JP2015228289A - Initial charging method of lithium ion secondary battery - Google Patents

Initial charging method of lithium ion secondary battery Download PDF

Info

Publication number
JP2015228289A
JP2015228289A JP2014112583A JP2014112583A JP2015228289A JP 2015228289 A JP2015228289 A JP 2015228289A JP 2014112583 A JP2014112583 A JP 2014112583A JP 2014112583 A JP2014112583 A JP 2014112583A JP 2015228289 A JP2015228289 A JP 2015228289A
Authority
JP
Japan
Prior art keywords
charging
negative electrode
secondary battery
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112583A
Other languages
Japanese (ja)
Other versions
JP6361291B2 (en
Inventor
聡 河野
Satoshi Kono
聡 河野
英明 篠田
Hideaki Shinoda
英明 篠田
賢佑 四本
Kensuke Yotsumoto
賢佑 四本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014112583A priority Critical patent/JP6361291B2/en
Publication of JP2015228289A publication Critical patent/JP2015228289A/en
Application granted granted Critical
Publication of JP6361291B2 publication Critical patent/JP6361291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an initial charging method of lithium ion secondary battery capable of suppressing reduction in the capacity retention rate.SOLUTION: An initial charging method of lithium ion secondary battery starts initial charging while retaining a lithium ion secondary battery 10 from the outside along the lamination direction of an electrode assembly, and performs low rate charging in a charging range from the start of charging before a change in the stage structure appearing at first. After low rate charging, the lithium ion secondary battery 10 thus retained is released, thereafter it is retained again from the outside, and recharged at a higher rate than that in the low rate charging.

Description

本発明は、電極組立体と、電解液とを有するリチウムイオン二次電池の初期充電方法に関する。   The present invention relates to an initial charging method for a lithium ion secondary battery having an electrode assembly and an electrolytic solution.

リチウムイオン二次電池は再充電が可能であり、繰り返し使用することができるため電源として広く利用されている。一般に、リチウムイオン二次電池はケースを備え、そのケース内に電極組立体及び非水電解液が収容されている。電極組立体は、正極電極、負極電極、及び正極電極と負極電極とを絶縁するセパレータを有し、正極電極と負極電極との間にセパレータを介在した積層構造になっている。リチウムイオン二次電池では、充電時には正極活物質中のリチウムイオンが非水電解液を介して負極活物質側へと移動して負極活物質に挿入され、放電時には逆に負極活物質から脱離したリチウムイオンが正極活物質側へと移動し正極活物質に吸蔵される。   Lithium ion secondary batteries can be recharged and can be used repeatedly, so that they are widely used as power sources. Generally, a lithium ion secondary battery includes a case, and an electrode assembly and a non-aqueous electrolyte are accommodated in the case. The electrode assembly has a positive electrode, a negative electrode, and a separator that insulates the positive electrode from the negative electrode, and has a laminated structure in which a separator is interposed between the positive electrode and the negative electrode. In a lithium ion secondary battery, lithium ions in the positive electrode active material move to the negative electrode active material side through the non-aqueous electrolyte during charging and are inserted into the negative electrode active material, and conversely desorb from the negative electrode active material during discharge. The lithium ions thus moved to the positive electrode active material side and are occluded by the positive electrode active material.

リチウムイオン二次電池の製造は、ケース内に電極組立体を収納した後、ケースに設けられた注液孔から非水電解液をケース内に注入し、注液孔を封止する。そして、非水電解液を正極活物質及び負極活物質に浸透させる工程を行った後、充放電を繰り返し行うコンディショニング工程が行われる。   In the manufacture of a lithium ion secondary battery, after the electrode assembly is housed in the case, a non-aqueous electrolyte is injected into the case from a liquid injection hole provided in the case, and the liquid injection hole is sealed. And after performing the process of making a non-aqueous electrolyte osmose | permeate a positive electrode active material and a negative electrode active material, the conditioning process which repeats charging / discharging is performed.

このコンディショニング工程を行う一つの目的は、負極活物質の表面にSEI皮膜を形成することであり、SEI皮膜を形成する目的は、負極活物質表面での電解液成分のさらなる分解を抑制することである。このSEI皮膜は、初期充電時に、電解液に含まれた添加剤が分解されることによって形成され、SEI皮膜が負極活物質の表面にムラなく形成された段階で電池容量が安定するようになる。   One purpose of performing this conditioning process is to form an SEI film on the surface of the negative electrode active material, and the purpose of forming the SEI film is to suppress further decomposition of the electrolyte components on the surface of the negative electrode active material. is there. This SEI film is formed by the decomposition of the additive contained in the electrolyte during initial charging, and the battery capacity is stabilized when the SEI film is uniformly formed on the surface of the negative electrode active material. .

ところが、コンディショニング工程では、添加剤の分解に伴いガスも発生する。発生したガスは、気泡となって電極組立体の層間に侵入し、この気泡が上述のSEI皮膜の形成を阻害して、負極活物質の表面にはSEI皮膜のムラが生じる。そこで、初期充電の際に発生したガスをケース外に放出することが考えられる(例えば、特許文献1参照)。   However, in the conditioning process, gas is also generated with the decomposition of the additive. The generated gas becomes bubbles and enters between the layers of the electrode assembly, and the bubbles inhibit the formation of the SEI film described above, and unevenness of the SEI film occurs on the surface of the negative electrode active material. Therefore, it is conceivable to release the gas generated during the initial charging out of the case (see, for example, Patent Document 1).

特開2010−262867号公報JP 2010-262867 A

ところで、初期充電の開始後、負極電位が添加剤の分解電位に達すれば、ガスは発生し、電極組立体の層間に入り込んでいく。特許文献1では、初期充電が完了した後に、発生したガスをケース外へ放出させているが、初期充電の最中に発生したガスは、初期充電の最中に気泡となって電極組立体の層間に入り込んでいる。このため、特許文献1では、初期充電の最中、発生したガスによってSEI皮膜の形成が阻害され、SEI皮膜の形成にムラが生じる。すると、コンディショニング後の充電において、SEI皮膜が少ない箇所では、SEI皮膜が新たに形成されるため、リチウムが消費される。その結果として、可動リチウムの量が減少し、電池の容量維持率が低下する。   By the way, if the negative electrode potential reaches the decomposition potential of the additive after the start of the initial charging, gas is generated and enters the layers of the electrode assembly. In Patent Document 1, after the initial charging is completed, the generated gas is released out of the case, but the gas generated during the initial charging becomes a bubble during the initial charging and becomes a bubble of the electrode assembly. It goes into the interlayer. For this reason, in Patent Document 1, during the initial charge, the generated gas inhibits the formation of the SEI film, resulting in unevenness in the formation of the SEI film. Then, in the charging after conditioning, since the SEI film is newly formed at a place where the SEI film is small, lithium is consumed. As a result, the amount of movable lithium decreases, and the capacity retention rate of the battery decreases.

