained by expanding the expandable resin beads will be too high, and the surface of the molded article will slowly rise during molding using the expanded beads. Steam enters into the inside of the foamed molded body by forming. As a result, the fusion-bondability inside the foam molded article is improved. In the present specification, the volume average particle diameter of the expandable resin particles is defined by measuring the particle size of the expandable resin particles on a volume basis using a particle size analyzer (for example, an image processing type Millitrac JPA particle size analyzer). The obtained results are expressed in terms of cumulative distribution, and the particle diameter at which the volume cumulative volume is 50%.

なお、発泡性メタクリル酸メチル系樹脂粒子を篩い分けして、粒子径0.5mm~1.4mmの発泡性メタクリル酸メチル系樹脂粒子を分取する場合がある。この場合、分取された発泡性メタクリル酸メチル系樹脂粒子の体積平均粒子径は、0.5mm~1.4mmの範囲内となる。 In some cases, the expandable methyl methacrylate-based resin particles are sieved to separate the expandable methyl methacrylate-based resin particles having a particle size of 0.5 mm to 1.4 mm. In this case, the volume-average particle diameter of the fractionated expandable methyl methacrylate-based resin particles is in the range of 0.5 mm to 1.4 mm.

(発泡性メタクリル酸メチル系樹脂粒子の発泡性)
本発泡性樹脂粒子は、前記の嵩密度(A)が0.0285g/cm以下であり、発泡性に優れるものである。発泡粒子を効率的に(例えばより短時間で)提供でき、その結果、発泡成形体を効率的に(例えばより短時間で)提供できることから、嵩密度(A)は、0.0260g/cm以下が好ましく、0.0250g/cm以下がより好ましく、0.0222g/cm以下が特に好ましい。嵩密度(A)は小さいほど好ましく、その下限値は特に限定されないが、嵩密度(A)は少なくとも0.0000g/cmを超える。また、嵩密度(A)の測定に使用する発泡性メタクリル酸メチル系樹脂粒子は、その表面にブロッキング防止剤を塗布したものであってもよい。
(Expandability of expandable methyl methacrylate-based resin particles)
The present expandable resin particles have a bulk density (A) of 0.0285 g/cm 3 or less and are excellent in expandability. The expanded beads can be efficiently provided (for example, in a shorter time), and as a result, the foamed molded article can be provided efficiently (for example, in a shorter time), so the bulk density (A) is 0.0260 g/cm 3 The following is preferable, 0.0250 g/cm 3 or less is more preferable, and 0.0222 g/cm 3 or less is particularly preferable. The lower the bulk density (A), the better, and the lower limit thereof is not particularly limited, but the bulk density (A) exceeds at least 0.0000 g/cm 3 . Moreover, the expandable methyl methacrylate-based resin particles used for measuring the bulk density (A) may be those coated with an antiblocking agent on the surface thereof.

本明細書において、発泡粒子の嵩密度は、以下(1)~(4)を順に実施して得られた値とする:(1)一定量の発泡粒子(例えば、嵩密度(A)の測定過程で得られた発泡粒子全量)の重量を測定する;(2)当該発泡粒子の全量を1000cmのメスシリンダーへ入れる;(3)メスシリンダーの目盛から、発泡粒子の体積を測定する;(4)以下の式により、発泡粒子の嵩密度を算出する;
嵩密度(g/cm)=発泡粒子の重量(g)/発泡粒子の体積(cm)。
In this specification, the bulk density of expanded beads is a value obtained by sequentially performing the following (1) to (4): (1) a certain amount of expanded beads (for example, measurement of bulk density (A) (2) Put the total amount of the foamed particles into a graduated cylinder of 1000 cm3 ; (3) Measure the volume of the foamed particles from the scale of the graduated cylinder; 4) Calculate the bulk density of the expanded particles by the following formula;
Bulk density (g/cm 3 )=weight of expanded beads (g)/volume of expanded beads (cm 3 ).

また、嵩密度(A)の測定に使用する発泡性樹脂粒子の重量を予め測定しておき、得られた発泡粒子の重量としてもよい。嵩密度(A)の測定に使用する発泡性樹脂粒子の重量は、例えば10gである。 Alternatively, the weight of the expandable resin particles used for measuring the bulk density (A) may be measured in advance and used as the weight of the obtained expanded particles. The weight of the expandable resin particles used for measuring bulk density (A) is, for example, 10 g.

嵩密度(A)の測定における発泡性樹脂粒子の発泡方法の一例を、以下(1)~(3)に示す:(1)発泡性樹脂粒子を一定量(例えば10g)量り取り、当該発泡性樹脂粒子の表面にブロッキング防止剤を塗布する;(2)当該発泡性樹脂粒子を、吹き出し口を有する蒸し器に投入する;(3)100℃の水蒸気を蒸し器に供給し、発泡性樹脂粒子を300秒間加熱することにより発泡粒子を得る。 An example of the expansion method of the expandable resin particles in the measurement of the bulk density (A) is shown below in (1) to (3): (1) A certain amount (for example, 10 g) of the expandable resin particles is weighed, and the expandable resin particles are measured. (2) Putting the expandable resin particles into a steamer having an outlet; (3) Supplying steam at 100° C. to the steamer so that 300 The expanded particles are obtained by heating for a second.

本発泡性樹脂粒子を発泡してなる発泡粒子は、前記体積(B)が140cm以下であり、発泡性が低いものである。内部融着性により優れる発泡成形体を提供できることから、体積(B)は、138cm以下が好ましく、135cm以下がより好ましく、130cm以下が特に好ましい。体積(B)は小さいほど好ましく、その下限値は特に限定されないが、体積(B)は少なくとも100cmを超える。 The expanded beads obtained by expanding the present expandable resin beads have a volume (B) of 140 cm 3 or less and have low expandability. The volume (B) is preferably 138 cm 3 or less, more preferably 135 cm 3 or less, and particularly preferably 130 cm 3 or less, since it is possible to provide a foamed molded article having excellent internal fusion bondability. The smaller the volume (B), the better, and the lower limit is not particularly limited, but the volume (B) exceeds at least 100 cm 3 .

ここで、本発泡性樹脂粒子を発泡してなる発泡粒子の体積(B)の測定方法は特に限定されるものではないが、例えば以下(1)~(6)を順に行う方法が挙げられる:(1)本発泡性樹脂粒子を嵩倍率60倍に発泡し、嵩倍率60倍の発泡粒子を調製する;(2)当該発泡粒子100cmを量り取り、蒸し器(例えば吹き出し口を有する蒸し器)に投入する;(3)100℃の水蒸気を蒸し器に供給し、発泡粒子を30秒間加熱する;(4)加熱後、発泡粒子を蒸し器から取り出し、25℃にて1分間放置する:(5)発泡粒子を1000cmのメスシリンダーへ入れる;(6)メスシリンダーの目盛から、発泡粒子の体積(B)を測定する。 Here, the method for measuring the volume (B) of the expanded beads obtained by expanding the present expandable resin beads is not particularly limited, but for example, a method of performing the following (1) to (6) in order: (1) Expand the present expandable resin particles to a bulk ratio of 60 times to prepare expanded beads having a bulk ratio of 60 times; (3) Supply steam at 100°C to the steamer to heat the expanded beads for 30 seconds; (4) After heating, remove the expanded beads from the steamer and leave at 25°C for 1 minute; (5) Foam Place the particles into a graduated cylinder of 1000 cm 3 ; (6) Measure the volume (B) of the expanded particles from the scale of the graduated cylinder.

本発泡性樹脂粒子を発泡してなる発泡粒子は、前記体積(C)が160cm超であり、収縮抑制性に優れるものである。内部融着性により優れる発泡成形体を提供できることから、体積(C)は、165cm以上が好ましく、168cm以上がより好ましく、170cm以上が特に好ましい。 The expanded beads obtained by expanding the present expandable resin beads have a volume (C) of more than 160 cm 3 and are excellent in shrinkage suppressing properties. The volume (C) is preferably 165 cm 3 or more, more preferably 168 cm 3 or more, and particularly preferably 170 cm 3 or more, because it is possible to provide a foam molded article having excellent internal fusion bondability.

ここで、本発泡性樹脂粒子を発泡してなる発泡粒子の体積(C)の測定方法は特に限定されるものではないが、例えば以下(1)~(6)を順に行う方法が挙げられる:(1)本発泡性樹脂粒子を嵩倍率60倍に発泡し、嵩倍率60倍の発泡粒子を調製する;(2)当該発泡粒子100cmを量り取り、蒸し器(例えば吹き出し口を有する蒸し器)に投入する;(3)100℃の水蒸気を蒸し器に供給し、発泡粒子を180秒間加熱する;(4)加熱後、発泡粒子を蒸し器から取り出し、25℃にて1分間放置する:(5)発泡粒子を1000cmのメスシリンダーへ入れる;(6)メスシリンダーの目盛から、発泡粒子の体積(C)を測定する。 Here, the method for measuring the volume (C) of the expanded beads obtained by expanding the present expandable resin beads is not particularly limited. (1) Expand the present expandable resin particles to a bulk ratio of 60 times to prepare expanded beads having a bulk ratio of 60 times; (3) Supply steam at 100°C to the steamer to heat the expanded beads for 180 seconds; (4) After heating, remove the expanded beads from the steamer and leave at 25°C for 1 minute; (5) Foam Place the particles into a graduated cylinder of 1000 cm 3 ; (6) Measure the volume (C) of the expanded particles from the scale of the graduated cylinder.

本明細書において、発泡粒子の嵩倍率は、以下(1)~(3)を順に実施して得られた値とする:(1)発泡粒子10gを量り取り、1000cmのメスシリンダーへ入れる;(2)メスシリンダーの目盛から、10gの発泡粒子の体積を測定する;(3)以下の式により、発泡粒子の嵩倍率を算出する;
嵩倍率(倍)=発泡粒子の体積(cm)/10g。
In this specification, the bulk ratio of the expanded beads is a value obtained by sequentially performing the following (1) to (3): (1) 10 g of expanded beads are weighed and put into a graduated cylinder of 1000 cm 3 ; (2) Measure the volume of 10 g of expanded beads from the scale of the graduated cylinder; (3) Calculate the bulk magnification of the expanded beads by the following formula;
Bulk magnification (times)=volume of foamed particles (cm 3 )/10 g.

本明細書において、発泡粒子の嵩倍率は、発泡倍率ともいえる。また、嵩倍率の単位は、実際には上述の式に基づきcm/gであるが、本明細書では、便宜上、嵩倍率の単位を「倍」と表記する。 In this specification, the bulk ratio of the expanded particles can also be said to be the expansion ratio. Also, the unit of the bulk ratio is actually cm 3 /g based on the above formula, but in this specification, the unit of the bulk ratio is expressed as “times” for convenience.

体積(B)および体積(C)の測定に用いる嵩倍率60倍の発泡粒子の製造方法としては、特に限定されないが、例えば以下(1)~(3)を順に行う方法が挙げられる:(1)発泡性樹脂粒子を加圧式の発泡機(例えば大開工業社製のBHP)に投入する;(2)蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件にて発泡機内に蒸気(例えば水蒸気)を吹き込み、発泡性樹脂粒子を加熱する;(3)前記(2)により、所望の発泡倍率(例えば嵩倍率60倍)に至るまで発泡性樹脂粒子の発泡を行い、発泡粒子を得る。なお、体積(B)および体積(C)の測定に用いる嵩倍率60倍の発泡粒子の、製造に使用する発泡性樹脂粒子は、篩い分けにより粒子径0.5mm~1.4mmの発泡性樹脂粒子とされたものであってもよい。 The method for producing the expanded beads with a bulk ratio of 60 times used for measuring the volume (B) and the volume (C) is not particularly limited. (2) a steam injection pressure of 0.10 MPa to 0.16 MPa and an internal pressure of 0.005 MPa to 0.030 MPa; Blowing steam (e.g. water vapor) into the foaming machine under the above conditions to heat the expandable resin particles; Foaming is performed to obtain foamed particles. The expandable resin particles used for the production of the expanded particles with a bulk ratio of 60 times used for measuring the volume (B) and the volume (C) were obtained by sieving an expandable resin having a particle diameter of 0.5 mm to 1.4 mm. It may be made into particles.

(変形例1)
本発明者は、内部融着性および鋳造性に優れたメタクリル酸メチル系樹脂発泡成形体を効率よく提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することを目的として鋭意検討する過程で、さらに以下の知見も独自に見出した:(i)発泡性樹脂粒子の基材における、アクリル酸エステル単位の含有量が多いほど、当該発泡性樹脂粒子の発泡速度が増加し、すなわち発泡性に優れ、その結果、発泡粒子および発泡成形体を効率良く提供できること;(ii)一方、発泡性樹脂粒子の基材における、アクリル酸エステル単位の含有量が多いほど、当該発泡性樹脂粒子を発泡してなる発泡粒子を成形してなる発泡成形体が鋳造性に劣ること、(iii)発泡性樹脂粒子の基材における、アクリル酸エステル単位の含有量が多すぎる(一定の値を超える)場合、当該発泡性樹脂粒子を発泡してなる発泡粒子の発泡速度が速くなり、かつ加熱後の発泡粒子の収縮が大きくなり、その結果、当該発泡粒子が提供する発泡成形体は内部融着性に劣ること、(iv)発泡性樹脂粒子の基材における、アクリル酸エステル単位の含有量が少ないほど、当該発泡性樹脂粒子を発泡してなる発泡粒子の発泡速度が遅くなること、(v)一方、発泡性樹脂粒子の基材における、アクリル酸エステル単位の含有量が少なすぎる(一定の値を下回る)場合、当該発泡性樹脂粒子を発泡してなる発泡粒子の発泡速度が遅くなりすぎることにより、成形過程で発泡粒子が十分に膨らまず、その結果、当該発泡粒子が提供する発泡成形体は内部融着性に劣ること。すなわち、基材樹脂におけるメタクリル酸メチル単位とアクリル酸エステル単位との比率(換言すれば、基材樹脂のガラス転移温度)を調節するのみでは、内部融着性および鋳造性に優れたメタクリル酸メチル系樹脂発泡成形体を効率よく提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供することはできなかった。
(Modification 1)
The inventors of the present invention have been in the process of intensive studies with the aim of providing expandable methyl methacrylate resin particles that can efficiently provide a methyl methacrylate resin foam molded article excellent in internal fusion bondability and castability. Furthermore, the following findings were also independently found: (i) the higher the content of acrylic acid ester units in the base material of the expandable resin particles, the higher the expansion rate of the expandable resin particles, that is, the higher the expandability. (ii) On the other hand, the larger the content of acrylic acid ester units in the base material of the expandable resin particles, the more the expandable resin particles expand. (iii) when the content of acrylic acid ester units in the base material of the expandable resin particles is too high (exceeds a certain value), The expansion speed of the expanded beads obtained by expanding the expandable resin beads is increased, and the shrinkage of the expanded beads after heating is increased. (iv) that the lower the content of the acrylic acid ester unit in the base material of the expandable resin bead, the slower the expansion rate of the expanded bead obtained by expanding the expandable resin bead; If the content of the acrylate unit in the base material of the expandable resin bead is too low (below a certain value), the foaming speed of the expandable resin bead becomes too slow. The foamed beads do not expand sufficiently during the molding process, and as a result, the foamed molded article provided by the foamed beads is inferior in internal fusion bondability. That is, only by adjusting the ratio of the methyl methacrylate unit and the acrylate unit in the base resin (in other words, the glass transition temperature of the base resin), methyl methacrylate having excellent internal fusion bondability and castability can be obtained. However, it was not possible to provide expandable methyl methacrylate-based resin particles capable of efficiently providing a system resin foam molded product.

