JP2018120136A - 光学ユニットの組立方法 - Google Patents

光学ユニットの組立方法 Download PDF

Info

Publication number
JP2018120136A
JP2018120136A JP2017012484A JP2017012484A JP2018120136A JP 2018120136 A JP2018120136 A JP 2018120136A JP 2017012484 A JP2017012484 A JP 2017012484A JP 2017012484 A JP2017012484 A JP 2017012484A JP 2018120136 A JP2018120136 A JP 2018120136A
Authority
JP
Japan
Prior art keywords
optical
laser
holder
welding
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017012484A
Other languages
English (en)
Other versions
JP6875135B2 (ja
Inventor
大久保 純一
Junichi Okubo
純一 大久保
浅見 桂一
Keiichi Asami
桂一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2017012484A priority Critical patent/JP6875135B2/ja
Priority to PCT/JP2018/000172 priority patent/WO2018139180A1/ja
Publication of JP2018120136A publication Critical patent/JP2018120136A/ja
Application granted granted Critical
Publication of JP6875135B2 publication Critical patent/JP6875135B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/28Seam welding of curved planar seams
    • B23K26/282Seam welding of curved planar seams of tube sections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Lens Barrels (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

【課題】光デバイスをそれぞれ拘持する複数のホルダを溶接する際の光デバイスの相対的な位置のずれを抑制して、所望の光学特性を有する光学ユニットを得ることができる光学ユニットの組立方法を提供すること。
【解決手段】第一の嵌合代部と第二の嵌合代部を夫々嵌合し、第一の光デバイス拘持体と第二の光デバイス拘持体とを相対移動して、第一の光デバイスと第二の光デバイスの間隔を光路長調整する光学調整工程と、光学調整工程に続き、光デバイスの光軸方向における、第一の拘持部を通過し、光軸と垂直な拘持面と、第二の拘持部を含む光軸と垂直な拘持面とに挟まれる領域から前記領域外の第一の嵌合代部と第二の嵌合代部との重ね部分に、光デバイスの光軸と略直交する方向から照射領域の単位面積当たりの蓄積エネルギーが略均一のレーザ光を照射して第一の光デバイス拘持体と第二の光デバイス拘持体とを溶接固定する溶接工程と、を含む。
【選択図】図1