本発明は、上記課題を解決するためになされたものであって、その目的は、容量維持率の低下を抑制することができるリチウムイオン二次電池の初期充電方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an initial charging method for a lithium ion secondary battery capable of suppressing a decrease in capacity retention rate.

上記問題点を解決するためのリチウムイオン二次電池の初期充電方法は、リチウムイオンを吸蔵・放出し得る正極活物質を有する正極電極と、リチウムイオンを挿入・脱離し得るシリコン系又はカーボン系の負極活物質を有する負極電極とを、両者の間を絶縁した状態に積層した電極組立体と、電解液とを有するリチウムイオン二次電池における初期充電方法であって、前記電極組立体の積層方向に沿って前記リチウムイオン二次電池を外側から拘束した状態で初期充電を開始し、充電開始から負極電位における少なくとも電位プラトーが生じるタイミングよりも前までの充電範囲で低速充電を行い、前記低速充電の後に、前記リチウムイオン二次電池の拘束を解除し、拘束解除の後に、前記リチウムイオン二次電池を再度拘束し、前記低速充電の時よりも高レートで再充電を行うことを要旨とする。   An initial charging method of a lithium ion secondary battery for solving the above-mentioned problems includes a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions, and a silicon-based or carbon-based material capable of inserting / extracting lithium ions. An electrode assembly in which a negative electrode having a negative electrode active material is laminated in a state in which they are insulated from each other, and an initial charging method in a lithium ion secondary battery having an electrolyte solution, the lamination direction of the electrode assembly The initial charge is started in a state in which the lithium ion secondary battery is constrained from the outside along the line, and the low-speed charge is performed in a charge range from the start of charge to at least the timing at which the potential plateau occurs at the negative electrode potential. After releasing the restraint of the lithium ion secondary battery, after releasing the restraint, restraining the lithium ion secondary battery again, the low speed And gist to carry out recharging at a high rate than at conductive.

これによれば、初期充電時、負極電位が、電解液に含まれる添加剤の分解電位に達すると、添加剤の分解が開始され、SEI皮膜が負極活物質の表面に形成されていくとともに、ガスが発生し、そのガスは電極組立体の積層方向に隣り合う層同士の間に入り込んでいく。ここで、初期充電の途中の低速充電の完了後に、リチウムイオン二次電池の拘束を解除する。すると、電極組立体の層間が広がり、入り込んだガスが層間で流動可能になり、ガスが層間から上へ押し出され、電極組立体の層間に残るガスが無くなる。   According to this, at the time of initial charging, when the negative electrode potential reaches the decomposition potential of the additive contained in the electrolytic solution, decomposition of the additive is started, and the SEI film is formed on the surface of the negative electrode active material. Gas is generated, and the gas enters between adjacent layers in the stacking direction of the electrode assembly. Here, after completion of the low-speed charging during the initial charging, the restraint of the lithium ion secondary battery is released. Then, the interlayer of the electrode assembly spreads, the gas that has entered can flow between the layers, the gas is pushed up from the interlayer, and there is no gas remaining between the layers of the electrode assembly.

よって、初期充電の際、ガスによるSEI皮膜の形成阻害が抑制され、負極活物質の表面にSEI皮膜をムラ無く形成することができる。その結果、コンディショニング後の充電において、SEI皮膜形成のためにリチウムが消費されることが抑制され、リチウムイオン二次電池の容量維持率の低下を抑制できる。   Therefore, during the initial charging, the inhibition of the formation of the SEI film by the gas is suppressed, and the SEI film can be uniformly formed on the surface of the negative electrode active material. As a result, in charging after conditioning, lithium is suppressed from being consumed for forming the SEI film, and a decrease in the capacity maintenance rate of the lithium ion secondary battery can be suppressed.

なお、低速充電を、負極電位における少なくとも電位プラトーが生じるタイミングよりも前まで行う。
また、リチウムイオン二次電池の初期充電方法について、前記カーボン系の負極活物質を有する負極電極を用いたリチウムイオン二次電池では、充電開始から、負極活物質にリチウムイオンが挿入されるステージ構造変化に対応する電位までにおいて低速充電が行われる。
Note that the slow charge is performed at least before the timing at which the potential plateau occurs at the negative electrode potential.
Further, regarding the initial charging method of the lithium ion secondary battery, in the lithium ion secondary battery using the negative electrode having the carbon-based negative electrode active material, a stage structure in which lithium ions are inserted into the negative electrode active material from the start of charging. Low speed charging is performed up to the potential corresponding to the change.

これによれば、カーボン系の負極活物質を有する負極電極を用いたリチウムイオン二次電池では、初期(初回)充電において、SEI皮膜の形成は、充電開始から初めに現れる電位プラトー、すなわち負極活物質にリチウムイオンが挿入されるステージ構造変化に対応する電位までで起こると考えられており、この範囲において低速充電が行われる。そして、SEI皮膜が形成される充電範囲において低速充電を行うことにより、添加剤の分解が緩やかに行われ、SEI皮膜を安定した状態で形成することができる。   According to this, in a lithium ion secondary battery using a negative electrode having a carbon-based negative electrode active material, in the initial (first) charge, the formation of the SEI film is the potential plateau that appears first from the start of charge, that is, the negative electrode active. It is considered to occur up to a potential corresponding to the stage structure change in which lithium ions are inserted into the substance, and slow charging is performed in this range. Then, by performing low-speed charging in the charging range where the SEI film is formed, the additive is gradually decomposed, and the SEI film can be formed in a stable state.

また、リチウムイオン二次電池の初期充電方法について、前記添加剤には、ビニレンカーボネートが含まれている。
これによれば、添加剤によって、SEI皮膜をムラなく形成することができる。
Regarding the initial charging method of the lithium ion secondary battery, the additive contains vinylene carbonate.
According to this, the SEI film can be uniformly formed by the additive.

また、リチウムイオン二次電池の初期充電方法について、前記シリコン系の負極活物質を有する負極電極を用いたリチウムイオン二次電池では、充電開始からリチウムシリケートの生成による電位プラトーが観察されるまでにおいて低速充電が行われる。   As for the initial charging method of the lithium ion secondary battery, in the lithium ion secondary battery using the negative electrode having the silicon-based negative electrode active material, from the start of charging until the potential plateau due to the generation of lithium silicate is observed. Slow charging is performed.

これによれば、負極電位の変化量が大きい充電範囲において低速充電を行うことにより、添加剤の分解が行われ、SEI皮膜を安定した状態で形成することができる。   According to this, the additive is decomposed by performing low-speed charging in a charging range in which the amount of change in the negative electrode potential is large, and the SEI film can be formed in a stable state.

本発明によれば、容量維持率の低下を抑制することができる。   According to the present invention, it is possible to suppress a decrease in capacity maintenance rate.

