JP2005032632A - Manufacturing method of non-aqueous secondary battery - Google Patents

Manufacturing method of non-aqueous secondary battery Download PDF

Info

Publication number
JP2005032632A
JP2005032632A JP2003272019A JP2003272019A JP2005032632A JP 2005032632 A JP2005032632 A JP 2005032632A JP 2003272019 A JP2003272019 A JP 2003272019A JP 2003272019 A JP2003272019 A JP 2003272019A JP 2005032632 A JP2005032632 A JP 2005032632A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
charge
aqueous secondary
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003272019A
Other languages
Japanese (ja)
Inventor
Akimichi Kojima
映理 児島
Tokuji Ueda
上田  篤司
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2003272019A priority Critical patent/JP2005032632A/en
Publication of JP2005032632A publication Critical patent/JP2005032632A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery in which the deterioration of cycle characteristics is suppressed. <P>SOLUTION: The manufacturing method of the non-aqueous secondary battery which comprises a negative electrode containing an element capable of alloying with lithium and a positive electrode includes a process of a first charging. The first charging is carried out by a process of the initial stage charging, a middle stage charging, and a last stage charging in this order. In the above process, the negative electrode is pressurized in the thickness direction of the negative electrode, and the initial stage charging and the last stage charging are carried out with a current density of 1.0 mA/cm<SP>2</SP>or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウムと合金化可能な元素を含む負極を備えた非水二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a non-aqueous secondary battery including a negative electrode containing an element that can be alloyed with lithium.

近年、リチウムイオン二次電池は、使用機器の小型化に伴いさらなるエネルギーの高密度化(高容量化)が求められており、高容量化に向けた研究が盛んに行われている。従来、負極活物質には炭素材料が広く用いられてきたが、炭素材料は既に理論容量(370mAh/g)に近い容量で使われているので、負極活物質に炭素材料を用いたリチウムイオン二次電池の大幅な高容量化は難しい。さらなる高容量化を可能とする負極活物質として、リチウムと合金化可能な元素からなる金属または半金属を含む材料が知られている。しかしながら、上記金属または半金属を含む材料は下記に示す問題点を有している。以下にその問題点をケイ素を例に挙げて説明をする。   In recent years, lithium ion secondary batteries have been required to have higher energy density (higher capacity) in accordance with downsizing of devices used, and researches for higher capacity have been actively conducted. Conventionally, a carbon material has been widely used for the negative electrode active material. However, since the carbon material is already used at a capacity close to the theoretical capacity (370 mAh / g), lithium ion secondary material using a carbon material as the negative electrode active material is used. It is difficult to significantly increase the capacity of the secondary battery. As a negative electrode active material capable of further increasing the capacity, a material containing a metal or a semimetal made of an element that can be alloyed with lithium is known. However, the material containing the metal or metalloid has the following problems. The problem will be described below by taking silicon as an example.

ケイ素(Si)はリチウムと合金化する場合、組成式Li1.7Si、Li2.33Si、Li3.25Si、Li4.4Siで示される化合物となる。例えばLi1.7Siの体積はSiの体積の2.19倍、Li4.4Siの体積はSiの体積の4.14倍であることが計算上分かっている。したがって、負極が負極活物質としてケイ素、ケイ素化合物またはケイ素と導電性物質とからなる粒状の複合材料を含む場合、負極の体積は充電時において放電時の2倍以上に膨張し、充電時に膨張した負極が放電時に収縮すると、ケイ素粒子−ケイ素粒子間、またはケイ素粒子−導電助剤間に大きな空隙ができる。このような充放電サイクルを繰り返し行うと、電子伝導ネットワークが徐々に損われ、電子伝導ネットワークから外れた負極活物質、すなわち、リチウムとの合金化に関与しない負極活物質が増加するので、充放電サイクルを経るにつれて負極の利用容量(充放電容量)が低下し、非水二次電池のサイクル特性が劣化するという問題点があった。 When silicon (Si) is alloyed with lithium, it becomes a compound represented by the composition formulas Li 1.7 Si, Li 2.33 Si, Li 3.25 Si, and Li 4.4 Si. For example, it has been calculated by calculation that the volume of Li 1.7 Si is 2.19 times the volume of Si and the volume of Li 4.4 Si is 4.14 times the volume of Si. Therefore, when the negative electrode includes silicon, a silicon compound, or a granular composite material composed of silicon and a conductive material as the negative electrode active material, the volume of the negative electrode expands more than twice that during discharge and expands during charge. When the negative electrode contracts during discharge, large voids are formed between the silicon particles and the silicon particles or between the silicon particles and the conductive additive. If such a charge / discharge cycle is repeated, the electron conduction network is gradually damaged, and the negative electrode active material deviated from the electron conduction network, i.e., the negative electrode active material not involved in alloying with lithium increases. As the cycle progresses, the capacity (charge / discharge capacity) of the negative electrode decreases, and the cycle characteristics of the nonaqueous secondary battery deteriorate.

この問題を解決する方法として、負極活物質をリチウムと合金化可能な元素からなる金属粒子または半金属粒子とそれら粒子の表面を被覆する炭素層とで構成し、炭素層により金属粒子または半金属粒子の膨張を抑制する方法が開示されている。さらに、初回充電の総充電容量を1500mAh/g以下とし、初回充電する工程において、充電の初期を所定の電流密度で定電流充電し、最終充電電圧に達した後、この電位を保持して充電量が例えば500〜1000mAh/gとなるまで定電圧充電をする方法が開示されている(例えば、特許文献1参照)。
特開2000−215887号公報(5−6頁)
As a method for solving this problem, the negative electrode active material is composed of metal particles or metalloid particles made of an element that can be alloyed with lithium, and a carbon layer covering the surfaces of the particles, and the carbon particles form metal particles or metalloids. A method of suppressing particle expansion is disclosed. Furthermore, the total charge capacity of the initial charge is set to 1500 mAh / g or less, and in the initial charge process, the initial charge is charged at a constant current density at a predetermined current density, and after reaching the final charge voltage, this potential is maintained and charged. A method of performing constant voltage charging until the amount reaches, for example, 500 to 1000 mAh / g is disclosed (for example, see Patent Document 1).
JP 2000-215887 A (page 5-6)

しかし、上記方法を採用しても、金属粒子または半金属粒子の表面側と中心側とで反応進行度に差があるため、金属粒子または半金属粒子の表面側は、中心側よりも充放電に伴う膨張収縮の程度が大きく、膨張収縮によるストレスにより微粉化することがあった。微粉化された金属粒子または半金属粒子は電子伝導ネットワークから外れてしまい、サイクル特性の劣化を十分に抑制できなかった。   However, even if the above method is adopted, there is a difference in reaction progress between the surface side and the center side of the metal particles or metalloid particles, so the surface side of the metal particles or metalloid particles is charged / discharged more than the center side. The degree of expansion and contraction accompanying the above was large, and there was a case where the powder was pulverized by stress due to expansion and contraction. The finely divided metal particles or metalloid particles are out of the electron conduction network, and the deterioration of the cycle characteristics cannot be sufficiently suppressed.