Description

本発明は、光デバイスと、光デバイスを拘持するホルダとを備えた光学ユニットの組立方法に関する。
従来、レンズや固体撮像デバイスなどの光学部品を備えた光学ユニットの組立方法において、組立性の観点から、レンズを拘持するレンズホルダと、イメージセンサを拘持するセンサホルダとをレーザ溶接によって固定して組み立てる組立方法が知られている(例えば、特許文献1を参照)。特許文献1には、オートクレーブ滅菌可能に気密接合された内視鏡用の光学ユニットの組立方法が開示されている。具体的に、特許文献1が開示する組立方法では、レーザ溶接する前に、レンズホルダとセンサホルダとの位置を調整して画像のピント調整を予め行い、ピント調整後のレンズホルダとセンサホルダとをレーザ溶接によって気密に接合している。
特許第3689341号公報
ところで、ホルダをレーザ照射により溶融固化させると、ホルダの収縮による当該ホルダの寸法変化が生じ、各ホルダが拘持するデバイス同士の位置関係が変化する場合があった。この場合には、所望の光学特性を得ることができないという問題があった。
本発明は、上記に鑑みてなされたものであって、光デバイスをそれぞれ拘持するホルダ同士を溶接する際の光デバイスの相対的な位置のずれを抑制して、所望の光学特性を有する光学ユニットを得ることができる光学ユニットの組立方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る光学ユニットの組立方法は、内部に一つ以上の第一の光デバイスを拘持する第一の拘持部、および前記第一の拘持部から延設する第一の嵌合代部を有するスリーブ状の第一の光デバイス拘持体と、内部に一つ以上の第二の光デバイスを拘持する第二の拘持部、および前記第二の拘持部から延設する第二の嵌合代部を有するスリーブ状の第二の光デバイス拘持体と、を備える光学ユニットの組立方法において、前記第一の嵌合代部と前記第二の嵌合代部を夫々嵌合し、前記第一の光デバイス拘持体と前記第二の光デバイス拘持体とを相対移動して、前記第一の光デバイスと前記第二の光デバイスの間隔を光路長調整する光学調整工程と、前記光学調整工程に続き、前記光デバイスの光軸方向における領域であって、前記第一の拘持部を通過し、前記光学デバイスの光軸と垂直な面である拘持面と、前記第二の拘持部を通過し、前記光軸と垂直な面である拘持面とに挟まれる領域から前記領域外の前記第一の嵌合代部と前記第二の嵌合代部との重ね部分に、前記光デバイスの光軸と略直交する方向から照射領域の単位面積当たりの蓄積エネルギーが略均一のレーザ光を照射して前記第一の光デバイス拘持体と前記第二の光デバイス拘持体とを溶接固定する溶接工程と、を含むことを特徴とする。
本発明に係る光学ユニットの組立方法は、上記発明において、前記溶接工程は、前記レーザ光のピーク強度のビーム径をWP、前記レーザ光の加工下限強度のビーム径をWLとしたときに、ビーム径WPに対するビーム径WLの比(WL/WP)が1.0≦WL/WP≦1.5を満たす前記レーザ光を照射することを特徴とする。
本発明に係る光学ユニットの組立方法は、上記発明において、前記溶接工程は、前記レーザ光の光軸を歳差運動させながら予め設定された時間間隔で複数回の前記レーザ光の照射を行うことを特徴とする。
本発明に係る光学ユニットの組立方法は、上記発明において、前記溶接工程は、前記レーザ光の照射面上の焦点位置を中心点として前記レーザ光の光軸を歳差運動させることを特徴とする。
本発明に係る光学ユニットの組立方法は、上記発明において、前記溶接工程は、パルス発振された前記レーザ光の照射を行うことを特徴とする。
本発明によれば、光デバイスをそれぞれ拘持するホルダ同士を溶接する際の光デバイスの相対的な位置のずれを抑制して、所望の光学特性を有する光学ユニットを得ることができるという効果を奏する。
図1は、本発明の実施の形態1に係る光学ユニットの構成を模式的に示す断面図である。 図2は、本発明の実施の形態1に係る光学ユニットの要部の構成を模式的に示す図である。 図3は、溶融固化した際の寸法変化を測定する方法を説明する図であって、レーザ照射前の測定用部材を説明する図である。 図4は、溶融固化した際の寸法変化を測定する方法を説明する図であって、レーザ照射後の測定用部材を説明する図である。 図5は、溶融固化した際の寸法変化の測定結果の一例を説明する図である。 図6は、本発明の実施の形態1に係るレーザ溶接装置の構成を模式的に示す図である。 図7は、レーザ溶接を行う際に用いるレーザ光の特性を説明する図である。 図8は、本発明の実施の形態1に係る光学ユニットの組立方法を説明するフローチャートである。 図9は、本発明の実施の形態1に係る光学ユニットの組立方法を説明する模式図であって、レンズホルダとセンサホルダとの組み付けを説明する図である。 図10は、本発明の実施の形態1に係る光学ユニットの組立方法を説明する模式図であって、レンズホルダとセンサホルダとの仮止めを説明する図である。 図11は、本発明の実施の形態1に係る光学ユニットの組立方法を説明する模式図であって、レンズホルダとセンサホルダとの溶接を説明する図である。 図12は、本発明の実施の形態1に係る光学ユニットの組み立てにおけるレーザ溶接を説明する図である。 図13は、従来のレーザ溶接を行う際に用いるレーザ光の特性を説明する図である。 図14は、従来の光学ユニットの組み立てにおけるレーザ溶接を説明する図である。 図15は、従来の光学ユニットの組み立てにおけるレーザ溶接を説明する図である。 図16は、本発明の実施の形態2に係るレーザ溶接装置の要部の構成を模式的に示す図である。 図17は、本発明の実施の形態2に係るレーザ溶接装置によって形成される溶接部を説明する図である。 図18は、本発明の実施の形態2に係るレーザ溶接装置によるレーザ照射を説明する図である。 図19は、本発明の実施の形態2に係るレーザ溶接装置によって形成される溶接部を説明する図である。 図20は、本発明の実施の形態2の変形例1に係るレーザ溶接装置によって形成される溶接部を説明する図である。 図21は、本発明の実施の形態2の変形例2に係るレーザ溶接装置によって形成される溶接部を説明する図である。 図22は、本発明の実施の形態2の変形例3に係るレーザ溶接装置によって形成される溶接部を説明する図である。 図23は、本発明の実施の形態2の変形例4に係るレーザ溶接装置の要部の構成を模式的に示す図である。 図24は、本発明の実施の形態2の変形例5に係るレーザ溶接装置の要部の構成を模式的に示す図である。 図25は、本発明の実施の形態2の変形例5に係るレーザ溶接装置によるレーザ照射を説明する図である。 図26は、本発明の実施の形態2の変形例5に係るレーザ溶接装置によって形成される溶接部を説明する図である。 図27は、本発明の実施の形態3に係る光学ユニットの構成を模式的に示す断面図である。
以下、本発明を実施するための形態(以下、「実施の形態」という)を添付図面に基づいて詳細に説明する。なお、図面は模式的なものであり、各部の寸法の関係や比率は、現実と異なる。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれる。
(実施の形態1)
図1は、本発明の実施の形態1に係る光学ユニットの構成を模式的に示す断面図である。図1は、当該光学ユニットの中心軸(光軸N1)を含む平面を切断面とする部分断面図である。同図に示す光学ユニット1は、保護ガラス2と、第一の光デバイスであるレンズ3と、保護ガラス2およびレンズ3を拘持する略筒状のレンズホルダ10と、外部からの光を受光する受光面4aを有し、受光した光を電気信号に変換する第二の光デバイスであるイメージセンサ4と、イメージセンサ4を拘持する筒状のセンサホルダ20とを備えている。図1では、レンズホルダ10の中心軸と、センサホルダ20の中心軸とは、互いに一致しており、かつ光学ユニット1の光軸N1にそれぞれ一致しているものとして説明する。光学ユニット1は、レンズ3が集光した外部の光を、イメージセンサ4が受光して光電変換を行って、画像信号を生成する。光学ユニット1は、例えば、被検体内に挿入される挿入部を備えた内視鏡に設けられる。なお、レンズホルダ10は第一の光デバイス拘持体、センサホルダ20は第二の光デバイス拘持体に相当する。
レンズ3は、ガラスや樹脂を用いて形成される集光レンズ等により構成される。図1では、一つのレンズを用いるものを示しているが、複数のレンズから構成されるものであってもよい。
レンズホルダ10は、外周面のなす径であって、光軸N1と直交する方向の径が、センサホルダ20の内周面のなす径と同等である。レンズホルダ10は、レンズ3を拘持する環状の第1拘持部10aと、第1拘持部10aの光軸方向Nの端部からイメージセンサ4側とは反対側に向けて光軸N1方向に延在し、センサホルダ20と嵌合する筒状の第1嵌合代部10bと、を有する。保護ガラス2は、例えば半田付け、または接着剤等によって、第1嵌合代部10bの第1拘持部10aに連なる側と反対側の端部で固定されている。レンズ3は、例えば半田付け、または接着剤等によって第1拘持部10aに固定されている。なお、レンズホルダ10の外周のなす径は、センサホルダ20に嵌入可能な径であればよい。例えば、レンズホルダ10は均一な厚さを有する筒状をなし、レンズホルダ10の厚さTLは、0.08mm以上0.3mm以下である。なお、ホルダ同士を嵌合させる際に、レンズホルダ10とセンサホルダ20との位置を調整可能な隙間が形成されていることが好ましい。この隙間は、径方向の距離にして例えば5〜25μmである。
センサホルダ20は、イメージセンサ4を拘持する第2拘持部20aと、第2拘持部20aの光軸N1方向の端部からレンズ3に向けて光軸N1方向に延在し、レンズホルダ10と嵌合する筒状の第2嵌合代部20bと、を有する。イメージセンサ4は、例えばレーザ溶接によってセンサホルダ20に固定されている。例えば、センサホルダ20は均一な厚さを有する筒状をなし、センサホルダ20の厚さTCは、レンズホルダ10の厚さTL以下であって、0.08mm以上0.3mm以下である。
光学ユニット1の外周のなす最大径、本実施の形態1ではセンサホルダ20の外周のなす径は、例えば0.5mm以上3.0mm以下である。
レンズホルダ10およびセンサホルダ20は、レーザ光によって溶融固化した際に、同じ程度の収縮率を有する材料を用いて構成されていることが好ましい。この材料としては、ステンレス鋼(フェライト系、マルテンサイト系、オーステナイト系)、鉄鋼材料(機械構造用炭素鋼、一般構造用圧延鋼)、インバー材、樹脂(Acrylonitrile Butadiene Styrene:ABS、Poly Ether Ether Ketone:PEEK)が挙げられる。