実施形態の二次電池を示す分解斜視図。The disassembled perspective view which shows the secondary battery of embodiment. 電極組立体の構成要素を示す分解斜視図。The disassembled perspective view which shows the component of an electrode assembly. 拘束治具で二次電池を拘束した状態を示す斜視図。The perspective view which shows the state which restrained the secondary battery with the restraining jig | tool. 負極電位とSOCとの関係を示すグラフ。The graph which shows the relationship between a negative electrode potential and SOC. (a)は拘束状態の電極組立体を示す部分断面図、(b)は拘束を解除した状態の電極組立体を示す部分断面図、(c)は再度、拘束した状態の電極組立体を示す部分断面図。(A) is a partial cross-sectional view showing an electrode assembly in a restrained state, (b) is a partial cross-sectional view showing an electrode assembly in a state where the restraint is released, and (c) shows the electrode assembly in a restrained state again. FIG.

以下、リチウムイオン二次電池の初期充電方法を具体化した一実施形態について図1〜図5を参照して説明する。
図1に示すように、リチウムイオン二次電池10は、ケース11を有し、ケース11には電極組立体14及び非水電解液が収容されている。ケース11は、有底四角筒状のケース本体12と、ケース本体12に電極組立体14を挿入するための開口部12aを閉塞する平板状の蓋体13とからなる。
Hereinafter, an embodiment embodying an initial charging method of a lithium ion secondary battery will be described with reference to FIGS.
As shown in FIG. 1, the lithium ion secondary battery 10 includes a case 11, and the case 11 contains an electrode assembly 14 and a non-aqueous electrolyte. The case 11 includes a bottomed square cylindrical case main body 12 and a flat lid 13 that closes an opening 12 a for inserting the electrode assembly 14 into the case main body 12.

ケース本体12は、矩形板状の底壁12bと、底壁12bの対向する一対の長側縁から立設された長側壁12dと、底壁12bの対向する一対の短側縁から立設された短側壁12cとを有する。短側壁12cの正面視形状は、底壁12bに繋がる辺が短辺となる矩形状であり、長側壁12dの正面視形状は、底壁12bに繋がる辺が長辺となる矩形状である。また、ケース本体12の内面は絶縁層15aによって覆われている。ケース本体12と蓋体13は、何れも金属製(例えば、ステンレス製やアルミニウム製)である。蓋体13は、ケース11(ケース本体13)内に電解液を注入するための注液孔13aを有する。注液孔13aは封止栓19によって閉塞されている。   The case main body 12 is erected from a rectangular plate-like bottom wall 12b, a long side wall 12d erected from a pair of opposed long side edges of the bottom wall 12b, and a pair of erected short side edges of the bottom wall 12b. And a short side wall 12c. The front side view shape of the short side wall 12c is a rectangular shape whose side connected to the bottom wall 12b is a short side, and the front side view shape of the long side wall 12d is a rectangular shape whose side connected to the bottom wall 12b is a long side. The inner surface of the case body 12 is covered with an insulating layer 15a. Both the case main body 12 and the lid body 13 are made of metal (for example, made of stainless steel or aluminum). The lid 13 has a liquid injection hole 13a for injecting an electrolytic solution into the case 11 (case main body 13). The liquid injection hole 13 a is closed by a sealing plug 19.

図2に示すように、電極組立体14は、負極電極21、正極電極24、及び正極電極24と負極電極21とを絶縁するセパレータ27を有する。
負極電極21は、負極金属箔22(銅箔)と、負極金属箔22の両面に負極活物質を塗工して構成された負極活物質層23と、を有する。負極電極21は、その一辺21aに沿って、負極金属箔22で構成された負極未塗工部22dを有する。負極電極21の一辺21aの一部には、負極タブ29が突出する状態で設けられている。
As shown in FIG. 2, the electrode assembly 14 includes a negative electrode 21, a positive electrode 24, and a separator 27 that insulates the positive electrode 24 from the negative electrode 21.
The negative electrode 21 includes a negative electrode metal foil 22 (copper foil) and a negative electrode active material layer 23 configured by applying a negative electrode active material to both surfaces of the negative electrode metal foil 22. The negative electrode 21 has a negative electrode uncoated portion 22 d made of a negative metal foil 22 along one side 21 a. A negative electrode tab 29 protrudes from a part of one side 21 a of the negative electrode 21.

負極活物質層23は、負極活物質、導電剤、バインダ、及び溶媒を含む活物質合剤から形成される。負極活物質としてはリチウムイオンを挿入・脱離し得る材料が用いられ、カーボン系のものが用いられる。具体的には、アモルファスカーボン、グラファイト等が挙げられる。導電剤、バインダ、溶媒としては周知のものが使用される。   The negative electrode active material layer 23 is formed from an active material mixture including a negative electrode active material, a conductive agent, a binder, and a solvent. As the negative electrode active material, a material capable of inserting / extracting lithium ions is used, and a carbon-based material is used. Specific examples include amorphous carbon and graphite. A well-known thing is used as a electrically conductive agent, a binder, and a solvent.

正極電極24は、矩形状の正極金属箔25(アルミニウム箔)と、正極金属箔25の両面に正極活物質を塗工して構成された正極活物質層26と、を有する。正極電極24は、その一辺24aに沿って、正極金属箔25で構成された正極未塗工部25dを有する。正極電極24の一辺24aの一部には、正極タブ28が突出する状態で設けられている。正極電極24の正極活物質層26は、正極活物質、導電剤、バインダ、及び溶媒を含む活物質合剤から形成される。   The positive electrode 24 includes a rectangular positive metal foil 25 (aluminum foil) and a positive electrode active material layer 26 configured by applying a positive electrode active material to both surfaces of the positive electrode metal foil 25. The positive electrode 24 has a positive electrode uncoated portion 25d made of a positive metal foil 25 along one side 24a. A positive electrode tab 28 protrudes from a part of one side 24 a of the positive electrode 24. The positive electrode active material layer 26 of the positive electrode 24 is formed from an active material mixture containing a positive electrode active material, a conductive agent, a binder, and a solvent.

正極活物質としては、リチウムイオンを吸蔵・放出し得る材料が用いられ、リチウム含有酸化物等が好ましく用いられる。具体例としてはリチウムマンガン酸化物、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウム鉄酸化物等の、リチウムイオン二次電池の正極活物質に用いられている化合物等が挙げられる。   As the positive electrode active material, a material capable of inserting and extracting lithium ions is used, and a lithium-containing oxide or the like is preferably used. Specific examples include compounds used for the positive electrode active material of lithium ion secondary batteries, such as lithium manganese oxide, lithium nickel oxide, lithium cobalt oxide, and lithium iron oxide.

