JP2018121399A - 電池遮断回路 - Google Patents

電池遮断回路 Download PDF

Info

Publication number
JP2018121399A
JP2018121399A JP2017009665A JP2017009665A JP2018121399A JP 2018121399 A JP2018121399 A JP 2018121399A JP 2017009665 A JP2017009665 A JP 2017009665A JP 2017009665 A JP2017009665 A JP 2017009665A JP 2018121399 A JP2018121399 A JP 2018121399A
Authority
JP
Japan
Prior art keywords
circuit
fet
switch
switch element
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017009665A
Other languages
English (en)
Other versions
JP6804314B2 (ja
Inventor
佐々木 宏
Hiroshi Sasaki
宏 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017009665A priority Critical patent/JP6804314B2/ja
Publication of JP2018121399A publication Critical patent/JP2018121399A/ja
Application granted granted Critical
Publication of JP6804314B2 publication Critical patent/JP6804314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】蓄電池を電源回路又は負荷から開放する際の過電圧の印加を防止する電池遮断回路を提供する。【解決手段】系統1Aからの交流を直流に変換する交流直流電源1と、第1の電路8aによって、交流直流電源に電気的に接続されて直流を変換する直流直流電源4と、インダクタンス成分を有する第2の電路8bによって、第1の電路に電気的に接続されて充放電を行う蓄電池2とを含む充放電システム200に設けられた電池遮断回路100は、第2の電路を蓄電池の充電時に電気的に開閉する第1のFET6と、第2の電路を蓄電池の放電時に電気的に開閉する第2のFET7と、第1のFET及び第2のFETの開閉を制御するスイッチ素子制御回路10と、第1の電路から蓄電池を開放する指令を出力する電路開放指令回路9とを備える。スイッチ素子制御回路は、第1のFET及び第2のFETの駆動電圧の時間変化率を制御可能である。【選択図】図1

Description

本発明は、充放電システムに含まれる電池遮断回路に関する。
EV(Electric Vehicle)パワーコンディショナの用途の一つに、EVの内蔵蓄電池に蓄えられた電力を100V又は200Vの交流に変換して、系統の停電時に動作する非常用電源を例示することができる。EVの内蔵蓄電池から100V又は200Vの交流への変換が一旦実行されると、EVパワーコンディショナは、自装置で生成した交流電圧により交流直流電源を駆動し、その後段の直流直流電源を介して負荷となる制御回路に直流電力を供給する。EVの内蔵蓄電池から100V又は200Vの交流への変換回路及び制御回路を最初に起動する段階では、EVの内蔵蓄電池以外に補助用蓄電池を要する。この補助用蓄電池は、系統の非停電時には交流直流電源により充電され、系統の停電時には交流直流電源に代わって放電して電力の供給を行う。このため、補助用蓄電池は、非停電時には電源回路又は負荷に接続されているが、補助用蓄電池を過放電、過電圧、過電流及び高温から保護する際には補助用蓄電池を電源回路及び負荷から開放して、復帰時に再接続する構成とする。なお、ここで、電源回路は、交流直流電源及び直流直流電源である。
従来技術の一例である特許文献1には、負荷とこの負荷への電力供給用の電源スイッチとの間に、スイッチング素子とこのスイッチング素子の制御を行う制御手段とを備えたスイッチング回路を配し、この制御手段が、電源スイッチによる電源投入後定常状態に至るまでの間、スイッチング素子をチョッパ制御する技術が開示されている。
特開2015−136231号公報
しかしながら、上記の従来技術によれば、蓄電池を電源回路又は負荷から開放する際にインダクタンス成分に起因する過電圧を抑制することは困難である。そのため、蓄電池を電源回路又は負荷から開放する際に充放電システム内の構成に過電圧が印加されることがある。
本発明は、上記に鑑みてなされたものであって、蓄電池を電源回路又は負荷から開放する際の過電圧の印加を防止する電池遮断回路を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、系統からの交流を直流に変換する交流直流電源と、第1の電路によって、前記交流直流電源に電気的に接続されて前記直流を変換する直流直流電源と、インダクタンス成分を有する第2の電路によって、前記第1の電路に電気的に接続されて充放電を行う蓄電池とを含む充放電システムに設けられた電池遮断回路であって、前記第2の電路を前記蓄電池の充電時に電気的に開閉する第1のスイッチ素子と、前記第2の電路を前記蓄電池の放電時に電気的に開閉する第2のスイッチ素子と、前記第1のスイッチ素子及び前記第2のスイッチ素子の開閉を制御するスイッチ素子制御回路と、前記第1の電路から前記蓄電池を開放する指令を出力する電路開放指令回路とを備え、前記スイッチ素子制御回路は、前記第1のスイッチ素子及び前記第2のスイッチ素子の駆動電圧の時間変化率を制御可能であることを特徴とする。
本発明によれば、蓄電池を電源回路又は負荷から開放する際の過電圧の印加を防止する電池遮断回路を得ることができるという効果を奏する。
実施の形態1に係る電池遮断回路を含む充放電システムの一構成例を示す図 実施の形態1における電路開放指令回路及びスイッチ素子制御回路の一構成例を示す回路図 実施の形態1において、電圧V1,V2の時間変化を示す図 実施の形態2における電路開放指令回路及びスイッチ素子制御回路の一構成例を示す回路図
以下に、本発明の実施の形態に係る電池遮断回路を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明の実施の形態1に係る電池遮断回路を含む充放電システムの一構成例を示す図である。図1に示す充放電システム200は、交流直流電源1と、直流直流電源4と、蓄電池2と、電池遮断回路100とを含む。
交流直流電源1は、外部の交流電源である系統1Aからの交流を直流に変換して出力する。なお、図1では、系統1Aに単相交流電源を例示しているが、これに限定されるものではなく、系統1Aは三相交流電源であってもよい。
直流直流電源4は、第1の電路8aによって、交流直流電源1に電気的に接続されて交流直流電源1からの直流電圧を大きさの異なる直流電圧に変換して負荷3に出力する。負荷3は、直流直流電源4が出力する直流電圧によって動作する。
蓄電池2は、インダクタンス成分を有する第2の電路8bによって、第1の電路8aに電気的に接続されており、充放電を行う。
なお、交流直流電源1の出力に配されているダイオード5は、交流直流電源1の出力に順方向で配されており、電流の逆流を防止する。