光学ユニット1では、レンズ3とイメージセンサ4の受光面4aとの間の距離d1が、予め設定されている光学条件を満たす距離となるように、レンズホルダ10とセンサホルダ20との相対的な位置が調整されている。また、レンズホルダ10とセンサホルダ20とは、第1嵌合代部10bおよび第2嵌合代部20bが径方向で重なる部分であって、光軸N1方向において第1拘持部10aの拘持面P10および第2拘持部20aの拘持面P20に挟まれる領域RAの外側の部分が、レーザ光による溶融固化によって接合されている。このレーザ溶接によって、レンズホルダ10およびセンサホルダ20には、互いに溶融した部分が混合して硬化してなる溶接部30が形成される。ここでいう「拘持面P10」とは、第1拘持部10aがレンズ3と接触している部分の光軸N1方向の中央を通過し、かつ光軸N1に対して垂直な平面である。また、「拘持面P20」とは、第2拘持部20aがイメージセンサ4と接触している部分の光軸N1方向の中央を通過し、かつ光軸N1に対して垂直な平面である。また、光学ユニット1において、レンズ3およびイメージセンサ4は、各々が、溶接部30に対して同じ側でレンズホルダ10およびセンサホルダ20に拘持されている。すなわち、レンズホルダ10およびセンサホルダ20において、デバイスに連なっている部分が、溶接部30を通過し、光軸N1と直交する平面に対して同じ側にある。なお、拘持面は、拘持部が光学デバイスと接触している部分の光軸N1方向の中央を通過するものとして説明したが、光学デバイスと接触している部分の光軸N1方向の一方の端部を通過する等、通過位置の設計変更が可能である。
図2は、本発明の実施の形態1に係る光学ユニットの要部の構成を模式的に示す図であって、溶接部30について説明する図である。上述したように、レンズホルダ10の一部とセンサホルダ20の一部とには、互いを接合する溶接部30が形成されている。溶接部30は、第2嵌合代部20bの溶接幅w1と、第1嵌合代部10bの溶接幅w2とが、ほぼ同じである。本実施の形態1において、溶接幅とは、ホルダに形成された溶接部の幅のうち代表の幅のことをいい、具体的には、各部材の光軸N1方向と直交する径方向の長さを厚さ、軸方向の長さを幅としたとき、各ホルダの厚さ方向の中央部の幅である。各ホルダの溶接幅について、溶接幅w1と溶接幅w2とが略同じとは、レーザ光が照射され、光軸N1と直交する方向に重なり合うホルダの外側に位置するセンサホルダ20の溶接幅w1に対する、レンズホルダ10の溶接幅w2の比(w2/w1)が、0.75≦w2/w1≦1.25の関係を満たしていることをいう。例えば、収縮量の差分を5μm以内に収める際、溶接幅w1が0.4mmである場合、溶接幅w2は0.3mm以上0.5mm以下となる。
次に、溶融固化によるホルダの収縮について、図3および図4を参照して説明する。図3および図4は、溶融固化した際の寸法変化を測定する方法を説明する図である。
まず、測定用の筒状部材(以下、測定用部材という)40の外表面に、二つのマーカM1、M2を付与する(図3参照)。マーカM1、M2は、インクによるものであってもよいし、シール材を用いたものであってもよい。マーカM1、M2は、測定用部材40の光軸N10方向に沿って設けられていることが好ましい。
その後、マーカM1、M2の間の距離d11を測定する。距離d11は、マーカM1とマーカM2との間の光軸N10方向の距離である。
溶融固化前のマーカM1、M2の間の距離d11を測定後、マーカM1とマーカM2との間の一部にレーザ光を照射して、測定用部材40の一部を溶融固化させる。この際、図4に示すように、測定用部材40の全周にわたってレーザ光を照射する。例えば、測定用部材40を光軸N10を回転軸として回転させるか、またはレーザ光を出射するレーザヘッドを測定用部材40の外周に沿って回転させながらレーザ光を照射する。これにより、測定用部材40に光軸N10のまわりに周回する溶接部41が形成される。溶接部41の形成により、測定用部材40は、該溶接部41を境界として両端部が互いに近づく方向(図4における矢印D1、D2)に収縮する。
測定用部材40に溶接部41を形成した後、マーカM1とマーカM2と間の距離d12を測定する。この距離d12は、溶融固化による測定用部材40の収縮によって、上述した距離d11よりも小さくなる。この距離d11と距離d12との差を、寸法変化量(収縮量)として算出する。その後、レーザ光の強度を変えて、上述したように溶接幅w10を形成し、収縮による寸法変化量を測定する。レーザ光の強度を変えることにより、異なる溶接幅における寸法変化量が得られる。
図5は、溶融固化した際の寸法変化の測定結果の一例を説明する図であって、溶接幅と寸法変化量との関係を示す図である。図5に示すように、溶接幅と寸法変化量とは略比例している(図5中の近似直線S参照)。これにより、溶接部30において、レンズホルダ10における溶接幅と、センサホルダ20の溶接幅との差が大きくなるほど、溶融固化前のレンズ3およびイメージセンサ4の位置関係の変化が大きくなることが容易に予測できる。
なお、収縮量をS、溶接幅をw、融点の温度をθmelt、常温をθ0としたとき、収縮量Sは、下式(1)で表すことができる。
S=α(θmelt−θ0)w ・・・(1)
ここで、αは線膨張係数である。
例えば、レンズホルダ10およびセンサホルダ20がステンレス(SUS304)を用いて作製され、センサホルダ20の溶接幅w1が0.3mm、レンズホルダ10の溶接幅w2が0.1mmである場合、αはSUS304の線膨張係数である18.7×10-6、SUS304の融点θmeltは1450℃であり、常温θ0を20℃として、これらを式(1)に代入することによって、センサホルダ20の収縮量Sは0.008mm、レンズホルダ10の収縮量Sは0.003mmとなり、それぞれの収縮量を算出することができる。
光学ユニット1は、第1嵌合代部10bおよび第2嵌合代部20bが径方向で互いに重なる部分であって、光軸N1方向において第1拘持部10aおよび第2拘持部20aに挟まれる領域RAの、光軸N1方向の外側の部分に、レンズホルダ10における溶接幅w1と、センサホルダ20の溶接幅w2とが略同じである溶接部30を形成して、レンズホルダ10とセンサホルダ20とを接合するようにしている。このため、レーザ光の照射によって第1嵌合代部10bおよび第2嵌合代部20bが溶融固化した場合に、レンズホルダ10およびセンサホルダ20は同じ収縮量で収縮し、かつレンズ3およびイメージセンサ4が収縮により同じ側に移動する。この際、保護ガラス2は、レンズ3およびイメージセンサ4の移動方向と反対方向に移動する。上述したようにレーザ光を照射することによって、溶融固化させても、レンズ3とイメージセンサ4(受光面4a)との位置関係の変化を抑制することができる。
次に、上述した光学ユニット1を作製する方法について、図6〜図12を参照して説明する。図6は、本発明の実施の形態1に係るレーザ溶接装置の構成を模式的に示す図である。同図に示すレーザ溶接装置100は、光学ユニット1を作製するための部材を保持する保持ユニット110と、レーザ光を出射するレーザ発振ユニット120と、レーザ発振ユニット120から出射されたレーザ光を照射対象に導く光学系を有するレーザ光学ユニット130と、を備える。
保持ユニット110は、センサホルダ20を、光軸N1を回転軸として回転可能に保持する第1保持部111と、レンズホルダ10を、光軸N1を回転軸として回転可能に保持する第2保持部112とを有する。
レーザ溶接装置100では、保持ユニット110に保持されたレンズホルダ10およびセンサホルダ20に対して、レーザ発振ユニット120から出射され、レーザ光学ユニット130によって導かれたレーザ光Lが照射されて、上述した溶接部30を形成してレンズホルダ10とセンサホルダ20とを接合する。レーザ光Lは、ナノ秒から数秒単位で制御可能なパルス発振されたレーザ光である。
図7は、レーザ溶接を行う際に用いるレーザ光の特性を説明する図であって、レーザ光のビームウエストを通る断面におけるビーム強度の分布を示す図である。図7に示すように、本実施の形態1では、ビーム断面の外縁側からビーム中心に向かってビーム強度が急峻に立ち上がるトップハット型の強度分布のレーザ光を用いてレーザ溶接を行う。具体的に、本実施の形態1にかかるレーザ光は、ホルダを溶融可能な加工下限強度ILにおけるビーム径WLと、ピーク強度IPにおけるビーム径WPとの値が略同じで、ビームの外縁側からビーム中心に向かってビーム強度が大きくなってピーク強度IPに達する強度分布を有する。このような強度分布のレーザ光を照射することによって、照射領域の単位面積当たりの積算エネルギーを均等的にすることができる。また、例えば、一般的に知られているガウシアン型の強度分布を有するレーザ光を、ビーム強度分布変換を行う光学系を通過させることによって、ビーム径WLとビーム径WPとが略同じでビーム断面の縁から内部に向かってビーム強度が急峻に立ち上がるトップハット型の強度分布に変換して照射するようにしてもよい。
本実施の形態1において、ピーク強度IPのビーム径WPに対する加工下限強度ILのビーム径WLの比(WL/WP)は、1.0≦WL/WP≦1.5を満たしている。この比の関係を満たすことによって、照射領域の単位面積当たりの蓄積エネルギーが略均一となり、上述したような、レンズホルダ10の溶接幅w2と、センサホルダ20の溶接幅w1とをほぼ同じとすることができる。
続いて、光学ユニット1を組み立てる組立方法を、図8〜図12を参照して説明する。図8は、本発明の実施の形態1に係る光学ユニットの組立方法を説明するフローチャートである。図9〜図11は、本発明の実施の形態1に係る光学ユニットの組立方法を説明する模式図である。図9は、レンズホルダとセンサホルダとの組み付けを説明する図である。図10は、レンズホルダとセンサホルダとの仮止めを説明する図である。図11は、レンズホルダとセンサホルダとの溶接を説明する図である。