本発明の非水二次電池の製造方法は、リチウムと合金化可能な元素を含む負極と、正極とを備えた非水二次電池の製造方法であって、初回充電をする工程を含み、前記初回充電は、初期充電、中期充電、および終期充電をこの順で行うものとし、前記工程において、前記負極を前記負極の厚み方向に加圧しながら、前記初期充電と前記終期充電とを1.0mA/cm2以下の電流密度で行うことを特徴とする。 A method for producing a non-aqueous secondary battery of the present invention is a method for producing a non-aqueous secondary battery comprising a negative electrode containing an element that can be alloyed with lithium and a positive electrode, and includes a step of performing initial charge, In the initial charging, initial charging, intermediate charging, and final charging are performed in this order, and in the step, the initial charging and the final charging are performed while the negative electrode is pressed in the thickness direction of the negative electrode. It is characterized by carrying out at a current density of 0 mA / cm 2 or less.

本発明によれば、サイクル特性の劣化が抑制された非水二次電池を提供できる。   According to the present invention, it is possible to provide a non-aqueous secondary battery in which deterioration of cycle characteristics is suppressed.

電池における電気化学反応は、電極と電解液との界面で反応が進行する不均一反応系である。なかでも、リチウムと合金化可能な元素からなる金属粒子または半金属粒子は、リチウムと合金化する際に体積膨張が起こるために粒子の表面側と内部側との反応進行度の差が生じ易い。電気化学反応において、電流密度と単位時間当たりの反応進行度(電気量)とは相関しており、電流密度を大きくすれば反応進行度も大きくなる。反応進行度が大きいと、リチウムと合金化可能な元素を含む金属粒子または半金属粒子について、リチウムと反応した反応部分と反応していない未反応部分との体積差が大きくなり、上記反応部分が微粉化し易くなる。上記粒子が微粉化すると、負極内の電子伝導ネットワークが損なわれ、非水二次電池のサイクル特性が劣化する。特に、リチウムと負極活物質とが初めて合金化する際には微粉化が起こり易い。   The electrochemical reaction in the battery is a heterogeneous reaction system in which the reaction proceeds at the interface between the electrode and the electrolytic solution. Among them, metal particles or metalloid particles made of an element that can be alloyed with lithium tend to undergo a volume expansion when alloyed with lithium, so that a difference in reaction progress between the surface side and the inner side of the particle tends to occur. . In an electrochemical reaction, the current density and the reaction progress (electric quantity) per unit time are correlated, and the reaction progress increases as the current density is increased. When the reaction progress is large, the volume difference between the reaction part reacted with lithium and the unreacted part that has not reacted is increased for metal particles or metalloid particles containing an element that can be alloyed with lithium. It becomes easy to pulverize. When the particles are pulverized, the electron conduction network in the negative electrode is impaired, and the cycle characteristics of the nonaqueous secondary battery are deteriorated. In particular, when lithium and the negative electrode active material are alloyed for the first time, pulverization tends to occur.

そこで、本発明者らは、初回のリチウム合金化反応、すなわち、初回充電する工程のうち、上記粒子の体積変化が大きい充電初期および充電終期において、低電流密度で充電して粒子の微粉化を抑制し、かつ、負極の膨張を抑制しながら膨張により形成された負極内の空隙を埋めるべく負極を加圧して、上記粒子間の接触を保持、すなわち、電子伝導ネットワークを保持することに到達した。   Therefore, the inventors of the present invention performed the first lithium alloying reaction, that is, in the initial charging step, in the initial charge stage and the final charge stage where the volume change of the particles is large, charging at a low current density to finely pulverize the particles. Suppressing and pressurizing the negative electrode to fill the void in the negative electrode formed by expansion while suppressing the expansion of the negative electrode, and reached the contact between the particles, that is, the retention of the electron conduction network .

すなわち、本実施の形態の非水二次電池の製造方法は、リチウムと合金化可能な元素を含む負極と、正極とを備えた非水二次電池の製造方法であって、初回充電をする工程を含み、初回充電は、初期充電、中期充電、および終期充電をこの順で行うものとし、上記工程において、負極を負極の厚み方向に加圧しながら、初期充電と終期充電とを1.0mA/cm2以下の電流密度で行うことを特徴とする。 That is, the non-aqueous secondary battery manufacturing method of the present embodiment is a non-aqueous secondary battery manufacturing method including a negative electrode containing an element that can be alloyed with lithium and a positive electrode, and is charged for the first time. The initial charge includes a process, and initial charge, intermediate charge, and final charge are performed in this order. In the above process, initial charge and final charge are 1.0 mA while pressing the negative electrode in the thickness direction of the negative electrode. / Cm 2 or less current density.

本実施の形態の非水二次電池の製造方法によれば、初回充電する工程において、電子伝導ネットワークが損われることを抑制できるので、サイクル特性の劣化が抑制された非水二次電池を提供できる。   According to the method for manufacturing a non-aqueous secondary battery of the present embodiment, it is possible to suppress damage to the electron conduction network in the first charging step, and thus provide a non-aqueous secondary battery in which deterioration of cycle characteristics is suppressed. it can.

尚、初期充電と終期充電とを行う際の電流密度の下限値について特に制限はないが、通常、0.4mA/cm2以上であると、24時間以内に充電を完了させることが可能であり好ましい。 Although there is no particular limitation on the lower limit value of the current density when performing the initial charging and the final charging, the charging can usually be completed within 24 hours when it is 0.4 mA / cm 2 or more. preferable.

本発明において、初期充電とは、初回充電容量のうちの0〜15%(初期領域)を充電することであり、中期充電とは、15%を越え75%(中期領域)を充電することであり、終期充電とは、75%を越え100%(末期領域)を充電することである。   In the present invention, initial charging is charging 0 to 15% (initial region) of the initial charging capacity, and medium-term charging is charging more than 15% and 75% (medium region). Yes, terminal charge is to charge more than 75% and 100% (terminal region).

尚、上記初回充電容量とは、初回充電をする工程において充電される総充電容量のことであり、負極の理論容量とその利用率との積により求まる値である。利用率は、非水二次電池の設計時において決定される負極活物質および正極活物質の種類、量、および初回充電の充電終止電圧等により決まる値である。   The initial charge capacity is the total charge capacity charged in the initial charge step, and is a value determined by the product of the theoretical capacity of the negative electrode and the utilization rate. The utilization rate is a value determined by the type and amount of the negative electrode active material and the positive electrode active material determined at the time of designing the non-aqueous secondary battery, the end-of-charge voltage of the first charge, and the like.

初回充電をする工程において、15mA/cm2以下の電流密度で中期充電を行い、中期充電を行うことにより充電される容量のうちの少なくとも1部を5〜15mA/cm2の電流密度で充電することが好ましい。 In the step of the first charge, carried out a mid-term charge at a current density of 15 mA / cm 2 or less, is charged at a current density of 5~15mA / cm 2 at least a portion of the capacitance which is charged by performing metaphase charge It is preferable.