非水電解液の溶媒としては、リチウムイオン二次電池に用いられる各種有機溶媒から選択される一種又は二種以上が用いられ、有機溶媒としては例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等が挙げられる。非水電解液の電解質としては、従来のリチウムイオン二次電池に用いられる各種リチウム塩が用いられる。そして、非水電解液は、選択された有機溶媒に電解質を溶解させた溶液が使用される。本実施形態では、添加剤として、ビニレンカーボネートを少なくとも含む。   As the solvent for the non-aqueous electrolyte, one or more selected from various organic solvents used in lithium ion secondary batteries are used. Examples of the organic solvent include ethylene carbonate (EC), propylene carbonate (PC), Examples include vinylene carbonate (VC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). As the electrolyte of the non-aqueous electrolyte, various lithium salts used in conventional lithium ion secondary batteries are used. As the nonaqueous electrolytic solution, a solution in which an electrolyte is dissolved in a selected organic solvent is used. In this embodiment, at least vinylene carbonate is included as an additive.

電極組立体14は、複数の正極電極24と複数の負極電極21を交互に積層するとともに、両電極21,24の間にセパレータ27を介在した積層構造とされ、直方体状である。負極電極21、正極電極24、及びセパレータ27が積層された方向を電極組立体14の積層方向とする。   The electrode assembly 14 has a rectangular parallelepiped shape in which a plurality of positive electrodes 24 and a plurality of negative electrodes 21 are alternately stacked, and a separator 27 is interposed between the electrodes 21 and 24. The direction in which the negative electrode 21, the positive electrode 24, and the separator 27 are stacked is defined as the stacking direction of the electrode assembly 14.

図1に示すように、電極組立体14は積層方向の両端に平面視矩形状の偏平面14aを有し、両偏平面14aは、絶縁層15aを介して長側壁12dに対向している。電極組立体14では、正極タブ28が積層方向に沿って列状に配置され、且つ正極タブ28と重ならない位置にて負極タブ29が積層方向に沿って列状に配置されるように、正極電極24及び負極電極21が積層される。正極タブ28及び負極タブ29は、電極組立体14における積層方向の一端から他端までの範囲内でそれぞれ集められた状態で折り曲げられている。   As shown in FIG. 1, the electrode assembly 14 has flat planes 14a having a rectangular shape in plan view at both ends in the stacking direction, and both the flat planes 14a are opposed to the long side wall 12d through the insulating layer 15a. In the electrode assembly 14, the positive electrode tabs 28 are arranged in a row along the stacking direction, and the negative electrode tabs 29 are arranged in a row along the stacking direction at positions that do not overlap the positive electrode tab 28. The electrode 24 and the negative electrode 21 are laminated. The positive electrode tab 28 and the negative electrode tab 29 are bent in a state where they are collected within a range from one end to the other end in the stacking direction of the electrode assembly 14.

正極タブ28には正極端子16が電気的に接続されており、負極タブ29には負極端子15が電気的に接続されている。これら正極端子16及び負極端子15は、各一部分が蓋体13の孔部13cからケース11外に露出している。また、正極端子16及び負極端子15には、ケース11から絶縁するためのリング状の絶縁リング17aがそれぞれ取り付けられている。   The positive electrode terminal 16 is electrically connected to the positive electrode tab 28, and the negative electrode terminal 15 is electrically connected to the negative electrode tab 29. A part of each of the positive terminal 16 and the negative terminal 15 is exposed outside the case 11 through the hole 13 c of the lid 13. The positive electrode terminal 16 and the negative electrode terminal 15 are each attached with a ring-shaped insulating ring 17 a for insulation from the case 11.

次に、リチウムイオン二次電池10の製造方法について説明する。
まず、ケース本体12に電極組立体14を収容する。次に、蓋体13をケース本体12の開口部12aを閉塞するように設ける。このとき、負極端子15及び正極端子16が、絶縁リング17aに挿通される。そして、蓋体13をケース本体12に溶接することで、ケース11が構成される。
Next, a method for manufacturing the lithium ion secondary battery 10 will be described.
First, the electrode assembly 14 is accommodated in the case body 12. Next, the lid 13 is provided so as to close the opening 12 a of the case body 12. At this time, the negative electrode terminal 15 and the positive electrode terminal 16 are inserted through the insulating ring 17a. The case 11 is formed by welding the lid 13 to the case main body 12.

次に、注液孔13aから、ケース11の内部に非水電解液を注入する。そして、非水電解液を注入した後は、注液孔13aを封止栓によって仮封止する。次に、電極組立体14の充放電を繰り返すコンディショニング工程を行い、その後、所定の温度環境下でリチウムイオン二次電池10を放置し、エージング工程を行う。エージング工程が終わった後には、仮封止に用いた封止栓を注液孔13aから取り外してケース11内のガスをケース11外に放出する。ガス放出の完了後、封止栓19によって注液孔13aを本封止して、リチウムイオン二次電池10が完成する。   Next, a non-aqueous electrolyte is injected into the case 11 from the liquid injection hole 13a. Then, after injecting the non-aqueous electrolyte, the liquid injection hole 13a is temporarily sealed with a sealing plug. Next, a conditioning process for repeatedly charging and discharging the electrode assembly 14 is performed, and then the lithium ion secondary battery 10 is left in a predetermined temperature environment to perform an aging process. After the aging process is finished, the sealing plug used for the temporary sealing is removed from the liquid injection hole 13a, and the gas in the case 11 is released to the outside of the case 11. After the gas discharge is completed, the injection hole 13a is fully sealed by the sealing plug 19 to complete the lithium ion secondary battery 10.

次に、コンディショニング工程について詳細に説明する。
図3に示すように、コンディショニング工程では、まず、リチウムイオン二次電池10のケース11を拘束治具30によって拘束する。拘束治具30は、一対の拘束板31と、それら拘束板31を連結するボルト32と、ボルト32に螺合されるナット33と、を有する。拘束治具30は、ケース11の2つの長側壁12dを、ケース11の幅方向、すなわち、電極組立体14の積層方向に沿って外面側から押圧し、リチウムイオン二次電池10を拘束するものである。
Next, the conditioning process will be described in detail.
As shown in FIG. 3, in the conditioning process, first, the case 11 of the lithium ion secondary battery 10 is restrained by the restraining jig 30. The restraining jig 30 includes a pair of restraining plates 31, bolts 32 that connect the restraining plates 31, and nuts 33 that are screwed into the bolts 32. The restraining jig 30 restrains the lithium ion secondary battery 10 by pressing the two long side walls 12d of the case 11 from the outer surface side along the width direction of the case 11, that is, the stacking direction of the electrode assembly 14. It is.

そして、拘束治具30により、リチウムイオン二次電池10がケース11の幅方向から拘束されると、図5(a)に示すように、電極組立体14の層間(負極電極21とセパレータ27との隙間S1、及び正極電極24とセパレータ27との隙間S2)が拘束前より狭くなる。   Then, when the lithium ion secondary battery 10 is restrained by the restraining jig 30 from the width direction of the case 11, as shown in FIG. 5A, the interlayer of the electrode assembly 14 (the negative electrode 21 and the separator 27, And the gap S2) between the positive electrode 24 and the separator 27 become narrower than before the restraint.

