JP2018120841A - Method for manufacturing electrode member for all-solid battery - Google Patents

Method for manufacturing electrode member for all-solid battery Download PDF

Info

Publication number
JP2018120841A
JP2018120841A JP2017139653A JP2017139653A JP2018120841A JP 2018120841 A JP2018120841 A JP 2018120841A JP 2017139653 A JP2017139653 A JP 2017139653A JP 2017139653 A JP2017139653 A JP 2017139653A JP 2018120841 A JP2018120841 A JP 2018120841A
Authority
JP
Japan
Prior art keywords
negative electrode
solid electrolyte
electrode material
positive electrode
material part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017139653A
Other languages
Japanese (ja)
Other versions
JP6748035B2 (en
Inventor
高田 和典
Kazunori Takada
和典 高田
剛 大西
Takeshi Onishi
剛 大西
鳴海 太田
Narumi Ota
鳴海 太田
南田 善隆
Yoshitaka Minamida
善隆 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Toyota Motor Corp
Original Assignee
National Institute for Materials Science
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Toyota Motor Corp filed Critical National Institute for Materials Science
Publication of JP2018120841A publication Critical patent/JP2018120841A/en
Application granted granted Critical
Publication of JP6748035B2 publication Critical patent/JP6748035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode member for an all-solid battery with a high energy density.SOLUTION: A method for manufacturing an electrode member for an all-solid battery is provided, which comprises: a preparation step of preparing a primary assembly having a positive electrode material part containing a Li-containing positive electrode active material, a negative electrode material part containing elemental Si powder as a negative electrode active material, and not containing a binding material or a solid electrolyte, and a solid electrolytic material part disposed between the positive electrode material part and the negative electrode material part; and an energizing step of causing a current to flow in a direction from the positive electrode material part toward the negative electrode material part via the solid electrolytic material part so that quantity of electricity becomes 910 mAh or more per unit gram of the elemental Si powder contained in the negative electrode material part, with a binding pressure of 100 MPa or more applied to the primary assembly in a direction in which the positive electrode material part, the solid electrolytic material part and the negative electrode material part are arrayed, thereby causing Li ions to enter the negative electrode material part.SELECTED DRAWING: Figure 1B

Description

本開示は、全固体電池用電極部材の製造方法に関する。   The present disclosure relates to a method for manufacturing an electrode member for an all-solid battery.

近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。
リチウムイオン全固体電池は、リチウムイオンの移動を伴う電池反応を利用するためエネルギー密度が高いという点、また、正極と負極の間に介在する電解質として、有機溶媒を含む電解液に替えて固体電解質を用いるという点で注目されている。
With the rapid spread of information-related equipment and communication equipment such as personal computers, video cameras, and mobile phones in recent years, development of batteries that are used as power sources has been regarded as important. Also in the automobile industry and the like, development of high-power and high-capacity batteries for electric vehicles or hybrid vehicles is being promoted.
Lithium-ion all-solid-state batteries have a high energy density because they use a battery reaction involving the movement of lithium ions, and the electrolyte interposed between the positive electrode and the negative electrode is replaced with an electrolyte containing an organic solvent as a solid electrolyte. It is attracting attention in terms of using.

Si系材料からなる活物質は、体積当たりの理論容量が大きいことから、Si系材料を負極に用いたリチウムイオン全固体電池が提案されている。
特許文献1には、固体電解質層の一方の表面にSi含有活物質の粉末と固体電解質材料の粉末を含む負極用合材を添加し、プレスすることにより前駆層を形成し、固体電解質層の反対側の表面に対極層を形成した電池部材を準備し、当該電池部材に対し、積層方向に150kgf/cm以上の拘束圧を印加した状態で、充放電処理を複数回行うことで、Si含有活物質層を製造する方法が開示されている。
Since an active material made of a Si-based material has a large theoretical capacity per volume, a lithium ion all-solid battery using the Si-based material as a negative electrode has been proposed.
In Patent Document 1, a negative electrode mixture containing a powder of an Si-containing active material and a powder of a solid electrolyte material is added to one surface of the solid electrolyte layer, and a precursor layer is formed by pressing. By preparing a battery member having a counter electrode layer formed on the surface on the opposite side and applying a constraint pressure of 150 kgf / cm 2 or more in the stacking direction to the battery member, the charge / discharge treatment is performed a plurality of times to obtain Si A method for producing a contained active material layer is disclosed.

また、特許文献2には、無機固体電解質と、式(1):Si(1−x)で表される活物質と、粒子ポリマーを含む固体電解質組成物を集電体上に塗布し、乾燥することにより、負極活物質層を形成することが記載されている。 In Patent Document 2, a solid electrolyte composition containing an inorganic solid electrolyte, an active material represented by formula (1): Si x M (1-x) , and a particle polymer is applied to a current collector. And forming a negative electrode active material layer by drying.

特開2014−035987号公報JP 2014-035987 A 特開2016−149238号公報Japanese Patent Application Laid-Open No. 2006-149238

特許文献1及び2のリチウムイオン全固体電池においては、負極中にSi系材料と共に結着材や固体電解質を含有している。
一方、全固体電池の電極中にSi系材料と共に結着材や固体電解質を共存させない場合には、Si系材料の粒子相互の接触性が不十分となり、充分な電池性能が得られにくくなる。
そのため、全固体電池の電極にSi系材料を用いる場合には、Si系材料の粒子相互の接触性を向上させるために電極内に結着材や固体電解質を含有させる必要がある。
しかし、全固体電池の電極中にSi系材料と共に結着材や固体電解質を共存させる場合には、Si系材料そのものの体積当たり理論容量は大きいにもかかわらず、電極中でのSi系材料の含有量が少なくなるため、電池全体としてのエネルギー密度が低くなるという問題がある。
本開示は、上記実情に鑑み、活物質としてSi系材料を含む負極を有し、エネルギー密度が高い全固体電池用の電極部材の製造方法を提供することを目的とする。
In the lithium ion all solid state batteries of Patent Documents 1 and 2, the negative electrode contains a binder and a solid electrolyte together with the Si-based material.
On the other hand, when the binder and the solid electrolyte are not allowed to coexist with the Si-based material in the electrode of the all-solid-state battery, the contact property between the particles of the Si-based material becomes insufficient, and it becomes difficult to obtain sufficient battery performance.
Therefore, in the case of using a Si-based material for the electrode of the all-solid-state battery, it is necessary to include a binder or a solid electrolyte in the electrode in order to improve the contact property between the particles of the Si-based material.
However, when a binder and a solid electrolyte coexist with the Si-based material in the electrode of the all-solid-state battery, the theoretical capacity per volume of the Si-based material itself is large, but the Si-based material in the electrode Since the content is reduced, there is a problem that the energy density of the entire battery is lowered.
This indication aims at providing the manufacturing method of the electrode member for all-solid-state batteries which has a negative electrode containing Si type material as an active material, and has a high energy density in view of the said situation.

本開示は、正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池用の電極部材の製造方法であって、
Liを含有する正極活物質を含む正極材料部、負極活物質としてSi単体粉末を含み且つ結着材及び固体電解質を含まない負極材料部、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体に、前記正極材料部、前記固体電解質材料部及び前記負極材料部の配列方向に100MPa以上の拘束圧を印加した状態で、前記正極材料部側から前記固体電解質材料部を経由して前記負極材料部側に至る方向へ、負極材料部に含まれるSi単体粉末1g当たり910mAh以上の電気量となるように通電し、前記負極材料部にLiイオンを挿入する通電工程を有する、全固体電池用電極部材の製造方法を提供する。
The present disclosure is a method for producing an electrode member for an all-solid battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
A positive electrode material portion containing a positive electrode active material containing Li, a negative electrode material portion containing Si simple powder as a negative electrode active material and not containing a binder and a solid electrolyte, and between the positive electrode material portion and the negative electrode material portion A preparatory step of preparing a primary assembly with a disposed solid electrolyte material portion, and
The primary assembly is passed through the solid electrolyte material portion from the positive electrode material portion side in a state where a binding pressure of 100 MPa or more is applied to the primary assembly in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion. Then, in the direction to reach the negative electrode material part side, it has an energization step of energizing so that the amount of electricity is 910 mAh or more per 1 g of Si simple substance powder contained in the negative electrode material part, and inserting Li ions into the negative electrode material part. A method for producing an electrode member for an all-solid-state battery is provided.

上記製造方法によれば、活物質としてSi系材料を含む負極を有し、エネルギー密度が高い全固体電池用の電極部材の製造方法が提供される。   According to the said manufacturing method, the manufacturing method of the electrode member for all-solid-state batteries which has a negative electrode containing Si type material as an active material, and has a high energy density is provided.