中期充電を行うことにより充電される容量のうちの少なくとも1部または全部を15mA/cm2よりも大きい電流密度で充電すると、終期充電を1.0mA/cm2以下の電流密度で行うに際して、電圧降下(IRドロップ)が生じることがあり、電池を短命化してしまう恐れがあるからである。一方、5A/cm2より小さい電流密度で充電すると上記電圧降下が生じる問題はないが、充電に長時間を要することとなる。中期充電を15mA/cm2以下の電流密度で行い、中期充電を行うことにより充電される容量のうちの少なくとも1部を5〜15mA/cm2の電流密度で充電すれば、電圧降下の問題を生じることなく充電時間を短縮できる。 When at least one part or all of the capacity charged by performing the medium-term charge is charged at a current density greater than 15 mA / cm 2 , the voltage at the time of performing the final charge at a current density of 1.0 mA / cm 2 or less This is because a drop (IR drop) may occur, which may shorten the battery life. On the other hand, charging with a current density smaller than 5 A / cm 2 does not cause the above voltage drop, but it takes a long time for charging. Performed metaphase charge 15 mA / cm 2 in the following current densities, if charged with a current density of 5~15mA / cm 2 at least a portion of the capacitance which is charged by performing metaphase charge, the voltage drop problems The charging time can be shortened without occurring.

尚、初回充電をする工程は、負極へのリチウム挿入が均一に行われることにより電池の性能および寿命を確保するために、室温下で行ことが望ましい。   The first charging step is preferably performed at room temperature in order to ensure the performance and life of the battery by uniformly inserting lithium into the negative electrode.

負極を負極の厚み方向に加圧する方法については特に制限はないが、例えば、負極と正極とを外装ケースの外側から負極と正極とを近づけるように加圧すればよい。具体的には、例えば、外装ケースの負極および正極の主面に対向する面を内側に湾曲させることにより負極と正極とを加圧してもよいし、対向する2枚の板の間に初回充電を行う前の非水二次電池を配置し、上記2枚の板を互いに近づけることにより負極と正極とを加圧してもよい。上記2枚の板は、ボルト、ナット、クランプ、クリップ類を用いて互いに近づけることができる。その他に、油圧や水圧を利用する方法でもよい。   Although there is no restriction | limiting in particular about the method of pressing a negative electrode in the thickness direction of a negative electrode, For example, what is necessary is just to pressurize a negative electrode and a positive electrode so that a negative electrode and a positive electrode may be approached from the outer side of an exterior case. Specifically, for example, the negative electrode and the positive electrode may be pressurized by curving inward the surface facing the main surface of the negative electrode and the positive electrode of the outer case, or the initial charge is performed between two opposing plates. The previous non-aqueous secondary battery may be disposed, and the negative electrode and the positive electrode may be pressurized by bringing the two plates closer together. The two plates can be brought close to each other using bolts, nuts, clamps and clips. In addition, a method using hydraulic pressure or water pressure may be used.

上記圧力は、電池の容量等を考慮して適宜調節すればよいが、例えば、初回充電容量が500〜2500mAh/gである電池に対しては、196MPa以上1961MPa以下が適当である。   The pressure may be appropriately adjusted in consideration of the battery capacity and the like. For example, 196 MPa to 1961 MPa is appropriate for a battery having an initial charge capacity of 500 to 2500 mAh / g.

本実施の形態の非水二次電池の製造方法により作製される非水二次電池は、下記の負極材料(負極活物質、導電助剤、バインダ)、正極材料(正極活物質、導電助剤、バインダ)、セパレータおよび電解液等を用いて作製できる。   The nonaqueous secondary battery produced by the nonaqueous secondary battery manufacturing method of the present embodiment includes the following negative electrode material (negative electrode active material, conductive additive, binder), positive electrode material (positive electrode active material, conductive additive). , Binder), a separator, an electrolytic solution, and the like.

負極は、例えば、上記負極材料に適当な溶剤を加えて十分に混練して得た負極合剤ペーストを、集電体となる金属メッシュ、金属箔等に塗布し、所定の厚さおよび所定の電極密度に制御された負極合剤層を形成することにより作製できる。   The negative electrode is prepared by, for example, applying a negative electrode mixture paste obtained by adding an appropriate solvent to the negative electrode material and thoroughly kneading it to a metal mesh, a metal foil, or the like serving as a current collector. It can produce by forming the negative mix layer controlled to the electrode density.

正極についても負極と同様に、上記正極材料に適当な溶剤を加えて十分に混練して得た正極合剤ペーストを、集電体となる金属メッシュ、金属箔等に塗布し、所定の厚さおよび所定の電極密度に制御された正極合剤層を形成することにより作製できる。   Similarly to the negative electrode, the positive electrode mixture paste obtained by sufficiently kneading and adding a suitable solvent to the positive electrode material was applied to a metal mesh, a metal foil, etc. as a current collector, with a predetermined thickness. And it can produce by forming the positive mix layer controlled by the predetermined electrode density.

負極活物質としては、リチウムと合金化可能な元素を含有する材料であれば特に制限はないが、例えば、Al、Sn、SiおよびZnからなる群から選ばれる少なくとも1種の元素からなる金属または半金属、その金属または半金属を含む合金、その金属または半金属を含む化合物(以下「金属または半金属等」と略する。)を用いることができる。負極活物質は、上記金属または半金属と、上記金属または半金属と電気化学的に安定な絶縁物質または導電性物質とを含む複合材料であってもよいが、特には、上記金属または半金属と導電性物質とを含む複合材料であることが好ましい。   The negative electrode active material is not particularly limited as long as the material contains an element that can be alloyed with lithium. For example, a metal composed of at least one element selected from the group consisting of Al, Sn, Si, and Zn, or A metalloid, an alloy containing the metal or metalloid, a compound containing the metal or metalloid (hereinafter abbreviated as “metal or metalloid”) can be used. The negative electrode active material may be a composite material including the metal or metalloid and the metal or metalloid and an electrochemically stable insulating material or conductive material. And a composite material containing a conductive substance.

上記絶縁材料としてはAl23、SiO2等の金属酸化物を、上記導電性物質としては、炭素、またはニッケル、銅、ズス、アルミニウム等の金属を用いることができる。導電性物質が炭素である場合、炭素は、上記金属または半金属等の表面の一部または全部を被覆していてもよい。また導電性物質が上記金属である場合、負極活物質は、Al、Sn、SiおよびZnからなる群から選ばれる少なくとも1種の金属または半金属と上記導電性物質との固溶体、金属間化合物等の複合材料であってもよい。 As the insulating material, metal oxides such as Al 2 O 3 and SiO 2 can be used, and as the conductive substance, metals such as carbon or nickel, copper, soot, and aluminum can be used. When the conductive material is carbon, the carbon may cover part or all of the surface of the metal or metalloid. When the conductive material is the above metal, the negative electrode active material is a solid solution, an intermetallic compound, or the like of at least one metal or semimetal selected from the group consisting of Al, Sn, Si and Zn and the above conductive material. The composite material may be used.