そこで、本発明者らは、さらに鋭意検討を行った。その結果、メタクリル酸メチル単位とアクリル酸エステル単位とを含む基材樹脂のガラス転移温度のみならず、基材樹脂の重量平均分子量を調節することにより、上記課題を達成できることを新規に見出し、本発明の別の一実施形態を完成するに至った。具体的、本発明者らは、以下の新規知見を見出した:発泡性樹脂粒子が含む基材樹脂の重量平均分子量を特定の範囲内とし、かつガラス転移温度を一定温度以上とすることにより、内部融着性および鋳造性に優れた発泡成形体を効率よく提供し得る、発泡性樹脂粒子を提供できること;また、発泡性樹脂粒子が含む基材樹脂の重量平均分子量を特定の範囲内とし、かつガラス転移温度を一定温度以上とすることにより、(a)発泡性に優れる発泡性樹脂粒子であるともに、(b)当該発泡性樹脂粒子を発泡してなる発泡粒子の発泡速度は遅く、かつ(c)当該発泡粒子は加熱後の収縮が小さい、発泡性樹脂粒子を提供できること。 Therefore, the inventors of the present invention conducted further intensive studies. As a result, it was newly found that the above-mentioned problems can be achieved by adjusting not only the glass transition temperature of the base resin containing methyl methacrylate units and acrylic acid ester units, but also the weight average molecular weight of the base resin. Another embodiment of the invention has been completed. Specifically, the present inventors have found the following new knowledge: By setting the weight average molecular weight of the base resin contained in the expandable resin particles within a specific range and setting the glass transition temperature to a certain temperature or higher, It is possible to provide expandable resin particles that can efficiently provide a foamed molded article having excellent internal fusion bondability and castability; Further, by setting the glass transition temperature to a certain temperature or higher, (a) the expandable resin particles are excellent in expandability, and (b) the expansion speed of the expanded particles obtained by expanding the expandable resin particles is slow, and (c) The expanded particles can provide expandable resin particles that shrink less after heating.

すなわち、本発明の別の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子は、以下のような構成を有する:構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含み、前記基材樹脂の重量平均分子量は22.0万~31.0万であり、前記基材樹脂のガラス転移温度は114.5℃以上である、発泡性メタクリル酸メチル系樹脂粒子。 That is, an expandable methyl methacrylate-based resin particle according to another embodiment of the present invention has the following configuration: a base resin containing methyl methacrylate units and acrylic acid ester units as structural units; agent, the base resin has a weight average molecular weight of 220,000 to 310,000, and the glass transition temperature of the base resin is 114.5° C. or higher. particle.

本発明の別の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子は、上述した構成を有するため、(a)発泡性に優れ、かつ(b)発泡性が低く、かつ収縮抑制性に優れる発泡粒子を提供できるという利点を有する。また、上述した構成を有する構成を有する発泡性樹脂粒子は、内部融着性および鋳造性に優れた発泡成形体を効率良く提供できるという利点を有する。 Since the expandable methyl methacrylate-based resin particles according to another embodiment of the present invention have the above-described configuration, they are (a) excellent in foamability and (b) low in foamability and excellent in shrinkage suppression. It has the advantage of being able to provide expanded particles. In addition, the expandable resin particles having the above-described structure have the advantage of being able to efficiently provide a foam molded article having excellent internal fusion bondability and castability.

本発明の別の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子にかかるその他の態様は、適宜、上述の記載を援用する。 For other aspects of the expandable methyl methacrylate-based resin particles according to another embodiment of the present invention, the above description is appropriately incorporated.

(変形例2)
本発泡性樹脂粒子は、内部融着性に優れた発泡成形体を提供できる。発泡成形体の内部融着性は、発泡成形体を破断して得られる破断面における、発泡粒子の界面以外で破断している当該発泡粒子の割合によって評価できる。例えば、本発泡性樹脂粒子を発泡してなる発泡粒子を、成形してなる発泡成形体を破断して得られる当該発泡成形体の破断面において、当該破断面を構成している全発泡粒子(100%)に対する、前記発泡粒子の界面以外で破断している当該発泡粒子の割合(D)が85%以上である場合、発泡成形体は内部融着性に優れるといえる。
(Modification 2)
The present expandable resin particles can provide a foam molded article having excellent internal fusion bondability. The internal fusion bondability of a foamed molded product can be evaluated by the ratio of the foamed particles that are fractured outside the boundaries of the foamed particles in the fracture surface obtained by breaking the foamed molded product. For example, in the fracture surface of the expanded molded article obtained by breaking the expanded molded article obtained by molding the expanded particles obtained by expanding the present expandable resin particles, all the expanded particles ( 100%), when the ratio (D) of the expanded beads that are fractured outside the interface of the expanded beads is 85% or more, it can be said that the foam molded article has excellent internal fusion bondability.

すなわち、本発明の別の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子は、以下のような構成を有する:構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含み、以下(a)~(e)を満たす発泡性メタクリル酸メチル系樹脂粒子:
(a)前記発泡性メタクリル酸メチル系樹脂粒子を100℃の水蒸気で300秒間加熱して得られるメタクリル酸メチル系樹脂発泡粒子の嵩密度(A)が0.0285g/cm以下である;
(b)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で30秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(B)が140cm以下である;
(c)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で180秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(C)が160cm超である; (d)前記基材樹脂のガラス転移温度が114.5℃以上である;かつ
(e)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子を、成形してなるメタクリル酸メチル系樹脂発泡成形体を破断して得られる当該メタクリル酸メチル系樹脂発泡成形体の破断面において、メタクリル酸メチル系樹脂発泡粒子の界面以外で破断している当該メタクリル酸メチル系樹脂発泡粒子の割合(D)が90%以上である。
That is, an expandable methyl methacrylate-based resin particle according to another embodiment of the present invention has the following configuration: a base resin containing methyl methacrylate units and acrylic acid ester units as structural units; and an expandable methyl methacrylate-based resin particle that satisfies (a) to (e) below:
(a) The bulk density (A) of the expanded methyl methacrylate resin particles obtained by heating the expandable methyl methacrylate resin particles with water vapor at 100° C. for 300 seconds is 0.0285 g/cm 3 or less;
(b) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 30 seconds, and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. The volume (B) of the expanded resin particles is 140 cm 3 or less;
(c) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 180 seconds and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. (d) the glass transition temperature of the base resin is 114.5° C. or higher; and (e) the expandable methyl methacrylate-based resin particles are In the fracture surface of the methyl methacrylate-based resin foamed molded product obtained by breaking the methyl methacrylate-based resin foamed molded product obtained by molding the expanded methyl methacrylate-based resin foamed particles, the methyl methacrylate-based resin The proportion (D) of the methyl methacrylate-based resin foamed beads that are broken outside the interface of the foamed beads is 90% or more.

ここで、本発泡性樹脂粒子を発泡してなる発泡粒子を、型内成形してなる発泡成形体の破断面における割合(D)の測定方法は特に限定されるものではないが、例えば以下(1)~(4)を順に行う方法が挙げられる:(1)発泡性樹脂粒子を発泡してなる発泡粒子を、金型(例えば、長さ2000mm、幅1000mmおよび厚さ525mmの成形空間を有する金型)を使用して型内成形し、発泡成形体を調製する;(2)発泡成形体が厚さ方向で均等に5分割されるように、熱線スライサーを用いて、発泡成形体の厚さ方向に対して垂直に発泡成形体を切断する;(3)5分割した内の真ん中の1つ(切断前の発泡成形体の厚さ方向210mm~315mmの部分)について、厚さ方向に垂直な面を、長さ方向の中央部で幅方向に沿って折り曲げ発泡成形体を破断する;(4)得られた破断面を目視で観察し、破断面を構成している全粒子および粒子界面以外で破断している発泡粒子を計測し、以下式に基づき割合(D)を算出する;
割合(D)(%)=破断面のうち粒子界面以外で破断している粒子数/破断面を構成している粒子数×100。
Here, the method for measuring the ratio (D) in the fracture surface of the expanded molded product obtained by molding the expanded particles obtained by expanding the present expandable resin particles in a mold is not particularly limited, but for example, the following ( A method of performing 1) to (4) in order can be mentioned: (1) Expanded beads obtained by expanding expandable resin beads are placed in a mold (for example, having a molding space with a length of 2000 mm, a width of 1000 mm and a thickness of 525 mm). Mold) is used to perform in-mold molding to prepare a foamed molded product; Cut the foamed molded body perpendicular to the thickness direction; (3) Cut the middle one of the five divisions (a portion of the foamed molded body in the thickness direction of 210 mm to 315 mm before cutting) perpendicular to the thickness direction (4) Visually observe the obtained fracture surface, and all particles and particle interfaces constituting the fracture surface Measure the number of foamed particles that are broken outside, and calculate the ratio (D) based on the following formula;
Proportion (D) (%)=number of particles in fractured surface that are fractured outside of particle interface/number of particles that constitute fractured surface×100.

割合(D)の測定に用いる発泡成形体の製造方法としては、特に限定されないが、例えば以下(1)~(8)を順に行う方法が挙げられる:(1)発泡性樹脂粒子を加圧式の発泡機(例えば大開工業社製のBHP)に投入する;(2)蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件にて発泡機内に蒸気(例えば水蒸気)を吹き込み、発泡性樹脂粒子を加熱する;(3)前記(2)により、所望の発泡倍率(例えば嵩倍率60倍)に至るまで発泡性樹脂粒子を発泡する;(4)得られた発泡粒子を常温(例えば25℃)下で3日間放置し、嵩倍率60倍の発泡粒子を得る;(5)金型(例えば、長さ2000mm、幅1000mmおよび厚さ525mmの成形空間を有する金型)を有する成形機(例えばダイセン製のPEONY-205DS)に嵩倍率60倍の発泡粒子を充填する;(6)蒸気吹き込み圧0.15MPa~0.25MPaにて金型内に蒸気(例えば水蒸気)を吹き込み、金型内の圧力が0.030Mpa~0.060MPaの条件下で、発泡圧力が0.070MPa~0.080MPaとなるまで真空吸引加熱による型内成形を行い、発泡粒子同士を融着させる;(7)発泡圧力が0.070MPa~0.080MPaに到達した後、80℃~110℃の金型内に1000秒間放置し、その後、発泡成形体を取り出す;(8)取り出した発泡成形体を60℃にて3日間放置し、発泡成形体を得る。なお、割合(D)の測定に用いる発泡成形体の製造に使用する発泡性樹脂粒子は、篩い分けにより粒子径0.5mm~1.4mmの発泡性樹脂粒子とされたものであってもよい。 The method for producing the foamed molded article used for measuring the proportion (D) is not particularly limited, but includes, for example, a method in which the following (1) to (8) are performed in order: (1) expandable resin particles are pressurized; Put into a foaming machine (for example, BHP manufactured by Daikai Kogyo Co., Ltd.); (3) By the above (2), the expandable resin particles are expanded to a desired expansion ratio (for example, a bulk ratio of 60 times); (4) The obtained (5) Mold (for example, a metal mold having a molding space of 2000 mm in length, 1000 mm in width and 525 mm in thickness). A molding machine (for example, Daisen PEONY-205DS) having a mold) is filled with foamed particles having a bulk ratio of 60 times; (6) Steam (for example, steam ) is blown into the mold, and under the condition that the pressure in the mold is 0.030 MPa to 0.060 MPa, molding is performed in the mold by vacuum suction heating until the foaming pressure reaches 0.070 MPa to 0.080 MPa, and the expanded particles are fused together. (7) After the foaming pressure reaches 0.070 MPa to 0.080 MPa, it is left in the mold at 80 ° C. to 110 ° C. for 1000 seconds, and then the foamed molded product is taken out; The molded article is left at 60° C. for 3 days to obtain a foam molded article. The expandable resin particles used in the production of the foamed molded article used for measuring the ratio (D) may be those obtained by sieving into expandable resin particles having a particle diameter of 0.5 mm to 1.4 mm. .

割合(D)は、融着率ともいえる。内部融着性により優れることから、割合(D)は、85%以上であることが好ましい。 The ratio (D) can also be said to be a fusion rate. The ratio (D) is preferably 85% or more because it is more excellent in internal fusion bondability.

〔3.発泡性メタクリル酸メチル系樹脂粒子の製造方法〕
本発泡性樹脂粒子の製造方法としては、特に限定されず、例えば水性懸濁液中で単量体混合物の重合を行う懸濁重合が挙げられる。
[3. Method for producing expandable methyl methacrylate-based resin particles]
The method for producing the present expandable resin particles is not particularly limited, and examples thereof include suspension polymerization in which a monomer mixture is polymerized in an aqueous suspension.

本発泡性樹脂粒子の製造方法の好ましい態様としては、例えば次のような方法が挙げられる:メタクリル酸メチル単量体およびアクリル酸エステル単量体を含む単量体混合物を共重合する共重合工程と、得られた共重合体に発泡剤を含浸させる発泡剤含浸工程とを含み、前記共重合工程は、(a)前記単量体混合物100重量部に対して0.08重量部~0.20重量部の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始する開始工程と、(b)前記開始工程後、重合転化率が35%~70%の時点で、前記単量体混合物100重量部に対して0.08重量部~0.50重量部の第2の難水溶性無機塩を、反応混合物中に添加する添加工程と、を含み、前記共重合工程にて得られる前記共重合体の重量平均分子量は22.0万~31.0万であり、ガラス転移温度は114.5℃以上である、発泡性メタクリル酸メチル系樹脂粒子の製造方法。 A preferred embodiment of the method for producing the present expandable resin particles includes, for example, the following method: Copolymerization step of copolymerizing a monomer mixture containing a methyl methacrylate monomer and an acrylic acid ester monomer. and a foaming agent impregnation step of impregnating the resulting copolymer with a foaming agent, wherein the copolymerization step includes: (a) 0.08 parts by weight to 0.08 part by weight per 100 parts by weight of the monomer mixture. an initiation step of initiating copolymerization of the monomer mixture in the presence of 20 parts by weight of the first sparingly water-soluble inorganic salt; , an addition step of adding 0.08 parts by weight to 0.50 parts by weight of the second poorly water-soluble inorganic salt to the reaction mixture with respect to 100 parts by weight of the monomer mixture, and the copolymerization A method for producing expandable methyl methacrylate-based resin particles, wherein the copolymer obtained in the step has a weight average molecular weight of 220,000 to 310,000 and a glass transition temperature of 114.5° C. or higher.

本明細書において、「難水溶性無機塩」とは、25℃の水に対する溶解度が0.1mg/ml以下である無機塩を意図する。 As used herein, "sparingly water-soluble inorganic salt" means an inorganic salt having a solubility in water at 25°C of 0.1 mg/ml or less.

上述した本発泡性樹脂粒子の製造方法の好ましい態様もまた、本発明の一実施形態である。以下、上述した本発泡性樹脂粒子の製造方法の好ましい態様、すなわち本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子の製造方法について説明する。なお以下に詳説した事項以外は、適宜、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項の記載を援用する。また、以下、共重合工程で得られる共重合体(基材樹脂ともいえる)を単に「樹脂粒子」と称する場合もある。また、本明細書において、「本発明の一実施形態に係る発泡性メタクリル酸メチル系樹脂粒子の製造方法」を「本製造方法」と称する場合もある。 A preferable aspect of the method for producing the present expandable resin particles described above is also an embodiment of the present invention. A preferred embodiment of the above-described method for producing expandable resin particles, that is, a method for producing expandable methyl methacrylate-based resin particles according to one embodiment of the present invention will be described below. Matters other than those described in detail below may be appropriately described in [2. expandable methyl methacrylate-based resin particles]. Further, hereinafter, the copolymer (also referred to as base resin) obtained in the copolymerization step may be simply referred to as "resin particles". Further, in this specification, the "method for producing expandable methyl methacrylate-based resin particles according to one embodiment of the present invention" may be referred to as "this production method".