まず、保護ガラス2およびレンズ3を拘持するレンズホルダ10を、第1拘持部10a側からセンサホルダ20の内部に挿入して嵌合する。この際、レンズホルダ10は第2保持部112に保持されており、センサホルダ20は第1保持部111に保持されている(図9参照)。その後、レンズ3とイメージセンサ4との間の距離が、予め設定されている光学特性を満たす位置関係となるようにレンズホルダ10に対してセンサホルダ20を相対移動させてレンズ3とイメージセンサ4との間の光路長を調整する(ステップS1:光学調整工程)。具体的には、レンズ3とイメージセンサ4の受光面との間の距離d1が、レンズ3により受光面4a上に結像するように、レンズホルダ10に対するセンサホルダ20の位置を調整する。レンズホルダ10とセンサホルダ20とを嵌合によって連結させる場合、各々において、嵌合する部分の表面粗さを、他の部分の表面粗さより小さくしてもよい。
その後、レンズホルダ10およびセンサホルダ20にレーザ光Lを照射して、仮止め溶接を行う(ステップS2:仮止め工程)。ステップS2では、第2嵌合代部20bの外表面にレーザ光Lを照射することにより、第1嵌合代部10bの一部、および第2嵌合代部20bの一部を溶融固化させる。レーザ光Lの照射位置は、第1嵌合代部10bと第2嵌合代部20bとが径方向で重なり合う位置であり、かつ光軸N1方向における領域RAの外側の位置である。この際、例えば、レーザ光は、一定の周波数でパルス発振された光であり、間欠的に照射される。例えば、3ミリ秒間隔でレーザ光が照射される。レーザ光Lの強度は、ホルダの材料の融点に基づいて設定され、例えば、100W以上300W以下に設定される。また、レーザ光Lは、光軸が、光デバイスであるレンズ3およびイメージセンサ4の光軸に対して略直交している。ここでいう「略直交する」とは、レーザ光Lの光軸と、レンズ3およびイメージセンサ4の光軸(光軸N1に相当)とがなす角度の範囲が90°±10°であることをいう。ステップS2により、レンズホルダ10およびセンサホルダ20の一部に溶接ビード30aが形成される(図10参照)。溶接ビード30aは、例えば一回のレーザ光の照射によるスポット溶接によって形成されるものであり、上述した溶接幅w1と溶接幅w2とが略同じ溶接幅の関係を有するものである。
ステップS2による仮止め後、レンズホルダ10およびセンサホルダ20にレーザ光を照射して、溶接を行う(ステップS3:本接合工程)。ステップS3では、センサホルダ20を第1保持部111から解放し、レンズホルダ10およびセンサホルダ20を、光軸N1を回転軸として回転させながら、第2嵌合代部20bの外表面にレーザ光Lを照射する。例えば、第2嵌合代部20bの外周に沿って複数個の溶接ビードを形成することによって上述した溶接部30が形成される。レーザ光Lの照射位置についても、第1嵌合代部10bと第2嵌合代部20bとが径方向で重なり合う位置であり、かつ光軸N1方向における領域RAの外側の位置である。この際のレーザ光Lの照射位置は、仮止めにより溶接した位置と重複してもよい。これにより、レンズホルダ10の一部、およびセンサホルダ20の一部が、全周にわたって連続的または間欠的に溶融固化される。この際、例えば、レーザ光は、パルス光により間欠的に照射される。例えば、レンズホルダおよびセンサホルダ20を3°回転させるごとに、一回のレーザ光Lを照射する。ステップS3により、レンズホルダ10およびセンサホルダ20には、第2嵌合代部20bの全周にわたる溶接部30が形成される(図11参照)。なお、本実施の形態では、仮止め工程と本接合工程とが溶接工程であるものとして説明するが、仮止めの必要が無ければ、溶接工程を本接合工程のみとしてもよい。また、レーザ光は、上述したようにパルス光により間欠的に照射してもよいし、連続的に照射してもよい。溶接部30は、レーザ光が間欠的に照射される場合に、ホルダの周方向に沿って間欠的に溶接ビードが形成されるものであってもよいし、周方向の全周にわたって連続的に溶接ビードが連なっているものであってもよい。また、溶接部30は、レーザ光が連続的に照射される場合、周方向に延びる一つの溶接ビードからなる。
上述したようにして、本実施の形態1に係る組立方法では、ピント調整を行って仮止め溶接をした後、本溶接を行うことによって、図1に示す光学ユニット1が組み立てられる。レーザ溶接処理においては、レンズホルダ10とセンサホルダ20とを固定するために必要な固定強度に応じて、レーザ光Lの照射回数が設定される。なお、上述した組立方法を実施する前に、例えば、使用する材料と同じ材料からなる測定用部材40を用いて、予め設定されたレーザ光の強度やパルス幅でレーザ溶接を行い、組み立て対象のホルダを接合するための条件を決定する。
ここで、本実施の形態1に係る組立方法では、図7に示すような強度分布のレーザ光がホルダに照射される。図12は、本発明の実施の形態1に係る光学ユニットの組み立てにおけるレーザ溶接を説明する図である。図7に示す強度分布のレーザ光を照射した場合、光軸NLが通過する照射中心部(ビーム中心)と、照射中心部の周囲に位置する照射外周部とが同等に昇温して溶融する。この際の溶接幅は、各ホルダで略同じとなる。照射外周部は、中心部に比べてやや溶け込みが浅く溶融が広がった形状となるものの、従来のレーザ照射と比して、上側部材の溶接幅(ここでは第2嵌合代部20bにおける溶接幅w1)と、下側部材の溶接幅(第1嵌合代部10bにおける溶接幅w2)との差は小さい。
図13は、従来のレーザ溶接を行う際に用いるレーザ光の特性を説明する図である。図14および図15は、従来の光学ユニットの組み立てにおけるレーザ溶接を説明する図である。図13に示す従来のレーザ光のように、加工下限強度ILにおけるビーム径WLが、ピーク強度IPにおけるビーム径WPと比して大きく、ビーム断面の外縁からビーム中心部に向かってビーム強度が緩慢に立ち上がる強度分布、例えばガウシアン型の強度分布のレーザ光を用いてレーザ溶接を行うと、照射面の中心が光軸NL方向に最も深く溶け、外側に向かって緩やかに溶け込みが浅くなる。その結果、図15に示すように、形成された溶接部300において、レンズホルダ10における溶接幅w302と、センサホルダ20の溶接幅w301との差が大きくなる。溶接幅の差が大きくなると、上述したようにレンズホルダ10の収縮量とセンサホルダ20の収縮量とに大きな差が生じる。この結果、ピント調整したレンズ3とイメージセンサ4との位置関係が、ホルダ収縮後、所望の光学特性を満たさない位置関係に変化してしまう。
また、上述した組立方法においてレーザ溶接を行う際には、酸素と、窒素、アルゴンおよびヘリウムのいずれかとの混合ガス、または空気をシールドガスとして使用してもよい。この場合、レーザ溶接装置100は、上述したシールドガスを噴霧するためのガスノズル等を有するガス噴霧ユニットをさらに備える。例えば、金属を溶接する場合、レーザ光によって溶融した金属(以下、溶融金属ともいう)は、溶融金属中の酸素濃度が低くなるため、表面張力が温度の上昇とともに低下する。温度の高い溶融金属の中央部と、温度の低い外周部であって、溶融していない金属からなる外周部とでは、表面張力の差異が発生し、溶融金属は温度の高い中央部から温度の低い外周部に向かって流れることになる。この現象は、マランゴニ効果といわれている。その結果、図15に示すように溶接幅w302に対して溶接幅w301が大きく形成される場合がある。これに対し、酸素を含むシールドガスを用いることで、溶融金属中の酸素量を多くすることにより、溶融金属の表面張力が、温度の上昇とともに増加する。その結果、溶融金属が温度の低い外周部から温度の高い中央部に向かって流れることになる(図12参照)。このように、中央部に向かって溶融金属が流れた結果、図2に示すように溶接幅w2が小さくなり、溶接幅w1と溶接幅w2との差が小さい溶融形状を形成することができる。シールドガスを用いれば、酸素量の増大により上述した効果を得ることができ、図7に示す強度分布のレーザ光と組み合わせることによって、溶接幅w1と溶接幅w2との差を一層小さくすることができる。
以上説明した本発明の実施の形態1では、加工下限強度ILにおけるビーム径WLと、ピーク強度IPにおけるビーム径WPとの値が略同じでビームの外縁側からビームに向かってビーム強度が大きくなる強度分布を有するレーザ光を、第1嵌合代部10bおよび第2嵌合代部20bが径方向で重なる部分であって、光軸N1方向において第1拘持部10aの拘持面P10および第2拘持部20aの拘持面P20に挟まれる領域RAの外側の部分に照射することによってレンズホルダ10およびセンサホルダ20を接合するようにした。これにより、レーザ溶接した際の、レンズホルダ10およびセンサホルダ20の収縮量が同じになり、かつ収縮により各デバイスの移動方向が同じになる。その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ10およびセンサホルダ20を溶接することが可能となる。また、上述した強度分布を有するレーザ光を照射することによって、各ホルダの溶接幅がほぼ同じに溶融固化し、第1嵌合代部10bと第2嵌合代部20bとにわたる溶接部が形成されるため、溶接後のホルダの位置を高精度に維持しつつ、効率的に溶接可能であり、その結果、光学ユニットを短い時間で組み立てることができる。
また、上述した実施の形態1において、センサホルダ20の厚さTCをレンズホルダ10の厚さTL以下とすることによって、溶接部30を厚さ方向において略均一に形成させることができる。
なお、上述した実施の形態1では、本接合を行う際にレンズホルダ10およびセンサホルダ20を回転させるものとして説明したが、これに限らず、レーザ光Lを出射するレーザヘッドを、第2嵌合代部20bの外表面に沿って回転移動させるようにしてもよい。
また、上述した実施の形態1では、第二の光デバイスがイメージセンサ4であるものとして説明したが、第二の光デバイスが、イメージセンサ4に加え、圧縮やフィルタリングを行うDSP(Digital Signal Processor)等、イメージセンサとは別に設けられ、該イメージセンサが取得した電気信号を処理する電子部品を含むものであってもよい。
(実施の形態2)
図16は、本発明の実施の形態2に係るレーザ溶接装置の要部の構成を模式的に示す図である。図17は、本発明の実施の形態2に係るレーザ溶接装置によって形成される溶接部を説明する図である。図18は、本発明の実施の形態2に係るレーザ溶接装置によるレーザ照射を説明する図である。図19は、本発明の実施の形態2に係るレーザ溶接装置によって形成される溶接部を説明する図である。図16に示すように、本実施の形態2に係るレーザ溶接装置は、上述した保持ユニット110(図6参照)と、レーザ光を出射するレーザ発振ユニット220と、レーザ発振ユニット220から出射されたレーザ光を照射対象に導く光学系を有するレーザ光学ユニット230と、を備える。