次に、リチウムイオン二次電池10を拘束治具30で拘束した状態で、初期(初回)充電を行う。一サイクル目の充電時において、充電開始から、初めに現れるステージ構造の変化よりも前までの期間を低速充電期間とする。低速充電期間では、充電電流を0.025〜0.1Cとして、比較的低速で充電を行う(低速充電を行う)。   Next, initial (initial) charging is performed in a state where the lithium ion secondary battery 10 is restrained by the restraining jig 30. At the time of charging in the first cycle, a period from the start of charging to before the stage structure change that appears first is defined as a low-speed charging period. In the low speed charging period, the charging current is set to 0.025 to 0.1 C, and charging is performed at a relatively low speed (low speed charging is performed).

なお、図4の曲線に示すように、低速充電の開始から、「初めに現れるステージ構造の変化」の前までの負極電位は、負極電位の変化率が大きい。一方、「負極活物質にリチウムイオンが挿入されるステージ構造変化」が生じている電位は、図4の曲線において、負極電位の変化率が小さく、充電の開始から初めに現れる電位プラトー(平坦部)が観察される電位である。このステージでは、負極電位が一定の所にリチウムイオンが挿入されるので、負極電位の変化がなく、フラット(負極電位の変化率がゼロ)になる。そして、本実施形態では、「負極活物質にリチウムイオンが挿入されるステージ」での電位は0.2V前後であり、充電開始から負極電位が0.2V付近に達するまでが低速充電期間となっている。   As shown by the curve in FIG. 4, the negative electrode potential from the start of the slow charge to before the “first stage structure change” has a large change rate of the negative electrode potential. On the other hand, the potential at which “the stage structure change in which lithium ions are inserted into the negative electrode active material” occurs has a small negative electrode potential change rate in the curve of FIG. ) Is the observed potential. In this stage, since lithium ions are inserted at a constant negative electrode potential, the negative electrode potential does not change and becomes flat (the negative electrode potential change rate is zero). In the present embodiment, the potential at the “stage where lithium ions are inserted into the negative electrode active material” is about 0.2 V, and the slow charge period is from the start of charging until the negative electrode potential reaches around 0.2 V. ing.

また、低速充電期間は、電極組立体14の電気容量(満充電)に対して、現在、充電している電気量を比率で表したSOCが0%〜15%までの期間でもある。すなわち、SOC0%の充電開始から、SOC15%となるまでが、低速充電期間である。また、低速充電を終了させるタイミング、すなわち、SOC15%となったタイミングであり、電位プラトーに到達したタイミングは、非水電解液の添加剤(有機溶媒)であるビニレンカーボネート(VC)の分解速度が緩やかになるタイミングでもある。   The low-speed charging period is also a period in which the SOC that represents the amount of electricity that is currently charged with respect to the electric capacity (full charge) of the electrode assembly 14 is 0% to 15%. That is, the slow charging period is from the start of SOC 0% charging to SOC 15%. The timing at which the low-speed charging is terminated, that is, the timing at which the SOC reaches 15%, and the timing at which the potential plateau is reached is that the decomposition rate of vinylene carbonate (VC), which is an additive (organic solvent) of the non-aqueous electrolyte, It is also the time to relax.

さて、初期充電において、低速充電が開始されると、負極電位が、ビニレンカーボネートの分解電位(本実施形態では0.8V)に達する。すると、ビニレンカーボネートの分解が開始され、負極活物質の表面にはSEI皮膜の形成が開始されるとともに、ガスの発生が開始する。そして、ビニレンカーボネートは、分解電位に達してから低速充電が完了する直前まで急速に分解されていき、低速充電が完了するタイミング(負極電位0.2V付近)で、分解速度が緩やかになる。   In the initial charge, when the slow charge is started, the negative electrode potential reaches the decomposition potential of vinylene carbonate (0.8 V in this embodiment). Then, the decomposition of vinylene carbonate is started, the formation of the SEI film on the surface of the negative electrode active material is started, and the generation of gas is started. Then, vinylene carbonate is rapidly decomposed until it reaches the decomposition potential and immediately before the completion of the low-speed charging, and at the timing when the low-speed charging is completed (near the negative electrode potential of 0.2 V), the decomposition rate becomes slow.

なお、図5(a)に示すように、低速充電期間中、ビニレンカーボネートの分解により発生したガスは気泡40となって、負極電極21とセパレータ27との隙間S1(層間)、及び正極電極24とセパレータ27との隙間S2(層間)に入り込む。その後、一旦、充電を停止し、拘束治具30によるリチウムイオン二次電池10の拘束を解除する。   As shown in FIG. 5A, during the low-speed charging period, the gas generated by the decomposition of vinylene carbonate becomes bubbles 40, the gap S1 (interlayer) between the negative electrode 21 and the separator 27, and the positive electrode 24. And the separator 27 enter the gap S2 (interlayer). Thereafter, the charging is temporarily stopped, and the restraint of the lithium ion secondary battery 10 by the restraining jig 30 is released.

すると、図5(b)に示すように、負極電極21とセパレータ27との隙間S1、及び正極電極24とセパレータ27との隙間S2が、拘束治具30による拘束前より広がり、気泡40が各隙間S1,S2を流動可能になり、気泡40が各隙間S1,S2に沿って上方へ押し出される。その後、リチウムイオン二次電池10を拘束治具30によって再度、拘束することで、図5(c)に示すように、電極組立体14の層間に残る気泡40が無くなる。   Then, as shown in FIG. 5 (b), the gap S1 between the negative electrode 21 and the separator 27 and the gap S2 between the positive electrode 24 and the separator 27 spread before the restraint by the restraining jig 30, and the bubble 40 is The gaps S1 and S2 can flow, and the bubbles 40 are pushed upward along the gaps S1 and S2. After that, by restraining the lithium ion secondary battery 10 again by the restraining jig 30, the bubbles 40 remaining between the layers of the electrode assembly 14 are eliminated as shown in FIG.