負極用の導電助剤は、負極活物質の種類によってその必要性が異なる。例えば、負極活物質がケイ素やケイ素化合物である場合、導電助剤は必要である。負極活物質がケイ素と導電性物質とからなる複合材料である場合は、負極活物質自体が導電性を有しているので、導電助剤は必ずしも必要ではないが、負極活物質がケイ素と導電性物質とからなる複合材料である場合であっても、導電性をより高めるために、負極は導電助剤を含んでいることが好ましい。   The necessity for the conductive additive for the negative electrode varies depending on the type of the negative electrode active material. For example, when the negative electrode active material is silicon or a silicon compound, a conductive additive is necessary. In the case where the negative electrode active material is a composite material composed of silicon and a conductive material, the negative electrode active material itself has conductivity, so a conductive auxiliary agent is not necessarily required, but the negative electrode active material is electrically conductive with silicon. Even in the case of a composite material composed of a conductive substance, the negative electrode preferably contains a conductive additive in order to further increase the conductivity.

負極用の導電助剤としては、非水二次電池において化学変化を起こさない電子伝導性材料であれば特に限定されないが、例えば、天然黒鉛(鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素粒子、炭素繊維、金属粉(銅、ニッケル、アルミニウム、銀等)、金属繊維、ポリフェニレン誘導体等を用いることができ、これらの導電助剤のうち2種以上を用いてもよい。   The conductive auxiliary agent for the negative electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the nonaqueous secondary battery. For example, natural graphite (flaky graphite, earthy graphite, etc.), artificial graphite, Carbon particles such as carbon black, acetylene black, ketjen black, carbon fiber, metal powder (copper, nickel, aluminum, silver, etc.), metal fiber, polyphenylene derivatives, etc. can be used. More than one species may be used.

負極に含まれるリチウムと合金化可能な元素からなる金属および半金属は、通常、負極材料の全重量に対して5重量%以上50重量%以下の重量割合で含まれていることが好ましい。   It is preferable that the metal and metalloid which consist of an element which can be alloyed with lithium contained in a negative electrode are normally contained in the weight ratio of 5 to 50 weight% with respect to the total weight of negative electrode material.

負極を構成する負極合剤層の厚みは通常15μm以上150μm以下であることが好ましい。負極合剤層の厚さが薄すぎると、電池の体積当たりの容量が確保できず、厚すぎると、負活物質重量が増え、負活物質の単位重量当たりの電流密度は低下するため、負極活物質への電流負荷は下がるが、それ以上に、負極合剤層の集電体と接する面の反対面と集電体との距離が大きくなることによるリチウムイオンの拡散の低下や過電圧の増大により充電効率が低下するからである。   The thickness of the negative electrode mixture layer constituting the negative electrode is usually preferably 15 μm or more and 150 μm or less. If the thickness of the negative electrode mixture layer is too thin, the capacity per volume of the battery cannot be secured, and if it is too thick, the negative active material weight increases and the current density per unit weight of the negative active material decreases. Although the current load on the active material is reduced, the diffusion of lithium ions and the increase of overvoltage are further increased by increasing the distance between the surface of the negative electrode mixture layer opposite to the surface in contact with the current collector and the current collector. This is because the charging efficiency decreases.

負極の集電体としては、Liと反応しない金属、好適にはCu、Ni、SUS(ステンレス)またはこれらを主成分とする厚み5μm〜50μmの金属箔(合金箔)を用いることができる。この集電体には、表面粗さ(Ra)が0.05μm〜2μmのものを使用してもよいし、実行厚みが50μm以内であれば、凹凸加工を施されていてもよい。複数のスリットを入れるなどの形状加工が施されていてもよい。   As the current collector of the negative electrode, a metal that does not react with Li, preferably Cu, Ni, SUS (stainless steel), or a metal foil (alloy foil) having a thickness of 5 μm to 50 μm mainly composed of these can be used. As this current collector, one having a surface roughness (Ra) of 0.05 μm to 2 μm may be used, and as long as the effective thickness is within 50 μm, unevenness processing may be performed. Shape processing such as inserting a plurality of slits may be performed.

正極材料にはリチウム含有遷移金属酸化物が含まれており、リチウム含有遷移金属酸化物としては、特に制限はなく各種のものを使用できるが、組成式LiMaO2で示される層状構造をした組成物、または組成式LiMb24で示されるスピネル型構造をした組成物であることが好ましい。ただし、MaはMn、CoおよびNiからなる群から選ばれる少なくとも1種であり、Mbは、Mn、Mg、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも一種を含み、Mnを主成分(含有量20〜100%)として含む。例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-y2、LixNi1-yy2、LixMn24、LixMn2-yy4(Mは、Mg、Mn、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも一種、x、y、zは、0≦x≦1.1、0<y<1.0、2.0≦z≦2.2で示される数値)が好ましい。 The positive electrode material contains a lithium-containing transition metal oxide, and there are no particular restrictions on the lithium-containing transition metal oxide, and various types can be used, but a composition having a layered structure represented by the composition formula LiMaO 2 Or a composition having a spinel structure represented by the composition formula LiMb 2 O 4 . However, Ma is at least one selected from the group consisting of Mn, Co and Ni, and Mb is at least one selected from the group consisting of Mn, Mg, Fe, Co, Ni, Cu, Zn, Al and Cr. And Mn as a main component (content 20 to 100%). For example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O 2 , Li x Ni 1- y My O 2 , Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (M is, Mg, at least one Mn, Fe, Co, Ni, Cu, Zn, is selected from the group consisting of Al and Cr, x, y , Z is preferably a numerical value represented by 0 ≦ x ≦ 1.1, 0 <y <1.0, 2.0 ≦ z ≦ 2.2).

正極用の導電助剤としては、正極材料の充放電電位において化学変化を起こさない電子伝導性材料であれば特に制限はなく、例えば、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカ−ボンブラック類、炭素繊維、金属繊維などの導電性繊維類等を1種または2種以上を用いることができる。これらの電子伝導性材料のうちでは、特に、人造黒鉛、アセチレンブラック、ケッチェンブラックが好ましい。   The conductive auxiliary agent for the positive electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the charge / discharge potential of the positive electrode material. For example, graphites such as natural graphite (flaky graphite) and artificial graphite Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and conductive fibers such as carbon fiber and metal fiber may be used singly or in combination. it can. Of these electron conductive materials, artificial graphite, acetylene black, and ketjen black are particularly preferable.