レーザ光学ユニット230は、二つのガルバノミラー(ガルバノミラー231、232)と、ガルバノミラーによって導光されたレーザ光を照射対象に向けて出射するfθレンズ233とを有する。ガルバノミラー231、232は、それぞれがモータ231a、232aにより駆動され、入射する光の光軸に対して、出射する光の光軸の傾斜角度を変えることができる。ガルバノミラー231、232の角度を制御することによって、fθレンズ233から出射されるレーザ光の照射位置を変化させることができる。これにより、例えば図16に示すように、レーザ光Lの光軸が、この光軸と直交する平面Pであって、レーザ光Lの結像位置における平面P上で移動する軌跡を、環状の軌跡LOとすることができる。
レーザ光Lを軌跡LOに沿って走査する際、レーザ光Lの光軸を移動させながら間欠的にパルス照射すると、図17および図18に示すように、複数の溶接ビード31aが軌跡LOに沿って形成される。本実施の形態2では、軌跡LOのなす円の半径が、溶接ビード31aにおける溶接領域(図17に示す円)の半径、すなわちレーザ光のスポット径の1/2と同じであるものとして説明する。上述したような走査によって、照射領域の単位面積当たりの蓄積エネルギーが略均一となるレーザ光が照射され、第2嵌合代部20bの表面において複数の溶接ビード31aからなる溶接ビード群が形成される。この溶接ビード群を第2嵌合代部20bの外周に沿って複数個形成することによって、溶接部31を得ることができる(例えば図19参照)。複数の溶接ビード31aは、レーザ光Lの照射タイミングを等間隔とすれば、軌跡LOに沿って隣り合う溶接ビード31aの中心位置C間の距離が、すべて同じになる。この距離は、軌跡LOが円であれば、中心位置C同士を繋ぐ軌跡に沿った距離と、中心位置C間の直線的な距離とのどちらに設定してもよい。軌跡LOが円であれば、中心位置C同士を繋ぐ軌跡に沿った距離と、中心位置C間の直線的な距離とは同じになる。なお、各ホルダにおける溶接幅が同じである溶接部を形成できれば、レーザ光を異なる時間間隔で照射するようにしてもよい。
溶接部31は、センサホルダ20の厚さ方向の中央部の溶接幅w3と、レンズホルダ10における溶接部31の厚さ方向の中央部の溶接幅w4とが、ほぼ同じである。具体的に、溶接幅w3と溶接幅w4とが略同じとは、溶接幅w3に対する溶接幅w4の比(w4/w3)が、0.75≦w4/w3≦1.25の関係を満たしていることをいう。
レーザ発振ユニット220が出射するレーザ光は、上述した強度分布(図7参照)を有するレーザ光であることが好ましいが、光軸を傾斜させるなどして、照射領域において照射される単位面積当たりの積算エネルギーを均等的に照射することができれば、ガウシアン型の強度分布を有するレーザ光であってもよい。ガウシアン型の強度分布を有するレーザ光を用いる場合は、レーザ光のスポット径を小さく絞ることができる光ファイバを用いて構成されることが好ましい。
上述した溶接部31を、第2嵌合代部20bの外周に沿って形成することによって、レンズホルダ10とセンサホルダ20とが溶接される。
以上説明した本発明の実施の形態2では、一回のレーザ光を照射することにより形成される溶接ビード31aを複数個形成してなる溶接ビード群を、第2嵌合代部20bの外周に沿って複数個設けることによって、レンズホルダ10における溶接幅w4と、センサホルダ20の溶接幅w3とが略同じである溶接部31を形成して、レンズホルダ10およびセンサホルダ20を接合するようにした。これにより、レーザ溶接した際の、レンズホルダ10およびセンサホルダ20の収縮量が同じになり、かつ収縮により各デバイスの移動方向が同じになる。その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ10およびセンサホルダ20を溶接することが可能となる。また、上述した強度分布を有するレーザ光を照射することによって各レンズの溶接幅がほぼ同じとなる溶接部が形成されるため、溶接後のホルダの位置を高精度に維持しつつ、効率的に溶接可能であり、その結果、光学ユニットを短い時間で組み立てることができる。
以上説明した本発明の実施の形態2では、一回のレーザ光を照射することにより形成される溶接ビード31aを複数個形成してなる溶接ビード群を、第2嵌合代部20bの外周に沿って複数個設けることによって溶接部31を形成するようにしたので、実施の形態1に係る溶接部30の溶接幅と比して、大きい溶接幅を有する溶接部を形成することができる。
(実施の形態2の変形例1)
図20は、本発明の実施の形態2の変形例1に係るレーザ溶接装置によって形成される溶接部を説明する図である。上述した実施の形態2では、軌跡LOのなす円の半径が、溶接ビード31aの半径、すなわちレーザ光のスポット径の1/2であるものとして説明したが、本変形例1では、軌跡LOのなす円の径が、溶接ビード31aの半径、すなわちレーザ光のスポット径の1/2よりも大きい場合について説明する。
レーザ光Lを軌跡LOに沿って走査する際、レーザ光Lの光軸を移動させながら間欠的にパルス照射すると、図20に示すように、複数の溶接ビード31aが形成される。上述したような走査によって、第2嵌合代部20bの表面において複数の溶接ビード31aからなる溶接ビード群が形成される。この溶接ビード群を、第2嵌合代部20bの外周に沿って複数個形成することによって、溶接部を得ることができる。この溶接部では、図20からもわかるように、軌跡LOの中央部分が溶接ビード31aの形成領域に含まれないものとなるが、各溶接ビード31aの形成時に照射されるレーザ光の熱によって軌跡LOの中央部分も溶融させることができる。
(実施の形態2の変形例2)
図21は、本発明の実施の形態2の変形例2に係るレーザ溶接装置によって形成される溶接部を説明する図である。上述した実施の形態2では、レーザ光Lがパルス照射されるものとして説明したが、本変形例2では、連続的に照射する場合について説明する。本変形例2では、軌跡LOのなす円の半径が、一つの溶接ビードの形成領域RSPの半径、すなわちレーザ光のスポット径の1/2であるものとして説明する。
レーザ光Lを軌跡LOに沿って走査する際、レーザ光Lの光軸を移動させながら連続的にレーザ光を照射すると、図21に示すように、溶接ビードの形成領域RSPが連続的に移動してなる溶接部が形成される。この溶接部は、センサホルダ20の表面における形成面R200が円をなす。
本変形例2のように、レーザ光Lを連続的に照射して溶接部を形成した場合であっても、上述したような、各ホルダにおける溶接幅がほぼ同じ溶接部を得ることができる。
(実施の形態2の変形例3)
図22は、本発明の実施の形態2の変形例3に係るレーザ溶接装置によって形成される溶接部を説明する図である。上述した実施の形態2の変形例2では、軌跡LOのなす円の半径が、溶接ビードの形成領域RSPの半径、すなわちレーザ光のスポット径の1/2であるものとして説明したが、本変形例3では、レーザ光を連続的に照射する場合において、軌跡LOのなす円の径が、溶接ビードの形成領域RSPの半径、すなわちレーザ光のスポット径の1/2よりも大きい場合について説明する。
レーザ光Lを軌跡LOに沿って走査する際、レーザ光Lの光軸を移動させながら連続的に照射すると、図22に示すように、溶接ビードの形成領域RSPが連続的に移動してなる溶接部が形成される。この溶接部は、センサホルダ20の表面における形成面が円環状をなす。この溶接部では、図22からもわかるように、軌跡LOの中央部分が溶接ビードの形成領域RSPに含まれないものとなるが、変形例2と同様に、溶接ビードの形成領域RSPにおいて照射されるレーザ光の熱によって軌跡LOの中央部分も溶融させることができる。
(実施の形態2の変形例4)
図23は、本発明の実施の形態2の変形例4に係るレーザ溶接装置の要部の構成を模式的に示す図である。上述した実施の形態2では、軌跡LOのなす形状が円であるものとして説明したが、本変形例4では、軌跡LOのなす形状が、ジグザグ状をなしている。二つのガルバノミラー(ガルバノミラー231、232)の傾斜角度を制御することによって、軌跡LOのなす形状を、円に限らず、図23に示すジグザグ状などとすることができる。この際、レーザ光の強度分布を図7に示す強度分布とすれば、上述した効果を得ることができる。
(実施の形態2の変形例5)
図24は、本発明の実施の形態2の変形例5に係るレーザ溶接装置の要部の構成を模式的に示す図である。図25は、本発明の実施の形態2の変形例5に係るレーザ溶接装置によるレーザ照射を説明する図である。図26は、本発明の実施の形態2の変形例5に係るレーザ溶接装置によって形成される溶接部を説明する図である。図24に示すように、本変形例5に係るレーザ溶接装置は、上述した保持ユニット110(図6参照)と、レーザ光を出射するレーザ発振ユニット220と、レーザ発振ユニット220から出射されたレーザ光を照射対象に導く光学系を有するレーザ光学ユニット230Aと、を備える。
レーザ光学ユニット230Aは、入射したレーザ光Lを屈曲させて出射する屈曲光学素子234と、屈曲光学素子234によって導光されたレーザ光を旋回させる回転光学素子235と、回転光学素子235によって導光されたレーザ光Lを照射対象に向けて出射する集光レンズ236とを有する。回転光学素子235は、例えばモータにより駆動され、入射する光の光軸に対して、出射する光の光軸の傾斜角度を変えることができる。回転光学素子235の回転を制御することによって、集光レンズ236から出射されるレーザ光の光軸を歳差運動させることができる。これにより、例えば図25に示すように、レーザ光Lの光軸が行う歳差運動の光軸NLと直交する平面Pであって、レーザ光Lの結像位置における平面Pに対するレーザ光Lの入射角度を変化させることができる。この際、レーザ光Lは、平面P上の焦点位置を中心点とする歳差運動を行う。このような走査により、照射領域において照射される単位面積当たりの積算エネルギーが均等的なレーザ光を照射することができる。ここでいう「中心点」とは、レーザ光Lの光軸上の位置(点)であって、歳差運動しても軸が変位しない位置である。
レーザ光Lの光軸を歳差運動させながら間欠的にパルス照射すると、図25に示すように、複数の溶接ビード32aが形成される。複数の溶接ビード32aは、レーザ光Lのビーム中心は同じであるものの、レーザ光Lの歳差運動によって、ホルダに対する分布が互いに異なっている。上述したような走査によって、複数の溶接ビード32aからなる溶接ビード群が形成される。この溶接ビード群を、第2嵌合代部20bの外周に沿って複数個形成することによって溶接部32を得ることができる(図26参照)。溶接部32は、第2嵌合代部20bの厚さ方向の中央部の溶接幅w5と、第1嵌合代部10bにおける溶接部32の厚さ方向の中央部の溶接幅w6とが、ほぼ同じである。具体的に、溶接幅w5と溶接幅w6とが略同じとは、溶接幅w5に対する溶接幅w6の比(w6/w5)が、0.75≦w6/w5≦1.25の関係を満たしていることをいう。
上述したようにして形成される溶接部32を、第2嵌合代部20bの外周に沿って設けることによって、レンズホルダ10とセンサホルダ20とが溶接される。これにより、レーザ溶接した際の、レンズホルダ10およびセンサホルダ20の収縮量が同じになり、かつ収縮により各デバイスの移動方向が同じになる。その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ10およびセンサホルダ20を溶接することが可能となる。
(実施の形態3)
図27は、本発明の実施の形態3に係る光学ユニットの構成を模式的に示す断面図である。図27は、当該光学ユニットの中心軸を含む平面を切断面とする部分断面図である。同図に示す光学ユニット1Aは、第一の光デバイスであるレンズ5と、レンズ5を拘持する略筒状のレンズホルダ11と、入力された電気信号に応じたレーザ光を出射する光源6aを有する第二の光デバイスである半導体レーザ6と、半導体レーザ6を拘持する筒状のレーザホルダ21とを備えている。図27では、レンズホルダ11の中心軸と、レーザホルダ21の中心軸とは、互いに一致しており、かつ光学ユニット1Aの光軸N2にそれぞれ一致しているものとして説明する。光学ユニット1Aは、光源6aが出射した光を、レンズ5を介して外部に出射する。なお、レンズホルダ11は第一の光デバイス拘持体、レーザホルダ21は第二の光デバイス拘持体に相当する。
レンズ5は、ガラスや樹脂を用いて形成されるコリメートレンズや集光レンズ等により構成される。図27では、一つのレンズを用いるものを示しているが、複数のレンズから構成されるものであってもよい。
レンズホルダ11は、内部壁面のなす径であって、光軸N2と直交する方向の径が、レーザホルダ21の外周のなす径と同等である。レンズホルダ11は、レンズ5を拘持する環状の第1拘持部11aと、第1拘持部11aの光軸N2方向の端部から半導体レーザ6に向けて光軸N2方向に延在し、レーザホルダ21と嵌合する筒状の第1嵌合代部11bと、を有する。レンズ5は、例えば半田付け、または接着剤等によって第1拘持部11aに固定されている。なお、レンズホルダ11の内部壁面のなす径は、レーザホルダ21が嵌入可能であり、かつ、接合前にホルダ同士の相対位置を調整することが可能な径であればよい。
レーザホルダ21は、半導体レーザ6を拘持する環状の第2拘持部21aと、第2拘持部21aの光軸N2方向の端部からレンズ5側とは反対側に向けて光軸N2方向に延在し、レンズホルダ11と嵌合する筒状の第2嵌合代部21bと、を有する。半導体レーザ6は、例えばレーザ溶接によって第2拘持部21aに固定されている。
レンズホルダ11およびレーザホルダ21は、レーザ光によって溶融固化した際に、同じ程度の収縮率を有する材料を用いて構成されていることが好ましい。この材料としては、ステンレス鋼(フェライト系、マルテンサイト系、オーステナイト系)、鉄鋼材料(機械構造用炭素鋼、一般構造用圧延鋼)、インバー材、樹脂(Acrylonitrile Butadiene Styrene:ABS、Poly Ether Ether Ketone:PEEK)が挙げられる。
光学ユニット1Aを作製する際、まず、レンズ5と半導体レーザ6の光源6aとの間の距離d5が、予め設定されている光学条件を満たす距離となるように、レンズホルダ11とレーザホルダ21との相対的な位置を調整する。その後、第1嵌合代部11bおよび第2嵌合代部21bが径方向で重なる部分であって、光軸N2方向において第1拘持部11aの拘持面P11および第2拘持部21aの拘持面P21に挟まれる領域RBの外側の部分に、レーザ光を照射して溶融固化させ、レンズホルダ11およびレーザホルダ21を接合する。この際に用いられるレーザ光は、例えば、上述した図7に示すような、加工下限強度ILにおけるビーム径WLと、ピーク強度IPにおけるビーム径WPとの値が略同じであり、ビーム断面の外縁側からビーム中心に向かってビーム強度が大きくなる強度分布を有するレーザ光である。このレーザ溶接によって、照射領域の単位面積当たりの蓄積エネルギーが略均一のレーザ光が照射され、レンズホルダ11およびレーザホルダ21には、互いに溶融した部分が混合して硬化してなる溶接ビードが形成される。この溶接ビードを第1嵌合代部11bの外周に沿って複数個形成することによって溶接部33が形成される。接合後の光学ユニット1Aにおいて、レンズ5および半導体レーザ6は、各々が、溶接部33に対して同じ側でレンズホルダ11およびレーザホルダ21に拘持されている。すなわち、レンズホルダ11およびレーザホルダ21において、レンズ5および半導体レーザ6をそれぞれ拘持してデバイスに連なっている部分が、溶接部33を介して同じ側にある。
上述したように、第1嵌合代部11bの一部と第2嵌合代部21bの一部とには、互いを接合する溶接部33が形成されている。溶接部33は、第1嵌合代部11bの厚さ方向の中央部の溶接幅をw7、第2嵌合代部21bの厚さ方向の中央部の溶接幅をw8としたとき、溶接幅w7と溶接幅w8とはほぼ同じである。具体的に、溶接幅w7と溶接幅w8とが略同じとは、溶接幅w7に対する溶接幅w8の比(w8/w7)が、0.75≦w8/w7≦1.25の範囲であることが好ましい。
以上説明した本発明の実施の形態3では、ビーム径WLとビーム径WPとの値が略同じであり、かつビーム断面の外縁側からビーム中心に向かってビーム強度が大きくなる強度分布を有するレーザ光を、第1嵌合代部11bおよび第2嵌合代部21bが径方向で重なる部分であって、光軸N2方向において第1拘持部11aの拘持面P11および第2拘持部21aの拘持面P21に挟まれる領域RBの外側の部分に照射することによってレンズホルダ11およびレーザホルダ21を接合するようにした。これにより、レーザ溶接した際の、レンズホルダ11およびレーザホルダ21の収縮量が同じになり、その結果、溶融固化により収縮が生じても、各ホルダが拘持する光デバイス間の相対的な位置のずれを抑制しつつ、レンズホルダ11およびレーザホルダ21を溶接することが可能となる。
なお、上述した実施の形態3では、図7に示すようなビーム径WLとビーム径WPとの値が略同じであり、かつビーム断面の外縁側からビーム中心に向かってビーム強度が大きくなる強度分布を有するレーザ光を用いるものとして説明したが、上述した実施の形態2や、その変形例を適用してもよい。
ここまで、本発明を実施するための形態を説明してきたが、本発明は上述した実施の形態によってのみ限定されるべきものではない。例えば、上述した実施の形態1〜3では、溶接部が、最も内周側のホルダの内周側の表面には達しないものとして説明したが、これに限らない。例えば、溶接部が、光軸方向と直交する径方向で重なり合う部材のうち、最も外周側のホルダの外周側の表面から最も内周側のホルダの内周側の表面に達するものであってもよい。
また、例えば、上述した実施の形態1において、各ホルダのレーザ光の照射部分の厚さを、他の部分の厚さと比して小さくするなど、部分的に厚さが異なるようにしてもよい。これにより、小さいエネルギーのレーザ光によって溶接を行うことが可能となり、光デバイスへの熱影響を小さくすることができる。
また、上述した実施の形態1〜3では、レーザ光によるレーザ溶接を行ってホルダ同士を接合するものとして説明したが、接合方法はこれに限らない。例えば、電子ビーム溶接や、抵抗溶接等の公知の溶接技術を用いることも可能である。ただし、接触式の溶接装置を用いる場合は、溶接する際にホルダ間に位置ずれが生じないように、被接触式の溶接を行う場合と比して、一段と強固にホルダを固定することが好ましい。
また、上述した実施の形態1〜3において、各ホルダは、光軸N1方向からみた形状が、円でもよいし、楕円でもよいし、多角形でもよい。各ホルダは、光デバイスを拘持可能なスリーブ状をなしていればよい。
また、上述した実施の形態1〜3において、接合対象の組をなすホルダは、溶接により接合可能であれば、光軸方向からみた形状が互いに異なる形状をなすものであってもよいし、光軸と直交する方向で重なり合うすべての部分において嵌合する必要はなく、一部が嵌合していればよいし、光デバイス同士における光軸と直交する方向の位置決めが可能であれば、重なり合う部分に隙間があってもよい。
また、上述した実施の形態1〜3では、第二の光デバイス拘持体が、イメージセンサまたは半導体レーザのみを拘持しているものとして説明したが、第二の光デバイス拘持体が、光デバイスであるレンズをさらに拘持するようにしてもよい。この場合、第二の光デバイス拘持体では、第2拘持部が複数の光デバイスを拘持することになる。
また、上述した実施の形態1〜3では、光デバイスである一つのレンズを拘持する第一の光デバイス拘持体と、光デバイスとしてイメージセンサ4または半導体レーザ6を拘持する第二の光デバイス拘持体とを溶接するものとして説明したが、第一の光デバイス拘持体が複数のレンズを拘持するものであってもよいし、第一の光デバイスをそれぞれ拘持する複数の第一の光デバイス拘持体を備え、第一の光デバイス拘持体同士を溶接するとともに、第一の光デバイス拘持体と第二の光デバイス拘持体とを溶接するようにしてもよい。光デバイスを少なくとも一つ拘持する複数の第一の光デバイス拘持体、および第二の光デバイス拘持体のうち、接合対象のホルダを、上述した位置関係を満たす溶接部を形成して接合する構成であっても適用可能である。
また、上述した第一および第二の光デバイスは、各々が、レンズや、貼り合せまたは互い独立した複数のレンズからなる群レンズ、光ファイバ、光導波路光アイソレータ、半導体レーザ、発光素子、受光素子、光増幅器、撮像素子、光電変換素子等、光を伝達したり、他のエネルギーに変換したりする素子であってその素子そのものや、これらの何れかの素子を備えたデバイスから選択される一つである。
このように、本発明は、特許請求の範囲に記載した技術的思想を逸脱しない範囲内において、様々な実施の形態を含みうるものである。
1、1A 光学ユニット
3、5 レンズ
4 イメージセンサ
6 半導体レーザ
10、11 レンズホルダ
10a、11a 第1拘持部
10b、11b 第1嵌合代部
20 センサホルダ
20a、21a 第2拘持部
20b、21b 第2嵌合代部
21 レーザホルダ
30、31、32 溶接部