本開示の全固体電池用電極部材の製造方法における1次組立体を概念的に示す図である。It is a figure which shows notionally the primary assembly in the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法における通電工程を概念的に示す図である。It is a figure which shows notionally the electricity supply process in the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法により得られた全固体電池用電極部材を概念的に示す図である。It is a figure which shows notionally the electrode member for all-solid-state batteries obtained by the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法により得られた全固体電池用電極部材を用いた全固体電池を概念的に示す図である。It is a figure which shows notionally the all-solid-state battery using the electrode member for all-solid-state batteries obtained by the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態における固体電解質粉末の加圧成形工程を概念的に示す図である。It is a figure which shows notionally the pressure forming process of the solid electrolyte powder in one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態における固体電解質材料層を概念的に示す図である。It is a figure which shows notionally the solid electrolyte material layer in one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態における負極材料粉末の加圧成形工程を概念的に示す図である。It is a figure which shows notionally the pressure forming process of the negative electrode material powder in one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態における負極材料層及び固体電解質材料層を概念的に示す図である。It is a figure which shows notionally the negative electrode material layer and solid electrolyte material layer in one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態における正極材料粉末の加圧成形工程を概念的に示す図である。It is a figure which shows notionally the pressure forming process of the positive electrode material powder in one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態における1次組立体を概念的に示す図である。It is a figure which shows notionally the primary assembly in one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態における通電工程を概念的に示す図である。It is a figure which shows notionally the electricity supply process in one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態により得られた全固体電池用電極部材を概念的に示す図である。It is a figure which shows notionally the electrode member for all-solid-state batteries obtained by one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 本開示の全固体電池用電極部材の製造方法の一実施形態により得られた全固体電池用電極部材を用いた全固体電池を概念的に示す図である。It is a figure which shows notionally the all-solid-state battery using the electrode member for all-solid-state batteries obtained by one Embodiment of the manufacturing method of the electrode member for all-solid-state batteries of this indication. 実施例1で製造された全固体電池用電極部材の負極の断面のSEM画像である。2 is an SEM image of a cross section of a negative electrode of an electrode member for an all solid state battery manufactured in Example 1. FIG.

本開示は、正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池用の電極部材の製造方法であって、
Liを含有する正極活物質を含む正極材料部、負極活物質としてSi単体粉末を含み且つ結着材及び固体電解質を含まない負極材料部、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体に、前記正極材料部、前記固体電解質材料部及び前記負極材料部の配列方向に100MPa以上の拘束圧を印加した状態で、前記正極材料部側から前記固体電解質材料部を経由して前記負極材料部側に至る方向へ、負極材料部に含まれるSi単体粉末1g当たり910mAh以上の電気量となるように通電し、前記負極材料部にLiイオンを挿入する通電工程を有する、全固体電池用電極部材の製造方法を提供する。
The present disclosure is a method for producing an electrode member for an all-solid battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
A positive electrode material portion containing a positive electrode active material containing Li, a negative electrode material portion containing Si simple powder as a negative electrode active material and not containing a binder and a solid electrolyte, and between the positive electrode material portion and the negative electrode material portion A preparatory step of preparing a primary assembly with a disposed solid electrolyte material portion, and
The primary assembly is passed through the solid electrolyte material portion from the positive electrode material portion side in a state where a binding pressure of 100 MPa or more is applied to the primary assembly in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion. Then, in the direction to reach the negative electrode material part side, it has an energization step of energizing so that the amount of electricity is 910 mAh or more per 1 g of Si simple substance powder contained in the negative electrode material part, and inserting Li ions into the negative electrode material part. A method for producing an electrode member for an all-solid-state battery is provided.

上記製造方法には、次の一態様が含まれる。
正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池用の電極部材の製造方法であって、
Liを含有する正極活物質を含む正極材料層、負極活物質としてSi単体粉末を含み且つ結着材及び固体電解質を含まない負極材料層、並びに、前記正極材料層と前記負極材料層の間に配置された固体電解質材料層を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体に、前記正極材料層、前記固体電解質材料層及び前記負極材料層の積層方向に100MPa以上の拘束圧を印加した状態で、前記正極材料層側から前記固体電解質材料層を経由して前記負極材料層側に至る方向へ、負極材料層に含まれるSi単体粉末1g当たり、910mAh以上の電気量となるように通電し、前記負極材料層にLiイオンを挿入する通電工程を有する、全固体電池用電極部材の製造方法を提供する。
The manufacturing method includes the following aspect.
A method for producing an electrode member for an all-solid battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
A positive electrode material layer containing a positive electrode active material containing Li, a negative electrode material layer containing Si simple powder as a negative electrode active material and not containing a binder and a solid electrolyte, and between the positive electrode material layer and the negative electrode material layer A preparatory step of preparing a primary assembly with a disposed solid electrolyte material layer; and
Via the solid electrolyte material layer from the positive electrode material layer side in a state in which a binding pressure of 100 MPa or more is applied to the primary assembly in the stacking direction of the positive electrode material layer, the solid electrolyte material layer, and the negative electrode material layer. Then, in the direction reaching the negative electrode material layer side, an energization step is performed such that the amount of electricity is 910 mAh or more per 1 g of Si simple substance powder contained in the negative electrode material layer, and Li ions are inserted into the negative electrode material layer. The manufacturing method of the electrode member for all-solid-state batteries is provided.

本開示の上記製造方法では、負極活物質としてSi単体粒子を含み且つ結着材及び固体電解質を含まない負極材料部を用いることにより、体積当たりの理論容量が大きいSi系材料からなる負極活物質を高密度に含む負極が形成されるため、電池全体としてのエネルギー密度が高い全固体電池用電極部材を得ることができる。   In the manufacturing method of the present disclosure, a negative electrode active material composed of a Si-based material having a large theoretical capacity per volume by using a negative electrode material portion that includes Si simple particles and does not include a binder and a solid electrolyte as a negative electrode active material. Therefore, an electrode member for an all-solid battery having a high energy density as a whole battery can be obtained.

また、本開示の上記製造方法では、前記1次組立体を、当該1次組立体に含まれる正極材料部、固体電解質材料部及び負極材料部の配列方向に高い拘束圧を印加した状態で、当該正極材料部側から当該固体電解質材料部を経由して当該負極材料部側に至る方向へ、一定量以上の電気量となるように通電することで、Si系材料の粒子同士が接着するため、負極中に結着材及び固体電解質を含まないにもかかわらず、Si系材料の粒子相互の接触性が向上し、充分な電池性能を得ることができる。
したがって、本開示の全固体電池用電極部材の製造方法によれば、Si系材料からなる活物質を含む負極を有し、エネルギー密度が高く、負極内においてSi系材料からなる活物質の粒子相互の接触性が良好な全固体電池用電極部材が得られる。
In the manufacturing method of the present disclosure, in the state where the primary assembly is applied with a high restraint pressure in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion included in the primary assembly, Since the particles of the Si-based material are bonded to each other by energizing the positive electrode material part side through the solid electrolyte material part to reach the negative electrode material part side so as to have a certain amount of electricity. Even though the negative electrode does not contain a binder and a solid electrolyte, the contact between the particles of the Si-based material is improved, and sufficient battery performance can be obtained.
Therefore, according to the method for manufacturing an electrode member for an all solid state battery of the present disclosure, the negative electrode containing an active material made of Si-based material has a high energy density, and the active material particles made of Si-based material in the negative electrode Thus, an electrode member for an all-solid-state battery having good contact property is obtained.

以下、本開示の全固体電池用電極部材の製造方法について詳細に説明する。
A.製造方法の概略
図1A〜図1Dは、本開示の全固体電池用電極部材の製造方法を概念的に示す図である。
先ず図1A(準備工程)に示すように、Liを含有する正極活物質を含む正極材料部3、負極活物質としてSi単体粉末を含み且つ結着材及び固体電解質を含まない負極材料部2、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部1を備えた1次組立体101を準備する準備工程を行う。この1次組立体101は、正極材料部3、固体電解質材料部1及び負極材料部2が、この順序で配列された配列構造を有する。
次に、図1B(通電工程)に示すように、前記1次組立体101に、前記正極材料部3、前記固体電解質材料部1及び前記負極材料部2の配列方向に100MPa以上の拘束圧を印加した状態で、前記正極材料部3側から前記固体電解質材料部1を経由して前記負極材料部2側に至る方向へ、負極材料部2に含まれるSi単体粉末1g当たり910mAh以上の電気量となるように通電して、前記負極材料部2にLiイオンを挿入することにより、図1Cに示すように、正極6、負極5及び前記正極6と前記負極5の間に接合された固体電解質層4を有する、電極部材(正極−固体電解質層−負極集合体)102が得られる。
次に、図1Dに示すように、電極部材102に他の部材7を取り付けることにより全固体電池103が得られる。
Hereafter, the manufacturing method of the electrode member for all-solid-state batteries of this indication is demonstrated in detail.
A. Outline of Manufacturing Method FIGS. 1A to 1D are diagrams conceptually showing a manufacturing method of an electrode member for an all solid state battery of the present disclosure.
First, as shown in FIG. 1A (preparation step), a positive electrode material part 3 containing a positive electrode active material containing Li, a negative electrode material part 2 containing a simple substance Si powder as a negative electrode active material and not containing a binder and a solid electrolyte, And the preparatory process which prepares the primary assembly 101 provided with the solid electrolyte material part 1 arrange | positioned between the said positive electrode material part and the said negative electrode material part is performed. The primary assembly 101 has an arrangement structure in which the positive electrode material portion 3, the solid electrolyte material portion 1, and the negative electrode material portion 2 are arranged in this order.
Next, as shown in FIG. 1B (energization process), a restraining pressure of 100 MPa or more is applied to the primary assembly 101 in the arrangement direction of the positive electrode material portion 3, the solid electrolyte material portion 1, and the negative electrode material portion 2. In the applied state, the amount of electricity of 910 mAh or more per 1 g of Si powder contained in the negative electrode material part 2 from the positive electrode material part 3 side to the negative electrode material part 2 side via the solid electrolyte material part 1 As shown in FIG. 1C, the positive electrode 6, the negative electrode 5, and the solid electrolyte joined between the positive electrode 6 and the negative electrode 5 are inserted into the negative electrode material portion 2. An electrode member (positive electrode-solid electrolyte layer-negative electrode assembly) 102 having the layer 4 is obtained.
Next, as shown in FIG. 1D, an all-solid battery 103 is obtained by attaching another member 7 to the electrode member 102.

