JP2006241256A - Expandable methyl methacrylate resin particle and foam obtained using the same - Google Patents

Expandable methyl methacrylate resin particle and foam obtained using the same Download PDF

Info

Publication number
JP2006241256A
JP2006241256A JP2005056729A JP2005056729A JP2006241256A JP 2006241256 A JP2006241256 A JP 2006241256A JP 2005056729 A JP2005056729 A JP 2005056729A JP 2005056729 A JP2005056729 A JP 2005056729A JP 2006241256 A JP2006241256 A JP 2006241256A
Authority
JP
Japan
Prior art keywords
methyl methacrylate
monomer
methacrylate resin
resin particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005056729A
Other languages
Japanese (ja)
Other versions
JP4835007B2 (en
Inventor
Yuichi Ueda
有一 上田
Hidekazu Ohara
英一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005056729A priority Critical patent/JP4835007B2/en
Publication of JP2006241256A publication Critical patent/JP2006241256A/en
Application granted granted Critical
Publication of JP4835007B2 publication Critical patent/JP4835007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methyl methacrylate resin foam which shows a good moldability in a high expansion ratio, hardly emits soot and smoke at ignition and is suitably used for a sublimation pattern used for metal casting or a building structure. <P>SOLUTION: A molded product obtained through expansion molding of an expandable methyl methacrylate resin particle has a mean bubble chord length of 70-200 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発泡性メタクリルメチル系樹脂粒子及びこれを用いたメタクリル酸メチル系樹脂発泡体に関するものである。詳しくは高発泡倍率での成形性が良好である発泡性メタクリル酸メチル系樹脂粒子及びこれを用いた外観が良好なメタクリル酸メチル系樹脂発泡体に関する。さらに、着火した際の煤煙がほとんど発生せず、金属鋳造の際に使用する消失模型や建築構造物への使用に適したメタクリル酸メチル系樹脂発泡体に関する。   The present invention relates to an expandable methyl methacrylate resin particle and a methyl methacrylate resin foam using the same. More specifically, the present invention relates to expandable methyl methacrylate resin particles having good moldability at a high expansion ratio and a methyl methacrylate resin foam having a good appearance using the same. Further, the present invention relates to a methyl methacrylate-based resin foam suitable for use in a disappearance model or a building structure used in metal casting, which hardly generates soot when ignited.

メタクリル酸メチル重合体の発泡は一般に難しく、溶融時の伸長粘度と剪断粘度が発泡挙動に対して不適格であり、気泡の保持能力が不十分である。このため十分に発泡しないばかりでなく、発泡セルが不均一となり、得られた発泡体の表面の凹凸が多く平滑な表面となし難く、且つ若干発泡しても気泡の収縮が激しく商品価値を有する発泡体を得ることが困難であった。発泡性能を改善させる手段として、特許文献1には、粒径制御のために熱可塑性重合体粒子を、分散剤を含む水中に懸濁せしめ、これに重合開始剤のもとにメタクリル酸エステル系単量体を熱可塑性重合体に対して特定の割合となるように滴下させ重合することにより、得られる重合体粒子の分子量分布の不均一を減少させる方法が開示されている。また、発泡剤の保持性を高める方法として、特許文献2には、特定の領域に分子量を調整する方法が開示されている。また、発泡成形時に高発泡倍率で、発泡セルが均一で、外観が良好である発泡体を得る方法として、特許文献3に特定の単量体比率から得られる重合体で特定の分子量に調整する方法が開示されている。   Foaming of methyl methacrylate polymers is generally difficult, the elongational viscosity and shear viscosity at the time of melting are not suitable for the foaming behavior, and the ability to retain bubbles is insufficient. For this reason, not only does it not sufficiently foam, the foam cells become uneven, the surface of the obtained foam has many irregularities, and it is difficult to form a smooth surface, and even if it is slightly foamed, the shrinkage of bubbles is intense and has commercial value It was difficult to obtain a foam. As means for improving foaming performance, Patent Document 1 discloses that a thermoplastic polymer particle is suspended in water containing a dispersant for particle size control, and a methacrylic acid ester-based polymer is added to the suspension. A method is disclosed in which the monomer is dropped and polymerized in a specific ratio with respect to the thermoplastic polymer to reduce nonuniformity in the molecular weight distribution of the resulting polymer particles. Moreover, as a method for improving the retention of the foaming agent, Patent Document 2 discloses a method of adjusting the molecular weight in a specific region. In addition, as a method of obtaining a foam having a high foaming ratio, uniform foam cells and good appearance at the time of foam molding, the polymer obtained from a specific monomer ratio in Patent Document 3 is adjusted to a specific molecular weight. A method is disclosed.

ところで、金属鋳造の際に使用する消失模型や建築構造物へメタクリル酸メチル系樹脂発泡体を使用する時、使用される樹脂重量が少ない、即ち、発泡成形体の発泡倍率が高い程、工業的な価値は高まる。また、これらの用途では得られる発泡成形体の寸法安定性も重要な要求品質の一つとしてあげられている。   By the way, when using a methyl methacrylate-based resin foam for disappearance models and building structures used in metal casting, the weight of the resin used is smaller, that is, the higher the foaming ratio of the foamed molded product, the more industrial Value increases. In these applications, the dimensional stability of the foamed molded product obtained is also cited as one of the important required qualities.

しかしながら特許文献1、2、3に記載の樹脂は、高発泡倍率状態で得られる発泡成形体に大きな寸法変化が見られるという問題があった。その要因としては、発泡セルの均一化が不十分であるばかりでなくセルサイズが小さくなり過ぎる為に気泡を構成しているセル膜厚が薄くなり、発泡性能が必ずしも十分でないことが挙げられる。他方、発泡性スチレン系樹脂の発泡セルについては、不均一化し易く、また、粗大化し易いため、その発泡セルを均一、微細化する能力を持つ造核剤を使用する方法等が提題されている。しかし、同様の課題を有していても発泡性スチレン系樹脂における技術を発泡性メタクリル酸メチル系樹脂粒子に転用することでは解決しない。先に、本出願人により、発泡性メタクリル酸メチル系樹脂粒子について、特許文献3に記載の通り、発泡セルを均一化することには成功していたのであるが、得られる成形体の切断気泡の平均弦長はせいぜい50μm程度であり、高発泡倍率状態で得られる発泡成形体に寸法変化の低減が望まれていた。
特開昭50−127990号公報 特開2001−123001号公報 特開2001−233986号公報
However, the resins described in Patent Documents 1, 2, and 3 have a problem that a large dimensional change is observed in a foamed molded product obtained in a high expansion ratio state. The reason for this is that not only the foamed cells are not sufficiently uniform, but also the cell size becomes too small, the film thickness of the cells constituting the bubbles becomes thin, and the foaming performance is not always sufficient. On the other hand, foamed cells of expandable styrenic resin are prone to non-uniformity and coarsening, so a method of using a nucleating agent having the ability to make the foamed cells uniform and fine has been proposed. Yes. However, even if it has the same problem, it cannot be solved by diverting the technology in the expandable styrene resin to the expandable methyl methacrylate resin particles. First, as described in Patent Document 3, the present applicant has succeeded in homogenizing the foamed cells with respect to the foamable methyl methacrylate resin particles. The average chord length is about 50 μm at most, and it has been desired to reduce the dimensional change in the foamed molded product obtained in a high foaming magnification state.
JP 50-127990 A JP 2001-123001 A JP 2001-233986 A

以上のような状況に鑑み、本発明は、高発泡倍率での成形性が良好であり、さらには、着火した際の煤煙がほとんど発生せず、金属鋳造の際に使用する消失模型や建築構造物への使用に適したメタクリル酸メチル系樹脂発泡体を提供することにある。   In view of the situation as described above, the present invention has good moldability at a high expansion ratio, and further, smoke is hardly generated when ignited, and the disappearance model and building structure used in metal casting An object of the present invention is to provide a methyl methacrylate resin foam suitable for use in products.

上記問題を解決すべく鋭意検討したところ、発泡体において従来の発泡セルサイズより大きい特定の発泡セルサイズに調整すると、予備発泡及び発泡成形時に高発泡倍率でも外観が良好であり形状変化が少ない発泡体となることを見出し、本発明に至った。   As a result of diligent investigations to solve the above problems, when the foam is adjusted to a specific foam cell size that is larger than the conventional foam cell size, the foam has good appearance and little shape change even at high foaming ratio during pre-foaming and foam molding. As a result, the present invention was found.

更に、発泡性メタクリル酸メチル系樹脂粒子の製造工程に於いて、該樹脂粒子中に含まれる未反応の総残存単量体量が特定の範囲である間に発泡剤を添加することにより、発泡セルサイズを効率良く調整できることを見出し、本発明を完成させた。   Further, in the process of producing expandable methyl methacrylate resin particles, foaming is performed by adding a foaming agent while the amount of unreacted total residual monomer contained in the resin particles is within a specific range. The present inventors have found that the cell size can be adjusted efficiently and completed the present invention.

即ち、本発明の第1は、発泡性メタクリル酸メチル系樹脂粒子を発泡成形してなる成形体の切断気泡の平均弦長が70μm以上200μm以下であることを特徴とする発泡性メタクリル酸メチル系樹脂粒子に関する。   That is, according to the first aspect of the present invention, the foamable methyl methacrylate series is characterized in that the average chord length of the cut cells of the molded body formed by foaming foamable methyl methacrylate resin particles is 70 μm or more and 200 μm or less. It relates to resin particles.

好ましい実施態様としては、メタクリル酸メチル系単量体と、メタクリル酸メチル系単量体に対して0.02ビニル基mol%以上0.20ビニル基mol%以下の多官能性単量体とからなる単量体成分を重合して得られる、重量平均分子量が25万以上50万以下であるメタクリル酸メチル系樹脂粒子に発泡剤を含浸してなる前記記載の発泡性メタクリル酸メチル系樹脂粒子に関する。   As a preferred embodiment, from a methyl methacrylate monomer and a polyfunctional monomer of 0.02 vinyl group mol% to 0.20 vinyl group mol% with respect to the methyl methacrylate monomer The foamable methyl methacrylate resin particles described above are obtained by impregnating a methyl methacrylate resin particle having a weight average molecular weight of 250,000 to 500,000 with a foaming agent, which is obtained by polymerizing the monomer component. .

本発明の第2は、前記記載の発泡性メタクリル酸メチル系樹脂粒子を発泡成形して得られる発泡成形体に関する。
本発明の第3は、メタクリル酸メチル系単量体を重合し、総残存単量体量が5重量%以上20重量%以下になった時点で発泡剤を添加することを特徴とする発泡性メタクリル酸メチル系樹脂粒子の製造方法に関し、好ましい実施態様としては、メタクリル酸メチル系単量体とメタクリル酸メチル系単量体に対して0.02ビニル基mol%以上0.20ビニル基mol以下の多官能性単量体とからなる単量体成分を重合し、総残存単量体量が5重量%以上20重量%以下になった時点で発泡剤を添加することを特徴とする発泡性メタクリル酸メチル系樹脂粒子の前記記載の製造方法に関する。
2nd of this invention is related with the foaming molding obtained by foam-molding the foamable methyl methacrylate resin particle of the said description.
A third aspect of the present invention is a foaming property characterized in that a methyl methacrylate-based monomer is polymerized and a foaming agent is added when the total residual monomer amount becomes 5% by weight or more and 20% by weight or less. Regarding the method for producing methyl methacrylate resin particles, a preferred embodiment is 0.02 vinyl group mol% or more and 0.20 vinyl group mol or less with respect to the methyl methacrylate monomer and the methyl methacrylate monomer. A foaming property characterized by polymerizing a monomer component composed of a polyfunctional monomer and adding a foaming agent when the total residual monomer amount becomes 5% by weight or more and 20% by weight or less. It is related with the manufacturing method of the said description of the methyl methacrylate resin particle.

本発明によれば、発泡性メタクリル酸メチル系樹脂粒子を発泡成形してなる成形体の切断気泡の平均弦長が70μm以上200μm以下であることにより、高倍率への発泡が可能であり、かつ寸法安定性の良好な成形体を得ることができる。即ち、従来の技術では発泡成形体として40倍程度でしか得られなかった寸法安定性が、本発明では60倍以上の高い発泡倍率においても得ることができる。   According to the present invention, when the average chord length of the cut cell of the molded body formed by foam molding of expandable methyl methacrylate resin particles is 70 μm or more and 200 μm or less, foaming at a high magnification is possible, and A molded article with good dimensional stability can be obtained. In other words, the dimensional stability that can be obtained only about 40 times as a foamed molded article in the prior art can be obtained even at a high foaming ratio of 60 times or more in the present invention.

本発明の発泡性メタクリル酸メチル系樹脂粒子は、発泡体と成した際に成形体の切断気泡の平均弦長が70μm以上200μm以下となることを特徴とする。好ましくは、80μm以上150μm以下である。成形体の切断気泡の平均弦長が当該範囲となるような発泡性メタクリル酸メチル系樹脂粒子を使用することで高倍率への発泡が可能であり、かつ寸法安定性の良好な成形体を得ることが可能である。   The foamable methyl methacrylate resin particles of the present invention are characterized in that when formed into a foam, the average chord length of the cut cells of the molded body is 70 μm or more and 200 μm or less. Preferably, they are 80 micrometers or more and 150 micrometers or less. By using expandable methyl methacrylate resin particles in which the average chord length of the cut bubbles in the molded product falls within the above range, it is possible to expand to a high magnification and obtain a molded product with good dimensional stability. It is possible.

本発明において成形体の切断気泡の平均弦長は、ASTM−D−2842−97に準じて、発泡体の切断面を撮影した走査型電子顕微鏡写真を用いて、切断面の一直線上にかかる気泡数から測定することができる。   In the present invention, the average chord length of the cut bubbles in the molded product is determined by using a scanning electron micrograph of the foam cut surface according to ASTM-D-2842-97. It can be measured from the number.

本発明の発泡性メタクリル酸メチル系樹脂粒子に使用しうる樹脂は、その組成としては、メタクリル酸メチル系単量体を主体としたものであればよいが、中でもメタクリル酸メチル系単量体と、メタクリル酸メチル系単量体に対して0.02ビニル基mol%以上0.20ビニル基mol%以下の多官能性単量体とからなる単量体成分であることが好ましい。当該組成の樹脂を使用することで、高倍率への発泡が可能であり、発泡成形時に外観が良好であり形状変化が少ない発泡体となるような発泡性メタクリル酸メチル系樹脂粒子が得やすい傾向にある。多官能性単量体量は、0.02ビニル基mol%より少ない場合は成形性が低下する恐れがあり、0.20ビニル基mol%より大きい場合は発泡速度が低下する恐れがある。ここで、ビニル基mol%とは、官能基の当量を%で表した単位である。   The resin that can be used for the expandable methyl methacrylate resin particles of the present invention may have any composition as long as the main component is a methyl methacrylate monomer. The monomer component is preferably composed of 0.02 vinyl group mol% or more and 0.20 vinyl group mol% or less polyfunctional monomer with respect to the methyl methacrylate monomer. By using the resin of the composition, foaming to high magnification is possible, and it is easy to obtain expandable methyl methacrylate-based resin particles that can be foamed with good appearance and little shape change during foam molding It is in. If the amount of the polyfunctional monomer is less than 0.02 vinyl group mol%, the moldability may be lowered, and if it is greater than 0.20 vinyl group mol%, the foaming rate may be lowered. Here, the vinyl group mol% is a unit expressing the equivalent of the functional group in%.

メタクリル酸メチル系単量体としてはメタクリル酸メチル単量体のみならず、耐候性に優れ、着火した際の煤煙が殆ど発生しないというメタクリル酸メチル樹脂本来の特質を損なわない範囲で他の単量体と共重合することは可能である。共重合可能な単官能不飽和単量体としては、例えば、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸プロピル等のメタクリル酸メチルを除くメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル等のアクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、無水マレイン酸、無水イタコン酸等の酸無水物;アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸モノグリセロ−ル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸モノグリセロ−ル等のヒドロキシ基含有のエステル;アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドがある。ニトリル類にはアクリロニトリル、メタクリロニトリル、ジアセトンアクリルアミド、メタクリル酸ジメチルアミノエチル等の窒素含有単量体;アクリルグリシジルエ−テル、アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有単量体;スチレン、α−メチルスチレン等のスチレン系単量体があげられる。   As methyl methacrylate monomer, not only methyl methacrylate monomer, but also other single quantities within the range that does not impair the original characteristics of methyl methacrylate resin, which is excellent in weather resistance and hardly generates smoke when ignited It is possible to copolymerize with the body. Examples of copolymerizable monofunctional unsaturated monomers include, for example, methacrylates other than methyl methacrylate such as ethyl methacrylate, butyl methacrylate, and propyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate Acrylic acid esters such as 2-ethylhexyl acrylate; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid; acid anhydrides such as maleic anhydride and itaconic anhydride; 2-hydroxyethyl acrylate Hydroxy group-containing esters such as 2-hydroxypropyl acrylate, monoglyceryl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, monoglyceryl methacrylate; acrylamide, methacrylamide, diacetone acrylamide That. Nitriles include nitrogen-containing monomers such as acrylonitrile, methacrylonitrile, diacetone acrylamide, and dimethylaminoethyl methacrylate; epoxy group-containing monomers such as acrylic glycidyl ether, glycidyl acrylate, and glycidyl methacrylate; styrene And styrene monomers such as α-methylstyrene.

これらの中でも、アクリル酸エステル、メタクリル酸エステルを使用することが好ましい。   Among these, it is preferable to use acrylic acid ester and methacrylic acid ester.

多官能性単量体としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート等のエチレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したのも、ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等の2価のアルコールの水酸基をアクリル酸またはメタクリル酸でエステル化したもの、ジビニルベンゼン等のアルケニル基を2個以上有するアリール化合物等があげられる。   Examples of the polyfunctional monomer include ethylene glycol such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, etc. Esterified with an acid is one obtained by esterifying a hydroxyl group of a divalent alcohol such as neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate, butanediol di (meth) acrylate with acrylic acid or methacrylic acid, Examples thereof include aryl compounds having two or more alkenyl groups such as divinylbenzene.

本発明において使用しうる樹脂は、重量平均分子量が25万以上50万以下であることが好ましい。更に好ましくは25万以上40万以下である。重量平均分子量が25万より小さい場合は発泡成形体とした時の寸法収縮率が大きくなる恐れがある。重量平均分子量が50万よりも大きい場合は発泡性が低下する為に高倍率化が難しい場合があり、工業的な価値が低下するだけでなく消失模型用途に使用した場合に残渣が残り易く良好な鋳物が得られ難くなる場合がある。   The resin that can be used in the present invention preferably has a weight average molecular weight of 250,000 to 500,000. More preferably, it is 250,000 or more and 400,000 or less. When the weight average molecular weight is less than 250,000, the dimensional shrinkage when the foamed molded product is obtained may increase. If the weight average molecular weight is larger than 500,000, it may be difficult to increase the magnification because foamability is reduced, and not only the industrial value is lowered, but also the residue is likely to remain when used for disappearance models. May be difficult to obtain.

本発明における重量平均分子量とは、ゲル・パ−ミエ−ション・クロマトグラフィ−(GPC)により標準ポリスチレン(PS)試料を基準に求められた値である。   The weight average molecular weight in the present invention is a value determined on the basis of a standard polystyrene (PS) sample by gel permeation chromatography (GPC).

本発明における発泡性メタクリル酸メチル系樹脂粒子は、例えば、前記単量体を分散剤、重合開始剤、連鎖移動剤および各種添加剤の存在下で懸濁重合等により重合し、発泡剤を含浸させることにより得ることができる。   The foamable methyl methacrylate resin particles in the present invention are, for example, polymerized by suspension polymerization in the presence of a dispersant, a polymerization initiator, a chain transfer agent and various additives, and impregnated with the foaming agent. Can be obtained.

前記分散剤としては、一般的に懸濁重合に用いられる分散剤、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド等の高分子分散剤、例えば、リン酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム等の難水溶性無機塩があげられる。そして、難水溶性無機塩を用いる場合には、α−オレフィンスルフォン酸ソーダ、ドデシルベンゼンスルフォン酸ソーダ等のアニオン性界面活性剤を併用すると分散安定性が増すので効果的である。また、これらの分散剤は得られる発泡性メタクリル酸メチル系樹脂粒子の粒子径を調整するために、重合中に1回以上追加することもある。   Examples of the dispersant include dispersants generally used for suspension polymerization, for example, polymer dispersants such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyacrylamide, such as poorly water-soluble such as calcium phosphate, hydroxyapatite, and magnesium pyrophosphate. Examples include inorganic salts. When a poorly water-soluble inorganic salt is used, an anionic surfactant such as α-olefin sodium sulfonate or dodecylbenzene sodium sulfonate is effective because the dispersion stability is increased. These dispersants may be added one or more times during the polymerization in order to adjust the particle diameter of the resulting foamable methyl methacrylate resin particles.

前記懸濁重合で使用できる重合開始剤としては、一般にメタクリル酸メチル系単量体のラジカル重合に用いられる重合開始剤、例えば、過酸化ベンゾイル、ラウロイルパ−オキサイド、t−ブチルパーオキシベンゾエート、イソプロピル−t−ブチルパーオキシカーボネート、過安息香酸ブチル、1,1−ビス(アルキルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(アルキルパーオキシ)シクロヘキサン等の有機過酸化物やアゾビスイソブチロニトリル等のアゾ化合物があげられ、これらは2種以上併用して使用することもできる。   Examples of the polymerization initiator that can be used in the suspension polymerization include polymerization initiators generally used for radical polymerization of methyl methacrylate monomers, such as benzoyl peroxide, lauroyl peroxide, t-butylperoxybenzoate, isopropyl- Organic peroxides and azo such as t-butyl peroxycarbonate, butyl perbenzoate, 1,1-bis (alkylperoxy) 3,3,5-trimethylcyclohexane, 1,1-bis (alkylperoxy) cyclohexane Examples thereof include azo compounds such as bisisobutyronitrile, and these can be used in combination of two or more.

前記連鎖移動剤としては、メタクリル酸メチルの重合に用いられる周知のものでよい。例えば、アルキルメルカプタン類、チオグリコール酸エステル類等の単官能連鎖移動剤、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化した多官能性連鎖移動剤があげられる。   The chain transfer agent may be a known one used for polymerization of methyl methacrylate. For example, monofunctional chain transfer agents such as alkyl mercaptans and thioglycolic acid esters, and polyhydric alcohol hydroxyl groups such as ethylene glycol, neopentyl glycol, trimethylolpropane and sorbitol are esterified with thioglycolic acid or 3-mercaptopropionic acid. And polyfunctional chain transfer agents.

前記発泡剤としては、例えば、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン、ネオペンタン等の炭素数3以上5以下の炭化水素である脂肪族炭化水素類、例えば、ジフルオロエタン、テトラフルオロエタン等のオゾン破壊係数がゼロであるハイドロフルオロカーボン類等の揮発性発泡剤があげられる。これらの発泡剤は併用しても何ら差し支えない。また、使用量としては、メタクリル酸メチル系樹脂粒子100重量部に対して、好ましくは5重量部以上12重量部以下、さらに好ましくは7重量部以上10重量部以下である。   Examples of the blowing agent include aliphatic hydrocarbons that are hydrocarbons having 3 to 5 carbon atoms such as propane, isobutane, normal butane, isopentane, normal pentane, and neopentane, such as ozone such as difluoroethane and tetrafluoroethane. Examples thereof include volatile blowing agents such as hydrofluorocarbons having a destruction coefficient of zero. These foaming agents can be used in combination. The amount used is preferably 5 to 12 parts by weight, more preferably 7 to 10 parts by weight, based on 100 parts by weight of the methyl methacrylate resin particles.

前記各種添加剤としては、目的に応じて可塑剤、気泡調整剤等が使用できる。可塑剤としては、例えば、ステアリン酸トリグリセライド、パルミチン酸トリグリセライド、ラウリン酸トリグリセライド、ステアリン酸ジグリセライド、ステアリン酸モノグリセライド等の脂肪酸グリセライド、ヤシ油、パーム油、パーム核油等の植物油、ジオクチルアジペート、ジブチルセバケート等の脂肪族エステル、流動パラフィン、シクロヘキサン等の有機炭化水素、トルエン、エチルベンゼン等の有機芳香族炭化水素等があげられ、これらは併用しても何ら差し支えない。気泡調整剤としては、例えば、メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等の脂肪族ビスアマイド、ポリエチレンワックス等が挙げられる。   As said various additives, a plasticizer, a bubble regulator, etc. can be used according to the objective. Examples of the plasticizer include stearic acid triglyceride, palmitic acid triglyceride, lauric acid triglyceride, stearic acid diglyceride, stearic acid monoglyceride and other fatty acid glycerides, palm oil, palm oil, palm kernel oil and other vegetable oils, dioctyl adipate, dibutyl sebacate And the like, organic hydrocarbons such as liquid paraffin and cyclohexane, and organic aromatic hydrocarbons such as toluene and ethylbenzene. These may be used in combination. Examples of the air conditioner include aliphatic bisamides such as methylene bis stearic acid amide and ethylene bis stearic acid amide, polyethylene wax, and the like.

また、本発明の発泡性メタクリル酸メチル系樹脂粒子を製造するにあたっては、重合過程にあるメタクリル酸メチル系樹脂粒子中に未反応の総残存単量体量が5重量%以上20重量%以下になった時点で発泡剤を添加することが好ましい。更に好ましくは8重量%以上15重量%以下である。当該範囲内で発泡剤を添加することにより、発泡剤添加時の樹脂粒子の粘度低下が充分で、懸濁安定性が良好となるため、発泡セルが均一でかつ発泡セルサイズの肥大化効果がより一層発現され、得られる成形体の寸法安定性がより良好となる。   Further, in producing the expandable methyl methacrylate resin particles of the present invention, the unreacted total residual monomer amount in the methyl methacrylate resin particles in the polymerization process is 5 wt% or more and 20 wt% or less. It is preferable to add a foaming agent at this point. More preferably, it is 8 to 15 weight%. By adding the foaming agent within the range, the viscosity of the resin particles is sufficiently lowered when the foaming agent is added, and the suspension stability is good, so that the foamed cells are uniform and the foamed cell size is enlarged. The dimensional stability of the molded product obtained is further improved and the resulting molded product becomes better.

更には、メタクリル酸メチル系単量体とメタクリル酸メチル系単量体に対して0.02ビニル基mol%以上0.20ビニル基mol以下の多官能性単量体とからなる単量体成分を重合し、総残存単量体量が5重量%以上20重量%以下になった時点で発泡剤を添加することが、得られる成形体の寸法安定性がより一層良好となるため、このましい。   Furthermore, a monomer component comprising a methyl methacrylate monomer and a polyfunctional monomer of 0.02 vinyl group mol% to 0.20 vinyl group mol with respect to the methyl methacrylate monomer. When the total residual monomer amount becomes 5% by weight or more and 20% by weight or less, adding a foaming agent further improves the dimensional stability of the resulting molded product. Yes.

本発明において、未反応の総残存単量体量は、ガスクロマトグラフィーにより内部標準法により測定することが出来る。   In the present invention, the amount of unreacted total residual monomer can be measured by an internal standard method by gas chromatography.

本発明の発泡性メタクリル酸エステル系樹脂粒子は例えば以下のようにして製造することが出来る。   The expandable methacrylate ester resin particles of the present invention can be produced, for example, as follows.

耐圧容器内に水、分散剤、その他添加剤を仕込み、メタクリル酸メチル系単量体、重合開始剤等を仕込み、70℃以上90℃以下で約3〜6時間重合を行う。樹脂粒子中に含まれる未反応の総残存単量体量が5重量%以上20重量%以下になった時点で、メタクリル酸エステル系樹脂粒子100重量部に対して発泡剤5部以上12部以下を仕込み、90℃以上120℃以下で5〜15時間重合を行い、冷却後、洗浄・脱水・乾燥することにより発泡性メタクリル酸エステル系樹脂粒子を得る。   Water, a dispersant, and other additives are charged into a pressure vessel, a methyl methacrylate monomer, a polymerization initiator, and the like are charged, and polymerization is performed at 70 ° C. or higher and 90 ° C. or lower for about 3 to 6 hours. When the total amount of unreacted residual monomers contained in the resin particles is 5% by weight or more and 20% by weight or less, the foaming agent is 5 parts or more and 12 parts or less with respect to 100 parts by weight of the methacrylic ester resin particles. , Polymerized at 90 ° C. or higher and 120 ° C. or lower for 5 to 15 hours, cooled, washed, dehydrated, and dried to obtain expandable methacrylate ester resin particles.

このようにしてえられた発泡性メタクリル酸メチル系樹脂粒子は、成形体と成した場合に、高発泡倍率での成形性が良好となる。   The foamable methyl methacrylate resin particles obtained in this way have good moldability at a high expansion ratio when formed into a molded body.

以下に実施例及び比較例をあげるが、これによって本発明は制限されるものではない。
<気泡径の測定>
成形体の平均気泡径はASTM−D−2842−97に準じて、発泡体の切断面を投影した写真から、切断面の一直線上にかかる気泡径から平均弦長を測定した。
<寸法収縮>
成形体の寸法収縮は、成形後に約35℃の乾燥室で1日保管した後、厚み方向に於ける金型寸法と成形体寸法の差として測定・評価した。
<表面状態>
成形体の表面状態は、成形後に約35℃の乾燥室で1日保管したものを目視観察にて評価した。
Examples and Comparative Examples are given below, but the present invention is not limited thereby.
<Measurement of bubble diameter>
The average cell diameter of the molded body was measured in accordance with ASTM-D-2842-97 from the bubble diameter on a straight line of the cut surface from a photograph of the cut surface of the foam projected.
<Dimensional shrinkage>
The dimensional shrinkage of the molded article was measured and evaluated as the difference between the mold dimension and the molded article dimension in the thickness direction after storing in a drying room at about 35 ° C. for one day after molding.
<Surface condition>
The surface state of the molded body was evaluated by visual observation after being molded for one day in a drying room at about 35 ° C.