Claims (5)

  1. 内部に一つ以上の第一の光デバイスを拘持する第一の拘持部、および前記第一の拘持部から延設する第一の嵌合代部を有するスリーブ状の第一の光デバイス拘持体と、
    内部に一つ以上の第二の光デバイスを拘持する第二の拘持部、および前記第二の拘持部から延設する第二の嵌合代部を有するスリーブ状の第二の光デバイス拘持体と、
    を備える光学ユニットの組立方法において、
    前記第一の嵌合代部と前記第二の嵌合代部を夫々嵌合し、前記第一の光デバイス拘持体と前記第二の光デバイス拘持体とを相対移動して、前記第一の光デバイスと前記第二の光デバイスの間隔を光路長調整する光学調整工程と、
    前記光学調整工程に続き、前記光デバイスの光軸方向における領域であって、前記第一の拘持部を通過し、前記光学デバイスの光軸と垂直な面である拘持面と、前記第二の拘持部を通過し、前記光軸と垂直な面である拘持面とに挟まれる領域から前記領域外の前記第一の嵌合代部と前記第二の嵌合代部との重ね部分に、前記光デバイスの光軸と略直交する方向から照射領域の単位面積当たりの蓄積エネルギーが略均一のレーザ光を照射して前記第一の光デバイス拘持体と前記第二の光デバイス拘持体とを溶接固定する溶接工程と、
    を含むことを特徴とする光学ユニットの組立方法。
  2. 前記溶接工程は、前記レーザ光のピーク強度のビーム径をWP、前記レーザ光の加工下限強度のビーム径をWLとしたときに、ビーム径WPに対するビーム径WLの比(WL/WP)が1.0≦WL/WP≦1.5を満たす前記レーザ光を照射する
    ことを特徴とする請求項1に記載の光学ユニットの組立方法。
  3. 前記溶接工程は、前記レーザ光の光軸を歳差運動させながら予め設定された時間間隔で複数回の前記レーザ光の照射を行う
    ことを特徴とする請求項1に記載の光学ユニットの組立方法。
  4. 前記溶接工程は、前記レーザ光の照射面上の焦点位置を中心点として前記レーザ光の光軸を歳差運動させる
    ことを特徴とする請求項3に記載の光学ユニットの組立方法。
  5. 前記溶接工程は、パルス発振された前記レーザ光の照射を行う
    ことを特徴とする請求項1〜4のいずれか1つに記載の光学ユニットの組立方法。
JP2017012484A 2017-01-26 2017-01-26 光学ユニットの組立方法 Active JP6875135B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017012484A JP6875135B2 (ja) 2017-01-26 2017-01-26 光学ユニットの組立方法
PCT/JP2018/000172 WO2018139180A1 (ja) 2017-01-26 2018-01-09 光学ユニットの組立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017012484A JP6875135B2 (ja) 2017-01-26 2017-01-26 光学ユニットの組立方法

Publications (2)

Publication Number Publication Date
JP2018120136A true JP2018120136A (ja) 2018-08-02
JP6875135B2 JP6875135B2 (ja) 2021-05-19

Family

ID=62979228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017012484A Active JP6875135B2 (ja) 2017-01-26 2017-01-26 光学ユニットの組立方法

Country Status (2)

Country Link
JP (1) JP6875135B2 (ja)
WO (1) WO2018139180A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131204A (ja) * 2019-02-14 2020-08-31 株式会社ダイヘン レーザ・アークハイブリッド溶接装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108349U (ja) * 1989-02-17 1990-08-29
JP2000305037A (ja) * 1999-04-20 2000-11-02 Nippon Steel Corp レーザビームの揺動方法および装置
JP2003021747A (ja) * 2001-07-10 2003-01-24 Seiko Instruments Inc コリメータ、コリメータ・ブロック、及びコリメータ組立方法。
JP2008233706A (ja) * 2007-03-23 2008-10-02 Fujifilm Corp レーザモジュールの組立方法および装置
JP2010276840A (ja) * 2009-05-28 2010-12-09 Nichia Corp 発光装置の製造方法
WO2015174406A1 (ja) * 2014-05-15 2015-11-19 オリンパス株式会社 光学ユニットおよびこの光学ユニットを備えた内視鏡

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108349U (ja) * 1989-02-17 1990-08-29
JP2000305037A (ja) * 1999-04-20 2000-11-02 Nippon Steel Corp レーザビームの揺動方法および装置
JP2003021747A (ja) * 2001-07-10 2003-01-24 Seiko Instruments Inc コリメータ、コリメータ・ブロック、及びコリメータ組立方法。
JP2008233706A (ja) * 2007-03-23 2008-10-02 Fujifilm Corp レーザモジュールの組立方法および装置
JP2010276840A (ja) * 2009-05-28 2010-12-09 Nichia Corp 発光装置の製造方法
WO2015174406A1 (ja) * 2014-05-15 2015-11-19 オリンパス株式会社 光学ユニットおよびこの光学ユニットを備えた内視鏡

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131204A (ja) * 2019-02-14 2020-08-31 株式会社ダイヘン レーザ・アークハイブリッド溶接装置
JP7296215B2 (ja) 2019-02-14 2023-06-22 株式会社ダイヘン レーザ・アークハイブリッド溶接装置
JP7416999B2 (ja) 2019-02-14 2024-01-17 株式会社ダイヘン レーザ・アークハイブリッド溶接装置

Also Published As

Publication number Publication date
WO2018139180A1 (ja) 2018-08-02
JP6875135B2 (ja) 2021-05-19

Similar Documents

Publication Publication Date Title
KR101429926B1 (ko) 레이저 빔을 환형 레이저 빔으로 변환하기 위한 광학 장치를 구비한 레이저 빔 용접 장치 및 이에 상응하는 레이저 빔 용접 방법
KR101906030B1 (ko) 레이저를 이용하여 용접층을 따라 열가소성 합성 재료들로 이루어진 결합될 두 부분을 용접하기 위한 방법 및 디바이스
JP4434911B2 (ja) カメラモジュールの製造方法とカメラモジュール
CN109937102A (zh) 用于逐层地增材制造构件的方法和对应的计算机程序载体
JP2010276840A (ja) 発光装置の製造方法
JPWO2019198442A1 (ja) レーザ溶接方法及びレーザ溶接装置
US20190384031A1 (en) Optical unit
WO2018139180A1 (ja) 光学ユニットの組立方法
JP3866732B2 (ja) 樹脂構造物のレーザー接合方法
RU2718393C2 (ru) Способ соединения трубок кожухотрубного теплообменника с трубной решеткой кожухотрубного теплообменника
US11141817B2 (en) Optical unit
JP7033001B2 (ja) 光学ユニット
JPH08304668A (ja) 光学素子を固定するためのレーザ溶接方法
JP2007289980A (ja) レーザ半田付け装置、およびレーザ半田付け方法
JP7262081B2 (ja) レーザ加工装置および光学調整方法
JP3818580B2 (ja) レーザ加工方法
JP2008233706A (ja) レーザモジュールの組立方法および装置
JP2009160602A (ja) 半田付け装置
JP4185405B2 (ja) 樹脂材間の接合方法
JP2021037527A (ja) レーザ加工装置および光学調整方法
CN101022914A (zh) 用于将激光能量输送给接合件的方法和装置
JP2817555B2 (ja) レーザ加工機
JP2005161404A (ja) レーザ溶接用集光ヘッド
KR20010045143A (ko) 금속 벨로즈 외측 이음새의 레이저 용접에 대한 장치 및방법
CN116551176A (zh) 一种红外探测窗口激光焊接装置及焊接方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210422

R151 Written notification of patent or utility model registration

Ref document number: 6875135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250