図2A〜図2Iは、本開示の全固体電池用電極部材の製造方法の一実施形態を概念的に示す図である。
先ず図2Aに示すように、固体電解質の粉末(固体電解質粉末1’)を加圧成形することにより、図2Bに示すように、固体電解質材料層(固体電解質材料部1)を成形する。
次に図2Cに示すように、前記固体電解質材料層の一面側に負極材料の粉末(負極材料粉末2’、これを「負極用合材」ということもある。)を堆積し、加圧成形することにより、図2Dに示すように、固体電解質材料層の上に負極材料層(負極材料部2)を成形する。
次に図2Eに示すように、前記固体電解質材料層の他の一面側に正極材料の粉末(正極材料粉末3’、これを「正極用合材」ということもある。)を堆積し、加圧成形することにより、図2Fに示すように、固体電解質材料層の前記負極材料層とは反対側の面に、正極材料層(正極材料部3)を成形する。
2A to 2I are diagrams conceptually illustrating an embodiment of a method for manufacturing an electrode member for an all-solid battery according to the present disclosure.
First, as shown in FIG. 2A, a solid electrolyte powder (solid electrolyte powder 1 ′) is pressure-molded to form a solid electrolyte material layer (solid electrolyte material portion 1) as shown in FIG. 2B.
Next, as shown in FIG. 2C, a negative electrode material powder (negative electrode material powder 2 ′, which may be referred to as “negative electrode mixture”) is deposited on one side of the solid electrolyte material layer, and pressure molding is performed. By doing so, as shown in FIG. 2D, a negative electrode material layer (negative electrode material portion 2) is formed on the solid electrolyte material layer.
Next, as shown in FIG. 2E, a positive electrode material powder (positive electrode material powder 3 ′, which may be referred to as “positive electrode mixture”) is deposited on the other surface of the solid electrolyte material layer and added. By pressure forming, as shown in FIG. 2F, a positive electrode material layer (positive electrode material portion 3) is formed on the surface of the solid electrolyte material layer opposite to the negative electrode material layer.

上記した一連の工程を経ると、図2Fに示すように、1次組立体101が得られる。この例の1次組立体101は、正極材料層、負極材料層、及び、前記正極材料層と前記負極材料層の間に固体電解質材料層が接合した構造を有する積層体(正極材料部−固体電解質材料部−負極材料部集合体)の形態をとっている。
この1次組立体101を、図2Gに示すように、正極材料層、固体電解質材料層及び負極材料層の積層方向に100MPa以上の拘束圧を印加した状態で、前記正極材料層側から固体電解質材料層を経由して前記負極材料層側へ、負極材料層に含まれるSi単体粉末1g当たり910mAh以上の電気量となるように通電することにより、前記負極材料層にLiイオンを挿入する。
この通電を行うことにより、図2Hに示すように、正極6、負極5及び前記正極6と前記負極5の間に接合された固体電解質層4を有する、電極部材102が得られる。
次に、図2Iに示すように、電極部材102に、集電体、外装体等の他の部材7を取り付けることにより、全固体電池103が得られる。
Through the series of steps described above, the primary assembly 101 is obtained as shown in FIG. 2F. The primary assembly 101 in this example includes a positive electrode material layer, a negative electrode material layer, and a laminate (positive electrode material portion-solid) having a structure in which a solid electrolyte material layer is bonded between the positive electrode material layer and the negative electrode material layer. Electrolyte material part-negative electrode material part aggregate).
As shown in FIG. 2G, in the primary assembly 101, a solid electrolyte is applied from the positive electrode material layer side in a state where a binding pressure of 100 MPa or more is applied in the stacking direction of the positive electrode material layer, the solid electrolyte material layer, and the negative electrode material layer. Li ions are inserted into the negative electrode material layer by energizing the negative electrode material layer through the material layer so that the amount of electricity is 910 mAh or more per gram of Si simple substance powder contained in the negative electrode material layer.
By conducting this energization, as shown in FIG. 2H, an electrode member 102 having a positive electrode 6, a negative electrode 5, and a solid electrolyte layer 4 bonded between the positive electrode 6 and the negative electrode 5 is obtained.
Next, as shown in FIG. 2I, an all-solid battery 103 is obtained by attaching another member 7 such as a current collector or an exterior body to the electrode member 102.

B.準備工程
(1)負極材料部
本開示の製造方法において、負極材料部は、負極活物質としてSi単体粉末を含み、結着材及び固体電解質を含まず、必要に応じ、他の成分を含む。電池のエネルギー密度を上げる観点から、負極材料部はSi単体粉末のみ含んでいてもよい。
Si単体粉末を構成するSi単体の粒子は、平均粒径(D50)が通常10nm以上50μm以下の範囲内、さらに50nm以上5μm以下の範囲内である。粒子の平均粒径が小さすぎると、取り扱い性が悪くなる可能性があり、粒子の平均粒径が大きすぎると、平坦な負極材料部を得るのが困難になる場合がある。Si単体粒子同士の接触性を十分に高くする観点から、Si単体粒子の平均粒径は、1μm以下、特に100nm以下であってもよい。
負極材料部中のSi単体粉末の割合は、特に限定されるものではないが、活物質をできるだけ多く充填する観点から、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であってもよく、70質量%以上100質量%以下の範囲内であってもよく、100質量%であってもよい。
B. Preparatory process (1) Negative electrode material part In the manufacturing method of this indication, a negative electrode material part contains Si simple substance powder as a negative electrode active material, does not contain a binder and a solid electrolyte, and contains another component as needed. From the viewpoint of increasing the energy density of the battery, the negative electrode material portion may contain only Si simple powder.
The Si simple particles constituting the Si simple powder have an average particle diameter (D 50 ) usually in the range of 10 nm to 50 μm, and more preferably in the range of 50 nm to 5 μm. If the average particle size of the particles is too small, the handleability may be deteriorated. If the average particle size of the particles is too large, it may be difficult to obtain a flat negative electrode material part. From the viewpoint of sufficiently increasing the contact between the Si simple particles, the average particle size of the Si simple particles may be 1 μm or less, particularly 100 nm or less.
Although the ratio of the Si simple substance powder in the negative electrode material part is not particularly limited, it is, for example, 50% by mass or more and within the range of 60% by mass to 100% by mass from the viewpoint of filling the active material as much as possible. It may be within a range of 70% by mass or more and 100% by mass or less, or 100% by mass.

負極材料部は、他の成分として導電材を含んでいてもよい。当該導電材としては、アセチレンブラック、ケッチェンブラック、カーボンファイバー等の炭素材料を挙げることができる。
前記負極材料部を形成するための材料(最終的に、負極を形成するための材料)、すなわち負極用合材は、電池のエネルギー密度を高くする観点から、典型的にはSi単体粉末のみ含有するが、必要に応じSi単体粉末以外の成分を含んでいてもよく、例えば、負極材料部を形成する途中で除去される成分を含んでいてもよい。
負極用合材中に含まれるが、負極材料部を形成する途中で除去される成分としては、溶剤や除去可能な結着材が挙げられる。
除去可能な結着材としては、負極用合材層を形成するときには結着材として機能するが、負極用合材層を焼成することにより分解又は揮散等し除去され、結着材を含まない負極材料部とすることができる結着材を用いることができる。そのような除去可能な結着材としては、ポリビニルブチラール、アクリル樹脂等が挙げられる。
The negative electrode material part may contain a conductive material as another component. Examples of the conductive material include carbon materials such as acetylene black, ketjen black, and carbon fiber.
The material for forming the negative electrode material part (finally, the material for forming the negative electrode), that is, the negative electrode mixture typically contains only Si simple powder from the viewpoint of increasing the energy density of the battery. However, components other than the Si simple substance powder may be included as necessary, for example, components that are removed during the formation of the negative electrode material portion may be included.
Examples of the component that is contained in the negative electrode composite material but is removed in the course of forming the negative electrode material portion include a solvent and a removable binder.
As a removable binder, it functions as a binder when forming a negative electrode mixture layer, but it is removed by decomposition or volatilization, etc. by firing the negative electrode mixture layer, and does not contain a binder. A binder that can be used as a negative electrode material portion can be used. Examples of such a removable binder include polyvinyl butyral and acrylic resin.