負極および正極に用いられるバインダとしては、例えば、ポリアクリル酸、ポリアクリル酸Na、ポリビニルフェノール、ポリビニルメチルエーテル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリヒドロキシ(メタ)アクリレート、スチレン−マレイン酸共重合体、ポリビニルクロリド、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエン−ターポリマー(EPDM)、スルホン化EPDM、ポリビニルアセタール、メチルメタアクリレート、ポリビニルエステル共重合体、スチレン−ブタジエン共重合体、アクリロニトリル−ブタジエン共重合体、ポリブタジエン、ネオプレンゴム、フッ素ゴム、ポリエチレンオキシド、ポリエステル、フェノール樹脂、エポキシ樹脂、でんぷん、カルボキシメチルセルロース、セルロース、ジアセチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の多糖類、熱可塑性樹脂およびゴム状弾性を有するポリマー等を用いることができる。特に、ポリアクリル酸エステル系ラテックス、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデンが好ましい。   Examples of the binder used in the negative electrode and the positive electrode include polyacrylic acid, polyacrylic acid Na, polyvinyl phenol, polyvinyl methyl ether, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamide, polyhydroxy (meth) acrylate, and styrene-maleic acid copolymer. Polymer, polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer, polyethylene, polypropylene, ethylene-propylene-diene- Terpolymer (EPDM), sulfonated EPDM, polyvinyl acetal, methyl methacrylate, polyvinyl ester copolymer, styrene Diene copolymer, acrylonitrile-butadiene copolymer, polybutadiene, neoprene rubber, fluororubber, polyethylene oxide, polyester, phenol resin, epoxy resin, starch, carboxymethylcellulose, cellulose, diacetylcellulose, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, etc. Polysaccharides, thermoplastic resins, polymers having rubbery elasticity, and the like can be used. In particular, polyacrylate latex, carboxymethyl cellulose, polytetrafluoroethylene, and polyvinylidene fluoride are preferable.

電解液は、下記の溶媒中に下記の無機イオン塩を溶解させることによって調製したものが使用できる。   As the electrolytic solution, one prepared by dissolving the following inorganic ion salt in the following solvent can be used.

溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート(MEC)、ジエチレンカーボネート(DEC)、プロピオン酸メチル、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ガンマーブチロラクトン(GBL)、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジエチルエーテル等の有機溶媒を用いることができる。上記溶媒は、イミダゾリウムカチオン、4級アンモニウム、ホスホニウム、スルホニウムをカチオンとして含み100℃以下で液体状である溶融塩や、これら溶融塩と上記有機溶媒との混合溶媒であってもよい。   Examples of the solvent include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate (MEC), diethylene carbonate (DEC), methyl propionate, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), gamma-butyrolactone ( GBL), ethylene glycol sulfite, 1,2-dimethoxyethane, 1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, diethyl ether, and other organic solvents can be used. The solvent may be a molten salt that contains imidazolium cation, quaternary ammonium, phosphonium, or sulfonium as a cation and is liquid at 100 ° C. or lower, or a mixed solvent of these molten salt and the organic solvent.

無機イオン塩としては、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23、LiCn2n+1SO3(n≧2)、LiN(RfOSO22〔ここでRfはフルオロアルキル基〕等を用いることができる。電解液中の無機イオン塩の濃度としては、0.5〜1.5mol/dm3、特に0.9〜1.25mol/dm3が好ましい。 As the inorganic ion salt, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group], etc. Can be used. The concentration of the inorganic ion salt in the electrolytic solution is preferably 0.5 to 1.5 mol / dm 3 , particularly preferably 0.9 to 1.25 mol / dm 3 .

セパレータとしては、強度が十分で且つ電解液を多く保持できるものが良く、そのような観点から、厚さが10〜50μmで開口率が30〜70%のポリエチレン、ポリプロピレン、またはエチレン−プロピレン共重合体を含む微多孔フィルムや不織布等が好ましく用いられる。   As the separator, a separator having sufficient strength and capable of holding a large amount of electrolytic solution is good. From such a viewpoint, polyethylene, polypropylene, or ethylene-propylene copolymer having a thickness of 10 to 50 μm and an aperture ratio of 30 to 70% is used. A microporous film or a non-woven fabric containing coalescing is preferably used.

正極と負極とを含む電極群の構造は、正極と負極とがセパレータと電解質を介して対向していれば、平板状の正極および負極が交互に積層された構造や、帯状の正極および負極とが重ねられロール状に巻き取られて形成される捲回構造等、いずれの構造をしていてもよい。   The structure of the electrode group including the positive electrode and the negative electrode is such that the positive electrode and the negative electrode are opposed to each other with the separator and the electrolyte interposed therebetween, and a structure in which flat positive electrodes and negative electrodes are alternately stacked, May have any structure such as a wound structure formed by being rolled up and rolled up.

電池の形状については特に制限はなく、例えば、コイン形、ボタン型、シート形、角形等を採用できる。   The shape of the battery is not particularly limited, and for example, a coin shape, a button shape, a sheet shape, a square shape, or the like can be adopted.

次に、実施例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
LiCoO2(正極活物質)90重量部、カーボンブラック(導電助剤)6重量部、ポリフッ化ビニリデン(バインダ)4重量部を、N−メチルピロリドン(溶媒)中にて均一混合し、正極合剤含有ペーストを調製した。正極合剤含有ペーストを集電体となる厚さ20μmのアルミニウム箔の片面に単位面積あたりの合剤重量が30mg/cm2となるように塗布し乾燥し、続いて、カレンダー処理により、全体の厚さが94μm、電極密度が3.2g/cm3となるように調整して、アルミニウム箔の片面に正極合剤層を形成した。その後41mm×25.5mmに20mm×5mmの端子部分を残した形状に切断して正極を作製した。
(Example 1)
90 parts by weight of LiCoO 2 (positive electrode active material), 6 parts by weight of carbon black (conducting aid) and 4 parts by weight of polyvinylidene fluoride (binder) are uniformly mixed in N-methylpyrrolidone (solvent) to form a positive electrode mixture A paste containing was prepared. The positive electrode mixture-containing paste was applied to one side of a 20 μm-thick aluminum foil serving as a current collector so that the mixture weight per unit area was 30 mg / cm 2 and dried. The positive electrode mixture layer was formed on one side of the aluminum foil by adjusting the thickness to 94 μm and the electrode density to 3.2 g / cm 3 . Thereafter, the positive electrode was manufactured by cutting into a shape in which a terminal portion of 20 mm × 5 mm was left at 41 mm × 25.5 mm.

ケイ素粒子(負極活物質)と炭素粒子とを1:1の割合で含む複合材料90重量部と、カーボンブラック(導電助剤)5重量部と、ポリフッ化ビニリデン(バインダ)5重量部とを、N−メチル−2−ピロリドン(溶剤)中にて均一に混合し、負極合剤含有ペーストを調整した。負極合剤含有ペーストを集電体となる厚さ10μmの銅箔の両面に単位面積あたりの合剤重量が5.0mg/cm2となるように塗布し乾燥し、続いて、カレンダー処理により、銅箔の両面に塗布された負極合剤含有ペーストの厚みがそれぞれ45μm、電極密度が1.1g/cm3となるように調整して負極合剤層を形成した。その後42mm×27mmに19mm×5mmの端子部分を残した形状に切断して、厚み100μmの負極を作製した。 90 parts by weight of a composite material containing silicon particles (negative electrode active material) and carbon particles in a ratio of 1: 1, 5 parts by weight of carbon black (conductive aid), and 5 parts by weight of polyvinylidene fluoride (binder), The mixture was uniformly mixed in N-methyl-2-pyrrolidone (solvent) to prepare a negative electrode mixture-containing paste. The negative electrode mixture-containing paste was applied to both sides of a 10 μm-thick copper foil serving as a current collector so that the weight of the mixture per unit area was 5.0 mg / cm 2 and dried. A negative electrode mixture layer was formed by adjusting the negative electrode mixture-containing paste applied to both surfaces of the copper foil to have a thickness of 45 μm and an electrode density of 1.1 g / cm 3 . Thereafter, it was cut into a shape having a terminal portion of 19 mm × 5 mm on 42 mm × 27 mm, and a negative electrode having a thickness of 100 μm was produced.