次に、拘束治具30によりリチウムイオン二次電池10が拘束された状態で、低速充電の時よりも高レートの充電電流で充電を再開し、後期充電(再充電)を行う。本実施形態では、0.8Cの充電電流で後期充電を行う。すると、図4に示すように、負極電位は、既にビニレンカーボネートの分解電位に達しているため、ビニレンカーボネートが分解され、負極活物質の表面にはSEI皮膜が形成される。このとき、ビニレンカーボネートは緩やかに分解され、安定して負極活物質の表面に形成されていき、しかも、気泡40が存在しないため、SEI皮膜はムラなく負極活物質の表面に形成されていく。なお、ビニレンカーボネートの分解によってガスが発生するが、発生量は低速充電時よりも少なく、既に、SEI皮膜もムラなく形成されているため、ガスによるSEI皮膜形成に対する影響は少ない。   Next, in a state in which the lithium ion secondary battery 10 is restrained by the restraining jig 30, charging is resumed at a charging current at a higher rate than at the time of low-speed charging, and late charging (recharging) is performed. In the present embodiment, late charging is performed with a charging current of 0.8C. Then, as shown in FIG. 4, since the negative electrode potential has already reached the decomposition potential of vinylene carbonate, vinylene carbonate is decomposed and an SEI film is formed on the surface of the negative electrode active material. At this time, vinylene carbonate is gradually decomposed and stably formed on the surface of the negative electrode active material, and since the bubbles 40 do not exist, the SEI film is uniformly formed on the surface of the negative electrode active material. Although gas is generated by the decomposition of vinylene carbonate, the amount of generation is smaller than that during low-speed charging, and the SEI film is already formed evenly, so that the influence of the gas on the formation of the SEI film is small.

そして、リチウムイオン二次電池10の電圧が所定電圧に達すると、一サイクル目の充電が完了する。その後、放電が行われ、以降、充放電が繰り返されてコンディショニング工程が終了する。   Then, when the voltage of the lithium ion secondary battery 10 reaches a predetermined voltage, charging in the first cycle is completed. Thereafter, discharging is performed, and thereafter, the charging and discharging are repeated and the conditioning process is completed.

上記実施形態によれば、以下のような効果を得ることができる。
(1)コンディショニング工程において、低速充電後に、拘束治具30によるリチウムイオン二次電池10の拘束を一旦解除し、電極組立体14の層間に存在する気泡40を移動できるようにしておき、拘束治具30でリチウムイオン二次電池10を再度、拘束した。このため、初期充電時に気泡40が生じても、その途中での拘束治具30による拘束解除と再拘束によって、電極組立体14の層間から気泡40を無くすことができる。よって、気泡40を無くした後の後期充電により、負極活物質の表面にSEI皮膜をムラ無く形成することができる。その結果、コンディショニング後の充電において、SEI皮膜形成のためにリチウムが消費されることが抑制され、リチウムイオン二次電池10の容量維持率が低下することを抑制できる。
According to the above embodiment, the following effects can be obtained.
(1) In the conditioning process, after the low-speed charging, the restraint of the lithium ion secondary battery 10 by the restraining jig 30 is once released so that the bubbles 40 existing between the layers of the electrode assembly 14 can be moved to restrain the restraint. The lithium ion secondary battery 10 was restrained again with the tool 30. For this reason, even if the bubble 40 is generated during the initial charging, the bubble 40 can be eliminated from the interlayer of the electrode assembly 14 by releasing the restraint by the restraining jig 30 and re-restraining in the middle. Therefore, the SEI film can be uniformly formed on the surface of the negative electrode active material by late charging after the bubbles 40 are eliminated. As a result, in charging after conditioning, it is possible to suppress the consumption of lithium for the formation of the SEI film, and it is possible to suppress a decrease in the capacity maintenance rate of the lithium ion secondary battery 10.

(2)拘束治具30によるリチウムイオン二次電池10の拘束を解除するタイミングを、「充電開始から初めに現れるステージ構造の変化」に到達したタイミングとした。上記ステージ構造の変化が生じる電位では、負極電位の変化量が小さく、ビニレンカーボネートの分解が緩やかに行われ、SEI皮膜を安定した状態で形成することができ、SEI皮膜にムラが生じることを抑制できる。よって、拘束解除と再拘束によって気泡40を電極組立体14の層間から押し出し、かつ拘束解除のタイミングを所定のタイミングとすることで、負極活物質の表面にSEI皮膜をムラ無く形成することができる。   (2) The timing at which the restraint of the lithium ion secondary battery 10 by the restraining jig 30 is released is the timing at which the “change in the stage structure that appears first from the start of charging” is reached. At the potential at which the stage structure change occurs, the amount of change in the negative electrode potential is small, vinylene carbonate is slowly decomposed, and the SEI film can be formed in a stable state, suppressing unevenness in the SEI film. it can. Therefore, the SEI film can be uniformly formed on the surface of the negative electrode active material by extruding the bubble 40 from the interlayer of the electrode assembly 14 by releasing the restraint and re-restraining, and setting the restraint releasing timing to a predetermined timing. .

(3)また、「充電開始から初めに現れるステージ構造の変化」では、負極電位の変化量が小さく、ビニレンカーボネートの分解もほぼ収まる。このため、ビニレンカーボネートの分解に伴うガス発生が少なくなる。そして、このステージ構造の変化に到達したタイミングで、リチウムイオン二次電池の拘束解除、及び再拘束を行う。このため、低速充電期間中にガスをほぼ発生させた状態で、電極組立体14からガスを抜くことになり、それ以降の後期充電時に発生するガスの量を抑えてSEI皮膜を形成することができる。   (3) Further, in the “stage structure change first appearing from the start of charging”, the amount of change in the negative electrode potential is small, and the decomposition of vinylene carbonate is almost suppressed. For this reason, the gas generation accompanying decomposition | disassembly of vinylene carbonate decreases. Then, at the timing when the change in the stage structure is reached, the restraint release and re-restraint of the lithium ion secondary battery are performed. For this reason, the gas is extracted from the electrode assembly 14 in a state where the gas is substantially generated during the low-speed charging period, and the SEI film can be formed while suppressing the amount of gas generated during the later charging. it can.

(4)拘束治具30によってリチウムイオン二次電池10を再度、拘束した後は、低速充電時より高レートで充電するようにした。後期充電時は、SEI皮膜もムラなく形成されており、容量維持率も低下しにくいため、高レートで充電することができ、後期充電を低速充電と同じレートで充電する場合と比べて、初期充電に要する時間を短縮できる。   (4) After the lithium ion secondary battery 10 was restrained again by the restraining jig 30, it was charged at a higher rate than at the time of low speed charging. At the time of late charging, the SEI film is formed evenly and the capacity maintenance rate is difficult to decrease, so it can be charged at a high rate, and compared with the case of charging late charge at the same rate as low-speed charging. The time required for charging can be shortened.

なお、上記実施形態は以下のように変更してもよい。
○ 負極活物質としてシリコン系のものを使用してもよい。シリコン系の負極活物質としては、酸化珪素が用いられ、xが0.4以上、かつ1.2以下を満たす低級酸化珪素(SiO)を用いるのが好ましい。負極活物質は、低級酸化珪素粉末と、有機溶媒と、導電剤と、バインダとを含む。
In addition, you may change the said embodiment as follows.
○ A silicon-based material may be used as the negative electrode active material. As the silicon-based negative electrode active material, silicon oxide is used, and it is preferable to use lower silicon oxide (SiO x ) satisfying x of 0.4 or more and 1.2 or less. The negative electrode active material includes a lower silicon oxide powder, an organic solvent, a conductive agent, and a binder.