負極材料部を形成する方法としては、Si単体粉末を含む負極用合材の粉末を加圧成形する方法が挙げられる。
Si単体粉末を含む負極用合材の粉末を加圧成形する場合には、通常、1MPa以上400MPa以下程度のプレス圧を負荷する。
その他の方法としては、例えば、Si単体粉末及び除去可能な結着材を含む負極用合材の粉末を加圧成形して負極用合材層を形成した後、焼成することにより結着材を除去する方法や、Si単体粉末、溶剤及び除去可能な結着材を含む負極用合材の分散液を固体電解質材料部の上又は他の支持体の上に塗布、乾燥して負極用合材層を形成した後、焼成することにより結着材を除去する方法などを行うことができる。
Examples of the method for forming the negative electrode material part include a method of pressure-molding a negative electrode composite material powder containing Si simple substance powder.
When pressure-molding the negative electrode composite material powder containing the Si simple substance powder, a press pressure of about 1 MPa or more and 400 MPa or less is usually applied.
Other methods include, for example, forming a negative electrode composite layer by pressure-molding a negative electrode composite powder containing Si simple substance powder and a removable binder, and then firing the binder. A negative electrode mixture containing a simple substance powder, a solvent and a removable binder containing a removable binder on a solid electrolyte material portion or other support and drying. After the layer is formed, a method of removing the binder by firing can be performed.

(2)正極材料部
正極材料部は、Liを含有する正極活物質を含み、必要に応じ、結着材、固体電解質、及び導電材等の他の成分を含む。
本開示においてLiを含有する正極活物質は、Li元素を含む活物質であれば特に制限されるものではなく、単体状態のLiに限られず、リチウム化合物であってもよい。対極との関係で電池化学反応上の正極として機能し、Liイオンの移動を伴う電池化学反応を進行させる物質であれば、特に制限されず正極活物質として用いることができ、従来リチウムイオン電池の正極活物質として知られている物質も、本開示において用いることができる。
正極活物質としては例えば、リチウム単体金属、リチウム合金及びリチウム含有金属酸化物が挙げられる。リチウム合金としては、例えば、In−Li合金等を用いることができる。リチウム含有金属酸化物としては、例えば、LiCoO、LiNiO、LiVO、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、LiMn、Li(Ni0.5Mn1.5)O等のスピネル型活物質、LiFePO、LiMnPO、LiNiPO、LiCoPO等のオリビン型活物質等を挙げることができる。
前記正極活物質の形状は特に限定されないが、膜状であっても粒子状であってもよい。
正極材料部中の正極活物質の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であってもよく、70質量%以上100質量%以下の範囲内であってもよい。
(2) Positive electrode material part A positive electrode material part contains the positive electrode active material containing Li, and contains other components, such as a binder, a solid electrolyte, and a electrically conductive material, as needed.
In the present disclosure, the positive electrode active material containing Li is not particularly limited as long as it is an active material containing Li element, and is not limited to Li in a single state, and may be a lithium compound. Any material that functions as a positive electrode on the battery chemical reaction in relation to the counter electrode and that promotes the battery chemical reaction accompanied by the movement of Li ions can be used as a positive electrode active material without any particular limitation. Materials known as positive electrode active materials can also be used in the present disclosure.
Examples of the positive electrode active material include lithium simple metals, lithium alloys, and lithium-containing metal oxides. As the lithium alloy, for example, an In—Li alloy or the like can be used. Examples of the lithium-containing metal oxide include rock salt layer type active materials such as LiCoO 2 , LiNiO 2 , LiVO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , Li (Ni 0). .5 Mn 1.5) spinel active material O 4 or the like, can be cited LiFePO 4, LiMnPO 4, LiNiPO 4, LiCoPO olivine active material such as 4.
The shape of the positive electrode active material is not particularly limited, but may be a film shape or a particle shape.
The ratio of the positive electrode active material in the positive electrode material part is not particularly limited, but is, for example, 50% by mass or more, may be in the range of 60% by mass to 100% by mass, and is 70% by mass or more. It may be within a range of 100% by mass or less.

前記結着材としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ブチレンゴム(BR)、スチレン−ブタジエンゴム(SBR)、ポリビニルブチラール(PVB)、アクリル樹脂等を用いることができる。
前記導電材としては、前記負極材料部に用いるものと同様のものを用いることができる。
前記固体電解質としては、固体電解質結晶、非晶性固体電解質、固体電解質ガラスセラミックスのいずれであってもよく、後述する固体電解質材料部に用いられる固体電解質と同様のものを用いることができる。
Examples of the binder include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), butylene rubber (BR), styrene-butadiene rubber (SBR), polyvinyl butyral (PVB), and an acrylic resin. it can.
As the conductive material, the same material as that used for the negative electrode material portion can be used.
The solid electrolyte may be any of a solid electrolyte crystal, an amorphous solid electrolyte, and a solid electrolyte glass ceramic, and the same solid electrolyte used for a solid electrolyte material part described later can be used.

正極材料部を形成するための材料(最終的に、正極を形成するための材料)、すなわち正極用合材は、さらに、正極材料部を形成する途中で除去される成分を含んでいてもよい。
正極用合材中に含まれるが、正極材料部を形成する途中で除去される成分としては、負極用合材に含有させることができる溶剤や除去可能な結着材と同様の成分が挙げられる。
正極材料部を形成する方法としては、負極材料部を形成する方法と同様の方法が挙げられる。
The material for forming the positive electrode material part (finally, the material for forming the positive electrode), that is, the positive electrode mixture may further contain a component that is removed during the formation of the positive electrode material part. .
The components that are contained in the positive electrode mixture but are removed during the formation of the positive electrode material portion include the same components as the solvent that can be contained in the negative electrode mixture and the removable binder. .
Examples of the method for forming the positive electrode material part include the same method as the method for forming the negative electrode material part.

(3)固体電解質材料部
固体電解質材料部は、固体電解質を含み、必要に応じ、他の成分を含む。
固体電解質としては、Liイオンの伝導度が高い酸化物系固体電解質、硫化物系固体電解質等が挙げられる。
前記酸化物系固体電解質としては、例えばLi6.25LaZrAl0.2512、LiPO、LiPON等が挙げられ、前記硫化物系固体電解質としては、例えばLi11、LiPS、Li、Li13GeP16、Li10GeP12等が挙げられる。
固体電解質材料部を形成するための固体電解質として、粉末状の固体電解質を用いてもよく、その場合に粉末を構成する固体電解質粒子の平均粒径(D50)は、通常10nm以上50μm以下の範囲内、さらに50nm以上10μm以下の範囲内である。
(3) Solid electrolyte material part A solid electrolyte material part contains a solid electrolyte and contains other components as needed.
Examples of the solid electrolyte include oxide solid electrolytes and sulfide solid electrolytes having high Li ion conductivity.
Examples of the oxide solid electrolyte include Li 6.25 La 3 Zr 2 Al 0.25 O 12 , Li 3 PO 4 , and LiPON. Examples of the sulfide solid electrolyte include Li 7 P 3. S 11, Li 3 PS 4, Li 8 P 2 S 9, Li 13 GeP 3 S 16, Li 10 GeP 2 S 12 , and the like.
As the solid electrolyte for forming the solid electrolyte material part, a powdered solid electrolyte may be used, and in that case, the average particle diameter (D 50 ) of the solid electrolyte particles constituting the powder is usually 10 nm or more and 50 μm or less. Within the range, and further within the range of 50 nm to 10 μm.

前記固体電解質は、1種単独で、又は2種以上のものを用いることができる。また、2種以上の固体電解質を用いる場合、2種以上の固体電解質を混合してもよく、又は2層以上の固体電解質それぞれの層を形成して多層構造としてもよい。
固体電解質を2層構造とする場合には、例えば、正極側に硫化物固体電解質、負極側に酸化物固体電解質を配置してもよいし、その逆の順序で配置してもよい。固体電解質の電位窓に対応した配置であれば、どのような配置順序にしてもよい。
固体電解質材料部中の固体電解質の割合は、特に限定されるものではないが、例えば50質量%以上であり、60質量%以上100質量%以下の範囲内であってもよく、70質量%以上100質量%以下の範囲内であってもよく、100質量%であってもよい。
固体電解質材料部に含まれる他の成分としては、バインダー、可塑剤、分散剤等が挙げられる。
The solid electrolyte can be used alone or in combination of two or more. When two or more kinds of solid electrolytes are used, two or more kinds of solid electrolytes may be mixed, or two or more solid electrolyte layers may be formed to form a multilayer structure.
When the solid electrolyte has a two-layer structure, for example, a sulfide solid electrolyte may be disposed on the positive electrode side and an oxide solid electrolyte may be disposed on the negative electrode side, or vice versa. Any arrangement order may be employed as long as the arrangement corresponds to the potential window of the solid electrolyte.
The ratio of the solid electrolyte in the solid electrolyte material part is not particularly limited, but is, for example, 50% by mass or more, may be in the range of 60% by mass to 100% by mass, and is 70% by mass or more. It may be within a range of 100% by mass or less, or 100% by mass.
Examples of other components contained in the solid electrolyte material part include a binder, a plasticizer, and a dispersant.

固体電解質材料部を形成する方法としては、固体電解質及び必要に応じ他の成分を含む固体電解質材料の粉末を加圧成形する方法が挙げられる。固体電解質材料の粉末を加圧成形する場合には、通常、負極用合材の粉末を加圧成形する場合と同様に、1MPa以上400MPa以下程度のプレス圧を負荷する。
また、他の方法としては、固体電解質及び必要に応じ他の成分を含有する固体電解質材料の溶液又は分散液を用いたキャスト成膜法などを行うことができる。
Examples of the method for forming the solid electrolyte material portion include a method in which a powder of the solid electrolyte material containing the solid electrolyte and other components as necessary is pressure-molded. When pressure-molding the powder of the solid electrolyte material, a press pressure of about 1 MPa or more and 400 MPa or less is usually applied as in the case of pressure-molding the powder of the negative electrode mixture.
Moreover, as another method, the cast film-forming method using the solution or dispersion liquid of the solid electrolyte material which contains a solid electrolyte and another component as needed can be performed.