上記正極を2枚、負極を1枚と、厚さ10μmのポリプロピレン製のセパレータ(ヘキストセラニーズ社製、「Celgard#2400」)を2枚用意し、負極、セパレータ、正極の順で重ねて電極群を作製した。正極の端子部分および負極の端子部分を抵抗溶接によりニッケルリードに溶接した後、厚み4.2mm、幅29.4mmの角形状のアルミニウム製外装ケース内に挿入した。   Prepare two sheets of the positive electrode, one negative electrode, and a 10 μm thick polypropylene separator (Hoechst Celanese, “Celgard # 2400”), and stack the negative electrode, separator, and positive electrode in this order. Groups were made. The positive electrode terminal portion and the negative electrode terminal portion were welded to the nickel lead by resistance welding, and then inserted into a rectangular aluminum outer case having a thickness of 4.2 mm and a width of 29.4 mm.

その後、外装ケース内の正極と負極との間に、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)とを1:2の体積割合で混合した有機溶媒中に、濃度が1mol/dm3となるようにLiPF6が溶解された電解液を注入し、外装ケースの開口部をレーザー溶接により封止して非水二次電池を得た。 Thereafter, the concentration is 1 mol / dm 3 in an organic solvent in which ethylene carbonate (EC) and diethylene carbonate (DEC) are mixed at a volume ratio of 1: 2 between the positive electrode and the negative electrode in the outer case. Then, an electrolyte solution in which LiPF 6 was dissolved was injected, and the opening of the outer case was sealed by laser welding to obtain a nonaqueous secondary battery.

図1に示すように、四方4カ所にネジ穴を設けた2枚のステンレス製板3(厚さ5mm)により非水二次電池を挟み、非水二次電池に196MPaの圧力がかかるようにネジ4を締めた状態で初回充電を行った。圧力測定器5には、昭和精器製「ロードセルMRD−500N(センサー先端の直径3mm)」を用いた。尚、図1において2は電池の外装ケースであり1は電極群である。   As shown in FIG. 1, a non-aqueous secondary battery is sandwiched between two stainless steel plates 3 (thickness 5 mm) provided with screw holes at four positions on each side so that a pressure of 196 MPa is applied to the non-aqueous secondary battery. The first charge was performed with the screw 4 tightened. As the pressure measuring instrument 5, “Load Cell MRD-500N (diameter of sensor tip 3 mm)” manufactured by Showa Seiki was used. In FIG. 1, 2 is an outer case of the battery, and 1 is an electrode group.

非水二次電池の初回充電は、初回充電の総充電容量(2000mAh/g)のうちの0mAh/gを越え300mAh/g(初期領域)までを1.0mA/cm2の電流密度で定電流充電し、300mAh/gを越え1500mAh/g(中期領域)までを10mA/cm2の電流密度で定電流充電し、1500mAh/gを越え2000mAh/g(末期領域)までを1.0mA/cm2の電流密度で定電流充電した。初回の充電終止電圧は4.25Vであった。尚、上記充電電流の電流密度の切替えは、流した電流量と経過時間をもとに、充電制御回路により行った。 The initial charge of the non-aqueous secondary battery is a constant current at a current density of 1.0 mA / cm 2 from 0 mAh / g to 300 mAh / g (initial region) of the total charge capacity (2000 mAh / g) of the initial charge. Charge, constant current charging at a current density of 10 mA / cm 2 over 300 mAh / g up to 1500 mAh / g (medium region), 1.0 mA / cm 2 over 1500 mAh / g up to 2000 mAh / g (terminal region) Constant current charging at a current density of. The initial charge end voltage was 4.25V. Note that the switching of the current density of the charging current was performed by the charging control circuit based on the amount of current passed and the elapsed time.

(実施例2)
カレンダー処理により、正極の単位面積あたりの合剤重量が47mg/cm2、電極密度3.2g/cm2となるように正極合剤層の厚みを146μmに調整し、負極の単位面積あたりの合剤重量が7.7mg/cm2、電極密度1.1g/cm2となるように各負極合剤層の厚みを70μmとし、負極の厚みを150μmにしたこと以外は実施例1と同様の条件で非水二次電池を作製し、実施例1と同様にして初期充電を行った。
(Example 2)
By calendering, the thickness of the positive electrode mixture layer was adjusted to 146 μm so that the mixture weight per unit area of the positive electrode was 47 mg / cm 2 and the electrode density was 3.2 g / cm 2. The same conditions as in Example 1 except that the thickness of each negative electrode mixture layer was 70 μm and the thickness of the negative electrode was 150 μm so that the agent weight was 7.7 mg / cm 2 and the electrode density was 1.1 g / cm 2. Then, a non-aqueous secondary battery was prepared and subjected to initial charging in the same manner as in Example 1.

(実施例3)
初回充電の総充電容量(2000mAh/g)のうちの0mAh/gを越え300mAh/g(初期領域)までを0.5mA/cm2の電流密度で定電流充電し、300mAh/gを越え1500mAh/g(中期領域)までを5mA/cm2の電流密度で定電流充電し、1500mAh/gを越え2000mAh/g(末終領域)までを0.5mA/cm2の定電流充電で充電したこと以外は実施例1と同様の条件で試験を行った。
(Example 3)
Of the total charge capacity (2000 mAh / g) of the first charge, constant current charging is performed at a current density of 0.5 mA / cm 2 from 0 mAh / g to 300 mAh / g (initial region), and over 300 mAh / g to 1500 mAh / g. Other than charging at a constant current of 5 mA / cm 2 up to g (mid-term region) and charging at a constant current of 0.5 mA / cm 2 over 1500 mAh / g up to 2000 mAh / g (terminal region) Were tested under the same conditions as in Example 1.

(実施例4)
非水二次電池を加圧する圧力を196MPaから1961MPaへ変更したこと以外は実施例1と同様にして初回充電を行った。
(Example 4)
The initial charge was performed in the same manner as in Example 1 except that the pressure for pressurizing the non-aqueous secondary battery was changed from 196 MPa to 1961 MPa.

(比較例1)
実施例1における条件のうち、初回充電の総充電容量(2000mAh/g)を5mA/cm2の電流密度で定電流充電したこと以外は実施例1と同様の条件で初回充電を行った。
(Comparative Example 1)
Of the conditions in Example 1, the initial charge was performed under the same conditions as in Example 1 except that the total charge capacity (2000 mAh / g) of the initial charge was constant current charged at a current density of 5 mA / cm 2 .

(比較例2)
比較例1における条件のうち、正極の単位面積あたりの合剤重量が47mg/cm2、電極密度3.2g/cm2となるように、カレンダー処理により正極合剤層の厚みを146μmに調整し、負極の単位面積あたりの合剤重量が7.7mg/cm2、電極密度1.1g/cm2になるように各負極合剤層の厚みを70μmに調整し、負極の厚みを150μmに調整したこと以外は比較例1と同様の条件で初回充電を行った。
(Comparative Example 2)
Among the conditions in Comparative Example 1, the thickness of the positive electrode mixture layer was adjusted to 146 μm by calendering so that the mixture weight per unit area of the positive electrode was 47 mg / cm 2 and the electrode density was 3.2 g / cm 2. The thickness of each negative electrode mixture layer was adjusted to 70 μm and the thickness of the negative electrode was adjusted to 150 μm so that the weight of the mixture per unit area of the negative electrode was 7.7 mg / cm 2 and the electrode density was 1.1 g / cm 2. Except for this, the initial charge was performed under the same conditions as in Comparative Example 1.

(比較例3)
負極を加圧しないで、初回充電を行ったこと以外は実施例2と同様にして非水二次電池を作製した。
(Comparative Example 3)
A nonaqueous secondary battery was produced in the same manner as in Example 2 except that the first charge was performed without applying pressure to the negative electrode.

上記実施例1〜4、比較例1〜3において作製した非水二次電池について、初回充電効率〔(放電容量/充電容量)×100、電圧範囲2.5V〜4.25V〕、30サイクル後の交流抵抗、30サイクル後の容量維持率を求め、その結果を表1に示した。2サイクル目以降の充電は、5mA/cm2の電流密度で定電流充電し、充電終止電圧は4.15Vとした。交流抵抗の測定には1kHzの交流を印加して測定した。容量維持率は、下記の数式1により算出した。その結果を表1に示す。 For the nonaqueous secondary batteries produced in Examples 1 to 4 and Comparative Examples 1 to 3, the initial charge efficiency [(discharge capacity / charge capacity) × 100, voltage range 2.5 V to 4.25 V], after 30 cycles The AC resistance and the capacity retention rate after 30 cycles were determined, and the results are shown in Table 1. In the second and subsequent cycles, constant current charging was performed at a current density of 5 mA / cm 2 and the end-of-charge voltage was 4.15V. The alternating current resistance was measured by applying an alternating current of 1 kHz. The capacity retention rate was calculated by the following formula 1. The results are shown in Table 1.

(数1)
容量維持率(%)=(30サイクル目の放電容量/2サイクル目の放電容量)×100
(Equation 1)
Capacity maintenance ratio (%) = (discharge capacity at the 30th cycle / discharge capacity at the second cycle) × 100

Figure 2005032632
実施例と比較例との比較で明らかな様に、実施例は比較例よりも、30サイクル後の交流抵抗が小さく、30サイクル後の容量維持率が高い。この結果より、初回充電をする工程において、負極を負極の厚み方向に加圧しながら、初期充電と終期充電とを1.0mA/cm2以下の電流密度で行った非水二次電池では、サイクル特性の劣化が抑制されることが確認できた。
Figure 2005032632
As is clear from the comparison between the example and the comparative example, the example has a smaller AC resistance after 30 cycles and a higher capacity retention rate after 30 cycles than the comparative example. As a result, in the non-aqueous secondary battery in which the initial charge and the final charge were performed at a current density of 1.0 mA / cm 2 or less while pressing the negative electrode in the thickness direction of the negative electrode in the first charging step, It was confirmed that the deterioration of characteristics was suppressed.

一方、電圧変化の大きい充電初期と作動電圧の高い充電末期において急速充電を行った(初期充電と終期充電を1.0mA/cm2より大きい電流密度で行った)比較例1、2では、リチウムと合金化可能なケイ素とリチウムとの不均一な合金化反応が発生しやすいため、部分的にリチウムとケイ素とが組成式Li3.25SiやLi4.4Siで示される合金となっており、微粉化が生じているものと思われる。このことは比較例1、2について30サイクル後の交流抵抗値が実施例の約1.4倍以上となっていることからも推測できる。 On the other hand, in Comparative Examples 1 and 2 in which rapid charging was performed at the beginning of charging with a large voltage change and at the end of charging with a high operating voltage (initial charging and final charging were performed at a current density greater than 1.0 mA / cm 2 ), Since a heterogeneous alloying reaction between silicon and lithium that can be alloyed with silicon is likely to occur, lithium and silicon are partially alloyed by the composition formulas Li 3.25 Si and Li 4.4 Si, and are pulverized. Seems to have occurred. This can also be inferred from the fact that in Comparative Examples 1 and 2, the AC resistance value after 30 cycles is about 1.4 times or more that of the example.

本発明にかかる非水二次電池の製造方法は、サイクル特性の劣化が抑制された非水二次電池を提供でき、非水二次電池の製造方法として有用である。   The method for producing a non-aqueous secondary battery according to the present invention can provide a non-aqueous secondary battery in which deterioration of cycle characteristics is suppressed, and is useful as a method for producing a non-aqueous secondary battery.

本発明の非水二次電池の製造方法の一例を説明する部分断面図Partial sectional drawing explaining an example of the manufacturing method of the non-aqueous secondary battery of this invention

符号の説明Explanation of symbols

1 電極群
2 外装ケース
3 ステンレス製板
4 ネジ
5 センサ
1 Electrode group 2 Exterior case 3 Stainless steel plate 4 Screw 5 Sensor

Claims (6)