シリコン系の負極活物質を用いた負極電極を用いたリチウムイオン二次電池では、初期(初回)充電において、リチウムシリケートが均一に生成される際に、電位プラトーが観察される。よって、シリコン系の負極活物質を用いた負極電極を用いたリチウムイオン二次電池の初期充電では、充電開始から、リチウムシリケートの生成による電位プラトーが観察されるまでにおいて低速充電を行う。   In a lithium ion secondary battery using a negative electrode using a silicon-based negative electrode active material, a potential plateau is observed when lithium silicate is uniformly generated during initial (initial) charging. Therefore, in the initial charging of a lithium ion secondary battery using a negative electrode using a silicon-based negative electrode active material, slow charging is performed from the start of charging until a potential plateau due to the generation of lithium silicate is observed.

よって、シリコン系の負極活物質としては、アモルファスシリコンのように、リチウムシリケートの生成による電位プラトーが観察される活物質が用いられる。
○ 後期充電では、低速充電より高レートであれば、0.8C以外のレートで充電を行ってもよい。
Therefore, an active material in which a potential plateau due to the formation of lithium silicate is observed is used as the silicon-based negative electrode active material, such as amorphous silicon.
In late charging, charging may be performed at a rate other than 0.8C as long as it is higher than low-speed charging.

○ 充電開始から負極電位における電位プラトーが生じるタイミングで拘束を解除してもよい。
○ 低速充電時のSOCは適宜変更してもよい。
O The restraint may be released at the timing when the potential plateau at the negative electrode potential occurs from the start of charging.
○ The SOC during low-speed charging may be changed as appropriate.

○ SEI皮膜を形成する添加剤は、ビニレンカーボネート以外でもよい。
○ 電極組立体14は積層型としたが、帯状の負極電極と正極電極の間に、帯状のセパレータを挟んでこれらを層状に捲回した捲回型としてもよい。
The additive for forming the SEI film may be other than vinylene carbonate.
The electrode assembly 14 is a laminated type, but may be a wound type in which a strip-shaped separator is sandwiched between a strip-shaped negative electrode and a positive electrode, and these are wound in layers.

○ 電極組立体14を構成する負極電極21及び正極電極24の枚数は適宜変更してもよい。
○ 実施形態では、負極電極21は、負極金属箔22の両面に負極活物質層23を有するとしたが、負極金属箔22の片面のみに負極活物質層23を有していてもよい。同様に、正極電極24は、正極金属箔25の両面に正極活物質層26を有するとしたが、正極金属箔25の片面のみに正極活物質層26を有していてもよい。
The number of the negative electrode 21 and the positive electrode 24 which comprise the electrode assembly 14 may be changed suitably.
In the embodiment, the negative electrode 21 has the negative electrode active material layer 23 on both sides of the negative electrode metal foil 22, but may have the negative electrode active material layer 23 only on one side of the negative electrode metal foil 22. Similarly, the positive electrode 24 has the positive electrode active material layer 26 on both sides of the positive electrode metal foil 25, but may have the positive electrode active material layer 26 only on one side of the positive electrode metal foil 25.

次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
(イ)前記電解液は非水電解液である。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(A) The electrolytic solution is a non-aqueous electrolytic solution.

10…リチウムイオン二次電池、14…電極組立体、21…負極電極、24…正極電極。   DESCRIPTION OF SYMBOLS 10 ... Lithium ion secondary battery, 14 ... Electrode assembly, 21 ... Negative electrode, 24 ... Positive electrode

Claims (4)

リチウムイオンを吸蔵・放出し得る正極活物質を有する正極電極と、リチウムイオンを挿入・脱離し得るシリコン系又はカーボン系の負極活物質を有する負極電極とを、両者の間を絶縁した状態に積層した電極組立体と、電解液とを有するリチウムイオン二次電池における初期充電方法であって、
前記電極組立体の積層方向に沿って前記リチウムイオン二次電池を外側から拘束した状態で初期充電を開始し、充電開始から負極電位における少なくとも電位プラトーが生じるタイミングよりも前までの充電範囲で低速充電を行い、
前記低速充電の後に、前記リチウムイオン二次電池の拘束を解除し、
拘束解除の後に、前記リチウムイオン二次電池を再度拘束し、前記低速充電の時よりも高レートで再充電を行うことを特徴とするリチウムイオン二次電池の初期充電方法。
A positive electrode having a positive electrode active material capable of inserting / extracting lithium ions and a negative electrode having a silicon-based or carbon-based negative electrode active material capable of inserting / extracting lithium ions are laminated in an insulated state. An initial charging method in a lithium ion secondary battery having an electrode assembly and an electrolyte solution,
The initial charging is started in a state where the lithium ion secondary battery is restrained from the outside along the stacking direction of the electrode assembly, and the charging speed is low in the charging range from the start of charging to at least the timing at which the potential plateau occurs at the negative electrode potential. Charge
After the low-speed charging, release the restraint of the lithium ion secondary battery,
After the restraint is released, the lithium ion secondary battery is restrained again and recharged at a higher rate than in the low speed charge.
前記カーボン系の負極活物質を有する負極電極を用いたリチウムイオン二次電池では、充電開始から、負極活物質にリチウムイオンが挿入されるステージ構造変化に対応する電位までにおいて低速充電が行われる請求項1に記載のリチウムイオン二次電池の初期充電方法。   In the lithium ion secondary battery using the negative electrode having the carbon-based negative electrode active material, low-speed charging is performed from the start of charging to a potential corresponding to a stage structure change in which lithium ions are inserted into the negative electrode active material. Item 2. An initial charging method of a lithium ion secondary battery according to Item 1. 前記電解液には、ビニレンカーボネートが含まれている請求項2に記載のリチウムイオン二次電池の初期充電方法。   The initial charging method for a lithium ion secondary battery according to claim 2, wherein the electrolyte contains vinylene carbonate. 前記シリコン系の負極活物質を有する負極電極を用いたリチウムイオン二次電池では、充電開始からリチウムシリケートの生成による電位プラトーが観察されるまでにおいて低速充電が行われる請求項1に記載のリチウムイオン二次電池の初期充電方法。   2. The lithium ion according to claim 1, wherein in the lithium ion secondary battery using the negative electrode having the silicon-based negative electrode active material, low-speed charging is performed from the start of charging until a potential plateau due to generation of lithium silicate is observed. An initial charging method for a secondary battery.
JP2014112583A 2014-05-30 2014-05-30 Initial charging method for lithium ion secondary battery Expired - Fee Related JP6361291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112583A JP6361291B2 (en) 2014-05-30 2014-05-30 Initial charging method for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112583A JP6361291B2 (en) 2014-05-30 2014-05-30 Initial charging method for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015228289A true JP2015228289A (en) 2015-12-17
JP6361291B2 JP6361291B2 (en) 2018-07-25