電池遮断回路100は、第1のスイッチ素子である第1のFET(Field Effect Transistor)6と、第2のスイッチ素子である第2のFET7と、スイッチ素子制御回路10と、電路開放指令回路9とを備える。第1のFET6は、第2の電路8bを蓄電池2の充電時に電気的に開閉する。第2のFET7は、第2の電路8bを蓄電池2の放電時に電気的に開閉する。スイッチ素子制御回路10は、第1のFET6及び第2のFET7の開閉を制御する。電路開放指令回路9は、第1の電路8aから蓄電池2を開放する指令を出力する。
また、スイッチ素子制御回路10によれば、第1のFET6及び第2のFET7の駆動電圧の時間変化率を制御可能である。なお、第1のFET6及び第2のFET7において、ゲートにはGと表記し、ソースにはSと表記し、ドレインにはDと表記している。
第1の電路8aは、交流直流電源1と直流直流電源4とを電気的に接続する電路である。第2の電路8bは、インダクタ8を有し、第1の電路8aと蓄電池2とを電気的に接続する電路である。なお、インダクタ8は、実際にこの位置に配されたインダクタではなく、第2の電路8bのインダクタンス成分を集約して模式的に表したものである。
図1に示す電池遮断回路100では、通常時、すなわち非停電時には、交流直流電源1が出力する直流電圧は、ダイオード5及びインダクタ8を経て蓄電池2に出力され、蓄電池2は直流電圧Vbで充電される。また、直流直流電源4には、ダイオード5を経て直流電圧である電圧V2が出力される。直流直流電源4は、直流電圧である電圧V2を変換して負荷3に出力する。
スイッチ素子制御回路10は、電路開放指令回路9が電路開放指令を出力していない状態では、互いのドレインを接続して直列接続とした第1のFET6及び第2のFET7に対する電圧V1として第1のFET6及び第2のFET7をオンする電圧を発生させる。これにより第1のFET6及び第2のFET7はオンし、蓄電池2と交流直流電源1及び直流直流電源4とが接続される。
スイッチ素子制御回路10は、電路開放指令回路9が電路開放指令を出力している状態では、第1のFET6及び第2のFET7に対する電圧V1として第1のFET6及び第2のFET7をオフする電圧を発生させる。これにより第1のFET6及び第2のFET7はオフし、蓄電池2と交流直流電源1及び直流直流電源4との接続が開放される。なお、蓄電池2と直流直流電源4との接続の開放時には、インダクタ8は、電圧V2を減少させるよう誘導電圧を発生する。
次に、停電時について説明する。停電時には系統1Aから交流電力が供給されないため、交流直流電源1は動作を停止し、蓄電池2は、インダクタ8を介して、直流直流電源4と電路開放指令回路9とスイッチ素子制御回路10とに直流電力を供給する。
また、停電時においても、電路開放指令回路9が電路開放指令を出力していない状態では、スイッチ素子制御回路10は、第1のFET6及び第2のFET7に対する電圧V1として第1のFET6及び第2のFET7をオンする電圧を発生させる。これにより第1のFET6及び第2のFET7はオンし、蓄電池2と直流直流電源4とが接続される。
また、停電時においても、電路開放指令回路9が電路開放指令を出力している状態では、スイッチ素子制御回路10は、第1のFET6及び第2のFET7に対する電圧V1として第1のFET6及び第2のFET7をオフする電圧を発生させ、第1のFET6及び第2のFET7はオフし、蓄電池2と直流直流電源4との接続が開放される。なお、停電時には、蓄電池2と直流直流電源4との接続の開放時には、インダクタ8は、電圧V2を増加させるように誘導電圧を発生する。
図2は、本実施の形態1における電路開放指令回路9及びスイッチ素子制御回路10の一構成例を示す回路図である。図2に示す電路開放指令回路9は、蓄電池2の接続開放を入力するスイッチ18と、スイッチ18がベースとエミッタとの間に接続されたトランジスタ12と、トランジスタ12のベースと電圧V2の配線との間に接続された抵抗19とを備える。なお、ここではトランジスタ12にはNPN型トランジスタを例示しており、トランジスタ12のコレクタは電圧V2の配線に接続されている。なお、トランジスタ12において、ベースにはBと表記し、エミッタにはEと表記し、コレクタにはCと表記している。
図2に示すスイッチ素子制御回路10は、一端が接地された抵抗15が直列接続されたスイッチ14と、一端が接地された抵抗17が直列接続されたスイッチ16と、一端が接地されたコンデンサ11とが並列接続され、抵抗15、抵抗17及びコンデンサ11の他端は、抵抗13の一端に接続されている。なお、抵抗13の他端は、電路開放指令回路9の出力であるトランジスタ12のエミッタに接続されている。なお、抵抗15の抵抗値よりも抵抗17の抵抗値の方が小さい。
ところで、スイッチ18は、交流直流電源1、直流直流電源4又は負荷3の動作検査を行うときに、作業者がオンすることで蓄電池2を開放する。この動作検査は、製品製造時、製品出荷時又は保守作業時に行われる。なお、ここで、製品は、充放電システム200と負荷3とを含む。
また、スイッチ18は、製品の使用時に蓄電池2の異常を検知すると、蓄電池2の保護又は製品の保護のためにオンされる。なお、異常の検知時には、高温状態の検出時、過電流の検出時及び過電圧の検出時を例示することができる。スイッチ18は、製品の非運転時には、蓄電池2の消費電力を抑制するために、製品の制御回路によってオンされることが好ましい。
ここで、スイッチ18のオフ時の動作について説明する。スイッチ18をオフして開放すると、抵抗19で電圧V2から降下した電圧によりトランジスタ12がオンし、コンデンサ11は、抵抗13及びトランジスタ12で電圧V2から降下した電圧で充電されてコンデンサ11には電圧V1の電荷が蓄積される。そして、電圧V1は第1のFET6及び第2のFET7のゲート電圧となり、電圧V1が第1のFET6及び第2のFET7のゲートソース間遮断電圧Vth以上になると、第1のFET6及び第2のFET7はオンする。スイッチ18をオンして短絡させると、トランジスタ12のベースエミッタ間電圧がゼロになり、トランジスタ12がオフする。
このとき、スイッチ14をオンし、スイッチ16をオフした状態では、コンデンサ11の電圧である電圧V1は、抵抗15によって徐々に低下していき、コンデンサ11の電圧である電圧V1が、第1のFET6及び第2のFET7のゲートソース間遮断電圧Vth以下になると、第1のFET6及び第2のFET7はオフする。
また、このとき、スイッチ14をオフし、スイッチ16をオンした状態では、コンデンサ11の電圧である電圧V1は、抵抗17によって徐々に低下していき、コンデンサ11の電圧である電圧V1が、第1のFET6及び第2のFET7のゲートソース間遮断電圧Vth以下になると、第1のFET6及び第2のFET7はオフする。
図3は、本実施の形態1において、電圧V1,V2の時間変化を示す図である。図3の左側にはスイッチ16のオン時の電圧変化を示し、図3の右側にはスイッチ14のオン時の電圧変化を示している。図3の上図には電圧V2の時間変化を示し、図3の下図には電圧V1の時間変化を示している。なお、スイッチ16のオン時にはスイッチ14はオフしており、スイッチ14のオン時にはスイッチ16はオフしている。
上記したように、抵抗15の抵抗値よりも抵抗17の抵抗値の方が小さいため、電圧V1の時間変化は、図3に示すように、抵抗15に導通するスイッチ14のオン時の方が抵抗17に導通するスイッチ16のオン時よりも電圧V1の時間変化率が小さく、直流直流電源4に出力される電圧V2への誘導電圧を小さくすることができる。
蓄電池2を電源回路又は負荷3に接続する場合には、蓄電池2から電源回路又は負荷3への突入電流により過電流が流れることがある。また、蓄電池2を電源回路又は負荷から開放する際には過電圧が生じることがある。蓄電池2を電源回路から開放する際に、経路内にインダクタンス成分が存在すると、蓄電池2の開放時に、このインダクタンス成分によって誘導電圧が発生し、この誘導電圧によって、蓄電池2の電圧よりも高い電圧が過渡的に発生する。一般に、蓄電池2と交流直流電源1及び直流直流電源4との間の経路は、短い導線によって配線されるため、インダクタンス成分は無視しても差し支えない程度の極めて小さな値となる。
しかしながら、蓄電池2を、交流直流電源1及び直流直流電源4から距離のある位置に設置する場合には、配線によるインダクタンス成分を無視することができない。また、交流直流電源1及び直流直流電源4の動作検査を行う場合には、蓄電池2の代わりに直流電源を用いて、この直流電源から交流直流電源1及び直流直流電源4までの経路に検査用のセンサ類が挿入されるため、インダクタンス成分が大きい。これらのインダクタンス成分が存在する状態で、蓄電池2を交流直流電源1及び直流直流電源4から開放した場合には、発生する誘導電圧により充放電システム200内の部品に過電圧が印加されて破壊されることもある。
本実施の形態1では、非停電時には交流直流電源1が蓄電池2及び直流直流電源4に直流電圧を出力することで蓄電池2が充電され、停電時には蓄電池2が放電することで直流直流電源4に直流電圧を出力するので、第2の電路8bに電流が流れる。そして、電路開放指令回路9が蓄電池2の開放を行うためにスイッチ素子制御回路10に対してトランジスタ12をオフすることにより第1のFET6及び第2のFET7をオフする指令を出力すると、スイッチ素子制御回路10は、コンデンサ11に蓄積された、第1のFET6及び第2のFET7を駆動する電圧V1の電荷を、抵抗15又は抵抗17によって放電し、第1のFET6及び第2のFET7をオフする。第2の電路8b、すなわちインダクタ8に発生する誘導電圧は、開放時の電流の時間変化の傾きが急であるほど大きい。しかしながら、抵抗17の抵抗値が抵抗15の抵抗値よりも大きいため、スイッチ16のオン時にはスイッチ14のオン時よりも電圧V1の下降時間が長くなり、第1のFET6及び第2のFET7のドレイン電流の下降時間も長くなり、インダクタ8に発生する電流変化が緩やかになる。そのため、インダクタ8に発生する誘導電圧を、より小さくすることができる。
電圧V1の下降時間が長いほど電流変化が緩やかであり、電圧V2の誘導電圧は低くなる。しかしながら、電圧V1の下降時間が長いほど、第1のFET6及び第2のFET7で発生するスイッチングロスが増大するため、使用するFET及び使用環境によって、電圧の下降時間の長さには制約が存在する。インダクタ8に発生する誘導電圧が周辺の部品の耐電圧を超えない範囲で大きくなるように電圧V1の下降時間を設定することにより、第1のFET6及び第2のFET7の熱損失を抑制し、第1のFET6及び第2のFET7の小型化が可能となる。又は、第1のFET6及び第2のFET7の冷却手段を簡素化することができ、製造コストを低減することができる。
また、回路検査時をはじめとする、通常動作時には発生し得ないインダクタンス成分が発生する場合について説明する。このような場合には、通常の製品使用時にはスイッチ14をオンして密閉状態又は高温状態でも第1のFET6及び第2のFET7が耐え得るように電圧V1の下降時間を短く設定し、回路検査時には、常温又は強制冷却により第1のFET6及び第2のFET7に許容される範囲で熱損失を増加させて、スイッチ16をオンに切り替えるように電圧V1の下降時間を設定すると、増大したインダクタンス成分で発生する誘導電圧である電圧V2を、回路部品の耐電圧以下に抑えることができる。
実施の形態2.
本発明は、実施の形態1に示した形態に限定されるものではない。本実施の形態2では、実施の形態1におけるスイッチ素子制御回路10内の抵抗15及び抵抗17をコンデンサに置き換え、コンデンサ11を抵抗に置き換えた形態について説明する。なお、本実施の形態2に係る電池遮断回路は、図1におけるスイッチ素子制御回路10をスイッチ素子制御回路10aに置き換えた点のみが異なり、その他の構成は図1に示す電池遮断回路100と同じである。
図4は、本実施の形態2における電路開放指令回路9及びスイッチ素子制御回路10aの一構成例を示す回路図である。図4において、スイッチ14をオンし、スイッチ16をオフした場合には、スイッチ18をオフして開放させると、抵抗19で電圧降下した電圧V2によりトランジスタ12がオンし、コンデンサ21は、抵抗13及びトランジスタ12で電圧降下した電圧V2で充電されてコンデンサ21には電圧V1の電荷が蓄積される。電圧V1が、第1のFET6及び第2のFET7のゲートソース間遮断電圧Vth以上になると、第1のFET6及び第2のFET7はオンする。そして、スイッチ18をオンして短絡させると、トランジスタ12のベースエミッタ間電圧がゼロになり、トランジスタ12がオフする。コンデンサ21に蓄えられた電圧V1の電荷は、抵抗20により放電される。なお、コンデンサ22の静電容量よりもコンデンサ21の静電容量の方が小さい。
スイッチ14をオフし、スイッチ16をオンした場合には、スイッチ18をオフして開放状態にすると、抵抗19で電圧V2から降下した電圧によりトランジスタ12がオンし、コンデンサ22は抵抗13及びトランジスタ12で電圧降下した電圧V2で充電される。電圧V1が、第1のFET6及び第2のFET7のゲートソース間遮断電圧Vth以上になると、第1のFET6及び第2のFET7はオンする。そして、スイッチ18をオンして短絡させると、トランジスタ12のベースエミッタ間電圧がゼロになり、トランジスタ12がオフする。コンデンサ22に蓄えられた電圧V1の電荷は、抵抗20により放電される。
第2の電路8bが長い場合には、インダクタ8のインダクタンス値が大きな値となってしまうので、スイッチ16をオフにし、スイッチ14をオンにすることでコンデンサ21の放電電流を小さくし、電圧V1の下降時間を長くすることにより、蓄電池2の遮断時にインダクタ8に発生する誘導電圧を、スイッチ16をオンした場合よりも低く抑えることができる。第2の電路8bが短い場合には、インダクタ8のインダクタンス値が小さな値に抑えられるので、スイッチ16をオンにし、スイッチ14をオフにすることで、電圧V1の下降時間を短くすることができる。
なお、部品の許容値以下に抑えることができるのであれば、スイッチ14及びスイッチ16によるコンデンサ11の放電時間は固定値に設定してもよい。
本実施の形態2にて説明した構成によっても実施の形態1にて説明した電池遮断回路と同様の効果を奏することが可能である。
以上、実施の形態1,2に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 交流直流電源、1A 系統、2 蓄電池、3 負荷、4 直流直流電源、5 ダイオード、6 第1のFET、7 第2のFET、8 インダクタ、8a 第1の電路、8b 第2の電路、9 電路開放指令回路、10,10a スイッチ素子制御回路、11,21,22 コンデンサ、12 トランジスタ、13,15,17,19,20 抵抗、14,16,18 スイッチ、100 電池遮断回路、200 充放電システム。

Claims (3)

  1. 系統からの交流を直流に変換する交流直流電源と、第1の電路によって、前記交流直流電源に電気的に接続されて前記直流を変換する直流直流電源と、インダクタンス成分を有する第2の電路によって、前記第1の電路に電気的に接続されて充放電を行う蓄電池とを含む充放電システムに設けられた電池遮断回路であって、
    前記第2の電路を前記蓄電池の充電時に電気的に開閉する第1のスイッチ素子と、
    前記第2の電路を前記蓄電池の放電時に電気的に開閉する第2のスイッチ素子と、
    前記第1のスイッチ素子及び前記第2のスイッチ素子の開閉を制御するスイッチ素子制御回路と、
    前記第1の電路から前記蓄電池を開放する指令を出力する電路開放指令回路とを備え、
    前記スイッチ素子制御回路は、前記第1のスイッチ素子及び前記第2のスイッチ素子の駆動電圧の時間変化率を制御可能であることを特徴とする電池遮断回路。
  2. 前記スイッチ素子制御回路は、
    前記第1のスイッチ素子及び前記第2のスイッチ素子への駆動電圧を蓄えるコンデンサと、
    前記スイッチ素子制御回路に駆動電圧を出力するトランジスタと前記コンデンサとの間に配置された第1の抵抗と、
    前記コンデンサと並列に配置され第1のスイッチと直列接続された第2の抵抗と、
    前記コンデンサと並列に配置され第2のスイッチと直列接続された第3の抵抗とを備える請求項1に記載の電池遮断回路。
  3. 前記スイッチ素子制御回路は、
    前記第1のスイッチ素子及び前記第2のスイッチ素子への駆動電圧を蓄える第1のコンデンサと、
    前記第1のコンデンサと直列接続された第1のスイッチと、
    前記第1のコンデンサ及び前記第1のスイッチと並列に配置された第2のコンデンサと、
    前記第2のコンデンサと直列接続された第2のスイッチと、
    前記第1のコンデンサ又は前記第2のコンデンサと並列に配置され前記第1のコンデンサ又は前記第2のコンデンサの電荷を放電する第1の抵抗と、
    前記スイッチ素子制御回路に駆動電圧を出力するトランジスタと前記第1のスイッチ及び前記第2のスイッチとの間に配置された第2の抵抗とを備える請求項1に記載の電池遮断回路。
JP2017009665A 2017-01-23 2017-01-23 電池遮断回路 Active JP6804314B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017009665A JP6804314B2 (ja) 2017-01-23 2017-01-23 電池遮断回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017009665A JP6804314B2 (ja) 2017-01-23 2017-01-23 電池遮断回路

Publications (2)

Publication Number Publication Date
JP2018121399A true JP2018121399A (ja) 2018-08-02
JP6804314B2 JP6804314B2 (ja) 2020-12-23

Family

ID=63044051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017009665A Active JP6804314B2 (ja) 2017-01-23 2017-01-23 電池遮断回路

Country Status (1)

Country Link
JP (1) JP6804314B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215896A1 (ko) * 2021-04-09 2022-10-13 삼성전자주식회사 배터리 보호 회로를 포함하는 전자 장치 및 배터리 보호 회로의 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308114A (ja) * 1996-05-14 1997-11-28 Sanyo Electric Co Ltd 電池の充放電制御装置
JPH1023743A (ja) * 1996-07-05 1998-01-23 Mitsubishi Electric Corp 半導体素子の駆動回路
WO2012060009A1 (ja) * 2010-11-05 2012-05-10 トヨタ自動車株式会社 車両の電源システムおよびそれを備える車両
JP2013038908A (ja) * 2011-08-08 2013-02-21 Denso Corp 電源逆接保護装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09308114A (ja) * 1996-05-14 1997-11-28 Sanyo Electric Co Ltd 電池の充放電制御装置
JPH1023743A (ja) * 1996-07-05 1998-01-23 Mitsubishi Electric Corp 半導体素子の駆動回路
WO2012060009A1 (ja) * 2010-11-05 2012-05-10 トヨタ自動車株式会社 車両の電源システムおよびそれを備える車両
JP2013038908A (ja) * 2011-08-08 2013-02-21 Denso Corp 電源逆接保護装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215896A1 (ko) * 2021-04-09 2022-10-13 삼성전자주식회사 배터리 보호 회로를 포함하는 전자 장치 및 배터리 보호 회로의 동작 방법

Also Published As

Publication number Publication date
JP6804314B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
US9318969B2 (en) Frequency converter with DC link capacitor and method for pre-charging the DC link capacitor
EP3221956B1 (en) Controlling a power supply voltage for a high-side gate driver
JP5590031B2 (ja) 電源保護回路およびそれを備えたモータ駆動装置
US20150280416A1 (en) Controlled switch-off of a power switch
CN107302351B (zh) 驱动装置和感性负载驱动装置
JP5206198B2 (ja) 電力変換回路の駆動回路
CN109075581B (zh) 电池断连电路和用于控制电池断连电路的方法
JP6183460B2 (ja) インバータ装置
JP5228886B2 (ja) スナバ回路
TWI467913B (zh) 交流馬達驅動裝置
US20170070158A1 (en) Converter unit system and converter unit
JP7000809B2 (ja) 降圧チョッパ回路
EP3501876A1 (en) Control unit, inverter, assembly, vehicle and method for controlling an inverter
JP6884922B2 (ja) 電力変換装置
JP6944546B2 (ja) 電力変換装置
JP2020022259A (ja) Dcリンクのコンデンサの放電回路を有するモータ駆動装置
CN105981128B (zh) 闩锁继电器驱动电路
US20050286276A1 (en) Inverter device
JP6365880B2 (ja) 電力変換装置
JP2011135665A (ja) 保護装置
JP7123284B2 (ja) 電力変換装置
JP2004135478A (ja) 昇降圧兼用dc−dcコンバータ
JP2018121399A (ja) 電池遮断回路
CN105308814A (zh) 浪涌电流抑制电路
JP2015035890A (ja) 電気車用電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201202

R150 Certificate of patent or registration of utility model

Ref document number: 6804314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150