リチウムと合金化可能な元素を含む負極と、正極とを備えた非水二次電池の製造方法であって、
初回充電をする工程を含み、
前記初回充電は、初期充電、中期充電、および終期充電をこの順で行うものとし、
前記工程において、前記負極を前記負極の厚み方向に加圧しながら、前記初期充電と前記終期充電とを1.0mA/cm2以下の電流密度で行うことを特徴とする非水二次電池の製造方法。
A method for producing a non-aqueous secondary battery comprising a negative electrode containing an element that can be alloyed with lithium and a positive electrode,
Including the first charge step,
The initial charge is an initial charge, an intermediate charge, and an end charge in this order,
In the step, the initial charge and the final charge are performed at a current density of 1.0 mA / cm 2 or less while pressurizing the negative electrode in the thickness direction of the negative electrode. Method.
前記工程において、前記中期充電を15mA/cm2以下の電流密度で行い、前記中期充電を行うことにより充電される容量のうちの少なくとも1部を5〜15mA/cm2の電流密度で充電する請求項1に記載の非水二次電池の製造方法。 In the step, performed the metaphase charged at 15 mA / cm 2 or less of the current density, charging at a current density of 5~15mA / cm 2 at least a portion of the capacity to be charged by performing the medium-term charge billing Item 2. A method for producing a non-aqueous secondary battery according to Item 1. 前記工程において、対向する2枚の板の間に前記非水二次電池を配置し、前記2枚の板を互いに近づけて前記負極を加圧する請求項1または2に記載の非水二次電池の製造方法。   The non-aqueous secondary battery according to claim 1 or 2, wherein in the step, the non-aqueous secondary battery is disposed between two opposing plates, and the negative electrode is pressurized by bringing the two plates close to each other. Method. 前記正極がリチウム含有遷移金属酸化物を含み、前記リチウム含有遷移金属酸化物は、組成式LiMaO2で示される組成物、または組成式LiMb24で示される組成物である請求項1〜3のいずれかの項に記載の非水二次電池の製造方法。
ただし、MaはMn、CoおよびNiからなる群から選ばれる少なくとも1種であり、Mbは、Mn、Mg、Fe、Co、Ni、Cu、Zn、AlおよびCrからなる群から選ばれる少なくとも一種を含み、Mnを主成分とする。
The positive electrode includes a lithium-containing transition metal oxide, and the lithium-containing transition metal oxide is a composition represented by a composition formula LiMaO 2 or a composition represented by a composition formula LiMb 2 O 4. A method for producing a nonaqueous secondary battery according to any one of the above.
However, Ma is at least one selected from the group consisting of Mn, Co and Ni, and Mb is at least one selected from the group consisting of Mn, Mg, Fe, Co, Ni, Cu, Zn, Al and Cr. Including Mn as a main component.
前記リチウムと合金化可能な元素が、Al、Sn、SiおよびZnからなる群から選ばれる少なくとも1種を含む請求項1〜4のいずれかの項に記載の非水二次電池の製造方法。   The method for manufacturing a non-aqueous secondary battery according to any one of claims 1 to 4, wherein the element that can be alloyed with lithium includes at least one selected from the group consisting of Al, Sn, Si, and Zn. 前記負極が、炭素粒子および炭素繊維から選ばれる少なくとも1種の導電助剤をさらに含む請求項1〜5のいずれかの項に記載の非水二次電池の製造方法。   The method for producing a nonaqueous secondary battery according to any one of claims 1 to 5, wherein the negative electrode further includes at least one conductive additive selected from carbon particles and carbon fibers.
JP2003272019A 2003-07-08 2003-07-08 Manufacturing method of non-aqueous secondary battery Withdrawn JP2005032632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272019A JP2005032632A (en) 2003-07-08 2003-07-08 Manufacturing method of non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272019A JP2005032632A (en) 2003-07-08 2003-07-08 Manufacturing method of non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2005032632A true JP2005032632A (en) 2005-02-03

Family

ID=34209709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272019A Withdrawn JP2005032632A (en) 2003-07-08 2003-07-08 Manufacturing method of non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2005032632A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050762A1 (en) * 2003-11-21 2005-06-02 Kureha Corporation Electrode binder composition for nonaqueous electrolyte battery and use thereof
WO2006054604A1 (en) * 2004-11-19 2006-05-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
KR101162740B1 (en) 2012-04-02 2012-07-05 주식회사 비츠로셀 Cathode for litium primary battery, mathod of manufacturing the cathode and apparatus for manufacturing the cathode
JP2013038074A (en) * 2011-08-03 2013-02-21 Leclanche Sa Aqueous slurry for battery electrodes
JP2015228289A (en) * 2014-05-30 2015-12-17 株式会社豊田自動織機 Initial charging method of lithium ion secondary battery
JP2018120841A (en) * 2017-01-24 2018-08-02 国立研究開発法人物質・材料研究機構 Method for manufacturing electrode member for all-solid battery
CN111788735A (en) * 2018-02-28 2020-10-16 松下知识产权经营株式会社 Method and system for charging non-aqueous electrolyte secondary battery
CN112055911A (en) * 2018-02-07 2020-12-08 株式会社Lg化学 Lithium metal secondary battery and battery module including the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931420B2 (en) * 2003-11-21 2012-05-16 株式会社クレハ Non-aqueous electrolyte battery electrode binder composition and use thereof
WO2005050762A1 (en) * 2003-11-21 2005-06-02 Kureha Corporation Electrode binder composition for nonaqueous electrolyte battery and use thereof
WO2006054604A1 (en) * 2004-11-19 2006-05-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US11283078B2 (en) 2011-08-03 2022-03-22 Leclanche' S.A. Aqueous slurry for battery electrodes
JP2013038074A (en) * 2011-08-03 2013-02-21 Leclanche Sa Aqueous slurry for battery electrodes
JP2018174149A (en) * 2011-08-03 2018-11-08 レクランシェ エスエイLeclanche SA Aqueous slurry for battery electrode
KR101162740B1 (en) 2012-04-02 2012-07-05 주식회사 비츠로셀 Cathode for litium primary battery, mathod of manufacturing the cathode and apparatus for manufacturing the cathode
JP2015228289A (en) * 2014-05-30 2015-12-17 株式会社豊田自動織機 Initial charging method of lithium ion secondary battery
JP2018120841A (en) * 2017-01-24 2018-08-02 国立研究開発法人物質・材料研究機構 Method for manufacturing electrode member for all-solid battery
CN112055911A (en) * 2018-02-07 2020-12-08 株式会社Lg化学 Lithium metal secondary battery and battery module including the same
JP2020537309A (en) * 2018-02-07 2020-12-17 エルジー・ケム・リミテッド Lithium metal secondary battery and battery module containing it
US11145889B2 (en) 2018-02-07 2021-10-12 Lg Chem, Ltd. Lithium metal secondary battery and battery module including the same
JP7267269B2 (en) 2018-02-07 2023-05-01 エルジー エナジー ソリューション リミテッド Lithium metal secondary battery and battery module containing the same
CN111788735A (en) * 2018-02-28 2020-10-16 松下知识产权经营株式会社 Method and system for charging non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3982165B2 (en) Solid electrolyte battery
KR102417200B1 (en) Negative electrode for lithium secondary battery, method of manufacturing the same and lithium secondary battery comprising the same
JP5218808B2 (en) Lithium ion battery
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP5818116B2 (en) Sealed lithium secondary battery and manufacturing method thereof
KR20070030487A (en) Anode electride and lithium battery containing the material
KR102557725B1 (en) Composite anode active material, anode including the material, and lithium secondary battery including the anode
EP3863084A1 (en) Negative electrode and secondary battery comprising same
KR20210143980A (en) Secondary battery
JP5279567B2 (en) Nonaqueous electrolyte secondary battery
KR20140108380A (en) Secondary battery including silicon-metal alloy-based negative active material
JP2015195195A (en) Nonaqueous electrolyte secondary battery
KR20110100301A (en) Non-aqueous electrolyte secondary battery, and method for charging same
WO2019098056A1 (en) Lithium ion secondary battery
US20230223535A1 (en) Negative electrode and secondary battery including the same
JPH087926A (en) Nonaqueous electrolytic secondary cell
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP2005032632A (en) Manufacturing method of non-aqueous secondary battery
JP4553468B2 (en) Non-aqueous secondary battery and charging method thereof
CN113646946A (en) Secondary battery
JP7003775B2 (en) Lithium ion secondary battery
JP2007335318A (en) Nonaqueous electrolyte secondary battery
JP4582684B2 (en) Non-aqueous secondary battery
WO2015046394A1 (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP2007335308A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003