(実施例1)
6Lオートクレーブに水150重量部、第3リン酸カルシウム0.15重量部、α−オレフィンスルフォン酸ソーダ0.008重量部、ラウロイルパーオキサイド0.08重量部、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン0.1重量部、1,6−ヘキサンジオールジアクリレート0.1重量部(メタクリル酸メチル系単量体に対して0.09ビニル基mol%)、n−ドデシルメルカプタン0.26重量部を仕込んだ後、メタクリル酸メチル94重量部、アクリル酸メチル6重量部、トルエン1重量部を仕込み、80℃で約4時間重合を行い、樹脂粒子中に含まれる未反応の総残存単量体量が10重量%になった時点でシクロヘキサン1重量部、ノルマルリッチブタン(ノルマル/イソ=70/30)9部を仕込み、100℃で10時間重合を行い、冷却後、洗浄・脱水・乾燥することにより発泡性メタクリル酸メチル系樹脂粒子を得た。
Example 1
In a 6 L autoclave, 150 parts by weight of water, 0.15 part by weight of tribasic calcium phosphate, 0.008 part by weight of sodium α-olefin sulfonate, 0.08 part by weight of lauroyl peroxide, 1,1-bis (t-butylperoxy) 0.1 part by weight of cyclohexane, 0.1 part by weight of 1,6-hexanediol diacrylate (0.09 vinyl group mol% with respect to methyl methacrylate monomer), 0.26 part by weight of n-dodecyl mercaptan After charging, 94 parts by weight of methyl methacrylate, 6 parts by weight of methyl acrylate, and 1 part by weight of toluene were charged, and polymerization was carried out at 80 ° C. for about 4 hours. When 10% by weight of cyclohexane was added, 1 part by weight of cyclohexane and 9 parts of normal rich butane (normal / iso = 70/30) were charged at 100 ° C. Performed 10 hours the polymerization was then cooled to obtain a foamable methacrylate resin particles by washing, dehydration and drying.

得られた発泡性メタクリル酸メチル系樹脂粒子を0.6〜1.0mmで分級した後、予備発泡しカサ倍率65倍の予備発泡粒子を得た。得られた予備発泡粒子を室温で1日養生させた後、ダイセンKR−57成形機を用いて300×450×150(t)mmサイズの金型にて発泡成形品を得た。
結果を表1に示す。
The obtained expandable methyl methacrylate resin particles were classified by 0.6 to 1.0 mm and then pre-expanded to obtain pre-expanded particles with a 65-fold capacity. After the obtained pre-expanded particles were cured at room temperature for 1 day, a foam-molded product was obtained with a 300 × 450 × 150 (t) mm size mold using a Daisen KR-57 molding machine.
The results are shown in Table 1.

Figure 2006241256
Figure 2006241256

(実施例2)
樹脂粒子中に含まれる未反応の総残存単量体量が8重量%になった時点でシクロヘキサンとノルマルリッチブタンを仕込んだ以外は実施例1と同様にし、発泡性メタクリル酸メチル系樹脂粒子を得た。得られた発泡性メタクリル酸メチル系樹脂粒子は、実施例1と同様に分級、予備発泡、成形して評価した。評価結果は表1に示した通りであった。
(Example 2)
In the same manner as in Example 1 except that cyclohexane and normal rich butane were charged when the total amount of unreacted residual monomers contained in the resin particles reached 8% by weight, the expandable methyl methacrylate resin particles were prepared as in Example 1. Obtained. The obtained expandable methyl methacrylate resin particles were evaluated by classification, preliminary foaming and molding in the same manner as in Example 1. The evaluation results are as shown in Table 1.

(実施例3)
樹脂粒子中に含まれる未反応の総残存単量体量が16重量%になった時点でシクロヘキサンとノルマルリッチブタンを仕込んだ以外は実施例1と同様にし、発泡性メタクリル酸メチル系樹脂粒子を得た。
(Example 3)
In the same manner as in Example 1 except that cyclohexane and normal rich butane were charged when the total amount of unreacted residual monomers contained in the resin particles reached 16% by weight, the expandable methyl methacrylate resin particles were prepared as in Example 1. Obtained.

得られた発泡性メタクリル酸メチル系樹脂粒子は、実施例1と同様に分級、予備発泡、成形して評価した。評価結果は表1に示した通りであった。   The obtained expandable methyl methacrylate resin particles were evaluated by classification, preliminary foaming and molding in the same manner as in Example 1. The evaluation results were as shown in Table 1.

(実施例4)
1,6−ヘキサンジオールジアクリレートを0.15重量部(メタクリル酸メチル系単量体に対して0.13ビニル基mol%)とした以外は実施例1と同様にし、発泡性メタクリル酸メチル系樹脂粒子を得た。
Example 4
The foamable methyl methacrylate type was the same as in Example 1 except that 0.15 parts by weight of 1,6-hexanediol diacrylate (0.13 vinyl group mol% with respect to the methyl methacrylate type monomer) was used. Resin particles were obtained.

得られた発泡性メタクリル酸メチル系樹脂粒子は、実施例1と同様に分級、予備発泡、成形して評価した。評価結果は表1に示した通りであった。   The obtained expandable methyl methacrylate resin particles were evaluated by classification, preliminary foaming and molding in the same manner as in Example 1. The evaluation results were as shown in Table 1.

(比較例1)
樹脂粒子中に含まれる未反応の総残存単量体量が1重量%以下になった時点でシクロヘキサンとノルマルリッチブタンを仕込んだ以外は実施例1と同様にし、発泡性メタクリル酸メチル系樹脂粒子を得た。
(Comparative Example 1)
Expandable methyl methacrylate resin particles in the same manner as in Example 1 except that cyclohexane and normal rich butane were charged when the amount of unreacted total residual monomer contained in the resin particles became 1% by weight or less. Got.

得られた発泡性メタクリル酸メチル系樹脂粒子は、実施例1と同様に分級、予備発泡、成形して評価した。評価結果は表1に示した通りであった。   The obtained expandable methyl methacrylate resin particles were evaluated by classification, preliminary foaming and molding in the same manner as in Example 1. The evaluation results were as shown in Table 1.

(比較例2)
樹脂粒子中に含まれる未反応の総残存単量体量が3重量%になった時点でシクロヘキサンとノルマルリッチブタンを仕込んだ以外は実施例1と同様にし、発泡性メタクリル酸メチル系樹脂粒子を得た。
(Comparative Example 2)
In the same manner as in Example 1 except that cyclohexane and normal rich butane were charged when the total amount of unreacted residual monomers contained in the resin particles reached 3% by weight, expandable methyl methacrylate resin particles were Obtained.

得られた発泡性メタクリル酸メチル系樹脂粒子は、実施例1と同様に分級、予備発泡、成形して評価した。評価結果は表1に示した通りであった。   The obtained expandable methyl methacrylate resin particles were evaluated by classification, preliminary foaming and molding in the same manner as in Example 1. The evaluation results were as shown in Table 1.

(比較例3)
樹脂粒子中に含まれる未反応の総残存単量体量が50重量%になった時点でシクロヘキサンとノルマルリッチブタンを仕込んだ以外は実施例1と同様にした。
(Comparative Example 3)
The same procedure as in Example 1 was conducted except that cyclohexane and normal rich butane were charged when the total amount of unreacted residual monomers contained in the resin particles reached 50% by weight.

シクロヘキサンとノルマルリッチブタンを仕込んだ後、懸濁状態は不安定になり、反応を完結させることができず、評価を行う為の発泡性メタクリル酸メチル系樹脂粒子を得ることができなかった。   After charging cyclohexane and normal rich butane, the suspended state became unstable, the reaction could not be completed, and expandable methyl methacrylate resin particles for evaluation could not be obtained.

Claims (5)

発泡性メタクリル酸メチル系樹脂粒子を発泡成形してなる成形体の切断気泡の平均弦長が70μm以上200μm以下であることを特徴とする発泡性メタクリル酸メチル系樹脂粒子。   An expandable methyl methacrylate resin particle, wherein an average chord length of a cut cell of a molded product obtained by foaming an expandable methyl methacrylate resin particle is 70 µm or more and 200 µm or less. メタクリル酸メチル系単量体と、メタクリル酸メチル系単量体に対して0.02ビニル基mol%以上0.20ビニル基mol%以下の多官能性単量体とからなる単量体成分を重合して得られる、重量平均分子量が25万以上50万以下であるメタクリル酸メチル系樹脂粒子に発泡剤を含浸してなる請求項1記載の発泡性メタクリル酸メチル系樹脂粒子。   A monomer component composed of a methyl methacrylate monomer and a polyfunctional monomer having a molar ratio of 0.02 vinyl group to 0.20 vinyl group with respect to the methyl methacrylate monomer. 2. The expandable methyl methacrylate resin particles according to claim 1, which are obtained by impregnating a methyl methacrylate resin particle having a weight average molecular weight of 250,000 or more and 500,000 or less obtained by polymerization with a foaming agent. 請求項1または2に記載の発泡性メタクリル酸メチル系樹脂粒子を発泡成形して得られる発泡成形体。   A foam-molded product obtained by foam-molding the foamable methyl methacrylate resin particles according to claim 1 or 2. メタクリル酸メチル系単量体を重合し、総残存単量体量が5重量%以上20重量%以下になった時点で発泡剤を添加することを特徴とする発泡性メタクリル酸メチル系樹脂粒子の製造方法。   A foaming methyl methacrylate resin particle comprising: polymerizing a methyl methacrylate monomer, and adding a foaming agent when the total residual monomer amount is 5% by weight or more and 20% by weight or less. Production method. メタクリル酸メチル系単量体とメタクリル酸メチル系単量体に対して0.02ビニル基mol%以上0.20ビニル基mol以下の多官能性単量体とからなる単量体成分を重合し、総残存単量体量が5重量%以上20重量%以下になった時点で発泡剤を添加することを特徴とする発泡性メタクリル酸メチル系樹脂粒子の請求項4記載の製造方法。   A monomer component composed of 0.02 vinyl group mol% to 0.20 vinyl group mol polyfunctional monomer is polymerized with respect to methyl methacrylate monomer and methyl methacrylate monomer. The foaming methyl methacrylate resin particles according to claim 4, wherein a foaming agent is added when the total residual monomer amount is 5 wt% or more and 20 wt% or less.
JP2005056729A 2005-03-02 2005-03-02 Expandable methyl methacrylate resin particles and foam using the same Active JP4835007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056729A JP4835007B2 (en) 2005-03-02 2005-03-02 Expandable methyl methacrylate resin particles and foam using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056729A JP4835007B2 (en) 2005-03-02 2005-03-02 Expandable methyl methacrylate resin particles and foam using the same

Publications (2)

Publication Number Publication Date
JP2006241256A true JP2006241256A (en) 2006-09-14
JP4835007B2 JP4835007B2 (en) 2011-12-14

Family

ID=37047983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056729A Active JP4835007B2 (en) 2005-03-02 2005-03-02 Expandable methyl methacrylate resin particles and foam using the same

Country Status (1)