本発明の一実施形態における「水性懸濁液」とは、攪拌機等を用いて、単量体液滴および/または樹脂粒子を、水または水溶液中に分散させた状態の液体を指す。水性懸濁液中には、(a)水溶性の界面活性剤および単量体が溶解していても良く、また(b)水に不溶の分散剤、重合開始剤、連鎖移動剤、架橋剤、気泡調整剤、難燃剤、溶剤等が単量体と共に分散していても良い。 The “aqueous suspension” in one embodiment of the present invention refers to a liquid in which monomer droplets and/or resin particles are dispersed in water or an aqueous solution using a stirrer or the like. The aqueous suspension may contain (a) a water-soluble surfactant and a monomer dissolved therein, and (b) a water-insoluble dispersant, a polymerization initiator, a chain transfer agent, and a cross-linking agent. , a cell control agent, a flame retardant, a solvent, etc. may be dispersed together with the monomer.

水性懸濁液中の、単量体および重合体(メタクリル酸メチル系樹脂であり、共重合体ともいう)と、水または水溶液と、の重量比は、得られるメタクリル酸メチル系樹脂/水または水溶液の比として、1.0/0.6~1.0/3.0が好ましい。なお、ここで言及する「水溶液」とは、水と、メタクリル酸メチル系樹脂以外の成分とからなる溶液を意図する。 In the aqueous suspension, the weight ratio of the monomer and polymer (methyl methacrylate-based resin, also referred to as a copolymer) to water or the aqueous solution is the obtained methyl methacrylate-based resin/water or The aqueous solution ratio is preferably 1.0/0.6 to 1.0/3.0. In addition, the "aqueous solution" referred to here intends a solution consisting of water and components other than the methyl methacrylate-based resin.

本発明の一実施形態に係る共重合工程は、単量体混合物100重量部に対して0.08重量部~0.20重量部の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始する開始工程を含む。開始工程は、例えば、(a)水、(b)メタクリル酸メチル単量体およびアクリル酸エステル単量体を含む単量体混合物、(c)単量体混合物100重量部に対して0.08重量部~0.20重量部の第1の難水溶性無機塩、および任意で(d)架橋剤、重合開始剤、界面活性剤、難水溶性無機塩以外の分散剤、連鎖移動剤、気泡調整剤、難燃剤など、を含む水性懸濁液を用いて、単量体混合物の共重合を開始する工程である。 In the copolymerization step according to one embodiment of the present invention, the monomers are An initiation step is included to initiate copolymerization of the mixture. The starting step is, for example, (a) water, (b) a monomer mixture containing methyl methacrylate monomer and acrylic acid ester monomer, (c) 0.08 per 100 parts by weight of the monomer mixture. parts by weight to 0.20 parts by weight of a first sparingly water-soluble inorganic salt, and optionally (d) a cross-linking agent, a polymerization initiator, a surfactant, a dispersant other than a sparingly water-soluble inorganic salt, a chain transfer agent, air bubbles An aqueous suspension containing modifiers, flame retardants, etc. is used to initiate the copolymerization of the monomer mixture.

本明細書において、「開始工程前」、すなわち「重合反応の開始前」を「重合初期」と称する場合もある。開始工程において水性懸濁液に配合(添加)される第1の難水溶性無機塩、および任意で配合される重合開始剤などは、重合初期に使用される物質(原料)といえる。 In the present specification, "before the initiation step", that is, "before initiation of the polymerization reaction" may be referred to as "initial stage of polymerization". The first sparingly water-soluble inorganic salt blended (added) to the aqueous suspension in the initiation step and the optionally blended polymerization initiator can be said to be substances (raw materials) used at the initial stage of polymerization.

開始工程において、第1の難水溶性無機塩は、分散剤として機能し得る。開始工程すなわち重合初期において使用する第1の難水溶性無機塩としては、例えば、第三リン酸カルシウム、ピロリン酸マグネシウム、ハイドロキシアパタイト、カオリンなどが挙げられる。 In the initiation step, the first sparingly water-soluble inorganic salt can function as a dispersant. Examples of the first sparingly water-soluble inorganic salt used in the initiation step, that is, the initial stage of polymerization include tribasic calcium phosphate, magnesium pyrophosphate, hydroxyapatite, and kaolin.

また、本発明の一実施形態に係る開始工程において、(a)ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子、および/または(b)α-オレフィンスルホン酸ソーダ、ドデシルベンゼンスルホン酸ソーダなどのアニオン系界面活性剤を、第1の難水溶性無機塩と併用してもよい。 Also, in the initiation step according to one embodiment of the present invention, (a) a water-soluble polymer such as polyvinyl alcohol, methylcellulose, polyacrylamide, polyvinylpyrrolidone, and/or (b) sodium α-olefin sulfonate, dodecylbenzene sulfone An anionic surfactant such as acid soda may be used in combination with the first sparingly water-soluble inorganic salt.

本発明の一実施形態に係る開始工程において使用する第1の難水溶性無機塩としては、樹脂粒子および/または単量体の液滴の保護力の観点から、第三リン酸カルシウムが好ましい。開始工程は、液滴の分散安定性の観点から、第1の難水溶性無機塩である第三リン酸カルシウムおよびアニオン系界面活性剤であるα-オレフィンスルホン酸ソーダの存在下、単量体混合物の共重合を開始する工程であることが好ましい。 As the first sparingly water-soluble inorganic salt used in the starting step according to one embodiment of the present invention, tribasic calcium phosphate is preferable from the viewpoint of the ability to protect droplets of resin particles and/or monomers. From the viewpoint of the dispersion stability of the droplets, the initiation step is to prepare the monomer mixture in the presence of the first sparingly water-soluble inorganic salt, tribasic calcium phosphate, and the anionic surfactant, sodium α-olefin sulfonate. The step of initiating copolymerization is preferred.

本発明の一実施形態に係る開始工程は、単量体混合物100重量部に対して、好ましくは0.08重量部~0.20重量部、より好ましくは0.10重量部~0.19重量部、の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始する工程であることが好ましい。単量体混合物100重量部に対して0.08重量部以上の第1の難水溶性無機塩の存在下単量体混合物の共重合を開始する場合、得られる発泡性樹脂粒子の体積平均粒子径が大きくなりすぎる虞がない。単量体混合物100重量部に対して0.20重量部以下の第1の難水溶性無機塩の存在下単量体混合物の共重合を開始する場合、発泡性樹脂粒子の微粒子が多く発生する虞がない。すなわち、上述の範囲内の量の第1の難水溶性無機塩の存在下、単量体混合物の共重合を開始することにより、所望の体積平均粒子径を有する発泡性樹脂粒子を収率よく得ることができる。 The initiation step according to one embodiment of the present invention is preferably 0.08 to 0.20 parts by weight, more preferably 0.10 to 0.19 parts by weight, relative to 100 parts by weight of the monomer mixture. The step of initiating copolymerization of the monomer mixture in the presence of the first sparingly water-soluble inorganic salt of part 3 is preferred. When starting the copolymerization of the monomer mixture in the presence of 0.08 parts by weight or more of the first sparingly water-soluble inorganic salt with respect to 100 parts by weight of the monomer mixture, the volume average particle size of the resulting expandable resin particles There is no risk of the diameter becoming too large. When starting the copolymerization of the monomer mixture in the presence of 0.20 parts by weight or less of the first sparingly water-soluble inorganic salt with respect to 100 parts by weight of the monomer mixture, many fine particles of expandable resin particles are generated. No fear. That is, by initiating copolymerization of the monomer mixture in the presence of the first sparingly water-soluble inorganic salt in an amount within the range described above, expandable resin particles having a desired volume average particle diameter are obtained at a high yield. Obtainable.

本発明の一実施形態に係る開始工程において、水溶性高分子および/またはアニオン系界面活性剤を第1の難水溶性無機塩と併用する場合について説明する。この場合、水溶性高分子および/またはアニオン系界面活性剤の水性懸濁液中の濃度としては、単量体混合物の濃度を基準(1000000ppm)として、30ppm~100ppmが好ましい。 A case where a water-soluble polymer and/or an anionic surfactant is used in combination with a first sparingly water-soluble inorganic salt in the initiation step according to one embodiment of the present invention will be described. In this case, the concentration of the water-soluble polymer and/or anionic surfactant in the aqueous suspension is preferably 30 ppm to 100 ppm based on the concentration of the monomer mixture (1,000,000 ppm).

共重合工程は、開始工程後、重合転化率が35%~70%の時点で、単量体混合物100重量部に対して0.08重量部~0.50重量部の第2の難水溶性無機塩を、反応混合物中に添加する添加工程を含むことが好ましい。 In the copolymerization step, after the initiation step, when the polymerization conversion rate is 35% to 70%, 0.08 parts by weight to 0.50 parts by weight of the second poorly water-soluble Preferably, an addition step is included in which an inorganic salt is added to the reaction mixture.

本明細書において、「開始工程後」、すなわち「重合反応の開始後」を「重合途中」と称する場合もある。添加工程において、反応混合物中に添加される第2の難水溶性無機塩は、重合途中に使用される物質(原料)といえる。 In the present specification, "after the initiation step", that is, "after initiation of the polymerization reaction" may be referred to as "during polymerization". In the addition step, the second sparingly water-soluble inorganic salt added to the reaction mixture can be said to be a substance (raw material) used during the polymerization.

本発明の一実施形態に係る共重合工程において、単量体混合物の重合(共重合)が懸濁重合で行われる場合、添加工程における反応混合物は、水性懸濁液ともいえる。 In the copolymerization step according to one embodiment of the present invention, when the monomer mixture is polymerized (copolymerized) by suspension polymerization, the reaction mixture in the addition step can be said to be an aqueous suspension.

本発明の一実施形態に係る添加工程において、第2の難水溶性無機塩は、分散剤として機能し得る。添加工程すなわち重合途中において使用する第2の難水溶性無機塩としては、第1の難水溶性無機塩として既に例示した物質が挙げられる。第2の難水溶性無機塩としては、第三リン酸カルシウム、ハイドロキシアパタイトおよびカオリンからなる群から選択される1種以上であることが好ましく、第三リン酸カルシウムであることがより好ましい。当該構成によると、分散剤の添加(追加)以降の樹脂粒子同士の合一を防ぐことができ、目的の(所望の)体積平均粒子径の発泡性樹脂粒子が容易に得られるという利点を有する。 In the adding step according to one embodiment of the present invention, the second sparingly water-soluble inorganic salt can function as a dispersant. As the second sparingly water-soluble inorganic salt used in the addition step, that is, during the polymerization, the substances already exemplified as the first sparingly water-soluble inorganic salt can be mentioned. The second sparingly water-soluble inorganic salt is preferably one or more selected from the group consisting of tribasic calcium phosphate, hydroxyapatite and kaolin, more preferably tribasic calcium phosphate. According to this configuration, it is possible to prevent the coalescence of the resin particles after the addition (addition) of the dispersant, and there is an advantage that the expandable resin particles having the target (desired) volume average particle diameter can be easily obtained. .

添加工程は、開始工程後、重合転化率が35%~70%の時点で、単量体混合物100重量部に対して、好ましくは0.08重量部~0.50重量部、より好ましくは0.10重量部~0.50重量部、より好ましくは0.10重量部~0.40重量部、さらに好ましくは0.10重量部~0.30重量部、特に好ましくは0.10重量部~0.20重量部、の第2の難水溶性無機塩を、反応混合物中に添加する工程であることが好ましい。添加工程において、単量体混合物100重量部に対して0.08重量部以上の第2の難水溶性無機塩を反応混合物中に添加する場合、得られる発泡性樹脂粒子の体積平均粒子径が大きくなりすぎる虞がない。添加工程において、単量体混合物100重量部に対して0.50重量部以下の第2の難水溶性無機塩を反応混合物中に添加する場合、難水溶性無機塩の使用量が過剰とならず、生産コストを削減できる。すなわち、添加工程において、上述の範囲内の量の第2の難水溶性無機塩を反応混合物中に添加することにより、所望の体積平均粒子径を有する発泡性樹脂粒子を、低い生産コストで得ることができる。 In the addition step, after the initiation step, when the polymerization conversion rate is 35% to 70%, preferably 0.08 to 0.50 parts by weight, more preferably 0 .10 to 0.50 parts by weight, more preferably 0.10 to 0.40 parts by weight, still more preferably 0.10 to 0.30 parts by weight, particularly preferably 0.10 to 0.10 parts by weight Preferably, the step of adding 0.20 parts by weight of the second sparingly water-soluble inorganic salt to the reaction mixture. In the addition step, when 0.08 parts by weight or more of the second poorly water-soluble inorganic salt is added to the reaction mixture with respect to 100 parts by weight of the monomer mixture, the resulting expandable resin particles have a volume average particle diameter of There is no danger of it becoming too large. In the addition step, when adding 0.50 parts by weight or less of the second poorly water-soluble inorganic salt to the reaction mixture with respect to 100 parts by weight of the monomer mixture, the amount of the poorly water-soluble inorganic salt used should not be excessive. can reduce production costs. That is, in the addition step, by adding the second sparingly water-soluble inorganic salt in an amount within the range described above to the reaction mixture, expandable resin particles having a desired volume-average particle size can be obtained at low production cost. be able to.

添加工程では、好ましくは重合転化率が35%~70%の時点で、より好ましくは重合転化率が35%~60%の時点で、さらに好ましくは重合転化率が40%~50%の時点で第2の難水溶性無機塩を反応混合物中に添加することが好ましい。添加工程において、重合転化率が35%以上の時点で第2の難水溶性無機塩を反応混合物中に添加する場合、得られる発泡性樹脂粒子の体積平均粒子径が小さくなりすぎる虞がない。添加工程において、重合転化率が70%以下の時点で第2の難水溶性無機塩を反応混合物中に添加する場合、得られる発泡性樹脂粒子の体積平均粒子径が大きくなりすぎる虞がない。すなわち、添加工程において、重合転化率が上述の範囲内の時点で第2の難水溶性無機塩を反応混合物中に添加する場合、所望の体積平均粒子径を有する発泡性樹脂粒子を容易に得ることができる。本明細書における重合転化率の測定方法については、下記実施例にて詳述する。 In the addition step, preferably when the polymerization conversion is 35% to 70%, more preferably when the polymerization conversion is 35% to 60%, and more preferably when the polymerization conversion is 40% to 50%. A second sparingly water-soluble inorganic salt is preferably added to the reaction mixture. In the addition step, when the second sparingly water-soluble inorganic salt is added to the reaction mixture when the polymerization conversion rate is 35% or more, there is no possibility that the resulting expandable resin particles will have an excessively small volume average particle size. In the addition step, when the second sparingly water-soluble inorganic salt is added to the reaction mixture when the polymerization conversion rate is 70% or less, there is no possibility that the resulting expandable resin particles will have an excessively large volume average particle diameter. That is, in the addition step, when the second sparingly water-soluble inorganic salt is added to the reaction mixture when the polymerization conversion rate is within the above range, expandable resin particles having a desired volume average particle size can be easily obtained. be able to. The method for measuring the polymerization conversion in the present specification will be described in detail in the examples below.

本発明の一実施形態に係る共重合工程は、重合温度を変化させて少なくとも2段階で実施されることが好ましい。重合温度が異なる2つの共重合工程を、便宜上、以下、第1共重合工程および第2共重合工程と称する。共重合工程は、重合温度が異なる連続した第1共重合工程および第2共重合工程を含むことが好ましいともいえる。 The copolymerization process according to one embodiment of the present invention is preferably carried out in at least two stages with varying polymerization temperatures. For convenience, the two copolymerization steps with different polymerization temperatures are hereinafter referred to as the first copolymerization step and the second copolymerization step. It can also be said that the copolymerization step preferably includes a continuous first copolymerization step and a second copolymerization step with different polymerization temperatures.

本発明の一実施形態に係る共重合工程は、例えば、(a)70℃~90℃の重合温度で、かつ低温分解型の重合開始剤を用いて実施される第1共重合工程と、(b)当該第1共重合工程に連続して実施され、第1共重合工程よりも高い重合温度(例えば90℃~110℃)で、かつ高温分解型の重合開始剤を用いて実施される第2共重合工程と、を含むことが好ましい。共重合工程では、上述した第1共重合工程において主要な重合反応が行われ、上述した第2共重合工程において残存する単量体を低減させることが好ましい。なお、(i)第1共重合工程の温度が70℃以上90℃未満であり、かつ第2共重合工程の温度が90℃~110℃であってもよく、(ii)第1共重合工程の温度が70℃~90℃であり、かつ第2共重合工程の温度が90℃超110℃以下であってもよい。 The copolymerization step according to one embodiment of the present invention includes, for example, (a) a first copolymerization step performed at a polymerization temperature of 70 ° C. to 90 ° C. and using a low temperature decomposition type polymerization initiator; b) A second step which is carried out continuously with the first copolymerization step, at a polymerization temperature higher than that of the first copolymerization step (for example, 90° C. to 110° C.), and using a high-temperature decomposable polymerization initiator. 2 copolymerization steps. In the copolymerization step, it is preferable that the main polymerization reaction is carried out in the above-described first copolymerization step, and the residual monomer is reduced in the above-described second copolymerization step. In addition, (i) the temperature in the first copolymerization step may be 70° C. or more and less than 90° C., and the temperature in the second copolymerization step may be 90° C. to 110° C., and (ii) the first copolymerization step may be 70° C. to 90° C., and the temperature in the second copolymerization step may be above 90° C. and 110° C. or less.

重合開始剤としては、一般に熱可塑性重合体の製造に用いられるラジカル発生型重合開始剤を用いることができる。代表的なラジカル発生型重合開始剤としては、例えば、(a)過酸化ベンゾイル、ラウロイルパーオキサイド、t-ブチルパーオキシベンゾエート、イソプロピル-t-ブチルパーオキシカーボネート、過安息香酸ブチル、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーピバレート、t-ブチルパーオキシイソプロピルカーボネート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネートなどの有機過酸化物、および(b)アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物、が挙げられる。これらの重合開始剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用しても良い。 As the polymerization initiator, radical-generating polymerization initiators generally used for producing thermoplastic polymers can be used. Typical radical-generating polymerization initiators include, for example, (a) benzoyl peroxide, lauroyl peroxide, t-butyl peroxybenzoate, isopropyl-t-butyl peroxycarbonate, butyl perbenzoate, t-butyl peroxy oxy-2-ethylhexanoate, t-butyl perpivalate, t-butylperoxyisopropyl carbonate, di-t-butylperoxyhexahydroterephthalate, 1,1-bis(t-butylperoxy)-3, 3,5-trimethylcyclohexane, 1,1-bis(t-amylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, t-butylperoxy-2 - organic peroxides such as ethylhexyl monocarbonate, and (b) azo compounds such as azobisisobutyronitrile, azobisdimethylvaleronitrile. These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.

上述したラジカル発生型重合開始剤のうち、(a)過酸化ベンゾイル、ラウロイルパーオキサイド、t-ブチルパーピバレート、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、アゾビスイソブチロニトリルおよびアゾビスジメチルバレロニトリルは低温分解型の重合開始剤であり、(b)t-ブチルパーオキシベンゾエート、イソプロピル-t-ブチルパーオキシカーボネート、過安息香酸ブチル、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-アミルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサンおよびt-ブチルパーオキシ-2-エチルヘキシルモノカーボネートは高温分解型の重合開始剤である。 Among the radical-generating polymerization initiators described above, (a) benzoyl peroxide, lauroyl peroxide, t-butyl perpivalate, di-t-butyl peroxyhexahydroterephthalate, azobisisobutyronitrile and azobisdimethyl Valeronitrile is a low-temperature decomposing polymerization initiator, and (b) t-butyl peroxybenzoate, isopropyl-t-butyl peroxycarbonate, butyl perbenzoate, t-butyl peroxy-2-ethylhexanoate, t-butylperoxy isopropyl carbonate, 1,1-bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-amylperoxy)-3,3,5-trimethyl Cyclohexane, 1,1-bis(t-butylperoxy)cyclohexane and t-butylperoxy-2-ethylhexyl monocarbonate are high temperature decomposition type polymerization initiators.

重合開始剤の使用量は、第1共重合工程における使用量と第2共重合工程における使用量とを合計して、例えば、単量体混合物100重量部に対して0.1重量部~0.5重量部以下が好ましい。当該構成によると、発泡性に優れる発泡性樹脂粒子が得られる。 The amount of the polymerization initiator used is the sum of the amount used in the first copolymerization step and the amount used in the second copolymerization step, for example, 0.1 part by weight to 0.1 part by weight with respect to 100 parts by weight of the monomer mixture. .5 parts by weight or less is preferred. According to this configuration, expandable resin particles having excellent expandability can be obtained.

本発明の一実施形態に係る開始工程は、(a)第1の難水溶性無機塩、低温分解型の重合開始剤および高温分解型の重合開始剤の存在下、単量体混合物の共重合を開始する工程であってもよく、(b)第1の難水溶性無機塩および低温分解型の重合開始剤の存在下、単量体混合物の共重合を開始する工程であってもよい。開始工程が第1の難水溶性無機塩および低温分解型の重合開始剤の存在下単量体混合物の共重合を開始する工程である場合、高温分解型の重合開始剤は、開始工程後すなわち重合途中に、反応混合物(水性懸濁液)中に添加されてもよい。 The initiation step according to one embodiment of the present invention includes (a) copolymerization of a monomer mixture in the presence of a first sparingly water-soluble inorganic salt, a low-temperature decomposing polymerization initiator, and a high-temperature decomposing polymerization initiator. or (b) initiating copolymerization of the monomer mixture in the presence of the first sparingly water-soluble inorganic salt and a low-temperature decomposable polymerization initiator. When the initiation step is a step of initiating copolymerization of the monomer mixture in the presence of the first sparingly water-soluble inorganic salt and the low temperature decomposable polymerization initiator, the high temperature decomposable polymerization initiator is added after the initiation step, i.e. It may be added to the reaction mixture (aqueous suspension) during the polymerization.

開始工程は、70℃~90℃または70℃以上90℃未満の重合温度で実施(開始)されてもよい。開始工程が70℃~90℃または70℃以上90℃未満の重合温度で単量体混合物の共重合を開始する工程である場合、開始工程後すなわち重合途中に、重合温度を重合開始時よりも高い温度(例えば90℃超110℃以下または90℃~110℃)に変更してもよい。 The initiation step may be carried out (initiated) at a polymerization temperature of 70°C to 90°C or 70°C to 90°C. When the initiation step is a step of initiating copolymerization of the monomer mixture at a polymerization temperature of 70° C. to 90° C. or 70° C. or more and less than 90° C., after the initiation step, that is, during the polymerization, the polymerization temperature is set higher than at the start of polymerization. It may be changed to a higher temperature (eg, higher than 90° C. and 110° C. or lower, or 90° C. to 110° C.).

本発明の一実施形態に係る共重合工程において、連鎖移動剤を使用することが好ましい。連鎖移動剤としては、特に限定されず、メタクリル酸メチル系樹脂の重合に用いられる周知の物質を使用できる。連鎖移動剤としては、例えば、(a)アルキルメルカプタン類、チオグリコール酸エステル類等の単官能連鎖移動剤、および(b)多価アルコール(例えばエチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ソルビトール等)の水酸基をチオグリコール酸または3-メルカプトプロピオン酸でエステル化した多官能性連鎖移動剤、があげられる。アルキルメルカプタン類としては、n-オクチルメルカプタン、n-ドデシルメルカプタンおよびt-ドデシルメルカプタンなどが挙げられる。連鎖移動剤としては、分子量制御が容易であることから、n-ドデシルメルカプタンが好ましい。 A chain transfer agent is preferably used in the copolymerization step according to one embodiment of the present invention. The chain transfer agent is not particularly limited, and known substances used for polymerization of methyl methacrylate resins can be used. Examples of chain transfer agents include (a) monofunctional chain transfer agents such as alkylmercaptans and thioglycolic acid esters, and (b) polyhydric alcohols (e.g., ethylene glycol, neopentyl glycol, trimethylolpropane, sorbitol, etc.). ) is esterified with thioglycolic acid or 3-mercaptopropionic acid. Alkylmercaptans include n-octylmercaptan, n-dodecylmercaptan and t-dodecylmercaptan. As the chain transfer agent, n-dodecylmercaptan is preferred because it facilitates molecular weight control.

共重合工程において使用する連鎖移動剤の使用量を変更することにより、得られる発泡性樹脂粒子の分子量を調節することができる。連鎖移動剤の使用量は、例えば、単量体混合物100重量部に対して0.100重量部以上0.500重量部未満が好ましく、0.200重量部~0.400重量部がより好ましく、0.250重量部~0.300重量部がさらに好ましい。 By changing the amount of the chain transfer agent used in the copolymerization step, the molecular weight of the resulting expandable resin particles can be adjusted. The amount of the chain transfer agent used is, for example, preferably 0.100 parts by weight or more and less than 0.500 parts by weight, more preferably 0.200 parts by weight to 0.400 parts by weight, based on 100 parts by weight of the monomer mixture. More preferably 0.250 to 0.300 parts by weight.

本発明の一実施形態に係る発泡剤含浸工程では、共重合工程にて得られた共重合体であるメタクリル酸メチル系樹脂粒子に発泡剤を含浸させることにより、発泡性メタクリル酸メチル系樹脂粒子を得ることができる。 In the step of impregnating a foaming agent according to one embodiment of the present invention, the methyl methacrylate-based resin particles, which are the copolymer obtained in the copolymerization step, are impregnated with a foaming agent to obtain expandable methyl methacrylate-based resin particles. can be obtained.

本発明の一実施形態に係る発泡剤含浸工程は任意の時点で行われることが可能であり、例えば、第2共重合工程と共に行われるか、または第2共重合工程の後に行われ得る。 The blowing agent impregnation step according to one embodiment of the present invention can be performed at any time, for example it can be performed with the second copolymerization step or after the second copolymerization step.

本発明の一実施形態に係る発泡剤含浸工程は、単量体から共重合体への重合転化率が80%~95%の時点で、得られた共重合体に発泡剤を含浸させることが好ましい。重合転化率が80%以上の時点で共重合体に発泡剤を含浸させる場合、発泡剤が共重合体の内部へ適度に含浸されるため、共重合体の軟化による共重合体同士の凝集が生じる虞が無く、製造収率が良好となる。重合転化率が95%以下の時点で共重合体に発泡剤を含浸させる場合、発泡剤が共重合体の内部まで十分に含浸されるため、得られる発泡性樹脂粒子を発泡させてなる発泡粒子に二重の気泡構造(硬芯)が形成される虞がない。その結果、当該発泡粒子を型内成形することにより、表面品質に優れる発泡成形体を得ることができる。 In the step of impregnating the foaming agent according to one embodiment of the present invention, the obtained copolymer can be impregnated with the foaming agent when the polymerization conversion rate from the monomer to the copolymer is 80% to 95%. preferable. When the copolymer is impregnated with the foaming agent when the polymerization conversion rate is 80% or more, the copolymer is moderately impregnated with the foaming agent. There is no risk of occurrence, and the production yield is good. When the copolymer is impregnated with the foaming agent when the polymerization conversion rate is 95% or less, the copolymer is sufficiently impregnated with the foaming agent, so that the obtained expandable resin particles are expanded. There is no risk of forming a double cell structure (hard core) in the As a result, by in-mold molding the expanded particles, it is possible to obtain an expanded molded article having excellent surface quality.

本発明の一実施形態に係る発泡剤含浸工程において、共重合体であるメタクリル酸メチル系樹脂粒子に含浸させる発泡剤の量(使用量)は、好ましい態様を含み、〔2.発泡性メタクリル酸メチル系樹脂粒子〕の(発泡剤)の項にて記載した、発泡性樹脂粒子における発泡剤の含有量と同じである。当該構成によると、十分な発泡性を有する発泡性樹脂粒子が得られるとともに、発泡剤含浸工程において共重合体の凝集を引き起こすことなく、安全に発泡性樹脂粒子を製造できる。 In the foaming agent impregnation step according to an embodiment of the present invention, the amount (use amount) of the foaming agent with which the copolymer methyl methacrylate-based resin particles are impregnated includes preferable aspects, and [2. It is the same as the content of the foaming agent in the foaming resin particles described in the section (Blowing agent) of Expandable methyl methacrylate-based resin particles]. According to this configuration, expandable resin particles having sufficient expandability can be obtained, and expandable resin particles can be safely produced without causing cohesion of the copolymer in the step of impregnating the blowing agent.

本発明の一実施形態に係る発泡剤含浸工程において、共重合体に発泡剤を含浸させるときの処理温度(含浸温度とも称する。)および処理時間(含浸時間とも称する。)は特に限定されない。 In the foaming agent impregnation step according to one embodiment of the present invention, the treatment temperature (also referred to as impregnation temperature) and the treatment time (also referred to as impregnation time) when impregnating the copolymer with the foaming agent are not particularly limited.

本発明の一実施形態に係る発泡剤含浸工程において、発泡剤を共重合体に含浸させるときの含浸温度は、95℃~120℃以下が好ましく、100℃~117℃以下がより好ましい。含浸温度が95℃以上である場合、発泡剤が共重合体の内部まで十分に含浸されるため、得られる発泡性樹脂粒子を発泡させてなるメタクリル酸メチル系樹脂発泡粒子に二重の気泡構造(硬芯)が形成される虞がない。その結果、当該発泡粒子を型内成形することにより、表面品質に優れる発泡成形体が得られる。含浸温度が120℃以下である場合、重合機内の圧力が高くなりすぎないため、大きな圧力に耐え得る重装備な含浸設備を必要とすることなく、均一な気泡構造を有する発泡粒子を提供し得る発泡性樹脂粒子を得ることができる。 In the step of impregnating the foaming agent according to one embodiment of the present invention, the impregnation temperature at which the copolymer is impregnated with the foaming agent is preferably 95° C. to 120° C. or less, more preferably 100° C. to 117° C. or less. When the impregnation temperature is 95° C. or higher, the foaming agent is sufficiently impregnated into the interior of the copolymer, so that the methyl methacrylate-based resin foamed particles obtained by foaming the obtained expandable resin particles have a double cell structure. (hard core) is not likely to be formed. As a result, by in-mold molding the foamed particles, a foamed molded article having excellent surface quality can be obtained. When the impregnation temperature is 120° C. or less, the pressure in the polymerization machine does not become too high, so that expanded particles having a uniform cell structure can be provided without requiring heavy impregnation equipment capable of withstanding high pressure. Expandable resin particles can be obtained.

強度に優れる発泡成形体を提供し得る発泡性樹脂粒子を得るために、本製造方法において、共重合体の調製に芳香族系単量体(例えば、スチレン、α-メチルスチレン、パラメチルスチレン、t-ブチルスチレンおよびクロルスチレン等の芳香族ビニル化合物)を使用してもよい。 In order to obtain expandable resin particles capable of providing a foam molded article having excellent strength, in the present production method, aromatic monomers (e.g., styrene, α-methylstyrene, paramethylstyrene, aromatic vinyl compounds such as t-butylstyrene and chlorostyrene) may also be used.

一方、燃焼時の残渣の少ない発泡成形体を提供し得る発泡性樹脂粒子を得るために、本製造方法において、芳香族単量体の使用量は少ない程好ましい。本製造方法において、単量体混合物100重量部中の芳香族系単量体の含有量は、2.5重量部以下が好ましく、2.5重量部未満がより好ましく、2.0重量部以下がより好ましく、1.5重量部以下がより好ましく、1.0重量部以下がさらに好ましく、0重量部が特に好ましい。すなわち、本製造方法における単量体混合物は、芳香族系単量体を含有しないことが特に好ましい。 On the other hand, in order to obtain expandable resin particles capable of providing foamed molded articles with little residue upon combustion, it is preferable that the amount of the aromatic monomer used in the present production method is as small as possible. In this production method, the content of the aromatic monomer in 100 parts by weight of the monomer mixture is preferably 2.5 parts by weight or less, more preferably less than 2.5 parts by weight, and 2.0 parts by weight or less. is more preferably 1.5 parts by weight or less, more preferably 1.0 parts by weight or less, and particularly preferably 0 parts by weight. That is, it is particularly preferable that the monomer mixture in the present production method does not contain aromatic monomers.

本製造方法において、さらに溶剤を使用してもよい。溶剤としては、沸点50℃以上のもの化合物が好ましく、例えば、(a)トルエン、へキサン、ヘプタン等のC6以上(炭素数6以上)の脂肪族炭化水素、及び(b)シクロヘキサン、シクロオクタン等のC6以上の脂環族炭化水素、などが挙げられる。溶剤としては、発泡性に優れる発泡性樹脂粒子を得る上で、トルエンおよび/またはシクロヘキサンが好ましい。 In this production method, a solvent may also be used. As the solvent, compounds having a boiling point of 50° C. or higher are preferred. Examples include (a) C6 or higher (C6 or higher) aliphatic hydrocarbons such as toluene, hexane and heptane, and (b) cyclohexane, cyclooctane and the like. C6 or higher alicyclic hydrocarbons, and the like. As the solvent, toluene and/or cyclohexane are preferable for obtaining expandable resin particles having excellent expandability.

溶剤の使用量は、特に限定されないが、単量体100重量部に対して1.5重量部以上3.0重量部以下含まれることが好ましい。溶剤の使用量が当該範囲内である場合、発泡性に優れる発泡性樹脂粒子が得られ、かつ、当該発泡性樹脂粒子を発泡させてなる発泡粒子を用いて、内部融着性に優れる発泡成形体を得ることができる。 The amount of the solvent used is not particularly limited, but it is preferably 1.5 parts by weight or more and 3.0 parts by weight or less per 100 parts by weight of the monomer. When the amount of the solvent used is within this range, expandable resin particles having excellent foamability can be obtained, and the expanded particles obtained by expanding the expandable resin particles can be used for foam molding having excellent internal fusion bonding properties. you can get a body

本製造方法において、溶剤を使用する時宜は特に限定されず、共重合工程、発泡剤含浸工程または共重合工程と発泡剤含浸工程との両方において使用できる。溶剤を反応混合物(水性懸濁液)中に添加するタイミングとしては、発泡剤を樹脂粒子へ含浸させる直前(すなわち発泡剤含浸工程の直前)に反応混合物中に添加するか、または、発泡剤と同時に反応混合物中に添加することが好ましい。 In this production method, the timing of using the solvent is not particularly limited, and it can be used in the copolymerization step, the foaming agent impregnation step, or both the copolymerization step and the foaming agent impregnation step. As for the timing of adding the solvent to the reaction mixture (aqueous suspension), the solvent may be added to the reaction mixture immediately before the foaming agent is impregnated into the resin particles (that is, immediately before the foaming agent impregnation step), or the solvent may be added to the reaction mixture together with the foaming agent. Simultaneous addition to the reaction mixture is preferred.

本製造方法において、さらに可塑剤を使用してもよい。可塑剤としては、沸点200℃以上の高沸点可塑剤が好ましく、例えば、(a)ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、(b)ヤシ油、パーム油、パーム核油等の植物油、(c)ジオクチルアジペート、ジブチルセバケート等の脂肪族エステル、及び(d)流動パラフィン、シクロヘキサン等の有機炭化水素、等があげられる。 In this production method, a plasticizer may also be used. As the plasticizer, a high boiling point plasticizer having a boiling point of 200° C. or higher is preferable. oil, vegetable oils such as palm oil and palm kernel oil, (c) aliphatic esters such as dioctyl adipate and dibutyl sebacate, and (d) organic hydrocarbons such as liquid paraffin and cyclohexane.

可塑剤の使用量、および可塑剤を使用する時宜は特に限定されず、適宜設定すればよい。 The amount of the plasticizer used and the timing of using the plasticizer are not particularly limited, and may be set as appropriate.

上述した共重合工程および発泡剤含浸工程を経て得られた発泡性樹脂粒子の表面に、脂肪酸金属塩、融着促進剤および帯電防止剤などを塗布してもよい。すなわち、本製造方法は、発泡剤含浸工程にて得られた発泡性樹脂粒子の表面に脂肪酸金属塩、融着促進剤および帯電防止剤などを塗布する塗布工程をさらに有していてもよい。発泡性樹脂粒子の表面に塗布される脂肪酸金属塩、融着促進剤および帯電防止剤などを、「外添剤」と称する場合もある。 A fatty acid metal salt, a fusion promoter, an antistatic agent, and the like may be applied to the surfaces of the expandable resin particles obtained through the above-described copolymerization step and blowing agent impregnation step. That is, the production method may further include a coating step of coating the surface of the expandable resin particles obtained in the foaming agent impregnation step with a fatty acid metal salt, a fusion promoter, an antistatic agent, and the like. A fatty acid metal salt, a fusion promoter, an antistatic agent, and the like that are applied to the surface of the expandable resin particles are sometimes referred to as "external additives."

発泡性樹脂粒子の表面に脂肪酸金属塩を塗布することにより、発泡粒子の製造過程での発泡性樹脂粒子および/または発泡粒子同士の互着(以下、ブロッキングという)を抑制するという利点を有する。脂肪酸金属塩としては、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸アルミニウム、オレイン酸亜鉛、オレイン酸マグネシウム、ラウリン酸亜鉛、ラウリン酸カルシウム等が挙げられる。これら脂肪酸金属塩は1種を単独で用いても良いし、2種以上を組み合わせて使用しても良い。基材樹脂に含まれるメタクリル酸メチル単位との親和性、ブロッキング防止効果、および発泡成形体の融着性の観点から、脂肪酸金属塩としては、ステアリン酸亜鉛およびステアリン酸マグネシウムが好ましく、ステアリン酸亜鉛が特に好ましい。 By applying the fatty acid metal salt to the surfaces of the expandable resin particles, there is an advantage of suppressing mutual adhesion (hereinafter referred to as blocking) between the expandable resin particles and/or the expanded particles during the manufacturing process of the expanded particles. Fatty acid metal salts include zinc stearate, calcium stearate, magnesium stearate, aluminum stearate, zinc oleate, magnesium oleate, zinc laurate and calcium laurate. These fatty acid metal salts may be used singly or in combination of two or more. Zinc stearate and magnesium stearate are preferable as the fatty acid metal salt from the viewpoints of affinity with the methyl methacrylate unit contained in the base resin, anti-blocking effect, and adhesion of the foam molded product. is particularly preferred.

発泡性樹脂粒子の表面に融着促進剤を塗布することにより、発泡性樹脂粒子の表面にブロッキング防止剤を塗布する場合であっても成形時の融着性を確保できるという利点を有する。融着促進剤としては、(a)ラウリン酸トリグリセライド、ステアリン酸トリグリセライド、リノール酸トリグリセライド、ヒドロキシステアリン酸トリグリセライドなどの脂肪酸トリグリセライド、(b)ラウリン酸ジグリセライド、ステアリン酸ジグリセライド、リノール酸ジグリセライドなどの脂肪酸ジグリセライド、(c)ラウリン酸モノグリセライド、ステアリン酸モノグリセライド、リノール酸モノグリセライドなどの脂肪酸モノグリセライド、および(d)ヒマシ硬化油などの植物油、等が挙げられる。これら融着促進剤は1種を単独で用いても良いし、2種以上を組み合わせて使用しても良い。基材樹脂に含まれるメタクリル酸メチル単位との親和性、および融着促進効果に優れることから、融着促進剤としては、ヒマシ硬化油およびステアリン酸トリグリセライドが好ましく、ヒマシ硬化油が特に好ましい。 By applying the fusion accelerator to the surface of the expandable resin particles, there is an advantage that the fusion during molding can be ensured even when the antiblocking agent is applied to the surfaces of the expandable resin particles. Examples of fusion promoters include (a) fatty acid triglycerides such as lauric triglyceride, stearic triglyceride, linoleic acid triglyceride, and hydroxystearic triglyceride; (b) fatty acid diglycerides such as lauric acid diglyceride, stearic acid diglyceride, and linoleic acid diglyceride; (c) fatty acid monoglycerides such as lauric acid monoglyceride, stearic acid monoglyceride, and linoleic acid monoglyceride; and (d) vegetable oils such as castor hydrogenated oil. These fusion promoters may be used singly or in combination of two or more. As the fusion promoter, hydrogenated castor oil and triglyceride stearate are preferred, and hydrogenated castor oil is particularly preferred, because of their affinity with the methyl methacrylate unit contained in the base resin and their excellent fusion promotion effect.

発泡性樹脂粒子の表面に帯電防止剤を塗布することにより、原料送流時における静電気による阻害を抑制することができる、および発泡粒子がサイロに付着することを抑制することができるという利点を有する。帯電防止剤としては、一般的に使用される、N-ヒドロキシエチル-N-(2-ヒドロキシアルキル)アミン、N,N-ビス(ヒドロキシエチル)ドデシルアミン、N,N-ビス(ヒドロキシエチル)テトラデシルアミン、N,N-ビス(ヒドロキシエチル)ヘキサデシルアミン、N,N-ビス(ヒドロキシエチル)オクタデシルアミン、N-ヒドロキシエチル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシエチル-N-(2-ヒドロキシヘキサデシル)アミン、N-ヒドロキシエチル-N-(2-ヒドロキシオクタデシル)アミン、N-ヒドロキシプロピル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシブチル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシペンチル-N-(2-ヒドロキシテトラデシル)アミン、N-ヒドロキシペンチル-N-(2-ヒドロキシヘキサデシル)アミン、N-ヒドロキシペンチル-N-(2-ヒドロキシオクタデシル)アミン、N,N-ビス(2―ヒドロキシエチル)ドデシルアミン、N,N-ビス(2―ヒドロキシエチル)テトラデシルアミン、N,N-ビス(2―ヒドロキシエチル)ヘキサデシルアミン、N,N-ビス(2―ヒドロキシエチル)オクタデシルアミン等の1アミノ2ヒドロキシ化合物、グリセリン、脂肪酸モノグリセライド、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル等が挙げられる。これら帯電防止剤は1種を単独で用いても良いし、2種以上を組み合わせて使用しても良い。帯電防止性能が最も良好であるため、帯電防止剤としては、N-ヒドロキシエチル-N-(2-ヒドロキシアルキル)アミンが特に好ましい。 By applying an antistatic agent to the surface of the expandable resin particles, it is possible to suppress the inhibition due to static electricity during raw material feeding, and it is possible to suppress adhesion of the expanded particles to the silo. . Antistatic agents include commonly used N-hydroxyethyl-N-(2-hydroxyalkyl)amine, N,N-bis(hydroxyethyl)dodecylamine, N,N-bis(hydroxyethyl)tetra Decylamine, N,N-bis(hydroxyethyl)hexadecylamine, N,N-bis(hydroxyethyl)octadecylamine, N-hydroxyethyl-N-(2-hydroxytetradecyl)amine, N-hydroxyethyl-N -(2-hydroxyhexadecyl)amine, N-hydroxyethyl-N-(2-hydroxyoctadecyl)amine, N-hydroxypropyl-N-(2-hydroxytetradecyl)amine, N-hydroxybutyl-N-(2 -hydroxytetradecyl)amine, N-hydroxypentyl-N-(2-hydroxytetradecyl)amine, N-hydroxypentyl-N-(2-hydroxyhexadecyl)amine, N-hydroxypentyl-N-(2-hydroxy octadecyl)amine, N,N-bis(2-hydroxyethyl)dodecylamine, N,N-bis(2-hydroxyethyl)tetradecylamine, N,N-bis(2-hydroxyethyl)hexadecylamine, N, 1-amino-2-hydroxy compounds such as N-bis(2-hydroxyethyl)octadecylamine, glycerin, fatty acid monoglycerides, polyoxyethylene alkyl ethers, polyoxyethylene fatty acid esters and the like. One of these antistatic agents may be used alone, or two or more thereof may be used in combination. N-hydroxyethyl-N-(2-hydroxyalkyl)amine is particularly preferred as the antistatic agent because of its best antistatic performance.

〔4.メタクリル酸メチル系樹脂発泡粒子〕
〔2.発泡性メタクリル酸メチル系樹脂粒子〕の項に記載の発泡性メタクリル酸メチル系樹脂粒子、または〔3.発泡性メタクリル酸メチル系樹脂粒子の製造方法〕の項に記載の製造方法により製造された発泡性メタクリル酸メチル系樹脂粒子、を発泡してなる発泡粒子もまた、本発明の一実施形態である。
[4. Methyl methacrylate-based resin expanded particles]
[2. expandable methyl methacrylate-based resin particles], or the expandable methyl methacrylate-based resin particles described in [3. Method for producing expandable methyl methacrylate-based resin particles]. Expanded particles obtained by expanding the expandable methyl methacrylate-based resin particles produced by the production method described in the above section are also an embodiment of the present invention. .

「本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡粒子」を、以下「本発泡粒子」と称する場合もある。 The "methyl methacrylate-based resin expanded beads according to one embodiment of the present invention" may be hereinafter referred to as "present expanded beads".

本発泡性樹脂粒子は、一般的な発泡方法によって、発泡粒子とすることができる。具体的には、例えば以下の(1)~(3)の操作を順に行うことにより、メタクリル酸メチル系樹脂発泡粒子を得ることができる:(1)発泡性樹脂粒子を加圧式の発泡機(例えば大開工業社製のBHP)に投入する;(2)蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件にて発泡機内に蒸気(例えば水蒸気)を吹き込み、当該発泡性樹脂粒子を加熱する;(3)前記(2)により、所望の発泡倍率(例えば嵩倍率60倍)に至るまで発泡性樹脂粒子の発泡を行い、発泡粒子を得る。 The present expandable resin particles can be made into expanded particles by a general expansion method. Specifically, for example, methyl methacrylate-based resin expanded beads can be obtained by performing the following operations (1) to (3) in order: (2) Steam (for example, steam) is introduced into the foaming machine under the conditions of a steam blowing pressure of 0.10 MPa to 0.16 MPa and a pressure inside the foaming machine of 0.005 MPa to 0.030 MPa. (3) According to (2) above, the expandable resin particles are expanded to a desired expansion ratio (for example, a bulk ratio of 60) to obtain expanded beads.

発泡性メタクリル酸メチル系樹脂粒子の発泡は、当該発泡性メタクリル酸メチル系樹脂粒子から後述するメタクリル酸メチル系樹脂発泡成形体を得るために、予備的に行う発泡ともいえる。そのため、発泡性メタクリル酸メチル系樹脂粒子の発泡は、「予備発泡」と称される場合もあり、メタクリル酸メチル系樹脂発泡粒子を「メタクリル酸メチル系予備発泡粒子」と称する場合もある。発泡性メタクリル酸メチル系樹脂粒子の発泡に用いる発泡機(例えば嵩密度(A)の測定に用いる発泡機)を「予備発泡機」と称する場合もある。 The expansion of the expandable methyl methacrylate-based resin particles can be said to be preliminary expansion for obtaining a methyl methacrylate-based resin expansion molded article to be described later from the expandable methyl methacrylate-based resin particles. Therefore, the expansion of the expandable methyl methacrylate-based resin particles is sometimes referred to as "pre-expansion", and the expanded methyl methacrylate-based resin particles are sometimes referred to as "methyl methacrylate-based pre-expanded particles". A foaming machine used for foaming the expandable methyl methacrylate-based resin particles (for example, a foaming machine used for measuring the bulk density (A)) is sometimes called a "pre-foaming machine".

本発泡粒子は、上述した構成を有するため、前記体積(B)が140cm以下であり、それ故、発泡速度が遅いものである。また、本発泡粒子は、上述した構成を有するため、前記体積(C)が160cm超であり、それ故、収縮抑制性に優れるものである。すなわち、本発泡粒子は、内部融着性および鋳造性に優れる発泡成形体を提供できる、という利点を有する。 Since the foamed beads have the above-described structure, the volume (B) is 140 cm 3 or less, and therefore the foaming speed is low. Moreover, since the foamed beads have the above-described structure, the volume (C) is more than 160 cm 3 , and therefore, the foamed beads are excellent in shrinkage suppressing properties. That is, the present foamed beads have the advantage of being able to provide a foamed molded article with excellent internal fusion bondability and castability.

本発泡粒子に関して、上述した事項以外は、適宜、〔2.発泡性メタクリル酸メチル系樹脂粒子〕および〔3.発泡性メタクリル酸メチル系樹脂粒子の製造方法〕の項の記載を援用する。 Regarding the expanded beads, other than the matters described above, [2. Expandable methyl methacrylate-based resin particles] and [3. Method for producing expandable methyl methacrylate-based resin particles].

〔5.メタクリル酸メチル系樹脂発泡成形体〕
〔4.メタクリル酸メチル系樹脂発泡粒子〕の項に記載のメタクリル酸メチル系樹脂発泡粒子を型内成形してなる発泡成形体もまた、本発明の一実施形態である。
[5. Methyl methacrylate-based resin foam molded product]
[4. Methyl methacrylate-based resin foamed particles] is also an embodiment of the present invention.

「本発明の一実施形態に係るメタクリル酸メチル系樹脂発泡成形体」を、以下「本発泡成形体」と称する場合もある。 The "methyl methacrylate-based resin foam molded article according to one embodiment of the present invention" may be hereinafter referred to as the "present foam molded article".

本発泡粒子は、一般的な型内成形方法によって成形することにより、発泡成形体とすることができる。具体的には、例えば以下の(1)~(3)の操作を順に行うことにより、発泡成形体を得ることができる:(1)金型を有する成形機(例えばダイセン製のPEONY-205DS)に発泡粒子を充填する;(2)蒸気吹き込み圧0.15MPa~0.25MPaにて金型に蒸気(例えば水蒸気)を吹き込み、金型内の圧力が0.030Mpa~0.060MPaの条件下で、発泡圧力が0.070MPa~0.080MPaとなるまで真空吸引加熱による型内成形を行い、発泡粒子同士を融着させる;(3)発泡圧力が0.070MPa~0.080MPaに到達した後、80℃~110℃の金型内に1000秒間放置し、その後、発泡成形体を取り出ことにより、発泡成形体を得る。 The foamed particles can be formed into a foamed molded article by molding by a general in-mold molding method. Specifically, for example, by performing the following operations (1) to (3) in order, a foamed molded article can be obtained: (1) a molding machine having a mold (for example, PEONY-205DS manufactured by Daisen Co., Ltd.); (2) Blow steam (for example, steam) into the mold at a steam blowing pressure of 0.15 MPa to 0.25 MPa, and under the condition that the pressure in the mold is 0.030 MPa to 0.060 MPa (3) After the foaming pressure reaches 0.070 MPa to 0.080 MPa, molding is performed in the mold by vacuum suction heating until the foaming pressure reaches 0.070 MPa to 0.080 MPa, and the foamed particles are fused together; It is left in a mold at 80° C. to 110° C. for 1000 seconds and then taken out to obtain a foamed molded product.

本発泡成形体は、上述した構成を有するため、内部融着性および鋳造性に優れるものである。特に、本発泡成形体は、前記(D)が85%以上であることが好ましい。これらの結果、本発泡成形体は、消失模型として好適に使用できる。 Since the present foam molded article has the above-described structure, it is excellent in internal fusion bondability and castability. In particular, it is preferable that the content of (D) in the present foam molded article is 85% or more. As a result, the present foam molded article can be suitably used as a disappearance model.

本発泡成形体の鋳造性の評価方法については、下記の実施例にて詳述する。なお、フルモールド法では鋳物の表面に残渣欠陥が集まりやすいため、一般に、加工代を付け、製品寸法より大きくした発泡成形体を用いて鋳造を行う。鋳造後は鋳物について切削加工を行い、鋳物から加工代ごと残渣欠陥を除去する。この時、残渣欠陥が大きい場合は、鋳物から残渣欠陥を除去しきれないことがある。鋳物に残渣欠陥がある場合は強度等の機械的性質が影響を受け、鋳物が短期間の使用で破損する恐れがあるため好ましくない。鋳物の残渣欠陥がない場合、これらの問題が解消されるため、効率よく耐久性の良い鋳物を提供することができる。 The method for evaluating the castability of the foam molded article will be described in detail in the following examples. In the full-molding method, residual defects tend to accumulate on the surface of the casting. Therefore, generally, a foam-molding body that is larger than the product size with a processing allowance is used for casting. After casting, the casting is cut to remove residual defects from the casting along with the machining allowance. At this time, if the residual defects are large, the residual defects may not be completely removed from the casting. If there are residual defects in the casting, the mechanical properties such as strength are affected, and the casting may be damaged after a short period of use, which is not preferable. If there are no residual defects in the casting, these problems can be solved, so that a casting with good durability can be efficiently provided.

本発泡成形体に関して、上述した事項以外は、適宜、〔2.発泡性メタクリル酸メチル系樹脂粒子〕、〔3.発泡性メタクリル酸メチル系樹脂粒子の製造方法〕および〔4.メタクリル酸メチル系樹脂発泡粒子〕の項の記載を援用する。 Regarding the present foam molded article, other than the matters described above, [2. Expandable methyl methacrylate-based resin particles], [3. Method for producing expandable methyl methacrylate-based resin particles] and [4. Methyl methacrylate-based resin expanded particles] section is incorporated.

〔6.消失模型〕
〔5.メタクリル酸メチル系樹脂発泡成形体〕の項に記載のメタクリル酸メチル系樹脂発泡成形体を含む消失模型もまた、本発明の一実施形態である。
[6. disappearance model]
[5. Methyl methacrylate-based resin foam molded article] is also an embodiment of the present invention.

本発明の一実施形態に係る消失模型は、内部融着性および鋳造性に優れるため、様々な金属鋳造に好適に利用できる。 INDUSTRIAL APPLICABILITY The disappearance pattern according to one embodiment of the present invention is excellent in internal fusion bondability and castability, and thus can be suitably used for various metal castings.

以下に実施例および比較例を挙げて本発明の一実施形態をより詳細に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES One embodiment of the present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these.

(発泡性メタクリル酸メチル系樹脂粒子の重合転化率)
重合中に水性懸濁液のサンプリングを行い、当該水性懸濁液をろ過した。ろ紙上に残った樹脂成分の重量を計量し、得られた重量を加熱前重量とした。次いで、当該樹脂成分に重合禁止剤を加えた後150℃で30分樹脂成分を加熱することで揮発成分を除去した。その後、得られた樹脂成分の重量を計量し、得られた重量を加熱後重量とした。下記式を用いて重合転化率を算出した。
重合転化率(%)=加熱後重量/加熱前重量×100。
(Polymerization conversion rate of expandable methyl methacrylate-based resin particles)
The aqueous suspension was sampled during the polymerization and filtered. The weight of the resin component remaining on the filter paper was weighed, and the obtained weight was defined as the weight before heating. Then, after adding a polymerization inhibitor to the resin component, the resin component was heated at 150° C. for 30 minutes to remove volatile components. After that, the weight of the obtained resin component was measured, and the obtained weight was defined as the weight after heating. The polymerization conversion rate was calculated using the following formula.
Polymerization conversion rate (%)=weight after heating/weight before heating×100.

(ガラス転移温度)
以下の方法により測定して得られたガラス転移温度を、発泡性樹脂粒子が含む基材樹脂のガラス転移温度とした:(1)発泡性樹脂粒子を150℃で30分間乾燥処理して得られた樹脂を試料とした;(2)当該試料4mgをアルミ容器に入れた後、アルミ容器に圧縮機を用いてアルミの蓋を取り付け、測定サンプルを得た;(3)当該測定サンプルについて、DSC測定機(日立製DSC7000X)を用いて、50℃から150℃まで昇温(昇温速度10℃/分)し、150℃から50℃まで降温(降温速度10℃/分)し、再度50℃から150℃まで昇温(昇温速度10℃/分)した;(4)2回目の昇温時に得られるDSC曲線を用いてガラス転移温度を算出した。なお、ここでのガラス転移温度はJIS K7121に定められた中間点ガラス転移温度を意図する。
(Glass-transition temperature)
The glass transition temperature obtained by measuring by the following method was defined as the glass transition temperature of the base resin contained in the expandable resin particles: (1) The expandable resin particles were dried at 150°C for 30 minutes. (2) After placing 4 mg of the sample in an aluminum container, an aluminum lid was attached to the aluminum container using a compressor to obtain a measurement sample; (3) The measurement sample was subjected to DSC Using a measuring machine (Hitachi DSC7000X), the temperature was raised from 50 ° C. to 150 ° C. (temperature increase rate 10 ° C./min), the temperature was lowered from 150 ° C. to 50 ° C. (temperature decrease rate 10 ° C./min), and again 50 ° C. (4) The glass transition temperature was calculated using the DSC curve obtained during the second temperature increase. In addition, the glass transition temperature here intends the midpoint glass transition temperature defined in JIS K7121.

(重量平均分子量)
以下の方法により測定して得られる重量平均分子量を、発泡性樹脂粒子が含む基材樹脂の重量平均分子量とした:(1)発泡性樹脂粒子0.02gをTHF20mlに溶解させた;(2)その後、得られた溶解液中のゲル成分をろ過した;(3)次いで、THFに可溶な成分(すなわちろ液)のみを試料として、ゲルパーミェーションクロマトグラフ(GPC)を用いて、以下の条件にてGPC測定を行った;(4)GPC測定により得られるGPC測定チャートから、重量平均分子量(Mw)および数平均分子量(Mn)を算出した。なお、重量平均分子量(Mw)および数平均分子量(Mn)はポリスチレン換算の相対値である。
<GPC測定の条件>
測定装置:東ソー社製、高速GPC装置 HLC-8220
使用カラム:東ソー社製、SuperHZM-H×2本、SuperH-RC×2本
カラム温度:40℃、移動相:THF(テトラヒドロフラン)
流量:0.35ml/分、注入量:10μl
検出器:RI。
(Weight average molecular weight)
The weight average molecular weight obtained by measuring by the following method was used as the weight average molecular weight of the base resin contained in the expandable resin particles: (1) 0.02 g of expandable resin particles was dissolved in 20 ml of THF; (2) After that, the gel component in the obtained solution was filtered; (3) Then, using only the component soluble in THF (that is, the filtrate) as a sample, using gel permeation chromatography (GPC), GPC measurement was performed under the following conditions; (4) Weight average molecular weight (Mw) and number average molecular weight (Mn) were calculated from the GPC measurement chart obtained by GPC measurement. The weight average molecular weight (Mw) and number average molecular weight (Mn) are relative values in terms of polystyrene.
<Conditions for GPC measurement>
Measurement device: Tosoh Corporation, high-speed GPC device HLC-8220
Column used: Tosoh Corporation, SuperHZM-H × 2, SuperH-RC × 2 Column temperature: 40 ° C., mobile phase: THF (tetrahydrofuran)
Flow rate: 0.35 ml/min, injection volume: 10 μl
Detector: RI.

(発泡性メタクリル酸メチル系樹脂粒子の発泡性)
以下(1)~(6)を順に行い、発泡性樹脂粒子の嵩密度(A)を算出した:(1)発泡性樹脂粒子を10g量り取り、当該発泡性樹脂粒子の表面にブロッキング防止剤を塗布した;(2)当該発泡性樹脂粒子を、吹き出し口を有する蒸し器に投入した;(3)100℃の水蒸気を蒸し器に供給し、発泡性樹脂粒子を300秒間加熱することにより発泡粒子を得た;(4)得られた発泡粒子を1000cmのメスシリンダーへ入れた;(5)メスシリンダーの目盛から、発泡粒子の体積(cm)を測定した;(6)以下の式により、発泡粒子の嵩密度を算出した;
嵩密度(g/cm)=10(g)/発泡粒子の体積(cm)。
(Expandability of expandable methyl methacrylate-based resin particles)
The following (1) to (6) were performed in order to calculate the bulk density (A) of the expandable resin particles: (1) 10 g of the expandable resin particles were weighed, and an antiblocking agent was applied to the surfaces of the expandable resin particles; (2) The expandable resin particles were put into a steamer having an outlet; (3) Steam at 100°C was supplied to the steamer and the expandable resin particles were heated for 300 seconds to obtain expanded particles. (4) The obtained expanded beads were placed in a measuring cylinder of 1000 cm 3 ; (5) The volume (cm 3 ) of the expanded beads was measured from the scale of the measuring cylinder; The bulk density of the particles was calculated;
Bulk density (g/cm 3 )=10 (g)/volume of expanded beads (cm 3 ).

下記の基準に基づき、得られた嵩密度(A)から発泡性樹脂粒子の発泡性を評価した。
〇(良好):嵩密度(A)が0.0285g/cm以下
×(不良):嵩密度(A)が0.0285g/cmより大きく0.0333g/cm以下
××(非常に不良):嵩密度(A)が0.0333g/cmを超える。
Based on the following criteria, the expandability of the expandable resin particles was evaluated from the obtained bulk density (A).
○ (Good): Bulk density (A) is 0.0285 g/cm 3 or less × (Poor): Bulk density (A) is greater than 0.0285 g/cm 3 and 0.0333 g/cm 3 or less XX (Very poor ): Bulk density (A) exceeds 0.0333 g/cm 3 .

(メタクリル酸メチル系樹脂発泡粒子の発泡性)
発泡性樹脂粒子を篩い分けして粒子径0.5mm~1.4mmの発泡性樹脂粒子を分取した。分取した発泡性樹脂粒子を用いて、以下(1)~(3)を順に行い、嵩倍率60倍の発泡粒子を得た:(1)発泡性樹脂粒子を加圧式の発泡機である大開工業社製のBHPに投入した;(2)蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件にて発泡機内に水蒸気を吹き込み、発泡性樹脂粒子を加熱した;(3)前記(2)により、嵩倍率60倍に至るまで発泡性樹脂粒子の発泡を行い、嵩倍率60倍の発泡粒子を得た。
(Expandability of expanded methyl methacrylate-based resin particles)
The expandable resin particles were sieved to separate expandable resin particles having a particle size of 0.5 mm to 1.4 mm. Using the collected expandable resin particles, the following steps (1) to (3) were performed in order to obtain expanded beads having a bulk ratio of 60: (2) Steam was blown into the foaming machine under the conditions of a steam blowing pressure of 0.10 MPa to 0.16 MPa and an internal pressure of the foaming machine of 0.005 MPa to 0.030 MPa to form expandable resin particles. (3) According to (2) above, the expandable resin particles were expanded to a bulk ratio of 60 times to obtain expanded beads having a bulk ratio of 60 times.

得られた発泡粒子を用いて、以下の(1)~(5)を順に実施し、発泡粒子の体積(B)を測定した:(1)嵩倍率60倍の発泡粒子100cmを量り取り、吹き出し口を有する蒸し器に投入した;(2)100℃の水蒸気を蒸し器に供給し、発泡粒子を30秒間加熱した;(3)加熱後、発泡粒子を蒸し器から取り出し、25℃にて1分間放置した:(4)発泡粒子を1000cmのメスシリンダーへ入れた;(5)メスシリンダーの目盛から、発泡粒子の体積(B)を測定した。下記の基準に基づき、得られた体積(B)から発泡粒子の発泡性を評価した。なお、体積(B)が小さいほど、すなわち発泡粒子の発泡性が低いほど、高い評価とした。
○(良好):体積(B)が140cm以下
×(不良):体積(B)が140cm超150cm未満
××(非常に不良):体積(B)が150cm以上。
Using the obtained expanded beads, the following (1) to (5) were performed in order to measure the volume (B) of the expanded beads: (1) 100 cm 3 of expanded beads with a bulk ratio of 60 were weighed; (2) Steam at 100°C was supplied to the steamer to heat the expanded beads for 30 seconds; (3) After heating, the expanded beads were removed from the steamer and left at 25°C for 1 minute. (4) The expanded beads were put into a graduated cylinder of 1000 cm 3 ; (5) The volume (B) of the expanded beads was measured from the scale of the graduated cylinder. Based on the following criteria, the foamability of the expanded beads was evaluated from the obtained volume (B). The smaller the volume (B), that is, the lower the expandability of the expanded beads, the higher the evaluation.
○ (Good): Volume (B) is 140 cm 3 or less × (Poor): Volume (B) is more than 140 cm 3 and less than 150 cm 3 XX (Very Poor): Volume (B) is 150 cm 3 or more.

(メタクリル酸メチル系樹脂発泡粒子の収縮抑制性)
前記(メタクリル酸メチル系樹脂発泡粒子の発泡性)の項に記載の方法により、嵩倍率60倍の発泡粒子を得た。得られた発泡粒子を用いて、以下の(1)~(5)を順に実施し、発泡粒子の体積(C)を測定した:(1)嵩倍率60倍の発泡粒子100cmを量り取り、吹き出し口を有する蒸し器に投入した;(2)100℃の水蒸気を蒸し器に供給し、発泡粒子を180秒間加熱した;(3)加熱後、発泡粒子を蒸し器から取り出し、25℃にて1分間放置した;(4)発泡粒子を1000cmメスシリンダーへ入れた;(5)メスシリンダーの目盛から、発泡粒子の体積(C)を測定した。下記の基準に基づき、得られた体積(C)から発泡粒子の収縮抑制性を評価した。
○(良好):体積(C)が160cm
×(不良):体積(C)が155cm超160cm以下
××(非常に不良):体積(C)が155cm以下。
(Shrinkage suppression property of expanded methyl methacrylate resin particles)
Expanded beads having a bulk ratio of 60 times were obtained by the method described in the section (Expandability of methyl methacrylate-based resin expanded beads). Using the obtained expanded beads, the following (1) to (5) were performed in order to measure the volume (C) of the expanded beads: (1) 100 cm 3 of expanded beads with a bulk ratio of 60 were weighed; (2) Steam at 100°C was supplied to the steamer to heat the expanded beads for 180 seconds; (3) After heating, the expanded beads were removed from the steamer and allowed to stand at 25°C for 1 minute. (4) The foamed beads were put into a 1000 cm 3 graduated cylinder; (5) The volume (C) of the foamed beads was measured from the scale of the graduated cylinder. Based on the following criteria, the shrinkage suppression property of the expanded beads was evaluated from the obtained volume (C).
○ (Good): Volume (C) is over 160 cm 3 × (Bad): Volume (C) is over 155 cm 3 and 160 cm 3 or less XX (Very Poor): Volume (C) is 155 cm 3 or less.

(メタクリル酸メチル系樹脂発泡成形体の内部融着性)
発泡性樹脂粒子を篩い分けして粒子径0.5mm~1.4mmの発泡性樹脂粒子を分取した。
(Internal fusion bondability of methyl methacrylate-based resin foam molded product)
The expandable resin particles were sieved to separate expandable resin particles having a particle size of 0.5 mm to 1.4 mm.

分取した発泡性樹脂粒子を用いて、以下の(1)~(8)を順に実施し、発泡成形体を得た:(1)発泡性樹脂粒子を加圧式の発泡機である大開工業社製のBHPに投入した;(2)蒸気吹き込み圧0.10MPa~0.16MPa、かつ発泡機内圧力0.005MPa~0.030MPaの条件にて発泡機内に水蒸気を吹き込み、発泡性樹脂粒子を加熱した;(3)前記(2)により、嵩倍率60倍に至るまで発泡性樹脂粒子を発泡した;(4)得られた発泡粒子を常温(25℃)下で3日間放置し、嵩倍率60倍の発泡粒子を得た;(5)長さ2000mm、幅1000mmおよび厚さ525mmの金型を有する成形機(ダイセン製のPEONY-205DS)に嵩倍率60倍の発泡粒子を充填した;(6)蒸気吹き込み圧0.15MPa~0.25MPaにて金型内に水蒸気を吹き込み、金型内の圧力が0.030Mpa~0.060MPaの条件下で、発泡圧力が0.070MPa~0.080MPaとなるまで真空吸引加熱による型内成形を行い、発泡粒子同士を融着させた;(7)発泡圧力が0.070MPa~0.080MPaに到達した後、80℃~110℃の金型内に1000秒間放置し、その後、発泡成形体を取り出した;(8)取り出した発泡成形体を60℃にて3日間放置し、発泡成形体を得た。得られた発泡成形体は、長さ2000mm、幅1000mmおよび厚さ525mmであった。 Using the collected expandable resin particles, the following (1) to (8) were carried out in order to obtain a molded foam: (2) Steam was blown into the foaming machine under the conditions of a steam blowing pressure of 0.10 MPa to 0.16 MPa and an internal pressure of the foaming machine of 0.005 MPa to 0.030 MPa to heat the expandable resin particles. (3) According to (2) above, the expandable resin beads were expanded to a bulk ratio of 60 times; (5) A molding machine (PEONY-205DS manufactured by Daisen) having a mold with a length of 2000 mm, a width of 1000 mm and a thickness of 525 mm was filled with expanded particles having a bulk ratio of 60 times; (6) Steam is blown into the mold at a steam blowing pressure of 0.15 MPa to 0.25 MPa, and the pressure inside the mold is 0.030 MPa to 0.060 MPa, and the foaming pressure is 0.070 MPa to 0.080 MPa. (7) After the foaming pressure reaches 0.070 MPa to 0.080 MPa, it is placed in the mold at 80 ° C. to 110 ° C. for 1000 seconds. (8) The removed foam-molded article was allowed to stand at 60° C. for 3 days to obtain a foam-molded article. The obtained foam molded article had a length of 2000 mm, a width of 1000 mm and a thickness of 525 mm.

得られた発泡成形体を用いて、以下(1)~(3)を順に行い、当該発泡成形体の破断面における割合(D)を測定した:(1)発泡成形体が厚さ方向で均等に5分割されるように、熱線スライサーを用いて、発泡成形体の厚さ方向に対して垂直に発泡成形体を切断した;(2)5分割した内の真ん中の1つ(切断前の発泡成形体の厚さ方向210mm~315mmの部分)について、厚さ方向に垂直な面を、長さ方向の中央部で幅方向に沿って折り曲げ発泡成形体を破断した;(3)得られた破断面を目視で観察し、破断面を構成している全粒子および粒子界面以外で破断している発泡粒子を計測し、以下式に基づき割合(D)を算出した;
割合(D)(%)=破断面のうち粒子界面以外で破断している粒子数/破断面を構成している粒子数×100。
Using the obtained foamed molded article, the following (1) to (3) were performed in order, and the ratio (D) in the fracture surface of the foamed molded article was measured: (1) The foamed molded article is uniform in the thickness direction The foamed molded article was cut perpendicularly to the thickness direction of the foamed molded article using a hot wire slicer so as to be divided into 5 parts; 210 mm to 315 mm in the thickness direction of the molded body), the surface perpendicular to the thickness direction was bent along the width direction at the center in the length direction and the foamed molded body was broken; The cross section was visually observed, all the particles forming the fractured surface and the number of expanded particles fractured outside the particle interface were counted, and the ratio (D) was calculated based on the following formula;
Proportion (D) (%)=number of particles in fractured surface that are fractured outside of particle interface/number of particles that constitute fractured surface×100.

得られた割合(D)に基づき、以下の基準で発泡成形体の内部融着性を評価した。
○(優れる):割合(D)が85%以上
×(不良):割合(D)が75%以上85%未満
××(非常に不良):割合(D)が75%未満。
Based on the obtained ratio (D), the internal fusion bondability of the foam molded product was evaluated according to the following criteria.
○ (excellent): ratio (D) is 85% or more × (poor): ratio (D) is 75% or more and less than 85% XX (very poor): ratio (D) is less than 75%.

(メタクリル酸メチル系樹脂発泡成形体の鋳造性)
発泡成形体の鋳造性を、以下の方法で測定および評価した:(1)発泡粒子を用いて縦2000mm×横1000mmx厚み500mmの発泡成形体を製造した;(2)得られた発泡成形体を加工して発泡模型(消失模型)を製造した:(3)得られた発泡模型を用いてフルモールド法にて鋳物の製造(鋳造)を行った。ここで、注湯材質はFCD700とした;(4)得られた鋳物の表面にショットブラストを行い、鋳造時に使用した鋳物砂の除去を行った;(5)その後、得られた鋳物について、底面を除く鋳肌を10mm切削加工した;(6)次いで、得られた鋳物について、残渣等の鋳造欠陥が鋳物中央部にあるか否かを、目視および磁粉探傷試験の実施により確認した。得られた結果に基づき、以下の基準で鋳造性の評価を行った。
(Castability of methyl methacrylate-based resin foam molded product)
The castability of the foam-molded article was measured and evaluated by the following methods: (1) A foam-molded article having a length of 2,000 mm, a width of 1,000 mm, and a thickness of 500 mm was produced using expanded particles; A foamed model (disappearing model) was produced by processing: (3) Using the obtained foamed model, a casting was produced (casting) by a full mold method. Here, the material to be poured was FCD700; (4) the surface of the obtained casting was shot-blasted to remove the casting sand used during casting; (6) Then, whether or not there was a casting defect such as a residue in the center of the casting was confirmed by visual inspection and magnetic particle inspection. Based on the obtained results, castability was evaluated according to the following criteria.

(鋳造性の評価)
メタクリル酸メチル系樹脂発泡成形体の鋳造性を以下の基準で評価した。
〇(優れる):鋳物に残渣欠陥がない場合
×(不良):鋳物に残渣欠陥がある場合
××(非常に不良):鋳物に多数の残渣欠陥がある場合
(実施例1)
撹拌機付き6Lオートクレーブに、水150重量部、第1の難水溶性無機塩として第三リン酸カルシウム0.15重量部、α-オレフィンスルホン酸ソーダ0.0075重量部、NaCl0.3重量部、ラウロイルパーオキサイド0.08重量部、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン0.1重量部、架橋剤として1,6-ヘキサンジオールジアクリレート0.1重量部、連鎖移動剤としてn-ドデシルメルカプタン0.265重量部および紫外線吸収剤としてベンゾトリアゾール0.026重量部を仕込み、第1の難水溶性無機塩を含む混合液を調製した。その後、当該混合液中に、トルエン1.0重量部と、単量体混合物としてメタクリル酸メチル97.5重量部およびアクリル酸ブチル2.5重量部と、を仕込み、水性懸濁液を調製した。次いで、水性懸濁液の温度を80℃に昇温して重合を開始し、すなわち開始工程を実施した。重合開始から1時間45分経過後(開始工程後)、重合転化率を測定したところ40%~50%であった。重合開始から1時間45分経過後(開始工程後)、第2の難水溶性無機塩として第三リン酸カルシウム0.10重量部を反応混合物(水性懸濁液)中に添加し、添加工程を実施した。上述した開始工程および添加工程は、第1共重合工程ともいえる。
(Castability evaluation)
The castability of the methyl methacrylate-based resin foam molded product was evaluated according to the following criteria.
○ (excellent): when there are no residual defects in the casting × (poor): when there are residual defects in the casting XX (very poor): when there are many residual defects in the casting (Example 1)
In a 6 L autoclave equipped with a stirrer, 150 parts by weight of water, 0.15 parts by weight of tribasic calcium phosphate as the first poorly water-soluble inorganic salt, 0.0075 parts by weight of sodium α-olefin sulfonate, 0.3 parts by weight of NaCl, lauroyl par Oxide 0.08 parts by weight, 1,1-bis(t-butylperoxy)cyclohexane 0.1 parts by weight, 1,6-hexanediol diacrylate 0.1 parts by weight as a cross-linking agent, n-dodecyl as a chain transfer agent 0.265 parts by weight of mercaptan and 0.026 parts by weight of benzotriazole as an ultraviolet absorber were charged to prepare a mixture containing the first sparingly water-soluble inorganic salt. After that, 1.0 part by weight of toluene and 97.5 parts by weight of methyl methacrylate and 2.5 parts by weight of butyl acrylate as a monomer mixture were added to the mixed solution to prepare an aqueous suspension. . The temperature of the aqueous suspension was then raised to 80° C. to initiate the polymerization, ie the initiation step was performed. One hour and 45 minutes after the initiation of polymerization (after the initiation step), the polymerization conversion rate was measured to be 40% to 50%. After 1 hour and 45 minutes from the initiation of the polymerization (after the initiation step), 0.10 parts by weight of tribasic calcium phosphate is added to the reaction mixture (aqueous suspension) as the second sparingly water-soluble inorganic salt, and the addition step is performed. bottom. The initiation step and addition step described above can also be referred to as a first copolymerization step.

その後さらに2時間35分経過後、第三リン酸カルシウム0.24重量部、シクロヘキサン1.5重量部および発泡剤としてノルマルリッチブタン(ノルマルリッチブタンにおける、ノルマルブタンとイソブタンとの重量比(ノルマルブタン/イソブタン)は70/30である。)9重量部を水性懸濁液中に仕込んだ。その後、水性懸濁液の温度を101℃に昇温した。次いで、水性懸濁液の温度を101℃にて10時間保持することにより、共重合および共重合体への発泡剤の含浸(共重合工程(第2共重合工程ともいえる)および発泡剤含浸工程)を行った。その後、水性懸濁液を冷却した。水性懸濁液の冷却後、得られた生成物を洗浄、脱水および乾燥することにより発泡性メタクリル酸メチル系樹脂粒子を得た。 After 2 hours and 35 minutes, 0.24 parts by weight of tribasic calcium phosphate, 1.5 parts by weight of cyclohexane and normal-rich butane as a blowing agent (weight ratio of normal-butane and iso-butane in normal-rich butane (normal-butane/isobutane ) is 70/30.) 9 parts by weight were charged into the aqueous suspension. After that, the temperature of the aqueous suspension was raised to 101°C. Next, by maintaining the temperature of the aqueous suspension at 101° C. for 10 hours, the copolymerization and impregnation of the foaming agent into the copolymer (copolymerization step (also referred to as a second copolymerization step) and foaming agent impregnation step ) was performed. The aqueous suspension was then cooled. After cooling the aqueous suspension, the resulting product was washed, dehydrated and dried to obtain expandable methyl methacrylate-based resin particles.

得られた発泡性メタクリル酸メチル系樹脂粒子を、目開き0.500mmおよび1.400mmの篩で篩い分けした。かかる操作により、粒子径0.500mm~1.400mmの発泡性メタクリル酸メチル系樹脂粒子を採取した。 The resulting expandable methyl methacrylate-based resin particles were sieved with sieves having mesh sizes of 0.500 mm and 1.400 mm. Through this operation, expandable methyl methacrylate-based resin particles having a particle diameter of 0.500 mm to 1.400 mm were collected.

次いで、得られた発泡性メタクリル酸メチル系樹脂粒子の表面に、脂肪酸金属塩としてステアリン酸亜鉛0.20重量部、および融着促進剤としてヒマシ硬化油0.05重量部を塗布した。 Next, 0.20 parts by weight of zinc stearate as a fatty acid metal salt and 0.05 parts by weight of hardened castor oil as a fusion accelerator were applied to the surface of the obtained expandable methyl methacrylate resin particles.

続いて、上述の方法に従い、発泡性メタクリル酸メチル系樹脂粒子の発泡性、メタクリル酸メチル系樹脂発泡粒子の発泡性および収縮抑制性、並びに、メタクリル酸メチル系樹脂発泡成形体の内部融着性および鋳造性を評価した。評価結果は表1に示した。 Subsequently, according to the above-described method, the expandability of the expandable methyl methacrylate resin particles, the expandability and shrinkage inhibition properties of the methyl methacrylate resin expandable particles, and the internal fusion bondability of the methyl methacrylate resin expansion molded product are determined. and castability were evaluated. The evaluation results are shown in Table 1.

(実施例2)
n-ドデシルメルカプタンの配合量を0.300重量部に変更した以外は、実施例1と同じ操作をし、表面にステアリン酸亜鉛およびヒマシ硬化油が塗布された、粒子径0.500mm~1.400mmの発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果は表1に示した。
(Example 2)
The procedure of Example 1 was repeated except that the amount of n-dodecyl mercaptan was changed to 0.300 parts by weight. 400 mm expandable methyl methacrylate-based resin particles were obtained. Each evaluation item was evaluated by the same method as in Example 1. The evaluation results are shown in Table 1.

(比較例1)
使用した単量体混合物をメタクリル酸メチル95.0重量部およびアクリル酸ブチル5.0重量部に、並びにn-ドデシルメルカプタンの配合量を0.240重量部に変更した以外は、実施例1と同じ操作をし、表面にステアリン酸亜鉛およびヒマシ硬化油が塗布された、粒子径0.500mm~1.400mmの発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果は表1に示した。
(Comparative example 1)
Example 1 except that the monomer mixture used was changed to 95.0 parts by weight of methyl methacrylate and 5.0 parts by weight of butyl acrylate, and the amount of n-dodecyl mercaptan was changed to 0.240 parts by weight. The same operation was performed to obtain expandable methyl methacrylate-based resin particles having a particle diameter of 0.500 mm to 1.400 mm, the surfaces of which were coated with zinc stearate and castor hardened oil. Each evaluation item was evaluated by the same method as in Example 1. The evaluation results are shown in Table 1.

(比較例2)
使用した単量体混合物をメタクリル酸メチル96.5重量部およびアクリル酸ブチル3.5重量部に、並びにn-ドデシルメルカプタンの配合量を0.240重量部に変更した以外は、実施例1と同じ操作をし、表面にステアリン酸亜鉛およびヒマシ硬化油が塗布された、粒子径0.500mm~1.400mmの発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果は表1に示した。
(Comparative example 2)
Example 1 except that the monomer mixture used was changed to 96.5 parts by weight of methyl methacrylate and 3.5 parts by weight of butyl acrylate, and the amount of n-dodecyl mercaptan was changed to 0.240 parts by weight. The same operation was performed to obtain expandable methyl methacrylate-based resin particles having a particle diameter of 0.500 mm to 1.400 mm, the surfaces of which were coated with zinc stearate and castor hardened oil. Each evaluation item was evaluated by the same method as in Example 1. The evaluation results are shown in Table 1.

(比較例3)
n-ドデシルメルカプタンの配合量を0.240重量部に変更した以外は、実施例1と同じ操作をし、表面にステアリン酸亜鉛およびヒマシ硬化油が塗布された、粒子径0.500mm~1.400mmの発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果は表1に示した。
(Comparative Example 3)
The procedure of Example 1 was repeated except that the amount of n-dodecyl mercaptan was changed to 0.240 parts by weight. 400 mm expandable methyl methacrylate-based resin particles were obtained. Each evaluation item was evaluated by the same method as in Example 1. The evaluation results are shown in Table 1.

(比較例4)
n-ドデシルメルカプタンの配合量を0.330重量部に変更した以外は、実施例1と同じ操作をし、表面にステアリン酸亜鉛およびヒマシ硬化油が塗布された、粒子径0.500mm~1.400mmの発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果は表1に示した。
(Comparative Example 4)
The same operation as in Example 1 was performed except that the amount of n-dodecyl mercaptan was changed to 0.330 parts by weight. 400 mm expandable methyl methacrylate-based resin particles were obtained. Each evaluation item was evaluated by the same method as in Example 1. The evaluation results are shown in Table 1.

(比較例5)
使用した単量体混合物をメタクリル酸メチル97.0重量部およびアクリル酸ブチル3.0重量部に、並びにn-ドデシルメルカプタンの配合量を0.250重量部に変更した以外は、実施例1と同じ操作をし、粒子径0.500mm~1.400mmの発泡性メタクリル酸メチル系樹脂粒子を得た。各評価項目を実施例1と同じ方法で評価した。評価結果は表1に示した。
(Comparative Example 5)
Example 1 except that the monomer mixture used was changed to 97.0 parts by weight of methyl methacrylate and 3.0 parts by weight of butyl acrylate, and the amount of n-dodecyl mercaptan was changed to 0.250 parts by weight. By performing the same operation, expandable methyl methacrylate-based resin particles having a particle size of 0.500 mm to 1.400 mm were obtained. Each evaluation item was evaluated by the same method as in Example 1. The evaluation results are shown in Table 1.

Figure 2023049915000001
Figure 2023049915000001

本発明の一実施形態によると、内部融着性に優れた発泡成形体を効率よく提供し得る、発泡性メタクリル酸メチル系樹脂粒子を提供できる。そのため、本発明の一実施形態は、フルモールド法により金属鋳造を行うときの消失模型として好適に利用できる。 According to one embodiment of the present invention, it is possible to provide expandable methyl methacrylate-based resin particles that can efficiently provide a foam molded article having excellent internal fusion bondability. Therefore, one embodiment of the present invention can be suitably used as a disappearing model when performing metal casting by the full mold method.

Claims (5)

構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含み、以下(a)~(d)を満たす、発泡性メタクリル酸メチル系樹脂粒子:
(a)前記発泡性メタクリル酸メチル系樹脂粒子を100℃の水蒸気で300秒間加熱して得られるメタクリル酸メチル系樹脂発泡粒子の嵩密度(A)が0.0285g/cm以下である;
(b)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で30秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(B)が140cm以下である;
(c)前記発泡性メタクリル酸メチル系樹脂粒子を発泡してなるメタクリル酸メチル系樹脂発泡粒子100cmを100℃の水蒸気で180秒間加熱後、25℃で1分間放置して得られるメタクリル酸メチル系樹脂発泡粒子の体積(C)が160cm超である;および
(d)前記基材樹脂のガラス転移温度が114.5℃以上である。
Expandable methyl methacrylate-based resin particles comprising a base resin containing methyl methacrylate units and acrylic acid ester units as structural units, and a foaming agent, and satisfying the following (a) to (d):
(a) The bulk density (A) of the expanded methyl methacrylate resin particles obtained by heating the expandable methyl methacrylate resin particles with water vapor at 100° C. for 300 seconds is 0.0285 g/cm 3 or less;
(b) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 30 seconds, and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. The volume (B) of the expanded resin particles is 140 cm 3 or less;
(c) Methyl methacrylate obtained by heating 100 cm 3 of methyl methacrylate-based resin foamed particles obtained by expanding the expandable methyl methacrylate-based resin particles with water vapor at 100° C. for 180 seconds and then leaving the foamed methyl methacrylate-based resin particles at 25° C. for 1 minute. and (d) the base resin has a glass transition temperature of 114.5° C. or higher.
前記基材樹脂の重量平均分子量は、22.0万~31.0万である、請求項1に記載の発泡性メタクリル酸メチル系樹脂粒子。 2. The expandable methyl methacrylate resin particles according to claim 1, wherein the base resin has a weight average molecular weight of 220,000 to 310,000. 構成単位としてメタクリル酸メチル単位およびアクリル酸エステル単位を含む基材樹脂と、発泡剤とを含み、
前記基材樹脂の重量平均分子量は22.0万~31.0万であり、
前記基材樹脂のガラス転移温度は114.5℃以上である、発泡性メタクリル酸メチル系樹脂粒子。
A base resin containing methyl methacrylate units and acrylate units as structural units, and a foaming agent,
The weight average molecular weight of the base resin is 220,000 to 310,000,
The expandable methyl methacrylate-based resin particles, wherein the base resin has a glass transition temperature of 114.5° C. or higher.
前記アクリル酸エステル単位はアクリル酸ブチル単位である、請求項1~3の何れか1項に記載の発泡性メタクリル酸メチル系樹脂粒子。 4. The expandable methyl methacrylate-based resin particles according to any one of claims 1 to 3, wherein the acrylate unit is a butyl acrylate unit. 前記基材樹脂において、
前記メタクリル酸メチル単位および前記アクリル酸エステル単位の合計量100重量部に対する、(a)前記メタクリル酸メチル単位の含有量は97.0重量部より多く99.0重量部以下であり、(b)前記アクリル酸エステル単位の含有量は1.0重量部以上3.0重量部未満である、請求項1~4の何れか1項に記載の発泡性メタクリル酸メチル系樹脂粒子。
In the base resin,
(a) the content of the methyl methacrylate unit is more than 97.0 parts by weight and not more than 99.0 parts by weight, and (b) The expandable methyl methacrylate-based resin particles according to any one of claims 1 to 4, wherein the content of the acrylate unit is 1.0 parts by weight or more and less than 3.0 parts by weight.
JP2021159937A 2021-09-29 2021-09-29 Expandable methyl methacrylate resin particles Pending JP2023049915A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021159937A JP2023049915A (en) 2021-09-29 2021-09-29 Expandable methyl methacrylate resin particles
CN202280065411.1A CN118019786A (en) 2021-09-29 2022-09-16 Foamable methyl methacrylate resin particles
PCT/JP2022/034741 WO2023054017A1 (en) 2021-09-29 2022-09-16 Expandable methyl methacrylate resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021159937A JP2023049915A (en) 2021-09-29 2021-09-29 Expandable methyl methacrylate resin particles

Publications (1)

Publication Number Publication Date
JP2023049915A true JP2023049915A (en) 2023-04-10

Family

ID=85782521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021159937A Pending JP2023049915A (en) 2021-09-29 2021-09-29 Expandable methyl methacrylate resin particles

Country Status (3)

Country Link
JP (1) JP2023049915A (en)
CN (1) CN118019786A (en)
WO (1) WO2023054017A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6225781B2 (en) * 2014-03-25 2017-11-08 株式会社ジェイエスピー Foamable acrylic resin particles, acrylic resin foam particles, acrylic resin foam particles
JP6670245B2 (en) * 2014-09-22 2020-03-18 株式会社カネカ Expandable methyl methacrylate resin particles, pre-expanded particles, expanded molded article, and disappearance model
JP2018135407A (en) * 2017-02-20 2018-08-30 株式会社カネカ Methyl methacrylate foamed particles
EP3950743B1 (en) * 2019-03-29 2023-11-22 Kaneka Corporation Expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate expansion-molded body, and method for producing expandable methyl methacrylate resin particles

Also Published As

Publication number Publication date
WO2023054017A1 (en) 2023-04-06
CN118019786A (en) 2024-05-10

Similar Documents

Publication Publication Date Title
EP3199580B1 (en) Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and lost foam
CN113646345B (en) Expandable methyl methacrylate resin particles, process for producing the same, pre-expanded particles thereof, and molded foam
US20230022682A1 (en) Expandable methyl-methacrylate-based resin particles, methyl-methacrylate-based expanded particles, methyl-methacrylate-based molded foam, and evaporative pattern
JP7019410B2 (en) Effervescent methyl methacrylate resin particles
JP4835007B2 (en) Expandable methyl methacrylate resin particles and foam using the same
CN115867601B (en) Expandable methyl methacrylate resin particles, methyl methacrylate resin expanded molded article, and lost foam
JP6514928B2 (en) Expandable polystyrene-based resin particles, polystyrene-based pre-expanded particles and expanded molded articles
JP2018135408A (en) Method for producing expandable methyl methacrylate resin particles
JP7455934B2 (en) Expandable polystyrene resin particles and their use
JP2008260928A (en) Method for producing styrene modified polyethylene based resin pre-expansion particle
CN110997778B (en) Expandable polystyrene resin particles, polystyrene pre-expanded particles, and expanded molded article
JP2023049915A (en) Expandable methyl methacrylate resin particles
JP5422970B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin
JP2018135407A (en) Methyl methacrylate foamed particles
WO2023189759A1 (en) Expandable particles of methyl-methacrylate-based resin, expanded particles of methyl-methacrylate-based resin, molded foam of methyl-methacrylate-based resin, and evaporative pattern
WO2024116722A1 (en) Expandable methyl-methacrylate-based resin particles
JP2001220458A (en) Foamable styrenic resin particle
JP2009102632A (en) Styrene modified polyethylene based resin prefoamed particle, and foam formed of the prefoamed particle
WO2023286822A1 (en) Expandable methyl methacrylate-based resin particles, expanded methyl methacrylate-based resin particles, methyl methacrylate-based resin foam molded article, evaporative pattern, and method for producing expandable methyl methacrylate-based resin particles
JP6679390B2 (en) Expandable styrene resin particles
JP6280739B2 (en) Styrene-modified polyethylene pre-expanded particles and molded articles thereof
JP2022144234A (en) Styrenic seed resin particle for seed polymerization and use of the same
JP2002249614A (en) Expandable styrenic resin particle