(4)1次組立体
本開示において1次組立体は、正極材料部、固体電解質材料部、及び、負極材料部がこの順序で配列され、直接または他の材料からなる部分を介して接合しており、さらに、正極材料部上の固体電解質材料部が存在する位置とは反対側(正極材料部の外方側)、及び、負極材料部上の固体電解質材料部が存在する位置とは反対側(負極材料部の外方側)のうちの片方又は両方の側に、他の材料からなる部分が接合していてもよい配列構造を有する各部の集合体(正極材料部−固体電解質材料部−負極材料部集合体)である。
前記1次組立体は、後述の通電工程において、均一に拘束圧を負荷しながら、正極材料部側から固体電解質材料部を経由して負極材料部側に至る方向へ通電できる限り、他の材料からなる部分が付属していてもよい。正極材料部と固体電解質材料部の間には、例えば、LiNbO、LiTi12、LiPOのような被覆層が設けられていても良く、負極材料部と固体電解質材料部の間にも、同様の被覆層が設けられていても良い。
正極材料部の外方側及び負極材料部の外方側のいずれか一方又は両方の側には、例えば、集電体や外装体が後述する通電工程における通電前に付属していてもよい。
上記1次組立体は、典型的には、正極材料部、負極材料部、及び、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部が直接接合し、且つ、正極材料部の外方側及び負極材料部の外方側のいずれにも他の材料からなる部分が接合していない配列構造を有する集合体である。
(4) Primary assembly In the present disclosure, the primary assembly includes a positive electrode material portion, a solid electrolyte material portion, and a negative electrode material portion arranged in this order, and is joined directly or via a portion made of another material. Furthermore, the position opposite to the position where the solid electrolyte material portion exists on the positive electrode material portion (outside of the positive electrode material portion) and the position where the solid electrolyte material portion exists on the negative electrode material portion An assembly of each part having an array structure in which a part made of another material may be joined to one or both of the sides (outside of the negative electrode material part) (positive electrode material part-solid electrolyte material part) Negative electrode material part assembly).
As long as the primary assembly can be energized in a direction from the positive electrode material part side to the negative electrode material part side through the solid electrolyte material part while uniformly applying a restraining pressure in the energization process described later, other materials are used. The part which consists of may be attached. Between the positive electrode material part and the solid electrolyte material part, for example, a coating layer such as LiNbO 3 , Li 4 Ti 5 O 12 , Li 3 PO 4 may be provided. The negative electrode material part and the solid electrolyte material part A similar coating layer may be provided between the two.
For example, a current collector or an exterior body may be attached to one or both of the outer side of the positive electrode material part and the outer side of the negative electrode material part before energization in an energization process described later.
In the primary assembly, typically, a positive electrode material part, a negative electrode material part, and a solid electrolyte material part arranged between the positive electrode material part and the negative electrode material part are directly joined, and the positive electrode material This is an assembly having an array structure in which parts made of other materials are not joined to either the outer side of the part or the outer side of the negative electrode material part.

上記1次組立体を作製する方法の一つとして、図2A〜図2Iに示した方法がある。すなわち、固体電解質材料の粉末、負極材料の粉末、及び、正極材料の粉末を用い、固体電解質材料の粉体加圧成形を行うことにより固体電解質材料部を形成し、固体電解質材料部の一面上での負極材料の粉末の粉体加圧成形、及び、固体電解質材料部の負極材料を形成した面とは反対側の面上での正極材料の粉末の粉体加圧成形を順次行う方法である。
この場合、固体電解質材料の粉末、負極材料の粉末及び正極材料の粉末を加圧成形する際のプレス圧は、通常1MPa以上600MPa以下程度である。
ただし、上記1次組立体を作製する方法は、図2A〜図2Iの方法に限定されない。
例えば、粉体加圧成形の加圧シリンダー内に、Si単体粉末を含む負極材料の粉末を投入し均一な厚みに堆積して負極材料粉末堆積層を形成する。
上記負極材料粉末堆積層の上に、固体電解質粉末及び必要に応じ他の成分を含む固体電解質材料の粉末を投入し均一な厚みに堆積して固体電解質材料粉末層を形成する。
上記固体電解質材料粉末層の上に、Liを含有する正極活物質を含む材料の粉末を投入し均一な厚みに堆積して正極材料粉末層を形成する。
その後、このようにして形成された3層の粉末堆積層を有する粉末堆積体を一度に加圧成形することにより、1次組立体を作製してもよい。
また、固体電解質材料部、負極材料部、及び、正極材料部は、粉体加圧成形以外の手法で作製してもよい。具体的な方法は、本明細書中で上記したとおりである。例えば、固体電解質材料部は、固体電解質を含む固体電解質材料の溶液又は分散液を用いたキャスト成膜法により成形してもよい。負極材料部及び正極材料部は、例えば、負極材料の粉末又は正極材料の粉末、及び、除去可能な結着材を含む分散液を固体電解質材料部の上に塗布することにより塗膜を形成した後、この塗膜を加熱して塗膜から結着材を除去する方法や、あるいは、負極材料の粉末又は正極材料の粉末、及び、除去可能な結着材を含む粉末を加圧成形して正極材料部又は負極材料部の形状とした後、この成形体を加熱して塗膜から結着材を除去する方法により形成してもよい。
また、負極材料部及び正極材料部は、固体電解質材料部以外の支持体上に形成してもよい。その場合、当該支持体から負極材料部及び正極材料部を剥離し、剥離した負極材料部又は正極材料部を、固体電解質材料部の上に接合する。
One method for producing the primary assembly is shown in FIGS. 2A to 2I. That is, a solid electrolyte material part is formed by performing powder pressure molding of a solid electrolyte material using a powder of a solid electrolyte material, a powder of a negative electrode material, and a powder of a positive electrode material, and on one side of the solid electrolyte material part In this method, the powder pressure molding of the negative electrode material powder and the powder pressure molding of the positive electrode material powder on the surface of the solid electrolyte material portion opposite to the surface on which the negative electrode material is formed are sequentially performed. is there.
In this case, the press pressure when the solid electrolyte material powder, the negative electrode material powder and the positive electrode material powder are pressure-molded is usually about 1 MPa to 600 MPa.
However, the method of manufacturing the primary assembly is not limited to the method of FIGS. 2A to 2I.
For example, a negative electrode material powder containing Si simple substance powder is put into a pressure cylinder of powder pressure molding and deposited to a uniform thickness to form a negative electrode material powder deposition layer.
On the negative electrode material powder deposition layer, a solid electrolyte powder and a solid electrolyte material powder containing other components as necessary are deposited and deposited to a uniform thickness to form a solid electrolyte material powder layer.
A powder of a material containing a positive electrode active material containing Li is placed on the solid electrolyte material powder layer and deposited to a uniform thickness to form a positive electrode material powder layer.
Thereafter, the primary assembly may be manufactured by press-molding the powder deposit having the three powder deposit layers thus formed at once.
Moreover, you may produce a solid electrolyte material part, a negative electrode material part, and a positive electrode material part by methods other than powder pressure molding. The specific method is as described above in this specification. For example, the solid electrolyte material portion may be formed by a cast film forming method using a solution or dispersion of a solid electrolyte material containing a solid electrolyte. The negative electrode material part and the positive electrode material part were formed, for example, by applying a dispersion containing negative electrode material powder or positive electrode material powder and a removable binder onto the solid electrolyte material part. Then, this coating film is heated to remove the binder from the coating film, or the negative electrode material powder or the positive electrode material powder and the powder containing the removable binder material are pressure-molded. After forming the shape of the positive electrode material part or the negative electrode material part, the formed body may be heated to remove the binder from the coating film.
The negative electrode material part and the positive electrode material part may be formed on a support other than the solid electrolyte material part. In that case, the negative electrode material part and the positive electrode material part are peeled from the support, and the peeled negative electrode material part or positive electrode material part is bonded onto the solid electrolyte material part.

C.通電工程
本開示の製造方法において、通電工程は、1次組立体に対して、当該1次組立体に含まれる正極材料部、固体電解質材料部及び負極材料部の配列方向に100MPa以上の拘束圧を印加した状態で、当該1次組立体の正極材料部側から固体電解質材料部を経由して負極材料部側に至る方向へ通電して、負極材料部に含まれるSi単体粉末1g当たり、910mAh以上の電気量となるように通電することにより、前記負極材料部にLiイオンを挿入する工程である。
負極材料部にLiイオンを挿入することにより、Si単体の粒子同士が接着し、負極が作製される。
C. Energization process In the manufacturing method of the present disclosure, the energization process is performed with respect to the primary assembly at a constraint pressure of 100 MPa or more in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion included in the primary assembly. Is applied in the direction from the positive electrode material part side of the primary assembly to the negative electrode material part side through the solid electrolyte material part, and 910 mAh per 1 g of Si simple substance powder contained in the negative electrode material part. This is a step of inserting Li ions into the negative electrode material part by energizing to have the above amount of electricity.
By inserting Li ions into the negative electrode material part, Si single particles are bonded to each other, and a negative electrode is produced.

ここで、「1次組立体に対して前記正極材料部側から前記固体電解質材料部を経由して前記負極材料部側に至る方向へ通電する」とは、図1Bに示すように、外部電源に電気抵抗体としての1次組立体101を接続するときに、外部電源の正極(電圧が高い側の端子)を1次組立体101の正極材料部3側に接続し、外部電源の負極(電圧が低い側の端子)を1次組立体101の負極材料部2側に接続し、電流を流すことを意味する。   Here, “the current is supplied to the primary assembly from the positive electrode material part side to the negative electrode material part side via the solid electrolyte material part” as shown in FIG. When connecting the primary assembly 101 as an electric resistor to the positive electrode (terminal on the higher voltage side) of the external power source is connected to the positive electrode material part 3 side of the primary assembly 101, and the negative electrode ( This means that a terminal having a low voltage) is connected to the negative electrode material part 2 side of the primary assembly 101 and a current is passed.

1次組立体に負荷する拘束圧は、100MPa以上であればよいが、電極部材内部のラミネーションを防止する観点から、400MPa以下であってもよい。
また1次組立体の通電量は、負極材料部に含まれるSi単体粉末1g当たり、910mAh以上であればよいが、Si単体粉末のLi挿入容量の観点から、負極材料部に含まれるSi単体粉末1g当たり、4200mAh以下であってもよく、2100mAh以下であってもよい。
The restraint pressure applied to the primary assembly may be 100 MPa or more, but may be 400 MPa or less from the viewpoint of preventing lamination inside the electrode member.
Further, the energization amount of the primary assembly may be 910 mAh or more per 1 g of Si simple substance powder contained in the negative electrode material part, but from the viewpoint of the Li insertion capacity of the Si simple substance powder, the Si simple substance powder contained in the negative electrode material part It may be 4200 mAh or less per 1 g, or 2100 mAh or less.

上記通電工程により得られた負極の内部では、Liが挿入されることでSi系材料の粒子が形状を変化させながら膨張する。その際に一定以上の拘束圧が印加されていると、負極内部の隙間を埋めるように粒子形状が変化するため、Si粒子同士が接着する。
したがって、負極中に結着材及び固体電解質を含まないにもかかわらず、Si系材料相互の接触性が向上し、充分な電池性能を得ることができる。
なお、Si系材料の粒子が膨張する際に印加される拘束圧が十分でない場合には、Si系材料の粒子同士の接着が不十分となる。
本開示において、Si系材料の粒子同士が接着するとは、負極材料部の内部又は負極の内部に存在し、隣接し合うSi系材料の粒子の接触界面(粒界部)が融合し、粒界の一部または全部が消失する現象をいう。
負極材料部に通電工程を行うことにより形成された負極の内部においてSi系材料の粒子が接着していることは、本開示の製造方法により得られた全固体電池用電極部材を切断し、負極の切断面をSEM(走査電子顕微鏡)により観察することで確認することができる。
Inside the negative electrode obtained by the energization step, the Li-based material expands while the shape of the Si-based material particles changes as Li is inserted. In this case, if a certain pressure or more is applied, the shape of the particles changes so as to fill the gap inside the negative electrode, so that the Si particles adhere to each other.
Therefore, although the binder and the solid electrolyte are not included in the negative electrode, the contact property between the Si-based materials is improved, and sufficient battery performance can be obtained.
In addition, when the restraint pressure applied when the particle | grains of Si type material expand | swell is not enough, adhesion | attachment of particles of Si type material will become inadequate.
In the present disclosure, adhesion of Si-based material particles to each other means that the contact interface (grain boundary portion) between adjacent Si-based material particles is present inside the negative electrode material portion or inside the negative electrode, and the grain boundary A phenomenon in which part or all of the
The fact that the Si-based material particles are adhered inside the negative electrode formed by conducting an energization process in the negative electrode material part cuts the all-solid-state battery electrode member obtained by the manufacturing method of the present disclosure, It can confirm by observing the cut surface of this by SEM (scanning electron microscope).

上記したようなSi系材料の粒子同士の接着状態は、1次組立体を、当該1次組立体に含まれる正極材料部、固体電解質材料部及び負極材料部の配列方向に高い拘束圧を印加した状態で、当該正極材料部側から当該固体電解質材料部を経由して当該負極材料部側へ一定量以上の電気量となるように通電することにより得られる。
100MPa以上という拘束圧は非常に高い圧力である。例えば、上記特許文献1では、電池部材(本開示における1次組立体に相当する)に対し積層方向に150kgf/cm以上の拘束圧を印加した状態で、充放電処理を複数回行うことでSi含有活物質層を製造することが記載されているが、「150kgf/cm以上の拘束圧」をPa単位に換算すると「14.70983MPa」になる。したがって本開示において設定された拘束圧は、特許文献1に記載された拘束圧と比べて格段に大きい値である。
<計算式>
前提条件:1kgf/cm=9.80665×10Pa
したがって、
150kgf/cm
=150×9.80665×10Pa
=1.5×9.80665×10Pa
=1.5×9.80665MPa
≒14.70983MPa
The bonding state between the Si-based material particles as described above applies a high constraining pressure to the primary assembly in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion included in the primary assembly. In this state, it is obtained by energizing the positive electrode material part side through the solid electrolyte material part to the negative electrode material part side so as to have a certain amount of electricity.
The restraint pressure of 100 MPa or more is a very high pressure. For example, in Patent Document 1, charge / discharge treatment is performed a plurality of times in a state in which a constraint pressure of 150 kgf / cm 2 or more is applied to the battery member (corresponding to the primary assembly in the present disclosure) in the stacking direction. It is described that an Si-containing active material layer is produced, but when “restraint pressure of 150 kgf / cm 2 or more” is converted into Pa units, “14.70983 MPa” is obtained. Therefore, the restraint pressure set in the present disclosure is a value that is significantly larger than the restraint pressure described in Patent Document 1.
<Calculation formula>
Precondition: 1 kgf / cm 2 = 9.80665 × 10 4 Pa
Therefore,
150 kgf / cm 2
= 150 × 9.80665 × 10 4 Pa
= 1.5 × 9.80665 × 10 6 Pa
= 1.5 × 9.80665 MPa
≈ 14.70983 MPa

前記1次組立体に拘束圧を印加する方法としては、前記1次組立体に均等に拘束圧を印加することができる方法であれば特に制限されないが、例えば、油圧ポンプ(理研精機社製、P−6型)を用いて圧力を付加する方法が挙げられる。   The method for applying the restraining pressure to the primary assembly is not particularly limited as long as it can apply the restraining pressure evenly to the primary assembly. For example, a hydraulic pump (manufactured by Riken Seiki Co., Ltd., And a method of applying pressure using P-6 type).

D.全固体電池用電極部材及び全固体電池
上記1次組立体は、上記「C.通電工程」による通電を経て、正極−固体電解質層−負極集合体となる。
上記正極−固体電解質層−負極集合体は、正極、固体電解質層及び負極がこの順序で配列され、直接または他の材料からなる部分を介して接合しており、さらに、正極上の固体電解質層が存在する位置とは反対側(正極の外方側)、及び、負極上の固体電解質層が存在する位置とは反対側(負極の外方側)のうちの片方又は両方の側に、他の材料からなる部分が接合していてもよい配列構造を有する各部の集合体である。
正極−固体電解質層−負極集合体の正極と負極それぞれの厚みは、通常0.1μm以上100μm以下程度であり、固体電解質層の厚みは、通常0.1μm以上1mm以下程度である。
上記の正極−固体電解質層−負極集合体に、集電体、外装体等の他の部材を取り付けることにより、全固体電池の機能的単位であるセルが得られ、複数のセルを集積して電気的に接続することにより、全固体電池が得られる。
すなわち、本開示における全固体電池は、初回充電後の状態のものとする概念である。
D. All-solid-state battery electrode member and all-solid-state battery The primary assembly becomes a positive electrode-solid electrolyte layer-negative electrode assembly through energization by the "C. energization step".
In the positive electrode-solid electrolyte layer-negative electrode assembly, the positive electrode, the solid electrolyte layer, and the negative electrode are arranged in this order, and joined directly or via a portion made of another material, and further, the solid electrolyte layer on the positive electrode On one side or both sides of the side opposite to the position where the negative electrode exists (the outer side of the positive electrode) and the side opposite the position where the solid electrolyte layer on the negative electrode exists (the outer side of the negative electrode) It is the aggregate | assembly of each part which has the arrangement | sequence structure in which the part which consists of these materials may join.
The thickness of each of the positive electrode and the negative electrode of the positive electrode-solid electrolyte layer-negative electrode assembly is usually about 0.1 μm to 100 μm, and the thickness of the solid electrolyte layer is usually about 0.1 μm to 1 mm.
By attaching other members such as a current collector and an outer package to the positive electrode-solid electrolyte layer-negative electrode assembly, a cell that is a functional unit of an all-solid battery is obtained, and a plurality of cells are integrated. By electrically connecting, an all-solid battery can be obtained.
That is, the all solid state battery in the present disclosure is a concept that assumes a state after the initial charge.

(固体電解質Aの合成)
アルゴン雰囲気下のグローブボックス内で、LiS及びPをモル比で4:1の組成となるように混合し、原料組成物を得た。次に、原料組成物1gを、ジルコニアボール(5mmφ、80個)とともに、ジルコニア製のポット(45ml)に入れ、ポットを完全に密閉した(アルゴン雰囲気)。このポットを遊星型ボールミル機(フリッチュ・ジャパン社製P7)に取り付け、台盤回転数500rpmで、20時間メカニカルミリングを行った。これにより、固体電解質AとしてLiの粉末を得た。
(Synthesis of solid electrolyte A)
In a glove box under an argon atmosphere, Li 2 S and P 2 S 5 were mixed at a molar ratio of 4: 1 to obtain a raw material composition. Next, 1 g of the raw material composition was placed in a zirconia pot (45 ml) together with zirconia balls (5 mmφ, 80 pieces), and the pot was completely sealed (argon atmosphere). This pot was attached to a planetary ball mill (P7, manufactured by Fritsch Japan), and mechanical milling was performed at a base plate rotation speed of 500 rpm for 20 hours. Thereby, a powder of Li 8 P 2 S 9 was obtained as the solid electrolyte A.

(固体電解質Bの準備)
固体電解質Bとしては、直径φ10mm、厚み0.5mmのLi6.25LaZrAl0.2512(豊島製作所製)焼結体を用いた。
(Preparation of solid electrolyte B)
As the solid electrolyte B, a Li 6.25 La 3 Zr 2 Al 0.25 O 12 (manufactured by Toshima Seisakusho) sintered body having a diameter of 10 mm and a thickness of 0.5 mm was used.

[実施例1]
(1次組立体の作製)
1.まず、固体電解質Aの粉末150mgを、PET製のシリンダに添加し、3.5ton/cm(≒343MPa)でプレスし、固体電解質材料部を形成した。
2.全固体電池の正極活物質としては、LiCoO等のリチウム含有金属酸化物が現状では一般的であるが、本実施例では、本開示の電極部材の作用を示すモデルセルを作製するために、In箔(ニラコ社製φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付したLiIn箔を用いた。当該LiIn箔を前記固体電解質材料部の一方の表面に配置し、続けて当該固体電解質材料部の他方の表面に、負極活物質であるSi単体の粉末(Alfa aesar社製 平均粒径100nm)を、単位面積当たりの添加量を0.6mg/cmとして堆積させ、固体電解質材料部、LiIn箔とあわせて5ton/cm(≒490MPa)でプレスし、1次組立体を得た。
[Example 1]
(Preparation of primary assembly)
1. First, 150 mg of the solid electrolyte A powder was added to a cylinder made of PET and pressed at 3.5 ton / cm 2 (≈343 MPa) to form a solid electrolyte material part.
2. As a positive electrode active material of an all-solid-state battery, a lithium-containing metal oxide such as LiCoO 2 is generally used at present, but in this example, in order to produce a model cell showing the action of the electrode member of the present disclosure, A LiIn foil was used in which an Li foil (manufactured by Honjo Chemical Co., Ltd.) was attached to an In foil (manufactured by Niraco, φ10 mm, thickness 0.1 mm). The LiIn foil is disposed on one surface of the solid electrolyte material part, and subsequently, a powder of Si alone (an average particle size of 100 nm manufactured by Alfa aesar) as a negative electrode active material is applied to the other surface of the solid electrolyte material part. The amount added per unit area was 0.6 mg / cm 2 , and the solid electrolyte material part and LiIn foil were pressed together at 5 ton / cm 2 (≈490 MPa) to obtain a primary assembly.

(全固体電池用電極部材の作製)
得られた1次組立体を6Nmのトルクでネジ締めすることにより、積層方向に100MPaの拘束圧を印加した状態で、0.1mA/cmでの電流密度でSi単体粉末1gあたり2100mAhを通電することにより、前記負極材料部にLiイオンを挿入し、全固体電池用電極部材を得た。
(Preparation of electrode member for all solid state battery)
By screwing the obtained primary assembly with a torque of 6 Nm, 2100 mAh was applied per 1 g of Si powder at a current density of 0.1 mA / cm 2 in a state where a binding pressure of 100 MPa was applied in the stacking direction. As a result, Li ions were inserted into the negative electrode material part to obtain an electrode member for an all solid state battery.

[実施例2]
(1次組立体の作製)
1.まず、固体電解質Aの粉末150mgを、ポリエチレンテレフタラート(PET)製のシリンダに添加し、3.5ton/cm(≒343MPa)でプレスし、次に固体電解質Bの焼結体(φ10mm×t0.5mm)を、ポリエチレンテレフタラート(PET)製のシリンダ内に配置することで固体電解質材料部を形成した。
2.In箔(ニラコ社製φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付した正極材料部(LiIn箔)を用意し、固体電解質A側の表面に配置し、続けて当該固体電解質B側の表面に、負極活物質であるSi単体の粉末(Alfa aesar社製 平均粒径100nm)を、単位面積当たりの添加量を0.6mg/cmとして堆積させ、固体電解質A、固体電解質B、LiIn箔とあわせて5ton/cm(≒490MPa)でプレスし、1次組立体を得た。
[Example 2]
(Preparation of primary assembly)
1. First, 150 mg of the solid electrolyte A powder was added to a polyethylene terephthalate (PET) cylinder, pressed at 3.5 ton / cm 2 (≈343 MPa), and then the solid electrolyte B sintered body (φ10 mm × t0 0.5 mm) was placed in a polyethylene terephthalate (PET) cylinder to form a solid electrolyte material part.
2. Prepare a positive electrode material part (LiIn foil) in which a Li foil (manufactured by Honjo Chemical Co., Ltd.) is attached to an In foil (Nilaco φ10 mm, thickness 0.1 mm), and place it on the surface of the solid electrolyte A side. On the surface of the solid electrolyte B side, a powder of a simple substance of Si as a negative electrode active material (average particle size 100 nm manufactured by Alfa aesar) was deposited with an addition amount per unit area of 0.6 mg / cm 2 , and solid electrolyte A, A primary assembly was obtained by pressing together with the solid electrolyte B and LiIn foil at 5 ton / cm 2 (≈490 MPa).

(全固体電池用電極部材の作製)
得られた1次組立体において、実施例1と同様に通電工程を行うことにより、実施例2の全固体電池用電極部材を得た。
(Preparation of electrode member for all solid state battery)
In the obtained primary assembly, an energization process was performed in the same manner as in Example 1 to obtain an electrode member for an all-solid-state battery of Example 2.

(比較例1〜4)
実施例1において、通電量を表1のように変更したこと以外は、実施例1と同様にして比較例1及び2の全固体電池用電極部材を作製した。
また、実施例2において、拘束圧、及び通電量を表1のように変更したこと以外は、実施例2と同様にして比較例3及び4の電極部材を作製した。
なお、比較例3と比較例4においては、電極部材としての抵抗が大きく、通電に時間がかかりすぎたため、表1に記載された通電量まで通電した時点で通電工程を中断した。
(Comparative Examples 1-4)
In Example 1, all-solid-state battery electrode members of Comparative Examples 1 and 2 were produced in the same manner as in Example 1 except that the energization amount was changed as shown in Table 1.
Moreover, in Example 2, the electrode members of Comparative Examples 3 and 4 were produced in the same manner as in Example 2 except that the restraining pressure and the energization amount were changed as shown in Table 1.
In Comparative Example 3 and Comparative Example 4, since the resistance as an electrode member was large and it took too much time to energize, the energization process was interrupted when the energization amount shown in Table 1 was energized.

〔評価方法〕
得られた全固体電池用電極部材を切断し、SEM(日本電子株式会社製の走査電子顕微鏡 JSM−7800F)を使用して負極の切断面のSi粒子同士の接着を観察した。その結果、Si粒子同士の接着が確認できたものを「○」、接着が確認できなかったものを「×」として表1に示す。
実施例1のSEM画像を図3に示す。
なお、比較例3及び4については、通電量が極端に少ないことからLiの挿入量が十分でなく、Si粒子同士の接着も不十分であることが予測されるため、SEM画像を確認せずに「×」と判断した。
〔Evaluation method〕
The obtained electrode member for an all-solid-state battery was cut, and adhesion between Si particles on the cut surface of the negative electrode was observed using an SEM (scanning electron microscope JSM-7800F manufactured by JEOL Ltd.). As a result, it was shown in Table 1 as “◯” when the adhesion between the Si particles was confirmed, and “X” when the adhesion could not be confirmed.
The SEM image of Example 1 is shown in FIG.
In Comparative Examples 3 and 4, since the amount of energization is extremely small, the insertion amount of Li is not sufficient, and the adhesion between Si particles is predicted to be insufficient, so the SEM image is not confirmed. Was judged as “×”.

[結果]
実施例1と比較例1〜2を比較すると、通電量が630mAh/g以下である場合には粒界の融合が十分に進行せず、Si粒子同士の接着が不十分であることが分かった。
実施例2と比較例3〜4を比較すると、拘束圧が100MPa未満である場合には粒界の融合が十分に進行せず、Si粒子同士の接着が不十分であることが分かった。また、Si粒子同士の接着の進行が遅いため、負極中の導電性が低いままの状態が継続し、電極部材全体としての抵抗が大きくなりすぎたと推測される。
[result]
When Example 1 was compared with Comparative Examples 1 and 2, it was found that when the energization amount was 630 mAh / g or less, the fusion of the grain boundaries did not proceed sufficiently, and the adhesion between the Si particles was insufficient. .
When Example 2 was compared with Comparative Examples 3 and 4, it was found that when the confining pressure was less than 100 MPa, the fusion of the grain boundaries did not proceed sufficiently, and the adhesion between the Si particles was insufficient. Moreover, since the progress of the adhesion between the Si particles is slow, it is presumed that the state in which the conductivity in the negative electrode remains low and the resistance as a whole of the electrode member becomes too large.

(比較例5)
1.まず、固体電解質Aの粉末150mgを、PET製のシリンダに添加し、3.5ton/cm(≒343MPa)でプレスし、固体電解質材料部を形成した。
2.全固体電池の正極活物質としては、In箔(ニラコ社製φ10mm、厚さ0.1mm)にLi箔(本庄ケミカル社製)を貼付したLiIn箔を用いた。当該LiIn箔を前記固体電解質材料部の一方の表面に配置し、続けて当該固体電解質材料部の他方の表面に、負極活物質であるSi単体の粉末(Alfa aesar社製 平均粒径100nm)を、単位面積当たりの添加量を0.9mg/cmとして堆積させた。
その後、負極材料部、固体電解質材料部、正極材料部(LiIn箔)をあわせて、プレスを行わずに、1次組立体を得た。
得られた1次組立体を0.4Nmのトルクでネジ締めすることにより、積層方向に7MPaの拘束圧を印加し、電極部材を得た。結果を表1に示す。なお、比較例5で得られた電極部材の負極の切断面のSi粒子同士の接着は、通電できなかったため、比較例3〜4と同様にSEM画像を確認せずに「×」と判断した。
(Comparative Example 5)
1. First, 150 mg of the solid electrolyte A powder was added to a cylinder made of PET and pressed at 3.5 ton / cm 2 (≈343 MPa) to form a solid electrolyte material part.
2. As the positive electrode active material of the all-solid-state battery, LiIn foil in which Li foil (manufactured by Honjo Chemical Co., Ltd.) was attached to In foil (manufactured by Nilaco Corporation, φ10 mm, thickness 0.1 mm) was used. The LiIn foil is disposed on one surface of the solid electrolyte material part, and subsequently, a powder of Si alone (an average particle size of 100 nm manufactured by Alfa aesar) as a negative electrode active material is applied to the other surface of the solid electrolyte material part. The deposition amount per unit area was 0.9 mg / cm 2 .
Thereafter, the negative electrode material part, the solid electrolyte material part, and the positive electrode material part (LiIn foil) were combined to obtain a primary assembly without performing pressing.
By screwing the obtained primary assembly with a torque of 0.4 Nm, a restraining pressure of 7 MPa was applied in the stacking direction to obtain an electrode member. The results are shown in Table 1. In addition, since adhesion between Si particles on the cut surface of the negative electrode of the electrode member obtained in Comparative Example 5 could not be energized, it was determined as “x” without confirming the SEM image as in Comparative Examples 3 to 4. .

1 固体電解質材料部(固体電解質材料層)
1’ 固体電解質粉末
2 負極材料部(負極材料層)
2’ 負極材料粉末(負極用合材)
3 正極材料部(正極材料層)
3’ 正極材料粉末(正極用合材)
4 固体電解質層
5 負極
6 正極
7 他の部材
101 1次組立体
102 全固体電池用電極部材
103 全固体電池
1 Solid electrolyte material part (solid electrolyte material layer)
1 'solid electrolyte powder 2 negative electrode material part (negative electrode material layer)
2 'Negative electrode material powder (mixture for negative electrode)
3 Positive electrode material part (positive electrode material layer)
3 'Positive electrode material powder (mixture for positive electrode)
4 Solid Electrolyte Layer 5 Negative Electrode 6 Positive Electrode 7 Other Member 101 Primary Assembly 102 Electrode Member for All Solid Battery 103 All Solid Battery

Claims (1)

正極と、負極と、当該正極及び当該負極の間に配置される固体電解質層と、を備える全固体電池用の電極部材の製造方法であって、
Liを含有する正極活物質を含む正極材料部、負極活物質としてSi単体粉末を含み且つ結着材及び固体電解質を含まない負極材料部、並びに、前記正極材料部と前記負極材料部の間に配置された固体電解質材料部を備えた1次組立体を準備する準備工程、並びに、
前記1次組立体に、前記正極材料部、前記固体電解質材料部及び前記負極材料部の配列方向に100MPa以上の拘束圧を印加した状態で、前記正極材料部側から前記固体電解質材料部を経由して前記負極材料部側に至る方向へ、負極材料部に含まれるSi単体粉末1g当たり910mAh以上の電気量となるように通電し、前記負極材料部にLiイオンを挿入する通電工程を有する、全固体電池用電極部材の製造方法。
A method for producing an electrode member for an all-solid battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer disposed between the positive electrode and the negative electrode,
A positive electrode material portion containing a positive electrode active material containing Li, a negative electrode material portion containing Si simple powder as a negative electrode active material and not containing a binder and a solid electrolyte, and between the positive electrode material portion and the negative electrode material portion A preparatory step of preparing a primary assembly with a disposed solid electrolyte material portion, and
The primary assembly is passed through the solid electrolyte material portion from the positive electrode material portion side in a state where a binding pressure of 100 MPa or more is applied to the primary assembly in the arrangement direction of the positive electrode material portion, the solid electrolyte material portion, and the negative electrode material portion. Then, in the direction to reach the negative electrode material part side, it has an energization step of energizing so that the amount of electricity is 910 mAh or more per 1 g of Si simple substance powder contained in the negative electrode material part, and inserting Li ions into the negative electrode material part. Manufacturing method of electrode member for all-solid-state battery.
JP2017139653A 2017-01-24 2017-07-19 Method for manufacturing electrode member for all-solid-state battery Active JP6748035B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017010707 2017-01-24
JP2017010707 2017-01-24

Publications (2)

Publication Number Publication Date
JP2018120841A true JP2018120841A (en) 2018-08-02
JP6748035B2 JP6748035B2 (en) 2020-08-26

Family

ID=63045289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017139653A Active JP6748035B2 (en) 2017-01-24 2017-07-19 Method for manufacturing electrode member for all-solid-state battery

Country Status (1)

Country Link
JP (1) JP6748035B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020042931A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Solid-state battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032632A (en) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd Manufacturing method of non-aqueous secondary battery
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
JP2012089424A (en) * 2010-10-21 2012-05-10 Sumitomo Electric Ind Ltd Solid electrolyte and nonaqueous electrolyte battery
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032632A (en) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd Manufacturing method of non-aqueous secondary battery
JP2010056070A (en) * 2008-07-30 2010-03-11 Idemitsu Kosan Co Ltd All-solid secondary battery and device provided with same
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
JP2012089424A (en) * 2010-10-21 2012-05-10 Sumitomo Electric Ind Ltd Solid electrolyte and nonaqueous electrolyte battery
JP2014035987A (en) * 2012-08-10 2014-02-24 Toyota Motor Corp METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020042931A (en) * 2018-09-07 2020-03-19 トヨタ自動車株式会社 Solid-state battery
JP7006545B2 (en) 2018-09-07 2022-01-24 トヨタ自動車株式会社 Solid state battery

Also Published As

Publication number Publication date
JP6748035B2 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
KR102165543B1 (en) Ion-conducting batteries with solid state electrolyte materials
JP6172083B2 (en) Lithium solid state secondary battery and manufacturing method thereof
CN106558679B (en) Method for manufacturing electrode laminate and method for manufacturing all-solid-state battery
JP5880409B2 (en) Manufacturing method of all-solid lithium secondary battery
JP6299251B2 (en) Electrode composite manufacturing method, electrode composite, and battery
JP5686191B2 (en) Solid battery manufacturing method
JP2016012495A (en) Lithium solid type secondary battery, and method for manufacturing the same
US11888149B2 (en) Solid state battery system usable at high temperatures and methods of use and manufacture thereof
WO2012099178A1 (en) Nonaqueous electrolyte battery
JP5796687B2 (en) Positive electrode material, secondary battery and manufacturing method thereof
JP2016134254A (en) Method of manufacturing all-solid battery
JP2020123488A (en) All-solid battery and manufacturing method thereof
CN111463437A (en) All-solid-state battery
CN111384451B (en) Laminate body
JP2013109881A (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and electric vehicle
JP6958272B2 (en) Non-aqueous electrolyte secondary battery
KR20150042350A (en) Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
JP6748035B2 (en) Method for manufacturing electrode member for all-solid-state battery
JP6859234B2 (en) Manufacturing method of all-solid-state battery
CN112602208B (en) Electrode for all-solid battery and method of manufacturing electrode assembly including the same
WO2013021432A1 (en) Solid-state battery and method for producing same
CN114665148A (en) All-solid-state battery and method for manufacturing same
JP6838359B2 (en) Non-aqueous electrolyte secondary battery
JP2020129518A (en) Laminate
KR102319539B1 (en) A method for manufacturing an all solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200806

R150 Certificate of patent or registration of utility model

Ref document number: 6748035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250