Country Link
JP (1) JP4835007B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314774A (en) * 2006-04-26 2007-12-06 Jsp Corp Acrylic resin expanded particle, manufacturing method of expandable acrylic resin particle and molded article of expanded acrylic resin particle
WO2016047490A1 (en) * 2014-09-22 2016-03-31 株式会社カネカ Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and evaporative pattern
JP2018135408A (en) * 2017-02-20 2018-08-30 株式会社カネカ Method for producing expandable methyl methacrylate resin particles
JP2018135407A (en) * 2017-02-20 2018-08-30 株式会社カネカ Methyl methacrylate foamed particles
WO2020203537A1 (en) 2019-03-29 2020-10-08 株式会社カネカ Expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate expansion-molded body, and method for producing expandable methyl methacrylate resin particles
WO2022004692A1 (en) * 2020-06-30 2022-01-06 株式会社カネカ Expandable particles of methyl-methacrylate-based resin, expanded particles of methyl-methacrylate-based resin, molded foam of methyl-methacrylate-based resin, and evaporative pattern
CN115380064A (en) * 2020-03-30 2022-11-22 株式会社钟化 Expandable methyl methacrylate resin particles, methyl methacrylate expanded molded article, and lost foam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284853A (en) * 1985-10-09 1987-04-18 Japan Styrene Paper Co Ltd Material for casting pattern
JPH07238205A (en) * 1994-02-28 1995-09-12 Dainippon Ink & Chem Inc Foamable vinyl-based resin particulate matter for sublimation pattern and its production
JP2001233986A (en) * 2000-02-25 2001-08-28 Kanegafuchi Chem Ind Co Ltd Foamable methyl methacrylate based resin particle, its manufacturing method, and foam using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6284853A (en) * 1985-10-09 1987-04-18 Japan Styrene Paper Co Ltd Material for casting pattern
JPH07238205A (en) * 1994-02-28 1995-09-12 Dainippon Ink & Chem Inc Foamable vinyl-based resin particulate matter for sublimation pattern and its production
JP2001233986A (en) * 2000-02-25 2001-08-28 Kanegafuchi Chem Ind Co Ltd Foamable methyl methacrylate based resin particle, its manufacturing method, and foam using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314774A (en) * 2006-04-26 2007-12-06 Jsp Corp Acrylic resin expanded particle, manufacturing method of expandable acrylic resin particle and molded article of expanded acrylic resin particle
US10786848B2 (en) 2014-09-22 2020-09-29 Kaneka Corporation Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and lost foam
JPWO2016047490A1 (en) * 2014-09-22 2017-06-29 株式会社カネカ Expandable methyl methacrylate resin particles, pre-expanded particles, foamed molded product, and disappearance model
US20170291216A1 (en) * 2014-09-22 2017-10-12 Kaneka Corporation Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and evaporative pattern
WO2016047490A1 (en) * 2014-09-22 2016-03-31 株式会社カネカ Expandable methyl methacrylate resin particles, pre-expanded particles, expansion molded article, and evaporative pattern
JP2018135408A (en) * 2017-02-20 2018-08-30 株式会社カネカ Method for producing expandable methyl methacrylate resin particles
JP2018135407A (en) * 2017-02-20 2018-08-30 株式会社カネカ Methyl methacrylate foamed particles
WO2020203537A1 (en) 2019-03-29 2020-10-08 株式会社カネカ Expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate expansion-molded body, and method for producing expandable methyl methacrylate resin particles
JPWO2020203537A1 (en) * 2019-03-29 2020-10-08
CN113646345A (en) * 2019-03-29 2021-11-12 株式会社钟化 Expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate foamed molded article, and method for producing expandable methyl methacrylate resin particles
CN113646345B (en) * 2019-03-29 2023-03-31 株式会社钟化 Expandable methyl methacrylate resin particles, process for producing the same, pre-expanded particles thereof, and molded foam
JP7526165B2 (en) 2019-03-29 2024-07-31 株式会社カネカ Expandable methyl methacrylate resin particles, pre-expanded methyl methacrylate resin particles, methyl methacrylate foamed molded product, and method for producing expandable methyl methacrylate resin particles
CN115380064A (en) * 2020-03-30 2022-11-22 株式会社钟化 Expandable methyl methacrylate resin particles, methyl methacrylate expanded molded article, and lost foam
WO2022004692A1 (en) * 2020-06-30 2022-01-06 株式会社カネカ Expandable particles of methyl-methacrylate-based resin, expanded particles of methyl-methacrylate-based resin, molded foam of methyl-methacrylate-based resin, and evaporative pattern

Also Published As

Publication number Publication date
JP4835007B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835007B2 (en) Expandable methyl methacrylate resin particles and foam using the same
JP6670245B2 (en) Expandable methyl methacrylate resin particles, pre-expanded particles, expanded molded article, and disappearance model
JP7019410B2 (en) Effervescent methyl methacrylate resin particles
JP7526165B2 (en) Expandable methyl methacrylate resin particles, pre-expanded methyl methacrylate resin particles, methyl methacrylate foamed molded product, and method for producing expandable methyl methacrylate resin particles
WO2023054017A1 (en) Expandable methyl methacrylate resin particles
JP2018135408A (en) Method for producing expandable methyl methacrylate resin particles
JP2023021144A (en) Foaming polystyrene-based resin particle and utilization thereof
JP6514928B2 (en) Expandable polystyrene-based resin particles, polystyrene-based pre-expanded particles and expanded molded articles
US20230022682A1 (en) Expandable methyl-methacrylate-based resin particles, methyl-methacrylate-based expanded particles, methyl-methacrylate-based molded foam, and evaporative pattern
JP2018135407A (en) Methyl methacrylate foamed particles
JP2008260928A (en) Method for producing styrene modified polyethylene based resin pre-expansion particle
JP3987261B2 (en) Expandable methyl methacrylate resin particles and foam using the same
JP4066337B2 (en) Expandable styrene resin particles for building materials and foamed molded articles thereof
WO2023189759A1 (en) Expandable particles of methyl-methacrylate-based resin, expanded particles of methyl-methacrylate-based resin, molded foam of methyl-methacrylate-based resin, and evaporative pattern
WO2019026972A1 (en) Expandable polystyrene resin particles, polystyrene pre-expanded particles, and foam molded body
JP5422970B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin
JP2001220458A (en) Foamable styrenic resin particle
JP2010222490A (en) Foamable styrenic resin particle
JP2003205925A (en) Foamed polystyrene resin container
JP2001302733A (en) Methyl methacrylate resin particle, its manufacturing method, expandable methyl methacrylate resin particle using the same and foam
JP6679390B2 (en) Expandable styrene resin particles
JP7106302B2 (en) Expandable styrene resin particles, pre-expanded particles, and method for producing expanded molded product
JP4424637B2 (en) Expandable resin particles and foamed molded products
WO2024116722A1 (en) Expandable methyl-methacrylate-based resin particles
JP2010222489A (en) Foamable styrenic resin particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250