Family

ID=54885657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112583A Expired - Fee Related JP6361291B2 (en) 2014-05-30 2014-05-30 Initial charging method for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6361291B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105810965A (en) * 2016-05-31 2016-07-27 东莞阿李自动化股份有限公司 Formation machine
US10033216B2 (en) 2015-02-10 2018-07-24 Toyota Jidosha Kabushiki Kaisha Initial charging method and production method for lithium-ion battery
JP2019029097A (en) * 2017-07-26 2019-02-21 日産自動車株式会社 Initial charging method of lithium ion secondary battery
JP2019121556A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Initial charge method of lithium ion secondary battery
WO2020103553A1 (en) * 2018-11-22 2020-05-28 浙江杭可科技股份有限公司 Cylindrical lithium ion battery formation and capacity division apparatus
KR20210031423A (en) 2018-07-19 2021-03-19 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
JP2021061214A (en) * 2019-10-09 2021-04-15 積水化学工業株式会社 Method for manufacturing laminated battery
JP2022154251A (en) * 2021-03-30 2022-10-13 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US11876191B2 (en) 2018-11-20 2024-01-16 Lg Energy Solution, Ltd. Method for activating secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2002208440A (en) * 2001-01-10 2002-07-26 Toyota Motor Corp Initial charging method and manufacturing method of lithium secondary cell
JP2003109662A (en) * 2001-09-28 2003-04-11 Tdk Corp Method of manufacturing secondary battery
JP2004228010A (en) * 2003-01-24 2004-08-12 Tdk Corp Manufacturing method of lithium ion secondary battery
JP2005032632A (en) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd Manufacturing method of non-aqueous secondary battery
JP2005267889A (en) * 2004-03-16 2005-09-29 Sony Corp Manufacturing method of battery
JP2010021104A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Method of manufacturing secondary battery
JP2010262867A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP2012212629A (en) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd Manufacturing method of lithium ion power storage device
JP2013045590A (en) * 2011-08-23 2013-03-04 Shin Etsu Chem Co Ltd Charging method of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013125650A (en) * 2011-12-14 2013-06-24 Toyota Motor Corp Sealed lithium secondary battery and manufacturing method of the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325988A (en) * 2000-05-16 2001-11-22 Sony Corp Charging method of non-aqueous electrolyte secondary battery
JP2002208440A (en) * 2001-01-10 2002-07-26 Toyota Motor Corp Initial charging method and manufacturing method of lithium secondary cell
JP2003109662A (en) * 2001-09-28 2003-04-11 Tdk Corp Method of manufacturing secondary battery
JP2004228010A (en) * 2003-01-24 2004-08-12 Tdk Corp Manufacturing method of lithium ion secondary battery
JP2005032632A (en) * 2003-07-08 2005-02-03 Hitachi Maxell Ltd Manufacturing method of non-aqueous secondary battery
JP2005267889A (en) * 2004-03-16 2005-09-29 Sony Corp Manufacturing method of battery
JP2010021104A (en) * 2008-07-14 2010-01-28 Toyota Motor Corp Method of manufacturing secondary battery
JP2010262867A (en) * 2009-05-08 2010-11-18 Toyota Motor Corp Method of manufacturing secondary battery
JP2012212629A (en) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd Manufacturing method of lithium ion power storage device
JP2013045590A (en) * 2011-08-23 2013-03-04 Shin Etsu Chem Co Ltd Charging method of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013125650A (en) * 2011-12-14 2013-06-24 Toyota Motor Corp Sealed lithium secondary battery and manufacturing method of the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10033216B2 (en) 2015-02-10 2018-07-24 Toyota Jidosha Kabushiki Kaisha Initial charging method and production method for lithium-ion battery
CN105810965A (en) * 2016-05-31 2016-07-27 东莞阿李自动化股份有限公司 Formation machine
CN105810965B (en) * 2016-05-31 2018-06-01 东莞阿李自动化股份有限公司 A kind of chemical conversion machine
JP2019029097A (en) * 2017-07-26 2019-02-21 日産自動車株式会社 Initial charging method of lithium ion secondary battery
JP7019987B2 (en) 2017-07-26 2022-02-16 日産自動車株式会社 Initial charging method for lithium-ion secondary battery
JP2019121556A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Initial charge method of lithium ion secondary battery
KR20210031423A (en) 2018-07-19 2021-03-19 가부시키가이샤 아데카 Non-aqueous electrolyte secondary battery
US11876191B2 (en) 2018-11-20 2024-01-16 Lg Energy Solution, Ltd. Method for activating secondary battery
WO2020103553A1 (en) * 2018-11-22 2020-05-28 浙江杭可科技股份有限公司 Cylindrical lithium ion battery formation and capacity division apparatus
JP2021061214A (en) * 2019-10-09 2021-04-15 積水化学工業株式会社 Method for manufacturing laminated battery
JP7261137B2 (en) 2019-10-09 2023-04-19 積水化学工業株式会社 Laminated battery manufacturing method
JP2022154251A (en) * 2021-03-30 2022-10-13 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
JP7325471B2 (en) 2021-03-30 2023-08-14 プライムプラネットエナジー&ソリューションズ株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6361291B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6361291B2 (en) Initial charging method for lithium ion secondary battery
JP6376098B2 (en) Method for producing non-aqueous electrolyte secondary battery
CN107959055B (en) Method for manufacturing lithium ion secondary battery
JP2018106903A (en) Lithium ion secondary battery
JP5445497B2 (en) Method for removing moisture from lithium ion secondary battery
JP5920639B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2011238568A (en) Lithium ion secondary battery and secondary battery system
JP2013084420A (en) Laminated lithium-ion battery
JP2020080255A (en) Non-aqueous electrolyte secondary battery
JP6536908B2 (en) Lithium ion secondary battery
JP2012204098A (en) Method for manufacturing lithium ion secondary battery
JP6645008B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP5708761B2 (en) Method for removing moisture from lithium ion secondary battery
JP5708760B2 (en) Method for removing moisture from lithium ion secondary battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module
JP2007213820A (en) Secondary battery
JP2019067700A (en) Nonaqueous electrolyte secondary battery
JP7296997B2 (en) Separator used for lithium ion secondary battery, and lithium ion secondary battery
JP6667623B2 (en) Active material for battery cell positive electrode, positive electrode, and battery cell
JP7161679B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP7079417B2 (en) How to recover the resistance characteristics of non-aqueous electrolyte secondary batteries
JP6960089B2 (en) Non-aqueous electrolyte
JP6667622B2 (en) Active material for battery cell positive electrode, positive electrode, and battery cell
JP2018529199A (en) Active material for positive electrode of battery cell, positive electrode, and battery cell
JP2017054736A (en) Electrolytic solution for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R151 Written notification of patent or utility model registration

Ref document number: 6361291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees