JP2018115955A - Radiation detector and radiation detection device - Google Patents

Radiation detector and radiation detection device Download PDF

Info

Publication number
JP2018115955A
JP2018115955A JP2017006792A JP2017006792A JP2018115955A JP 2018115955 A JP2018115955 A JP 2018115955A JP 2017006792 A JP2017006792 A JP 2017006792A JP 2017006792 A JP2017006792 A JP 2017006792A JP 2018115955 A JP2018115955 A JP 2018115955A
Authority
JP
Japan
Prior art keywords
radiation
wiring board
photoelectric conversion
shielding member
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017006792A
Other languages
Japanese (ja)
Other versions
JP2018115955A5 (en
JP7062362B2 (en
Inventor
正 安原
Tadashi Yasuhara
正 安原
武裕 中村
Takehiro Nakamura
武裕 中村
亮一 藤野
Ryoichi Fujino
亮一 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Components Inc
Original Assignee
Canon Components Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Components Inc filed Critical Canon Components Inc
Priority to JP2017006792A priority Critical patent/JP7062362B2/en
Publication of JP2018115955A publication Critical patent/JP2018115955A/en
Publication of JP2018115955A5 publication Critical patent/JP2018115955A5/ja
Application granted granted Critical
Publication of JP7062362B2 publication Critical patent/JP7062362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation detector and a radiation detection device which suppress noise by suppressing incidence of a radiation on a wiring board.SOLUTION: A radiation detector 1 includes: a wavelength conversion member 3 for emitting light when a radiation enters; and a wiring board 21 on which a photoelectric conversion element 4 for photoelectrically converting the light emitted by the wavelength conversion member 3 is mounted. In the wiring board 21, a mounting surface for the photoelectric conversion element 4 is provided in a direction parallel to an incident direction of the radiation, also an end surface on the side that the radiation enters has a shielding member 22 for blocking the incident radiation.SELECTED DRAWING: Figure 3

Description

本発明は、放射線検出器および放射線検出装置に関する。特には、入射した放射線により蛍光を発する蛍光体とこの蛍光を光電変換する光電変換素子とを有する放射線検出器と、この放射線検出器が適用された放射線検出装置に関する。   The present invention relates to a radiation detector and a radiation detection apparatus. In particular, the present invention relates to a radiation detector having a phosphor that emits fluorescence by incident radiation and a photoelectric conversion element that photoelectrically converts the fluorescence, and a radiation detection apparatus to which the radiation detector is applied.

従来、放射線検出器には、入射した放射線により励起して蛍光(例えば可視光)を発する蛍光体と、蛍光体が発する蛍光を電気信号に変換する(光電変換する)光電変換素子が実装されるとともに電気回路が形成される配線板とを有するものがある。このような放射線検出器において、放射線が配線板に入射するとノイズが発生することがある。このため、放射線が配線板に入射しないようにすることが好ましい。特許文献1と特許文献2には、スリット状の開口が設けられた遮蔽部材により光電変換素子および電気回路を覆う構成が開示されている。   Conventionally, a radiation detector is mounted with a phosphor that emits fluorescence (for example, visible light) when excited by incident radiation, and a photoelectric conversion element that converts the fluorescence emitted by the phosphor into an electrical signal (photoelectric conversion). In addition, some have a wiring board on which an electric circuit is formed. In such a radiation detector, noise may be generated when radiation enters the wiring board. For this reason, it is preferable to prevent radiation from entering the wiring board. Patent Documents 1 and 2 disclose a configuration in which a photoelectric conversion element and an electric circuit are covered with a shielding member provided with a slit-shaped opening.

しかしながら、特許文献1と特許文献2に記載の構成では、放射線検出器の組み立てにおいて、遮蔽部材と電気回路とを精密に位置合わせしなければならない。例えば位置決めの精度が低いと、開口を通過した放射線が電気回路に入射してノイズが発生するおそれがある。   However, in the configurations described in Patent Document 1 and Patent Document 2, in assembling the radiation detector, the shielding member and the electric circuit must be precisely aligned. For example, if the positioning accuracy is low, radiation that has passed through the opening may enter the electric circuit and generate noise.

特開2008−51626号公報JP 2008-51626 A 特開2006−329905号公報JP 2006-329905 A

上述した実情に鑑み、本発明が解決しようとする課題は、電気回路が設けられた配線板への放射線の入射を抑制してノイズを抑制することである。   In view of the above situation, the problem to be solved by the present invention is to suppress noise by suppressing the incidence of radiation to a wiring board provided with an electric circuit.

前記課題を解決するため、本発明は、光を電気信号に変換する光電変換部と、前記光電変換部が実装されている配線板と、入射した放射線を遮蔽する遮蔽部材と、を有する放射線検出器であって、前記配線板には、入射した放射線を遮蔽する遮蔽部材が、放射線の入射方向視において前記配線板に重なるように設けられることを特徴とする。   In order to solve the above-described problems, the present invention provides a radiation detection device including a photoelectric conversion unit that converts light into an electrical signal, a wiring board on which the photoelectric conversion unit is mounted, and a shielding member that blocks incident radiation. The wiring board is provided with a shielding member that shields incident radiation so as to overlap the wiring board when viewed in the incident direction of radiation.

本発明によれば、放射線が配線板に入射することが抑制され、配線板においてノイズが発生することを抑制できる。   ADVANTAGE OF THE INVENTION According to this invention, it can suppress that a radiation injects into a wiring board, and can suppress that a noise generate | occur | produces in a wiring board.

図1は、放射線検出器の構成例を模式的に示す分解斜視図である。FIG. 1 is an exploded perspective view schematically showing a configuration example of a radiation detector. 図2は、放射線検出器の構成例を模式的に示す外観斜視図である。FIG. 2 is an external perspective view schematically showing a configuration example of the radiation detector. 図3は、センサ基板モジュールの構成例を模式的に示す図である。FIG. 3 is a diagram schematically illustrating a configuration example of the sensor substrate module. 図4は、放射線検出器の構成例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a configuration example of the radiation detector. 図5は、変形例に係る遮蔽部材が適用された放射線検出器の構成例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically illustrating a configuration example of a radiation detector to which a shielding member according to a modification is applied. 図6は、変形例に係る遮蔽部材が適用された放射線検出器の構成例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically illustrating a configuration example of a radiation detector to which a shielding member according to a modification is applied. 図7は、放射線検出装置の構成例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a configuration example of the radiation detection apparatus.

以下に、本発明の実施形態について、図面を参照して詳細に説明する。本発明の実施形態に係る放射線検出器は、所定の一側を検査対象物および放射線源に向けて使用される。そして、放射線検出器は、放射線源から曝射されて前記所定の一側に所定の方向から入射した放射線を検出して光電変換し、放射線画像信号(放射線画像データ)を生成する。説明の便宜上、各図においては放射線検出器の3次元の各方向を、X,Y,Zの各矢印で示す。X方向は放射線検出器の長尺方向であり、例えば主走査方向である。Y方向は放射線検出器の短尺方向であり、例えば副走査方向である。Z方向は上下方向(放射線の入射方向)である。なお、Z方向については、使用時において放射線源や検査対象物に向ける一側(放射線が入射する一側)を上側とし、その反対側を下側とする。そして、本発明の実施形態に係る放射線検出器は、上側から入射した放射線(光軸が上下方向に平行な放射線)を検出する。   Embodiments of the present invention will be described below in detail with reference to the drawings. The radiation detector according to the embodiment of the present invention is used with a predetermined one side directed toward an inspection object and a radiation source. The radiation detector detects radiation that is exposed from the radiation source and enters the predetermined one side from a predetermined direction, and performs photoelectric conversion to generate a radiation image signal (radiation image data). For convenience of explanation, in each drawing, the three-dimensional directions of the radiation detector are indicated by X, Y, and Z arrows. The X direction is the longitudinal direction of the radiation detector, for example, the main scanning direction. The Y direction is the short direction of the radiation detector, for example, the sub-scanning direction. The Z direction is the vertical direction (radiation incidence direction). In addition, regarding the Z direction, one side (one side on which radiation is incident) facing the radiation source or the inspection object in use is an upper side, and the opposite side is a lower side. And the radiation detector which concerns on embodiment of this invention detects the radiation (radiation whose optical axis is parallel to an up-down direction) which injected from the upper side.

<放射線検出器>
まず、放射線検出器1の構成例について、図1〜図4を参照して説明する。図1は、本発明の実施形態に係る放射線検出器1の構成例を模式的に示す分解斜視図である。図2は、本発明の実施形態に係る放射線検出器1の構成例を模式的に示す外観斜視図である。図3は、図2のIII部拡大図であり、センサ基板モジュール2の構成例を模式的に示す図である。図4は、本発明の実施形態に係る放射線検出器1の構成例を模式的に示す図であり、主走査方向に直角な面で切断した断面図である。図1〜図4に示すように、本発明の実施形態に係る放射線検出器1は、本体フレーム11と、センサ基板モジュール2と、波長変換部材3と、本体カバー12とを有する。
<Radiation detector>
First, a configuration example of the radiation detector 1 will be described with reference to FIGS. FIG. 1 is an exploded perspective view schematically showing a configuration example of a radiation detector 1 according to an embodiment of the present invention. FIG. 2 is an external perspective view schematically showing a configuration example of the radiation detector 1 according to the embodiment of the present invention. FIG. 3 is an enlarged view of a part III in FIG. 2, schematically showing a configuration example of the sensor substrate module 2. FIG. 4 is a diagram schematically illustrating a configuration example of the radiation detector 1 according to the embodiment of the present invention, and is a cross-sectional view taken along a plane perpendicular to the main scanning direction. As shown in FIGS. 1 to 4, the radiation detector 1 according to the embodiment of the present invention includes a main body frame 11, a sensor substrate module 2, a wavelength conversion member 3, and a main body cover 12.

本体フレーム11は、放射線検出器1の筐体である。本体フレーム11は、例えば、全体として主走査方向に長い直方体状や棒状の形状を有しており、遮光性を有する材料により一体に形成されている。遮光性を有する材料としては、例えば、黒色に着色されたポリカーボネート(PC)など、各種樹脂材料が適用できる。本体フレーム11には、センサ基板モジュール2を収容可能なセンサ基板モジュール収容部111と、放射線の経路である開口部112が設けられている。センサ基板モジュール収容部111は、例えば、主走査方向に長く、下側(放射線が入射する一側とは反対側の一側、検査対象物Qや放射線源51(図7参照)に向ける一側とは反対側の一側)が開口する溝状や凹状の部分である。開口部112は、本体フレーム11の上側(放射線が入射する一側、検査対象物Qや放射線源51に向ける一側)の表面(外周面)とセンサ基板モジュール収容部111とを連通している。この開口部112は、例えば、上下方向視において主走査方向に長い形状を有し、本体フレーム11を上下方向に貫通するスリット状の貫通孔が適用される。   The main body frame 11 is a housing of the radiation detector 1. The main body frame 11 has, for example, a rectangular parallelepiped shape or a rod shape that is long in the main scanning direction as a whole, and is integrally formed of a light-shielding material. As the light-shielding material, for example, various resin materials such as polycarbonate (PC) colored in black can be applied. The main body frame 11 is provided with a sensor board module housing part 111 capable of housing the sensor board module 2 and an opening 112 serving as a radiation path. The sensor board module housing part 111 is, for example, long in the main scanning direction and is on the lower side (one side opposite to the one side on which the radiation is incident, one side facing the inspection object Q and the radiation source 51 (see FIG. 7)). It is a groove-like or concave-shaped part that is open on one side opposite to. The opening 112 communicates the surface (outer peripheral surface) of the upper side of the main body frame 11 (one side on which radiation is incident, one side facing the inspection object Q and the radiation source 51) and the sensor substrate module housing 111. . The opening 112 has, for example, a shape that is long in the main scanning direction when viewed in the vertical direction, and a slit-shaped through hole that passes through the main body frame 11 in the vertical direction is applied.

センサ基板モジュール2は、配線板21と、この配線板21に設けられる所定の数の光電変換素子4および遮蔽部材22とを有する。   The sensor board module 2 includes a wiring board 21 and a predetermined number of photoelectric conversion elements 4 and shielding members 22 provided on the wiring board 21.

センサ基板モジュール2の配線板21は、長尺板状の形状を有する。配線板21には所定の配線パターンが設けられている。配線板21に設けられている配線パターンには、例えば、後述する光電変換素子4と電気的に接続するためのパッド211が含まれる。なお、配線板21の種類(材質等)は特に限定されるものではなく、従来公知の各種プリント配線板など、従来公知の各種配線板が適用できる。また、配線板21に設けられる配線パターンの具体的な構成(形状など)も特に限定されるものではなく、配線板21に実装される光電変換素子4の構成などに応じて適宜設定される。説明の便宜上、配線板21の表面のうち、光電変換素子4が実装される表面を第1の表面と称し、その反対側の面を第2の表面と称する。本発明の実施形態では、センサ基板モジュール2の配線板21は、第1の表面が主走査方向および上下方向(放射線の入射方向)に平行で、かつ長尺方向が主走査方向に平行な向きで配置される。すなわち、配線板21は、第1の表面に直角な方向視で、一方の長辺に相当する端面が上側を向く向きで配置される。   The wiring board 21 of the sensor board module 2 has a long plate shape. The wiring board 21 is provided with a predetermined wiring pattern. The wiring pattern provided on the wiring board 21 includes, for example, pads 211 for electrical connection with a photoelectric conversion element 4 described later. In addition, the kind (material etc.) of the wiring board 21 is not specifically limited, Conventionally well-known various wiring boards, such as conventionally well-known various printed wiring boards, are applicable. Further, the specific configuration (shape, etc.) of the wiring pattern provided on the wiring board 21 is not particularly limited, and is appropriately set according to the configuration of the photoelectric conversion element 4 mounted on the wiring board 21. For convenience of explanation, of the surfaces of the wiring board 21, the surface on which the photoelectric conversion element 4 is mounted is referred to as a first surface, and the opposite surface is referred to as a second surface. In the embodiment of the present invention, the wiring board 21 of the sensor board module 2 has a first surface parallel to the main scanning direction and the vertical direction (radiation incidence direction), and a longitudinal direction parallel to the main scanning direction. It is arranged with. That is, the wiring board 21 is arranged in such a direction that an end surface corresponding to one long side faces upward when viewed in a direction perpendicular to the first surface.

光電変換素子4は光電変換部の例であり、後述する波長変換部材3の蛍光層32が発する蛍光を受光する受光部42を有し、受光部42に入射した蛍光を光電変換して放射線画像信号(放射線画像データ)を生成する。本発明の実施形態では、光電変換素子4(光電変換部)として、フォトダイオードアレイが適用される例を示す。フォトダイオードアレイは、複数の受光部42(フォトダイオード)と所定の数の電極43とを有する電子部品であり、受光部42に入射した光の強度に応じた電気信号を生成する。説明の便宜上、光電変換素子4の受光部42が設けられる面を「受光面41」と称する。光電変換素子4がフォトダイオードアレイであれば、受光面41は細長い形状を有しており、複数の受光部42が受光面41の短尺方向の一側寄りに一方の長辺に平行となるように直線状(一次元状)に並べて設けられている。また、所定の数の電極43は、受光面41の短尺方向の他方の一側寄り(複数の受光部42が設けられる一側とは反対側の一側寄り)に設けられている。そして、配線板21の第1の表面には、複数の光電変換素子4(フォトダイオードアレイ)が、配線板21の長尺方向(主走査方向)に直線状(一次元状)に並べて実装されている。また、それぞれの光電変換素子4(フォトダイオードアレイ)は、複数の受光部42の配列方向が配線板21の長尺方向と平行となる向きで実装されている。さらに、光電変換素子4は、センサ基板モジュール2が本体フレーム11のセンサ基板モジュール収容部111に収容された状態で、受光部42が設けられる側が上側に位置し、電極43が設けられる側が下側に位置する向きとなるように、配線板21に実装されている。   The photoelectric conversion element 4 is an example of a photoelectric conversion unit, has a light receiving unit 42 that receives fluorescence emitted from a fluorescent layer 32 of the wavelength conversion member 3 described later, and photoelectrically converts the fluorescence incident on the light receiving unit 42 to produce a radiation image. A signal (radiation image data) is generated. In the embodiment of the present invention, an example in which a photodiode array is applied as the photoelectric conversion element 4 (photoelectric conversion unit) is shown. The photodiode array is an electronic component having a plurality of light receiving parts 42 (photodiodes) and a predetermined number of electrodes 43, and generates an electrical signal corresponding to the intensity of light incident on the light receiving part 42. For convenience of explanation, a surface on which the light receiving portion 42 of the photoelectric conversion element 4 is provided is referred to as a “light receiving surface 41”. If the photoelectric conversion element 4 is a photodiode array, the light receiving surface 41 has an elongated shape, and the plurality of light receiving portions 42 are parallel to one long side toward one side of the light receiving surface 41 in the short direction. Are arranged in a straight line (one-dimensional). In addition, the predetermined number of electrodes 43 are provided on the other side in the short direction of the light receiving surface 41 (on one side opposite to the side on which the plurality of light receiving parts 42 are provided). On the first surface of the wiring board 21, a plurality of photoelectric conversion elements 4 (photodiode arrays) are mounted in a straight line (one-dimensional shape) in the longitudinal direction (main scanning direction) of the wiring board 21. ing. Each photoelectric conversion element 4 (photodiode array) is mounted in a direction in which the arrangement direction of the plurality of light receiving portions 42 is parallel to the longitudinal direction of the wiring board 21. Further, in the photoelectric conversion element 4, in a state where the sensor substrate module 2 is accommodated in the sensor substrate module accommodation portion 111 of the main body frame 11, the side on which the light receiving portion 42 is provided is positioned on the upper side, and the side on which the electrode 43 is provided is on the lower side. It is mounted on the wiring board 21 so as to be oriented in the direction.

なお、光電変換素子4(光電変換部)としてのフォトダイオードアレイの構成は、前記構成に限定されるものではない。それぞれのフォトダイオードアレイは、所定の方向に直線状に並べて設けられる複数の受光部42を有する構成であればよい。さらに、光電変換素子4はフォトダイオードアレイに限定されるものではない。光電変換素子4は、後述する波長変換部材3の蛍光層32が発する蛍光を電気信号に光電変換できる電子部品であればよい。例えば、光電変換素子4には、フォトダイオードやイメージセンサICなどといった、公知の各種光電変換素子が適用できる。   In addition, the structure of the photodiode array as the photoelectric conversion element 4 (photoelectric conversion part) is not limited to the said structure. Each photodiode array may be configured to have a plurality of light receiving portions 42 that are arranged in a straight line in a predetermined direction. Furthermore, the photoelectric conversion element 4 is not limited to a photodiode array. The photoelectric conversion element 4 should just be an electronic component which can photoelectrically convert the fluorescence which the fluorescent layer 32 of the wavelength conversion member 3 mentioned later emits into an electrical signal. For example, various known photoelectric conversion elements such as photodiodes and image sensor ICs can be applied to the photoelectric conversion element 4.

波長変換部材3は、放射線を光電変換素子4が光電変換可能な波長の光(本発明の実施形態では可視光)に変換する波長変換部の例である。波長変換部材3は、放射線が入射すると励起して蛍光(可視光)を発する。波長変換部材3は、基材層31と、基材層31の一方の表面に積層して設けられる蛍光層32と、蛍光層32に積層して設けられる反射層33とを有し、全体として主走査方向に長い板状やシート状の形状を有する。   The wavelength conversion member 3 is an example of a wavelength conversion unit that converts radiation into light having a wavelength that can be photoelectrically converted by the photoelectric conversion element 4 (visible light in the embodiment of the present invention). The wavelength conversion member 3 is excited and emits fluorescence (visible light) when radiation enters. The wavelength conversion member 3 includes a base material layer 31, a fluorescent layer 32 provided by being laminated on one surface of the base material layer 31, and a reflective layer 33 provided by being laminated on the fluorescent layer 32, as a whole. It has a long plate shape or sheet shape in the main scanning direction.

基材層31には、透明な材料(より具体的には、蛍光層32が発する蛍光(可視光)の透過率が高い材料)の板やシートが適用される。例えば、基材層31には、ポリエチレンテレフタラート(PET)などといった、透明な樹脂材料の板やシートが適用できる。蛍光層32は、放射線が入射すると励起して蛍光(可視光)を発する材料の層である。蛍光層32には、例えば、ガドリニウムオキサイドサルファ(GOS)などといった蛍光材料が適用できる。反射層33は、蛍光層32が発する蛍光の反射率が高く放射線の透過率が高い材料からなる層である。反射層33には、例えば、アルミナや炭酸カルシウムなどといった、可視光の反射率と放射線の透過率が高い材料が適用できる。   A plate or sheet of a transparent material (more specifically, a material having a high transmittance of fluorescence (visible light) emitted from the fluorescent layer 32) is applied to the base material layer 31. For example, a transparent resin material plate or sheet such as polyethylene terephthalate (PET) can be applied to the base material layer 31. The fluorescent layer 32 is a layer of a material that emits fluorescence (visible light) when excited by radiation. For the fluorescent layer 32, for example, a fluorescent material such as gadolinium oxide sulfur (GOS) can be applied. The reflective layer 33 is a layer made of a material having a high reflectance of fluorescence emitted from the fluorescent layer 32 and a high transmittance of radiation. For the reflective layer 33, for example, a material having high visible light reflectance and high radiation transmittance, such as alumina or calcium carbonate, can be used.

なお、波長変換部材3は、前記構成に限定されるものではない。波長変換部材3は、入射した放射線により励起して光電変換素子4が光電変換可能な波長の蛍光を発する蛍光層32を有していればよい。例えば、波長変換部材3の蛍光層32には、ガドリニウムオキサイドサルファのほか、ヨウ化セシウム(CSI)やアモルファスセレン(A−SE)などが適用できる。また、基材層31も、ポリエチレンテレフタラートに限定されるものではなく、各種樹脂材料やガラスなどが適用できる。反射層33も、可視光の反射率と放射線の透過率が高い材料であればよい。なお、蛍光層32が潮解性を有する材料からなる場合には、波長変換部材3は、蛍光層32の潮解を抑制するために、蛍光層32を覆う保護層を有することが好ましい。この場合、保護層には、フッ素系樹脂などといった、遮水性や撥水性の高い材料が適用される。また、波長変換部材3の寸法および形状は、配線板21に設けられる光電変換素子4の全ての受光部42を覆うことができる寸法および形状であればよい。換言すると、配線板21に設けられる光電変換素子4に重ねて配置した場合に、全ての光電変換素子4の全ての受光部42に重なる寸法および形状であればよい。   In addition, the wavelength conversion member 3 is not limited to the said structure. The wavelength conversion member 3 should just have the fluorescence layer 32 which emits the fluorescence of the wavelength which can be excited by the incident radiation and the photoelectric conversion element 4 can photoelectrically convert. For example, in addition to gadolinium oxide sulfur, cesium iodide (CSI), amorphous selenium (A-SE), or the like can be applied to the fluorescent layer 32 of the wavelength conversion member 3. Further, the base material layer 31 is not limited to polyethylene terephthalate, and various resin materials and glass can be applied. The reflective layer 33 may also be made of a material having high visible light reflectance and high radiation transmittance. When the fluorescent layer 32 is made of a material having deliquescence, the wavelength conversion member 3 preferably has a protective layer that covers the fluorescent layer 32 in order to suppress the deliquescence of the fluorescent layer 32. In this case, a material having a high water shielding property and water repellency such as a fluorine resin is applied to the protective layer. Moreover, the dimension and shape of the wavelength conversion member 3 should just be a dimension and shape which can cover all the light-receiving parts 42 of the photoelectric conversion element 4 provided in the wiring board 21. FIG. In other words, it is only necessary to have a size and shape that overlaps all the light receiving portions 42 of all the photoelectric conversion elements 4 when they are arranged so as to overlap the photoelectric conversion elements 4 provided on the wiring board 21.

遮蔽部材22は、放射線の透過率が低い材料からなるか、または放射線の透過率が低い材料を含む。また、遮蔽部材22は、全体として長尺の板状やシート状や棒状の形状を有する。例えば、遮蔽部材22には、タングステンの板やシートや棒や、タングステンが充填された紙やゴムや樹脂などといった、放射線の透過率が低い材料を含む板状やシート状や棒状の部材が適用される。そして、遮蔽部材22は、その長尺方向が主走査方向に平行で、幅方向が副走査方向に平行で、厚さ方向が上で方向に平行な向きで、配線板21の上側の端面に配置される。   The shielding member 22 is made of a material having a low radiation transmittance or includes a material having a low radiation transmittance. Moreover, the shielding member 22 has a long plate shape, a sheet shape, or a rod shape as a whole. For example, the shielding member 22 is a plate-like, sheet-like, or rod-like member containing a material having a low radiation transmittance, such as a tungsten plate, sheet, rod, paper filled with tungsten, rubber, resin, or the like. Is done. The shielding member 22 has a longitudinal direction parallel to the main scanning direction, a width direction parallel to the sub-scanning direction, and a thickness direction on the upper end surface of the wiring board 21 in an orientation parallel to the direction. Be placed.

遮蔽部材22の主走査方向寸法(長尺方向寸法)は、配線板21の主走査方向寸法以上であることが好ましい。遮蔽部材22の副走査方向寸法(幅)は、配線板21の副走査方向寸法(厚さ)以上であることが好ましい。配線板21の表面に配線パターンが設けられる構成であれば、遮蔽部材22の副走査方向寸法は、配線パターンの厚さを含めた配線板21の副走査方向寸法以上であることが好ましい。遮蔽部材22の上下方向寸法(厚さ)は特に限定されるものではないが、放射線を遮蔽するという機能の観点からは大きい方が好ましく、センサ基板モジュール2や放射線検出器1の小型化の観点からは小さい方が好ましい。このため、遮蔽部材22の上下方向寸法は、遮蔽部材22を上下方向に透過する放射線の透過量が所望の透過量以下となるように、遮蔽部材22における放射線の透過率や放射線源51が曝射する放射線の強度などに応じて適宜設定される。   The main scanning direction dimension (longitudinal direction dimension) of the shielding member 22 is preferably equal to or larger than the main scanning direction dimension of the wiring board 21. The dimension (width) of the shielding member 22 in the sub-scanning direction is preferably equal to or greater than the dimension (thickness) of the wiring board 21 in the sub-scanning direction. If the wiring pattern is provided on the surface of the wiring board 21, the dimension of the shielding member 22 in the sub-scanning direction is preferably equal to or larger than the dimension of the wiring board 21 including the thickness of the wiring pattern. The vertical dimension (thickness) of the shielding member 22 is not particularly limited, but is preferably larger from the viewpoint of the function of shielding radiation. From the viewpoint of miniaturization of the sensor substrate module 2 and the radiation detector 1. Is preferably smaller. For this reason, the vertical dimension of the shielding member 22 is such that the radiation transmittance in the shielding member 22 and the radiation source 51 are exposed so that the amount of radiation transmitted through the shielding member 22 in the vertical direction is equal to or less than a desired transmission amount. It is appropriately set according to the intensity of the radiation to be emitted.

そして、遮蔽部材22は、配線板21の上側の端面(一方の長辺に相当する端面)に設けられる。なお、遮蔽部材22が板状やシート状である場合には、複数の遮蔽部材22が上下方向に重ねて設けられる構成であってもよい。遮蔽部材22の主走査方向寸法と副走査方向寸法とが前述の通りであれば、配線板21の上側の端面の全体が遮蔽部材22で覆われる。   The shielding member 22 is provided on the upper end surface of the wiring board 21 (the end surface corresponding to one long side). In addition, when the shielding member 22 is plate-shaped or sheet-shaped, a configuration in which a plurality of shielding members 22 are provided so as to overlap in the vertical direction may be employed. If the dimensions of the shielding member 22 in the main scanning direction and the sub-scanning direction are as described above, the entire upper end surface of the wiring board 21 is covered with the shielding member 22.

センサ基板モジュール2の配線板21には、外部と電気的に接続するためのコネクタ23が設けられていてもよい。この場合、コネクタ23の構成は特に限定されるものではなく、公知の各種コネクタが適用できる。さらに、センサ基板モジュール2の配線板21には、他の素子や電子・電気部品などが実装されていてもよい。このように本発明の実施形態では、配線板21とこの配線板21に実装される光電変換素子4などによって、放射線画像を出力する電子・電気回路が形成される。   The wiring board 21 of the sensor board module 2 may be provided with a connector 23 for electrical connection with the outside. In this case, the configuration of the connector 23 is not particularly limited, and various known connectors can be applied. Furthermore, other elements, electronic / electrical components, and the like may be mounted on the wiring board 21 of the sensor board module 2. As described above, in the embodiment of the present invention, an electronic / electric circuit that outputs a radiation image is formed by the wiring board 21 and the photoelectric conversion element 4 mounted on the wiring board 21.

本体カバー12は、主走査方向に長い板状の形状を有しており、放射線の透過率が高い材料により形成されている。本体カバー12には、例えば各種樹脂材料やガラスなどが適用できる。なお、本体カバー12の具体的な構成は特に限定されるものではない。また、放射線検出器1が本体カバー12を有さない構成であってもよい。   The main body cover 12 has a plate shape that is long in the main scanning direction, and is formed of a material having high radiation transmittance. For the main body cover 12, for example, various resin materials or glass can be applied. In addition, the specific structure of the main body cover 12 is not specifically limited. Further, the radiation detector 1 may not have the main body cover 12.

(放射線検出器の組み付け構造)
ここで、放射線検出器1の組み付け構造について説明する。
(Assembly structure of radiation detector)
Here, the assembly structure of the radiation detector 1 will be described.

配線板21の第1の表面には、複数の光電変換素子4が実装される。配線板21に実装された光電変換素子4の電極43と配線板21に設けられるパッド211とは、ボンディングワイヤー24などの所定の配線によって電気的に接続される。また、配線板21の第2の表面にはコネクタ23が実装される。この他、配線板21の第1の表面と第2の表面には、光電変換素子4以外の他の素子や電子・電気部品等が実装されることがある。さらに、配線板21の上側の端面(放射線が入射する側の端面)には、遮蔽部材22が設けられる。遮蔽部材22は、例えば接着剤や両面粘着テープなどによって、配線板21の上側(放射線の入射方向の上流側)の端面に接合される。なお、遮蔽部材22は、上下方向視(放射線の入射方向視)において、配線板21の上側の端面(放射線が入射する側の端面)の全体に重なるように接合されることが好ましい。ただし、遮蔽部材22は、上下方向視において、後述する波長変換部材3とは重ならないように設けられる。遮蔽部材22が配線板21上側の端面にのみ重なる構成であれば、上下方向視において遮蔽部材22は波長変換部材3とは重ならない。また、配線板21の表面に配線パターンが設けられる構成である場合には、遮蔽部材22は、上下方向視(放射線の入射方向視)において、配線パターンにもその上側(放射線が入射する側)に重なるように接合されることが好ましい。これにより、センサ基板モジュール2が形成される。   A plurality of photoelectric conversion elements 4 are mounted on the first surface of the wiring board 21. The electrode 43 of the photoelectric conversion element 4 mounted on the wiring board 21 and the pad 211 provided on the wiring board 21 are electrically connected by a predetermined wiring such as the bonding wire 24. A connector 23 is mounted on the second surface of the wiring board 21. In addition, elements other than the photoelectric conversion element 4, electronic / electrical components, and the like may be mounted on the first surface and the second surface of the wiring board 21. Furthermore, a shielding member 22 is provided on the upper end surface of the wiring board 21 (end surface on which radiation is incident). The shielding member 22 is joined to the end face on the upper side (upstream side in the radiation incident direction) of the wiring board 21 with, for example, an adhesive or a double-sided adhesive tape. In addition, it is preferable that the shielding member 22 is joined so as to overlap the entire upper end surface (end surface on which radiation is incident) of the wiring board 21 in the vertical direction (radiation incidence direction view). However, the shielding member 22 is provided so as not to overlap with the wavelength conversion member 3 described later in the vertical direction. If the shielding member 22 overlaps only the end face on the upper side of the wiring board 21, the shielding member 22 does not overlap with the wavelength conversion member 3 in the vertical direction. When the wiring pattern is provided on the surface of the wiring board 21, the shielding member 22 is also above the wiring pattern (on the side on which radiation is incident) when viewed in the vertical direction (viewed in the incident direction of radiation). It is preferable to be joined so as to overlap. Thereby, the sensor substrate module 2 is formed.

そして、センサ基板モジュール2は、本体フレーム11のセンサ基板モジュール収容部111に収容されて固定される。なお、センサ基板モジュール2は、前述のとおり、配線板21の第1の表面(光電変換素子4が実装される面)が主走査方向および上下方向に平行で、かつ、遮蔽部材22が接合される端面が上側を向く向きで、本体フレーム11のセンサ基板モジュール収容部111に収容される。   The sensor board module 2 is housed and fixed in the sensor board module housing portion 111 of the main body frame 11. As described above, in the sensor board module 2, the first surface (the surface on which the photoelectric conversion element 4 is mounted) of the wiring board 21 is parallel to the main scanning direction and the vertical direction, and the shielding member 22 is bonded. Is accommodated in the sensor board module housing portion 111 of the main body frame 11 with the end face facing upward.

なお、センサ基板モジュール2は、上下方向視において、配線板21および配線板21に実装されている光電変換素子4が本体フレーム11の開口部112に重ならない位置(上下方向視で、開口部112の内側に入り込まない位置)に配置されることが好ましい。また、センサ基板モジュール2の本体フレーム11への固定構造は特に限定されるものではなく、接着剤を用いる構成や、本体フレーム11の一部をカシメる構成や、ネジ止めする構成など、各種の固定構造が適用できる。   Note that the sensor substrate module 2 has a position where the wiring board 21 and the photoelectric conversion element 4 mounted on the wiring board 21 do not overlap the opening 112 of the main body frame 11 when viewed in the vertical direction (opening 112 when viewed in the vertical direction). It is preferable that it is disposed at a position where it does not enter the inside. Further, the structure for fixing the sensor board module 2 to the main body frame 11 is not particularly limited. Various structures such as a configuration using an adhesive, a configuration in which a part of the main body frame 11 is crimped, and a configuration in which screws are fixed are used. Fixed structure can be applied.

波長変換部材3は、基材層31が設けられる側が光電変換素子4の受光面41の側を向き、反射層33が設けられる側がその反対側を向く向きで、光電変換素子4の受光面41に重ねて配置される。特に、光電変換素子4の受光面41に直角な方向視で、波長変換部材3は、全ての光電変換素子4の全ての受光部42に重なるように配置される。ただし、光電変換素子4の電極43と配線板21のパッド211とを接続するボンディングワイヤー24などの配線と干渉しないように、波長変換部材3は、光電変換素子4の電極43とは重ならない位置に配置される(図3と図4参照)。また、波長変換部材3は、上下方向視において、本体フレーム11の開口部112と重なる位置(開口部112の内側に入り込んだ位置)に配置されることが好ましい。   The wavelength conversion member 3 has the light receiving surface 41 of the photoelectric conversion element 4 such that the side on which the base material layer 31 is provided faces the light receiving surface 41 of the photoelectric conversion element 4 and the side on which the reflection layer 33 is provided faces the opposite side. Are placed on top of each other. In particular, the wavelength conversion member 3 is disposed so as to overlap all the light receiving portions 42 of all the photoelectric conversion elements 4 when viewed in a direction perpendicular to the light receiving surface 41 of the photoelectric conversion elements 4. However, the wavelength conversion member 3 is positioned so as not to overlap the electrode 43 of the photoelectric conversion element 4 so as not to interfere with the wiring such as the bonding wire 24 that connects the electrode 43 of the photoelectric conversion element 4 and the pad 211 of the wiring board 21. (See FIGS. 3 and 4). Moreover, it is preferable that the wavelength conversion member 3 is disposed at a position overlapping the opening 112 of the main body frame 11 (position entering the inside of the opening 112) when viewed in the vertical direction.

なお、波長変換部材3と光電変換素子4の受光面41とは、接触していてもよく、接触していなくてもよい。波長変換部材3と光電変換素子4の受光面41が接触している構成としては、例えば、波長変換部材3が光電変換素子4の受光面41に接着剤などによって接合される構成が適用できる。一方、波長変換部材3が光電変換素子4の受光面41と接触していない構成としては、波長変換部材3が本体フレーム11のセンサ基板モジュール収容部111の内周面に接合される構成が適用できる。要は、波長変換部材3は、光電変換素子4の受光面41に直角な方向視で、全ての光電変換素子4の全ての受光部42に重なるように配置されていればよく、光電変換素子4の受光面41に接触していても接触していなくてもよい。ただし、光電変換素子4による蛍光の検出の感度の向上や解像度の向上を図るためには、波長変換部材3は光電変換素子4の受光部42にできるだけ接近していることが好ましく、この場合には、波長変換部材3が光電変換素子4の受光面41に接触している構成であることが好ましい。   In addition, the wavelength conversion member 3 and the light receiving surface 41 of the photoelectric conversion element 4 may be in contact or may not be in contact. As a configuration in which the wavelength conversion member 3 and the light receiving surface 41 of the photoelectric conversion element 4 are in contact, for example, a configuration in which the wavelength conversion member 3 is bonded to the light receiving surface 41 of the photoelectric conversion element 4 with an adhesive or the like can be applied. On the other hand, as a configuration in which the wavelength conversion member 3 is not in contact with the light receiving surface 41 of the photoelectric conversion element 4, a configuration in which the wavelength conversion member 3 is bonded to the inner peripheral surface of the sensor substrate module housing portion 111 of the main body frame 11 is applied. it can. In short, the wavelength conversion member 3 only needs to be disposed so as to overlap all the light receiving portions 42 of all the photoelectric conversion elements 4 when viewed in a direction perpendicular to the light receiving surface 41 of the photoelectric conversion elements 4. 4 may be in contact with the light receiving surface 41 or not. However, in order to improve the sensitivity of fluorescence detection by the photoelectric conversion element 4 and improve the resolution, the wavelength conversion member 3 is preferably as close as possible to the light receiving portion 42 of the photoelectric conversion element 4. Is preferably configured such that the wavelength conversion member 3 is in contact with the light receiving surface 41 of the photoelectric conversion element 4.

本体カバー12は、本体フレーム11の上側に設けられる。本体カバー12が本体フレーム11の上側に設けられると、本体フレーム11の内部に異物が侵入することが防止される。なお、前述のとおり、放射線検出器1が本体カバー12を有さない構成であってもよい。   The main body cover 12 is provided on the upper side of the main body frame 11. When the main body cover 12 is provided on the upper side of the main body frame 11, foreign matter is prevented from entering the main body frame 11. As described above, the radiation detector 1 may be configured without the main body cover 12.

(放射線検出器の動作)
次に、放射線検出器1の動作について説明する。放射線検出器1は、放射線源51(図7参照)から曝射された放射線が入射するように、放射線源51に所定の距離をおいて対向するように配置されて使用される。そして、放射線源51と放射線検出器1との間に検査対象物Qを通過させながら、放射線源51が検査対象物Qに放射線を曝射し、放射線検出器1が検査対象物Qを透過した放射線を検出する。
(Operation of radiation detector)
Next, the operation of the radiation detector 1 will be described. The radiation detector 1 is disposed and used so as to face the radiation source 51 at a predetermined distance so that the radiation exposed from the radiation source 51 (see FIG. 7) is incident thereon. Then, while passing the inspection object Q between the radiation source 51 and the radiation detector 1, the radiation source 51 exposes the radiation to the inspection object Q, and the radiation detector 1 transmits the inspection object Q. Detect radiation.

前述のとおり、上下方向視において、遮蔽部材22は波長変換部材3に重ならないから、放射線検出器1に入射した放射線は、本体フレーム11の開口部112を通過して遮蔽部材22に遮蔽されずに波長変換部材3に入射する。波長変換部材3の蛍光層32は、放射線が入射すると励起して、入射した放射線の強度に応じた蛍光(可視光)を発する。すなわち、蛍光層32により、入射した放射線は光電変換素子4で検出可能な波長の光に変換される。そして、光電変換素子4(フォトダイオードアレイ)の受光部42は、蛍光層32が発する蛍光を電気信号に変換(光電変換)する。この際、蛍光層32が発する蛍光が反射層33において反射することにより、受光部42に入射する蛍光の光量が増加する。このため、検出感度が向上する。   As described above, since the shielding member 22 does not overlap the wavelength conversion member 3 when viewed in the vertical direction, the radiation incident on the radiation detector 1 passes through the opening 112 of the main body frame 11 and is not shielded by the shielding member 22. To the wavelength conversion member 3. The fluorescent layer 32 of the wavelength conversion member 3 is excited when radiation enters and emits fluorescence (visible light) according to the intensity of the incident radiation. That is, the incident radiation is converted into light having a wavelength detectable by the photoelectric conversion element 4 by the fluorescent layer 32. And the light-receiving part 42 of the photoelectric conversion element 4 (photodiode array) converts the fluorescence emitted from the fluorescent layer 32 into an electrical signal (photoelectric conversion). At this time, the fluorescence emitted from the fluorescent layer 32 is reflected by the reflective layer 33, thereby increasing the amount of fluorescent light incident on the light receiving unit 42. For this reason, detection sensitivity improves.

そして、光電変換素子4は、あるタイミングにおいて受光部42が光電変換して生成した電気信号を、放射線画像信号(放射線画像データ)の1ラインの信号として出力する。なお、放射線検出器1は、このような動作を継続的に実行することにより、検査対象物Qの内部情報を有する2次元の放射線画像信号(放射線画像データ)を生成して出力することができる。   The photoelectric conversion element 4 outputs an electrical signal generated by photoelectric conversion by the light receiving unit 42 at a certain timing as a signal of one line of the radiation image signal (radiation image data). The radiation detector 1 can generate and output a two-dimensional radiation image signal (radiation image data) having internal information of the inspection object Q by continuously executing such an operation. .

(作用)
ここで、本発明の実施形態の作用などについて説明する。図3と図4に示すように、遮蔽部材22は、配線板21の上側の端面(一方の長辺に対応する端面)に接合されている。そして、遮蔽部材22は、上下方向視において、配線板21に重なっている。このような構成であると、上側から入射した放射線は、遮蔽部材22によって、配線板21に直接的に入射しないように遮蔽される。ここで、「放射線が直接的に入射する」とは、本体フレーム11の開口部112を通過した放射線が、他の部材で反射することなくそのまま入射することをいうものとする。このような構成であると、放射線の入射により発生するノイズを抑制でき、光電変換素子4が出力する放射線画像の画質の向上を図ることができる。なお、配線板21の表面に配線パターンが設けられる場合には、遮蔽部材22は、この配線パターンにも重なっていることが好ましい。このような構成によれば、配線板21の表面に設けられている配線パターンにも、遮蔽部材22によって放射線が直接的に入射しないように遮蔽されるから、表面に設けられている配線パターンにおいてノイズが発生することを抑制できる。
(Function)
Here, the operation of the embodiment of the present invention will be described. As shown in FIGS. 3 and 4, the shielding member 22 is joined to the upper end surface (the end surface corresponding to one long side) of the wiring board 21. The shielding member 22 overlaps the wiring board 21 when viewed in the vertical direction. With such a configuration, the radiation incident from above is shielded by the shielding member 22 so as not to be directly incident on the wiring board 21. Here, “radiation is directly incident” means that the radiation that has passed through the opening 112 of the main body frame 11 is incident as it is without being reflected by another member. With such a configuration, noise generated by the incidence of radiation can be suppressed, and the image quality of the radiation image output from the photoelectric conversion element 4 can be improved. In addition, when a wiring pattern is provided on the surface of the wiring board 21, it is preferable that the shielding member 22 also overlaps with this wiring pattern. According to such a configuration, the wiring pattern provided on the surface of the wiring board 21 is also shielded by the shielding member 22 so that the radiation does not directly enter. Therefore, in the wiring pattern provided on the surface, Generation of noise can be suppressed.

また、本発明の実施形態においては、遮蔽部材22が配線板21に接合されている。このため、センサ基板モジュール2の本体フレーム11への組み付け精度が低い場合であっても、配線板21に直接的に放射線が入射することが抑制される。すなわち、従来構成のように、開口部が設けられた遮蔽部材が用いられる構成では、開口部を通過した放射線が配線板に直接的に入射しないようにするためには、開口部と配線板とを厳密に位置決めしなければならない。例えば、従来構成では、上下方向視(入射する放射線の方向視)で、配線板が遮蔽部材に設けられる開口部の内側に入り込んでいると、当該入り込んでいる部分に直接的に放射線が入射することになる。このため、配線板において放射線の入射によるノイズが発生する。一方、配線板と開口部との上下方向視の距離が大きくなると、配線板に放射線が直接的に入射することは抑制できるが、蛍光部材の蛍光層と配線板に実装されている光電変換素子との距離が大きくなる。このためこの場合には、光電変換素子による蛍光の検出感度が低下するほか、出力される放射線画像の解像度が低下する。   In the embodiment of the present invention, the shielding member 22 is bonded to the wiring board 21. For this reason, even if it is a case where the assembly | attachment precision to the main body frame 11 of the sensor board | substrate module 2 is low, it is suppressed that a radiation injects into the wiring board 21 directly. That is, in a configuration in which a shielding member provided with an opening is used as in the conventional configuration, in order to prevent radiation that has passed through the opening from directly entering the wiring board, the opening and the wiring board Must be strictly positioned. For example, in the conventional configuration, when the wiring board enters the inside of the opening provided in the shielding member as viewed in the vertical direction (direction of the incident radiation), the radiation is directly incident on the entering portion. It will be. For this reason, noise due to incidence of radiation is generated in the wiring board. On the other hand, if the distance in the vertical direction between the wiring board and the opening increases, radiation can be prevented from directly entering the wiring board, but the photoelectric conversion element mounted on the fluorescent layer of the fluorescent member and the wiring board And the distance will increase. For this reason, in this case, the detection sensitivity of the fluorescence by the photoelectric conversion element is lowered, and the resolution of the radiation image to be outputted is lowered.

これに対して、本発明の実施形態においては、遮蔽部材22が配線板21の上側の端面に接合されている。このような構成であると、配線板21と遮蔽部材22との位置関係は、センサ基板モジュール2の本体フレーム11への組み付け精度の影響を受けない。このため、センサ基板モジュール2の本体フレーム11への組み付け精度が低い場合であっても、放射線が直接的に配線板21に入射することが抑制される。したがって、配線板21において放射線の入射に起因するノイズの発生を抑制できる。   On the other hand, in the embodiment of the present invention, the shielding member 22 is joined to the upper end surface of the wiring board 21. With such a configuration, the positional relationship between the wiring board 21 and the shielding member 22 is not affected by the accuracy with which the sensor board module 2 is assembled to the main body frame 11. For this reason, even if it is a case where the assembly precision to the main body frame 11 of the sensor board module 2 is low, it is suppressed that a radiation injects into the wiring board 21 directly. Therefore, it is possible to suppress the generation of noise due to the incidence of radiation in the wiring board 21.

また、波長変換部材3が光電変換素子4の受光面41に接合される構成であってもよい。このような構成であれば、光電変換素子4と波長変換部材3と遮蔽部材22との位置関係は、センサ基板モジュール2の本体フレーム11への組み付け精度に係わらず一定となる。このため、蛍光層32のうちの放射線が入射して蛍光を発する箇所と光電変換素子4の受光部42との距離も一定となるから、光電変換素子4による蛍光の検出感度の低下を抑制できるとともに、出力される放射線画像の解像度の低下を抑制できる。さらに、このような構成であると、センサ基板モジュール2の組み付け精度に個体差があっても、検出感度や解像度の個体差を抑制できる。したがって、放射線検出器1の品質の安定化を図ることができる。   Further, the wavelength conversion member 3 may be bonded to the light receiving surface 41 of the photoelectric conversion element 4. With such a configuration, the positional relationship among the photoelectric conversion element 4, the wavelength conversion member 3, and the shielding member 22 is constant regardless of the accuracy with which the sensor substrate module 2 is assembled to the main body frame 11. For this reason, since the distance between the portion of the fluorescent layer 32 where the radiation is incident and emits fluorescence and the light receiving portion 42 of the photoelectric conversion element 4 is also constant, a decrease in the fluorescence detection sensitivity by the photoelectric conversion element 4 can be suppressed. At the same time, it is possible to suppress a decrease in the resolution of the output radiographic image. Furthermore, with such a configuration, even if there are individual differences in the assembly accuracy of the sensor substrate module 2, individual differences in detection sensitivity and resolution can be suppressed. Therefore, the quality of the radiation detector 1 can be stabilized.

(遮蔽部材の変形例)
次に、遮蔽部材22の変形例について説明する。図5と図6は、変形例に係る遮蔽部材22が適用された放射線検出器1の構成例を模式的に示す断面図であり、図4に対応する図である。
(Modification of shielding member)
Next, a modified example of the shielding member 22 will be described. 5 and 6 are cross-sectional views schematically illustrating a configuration example of the radiation detector 1 to which the shielding member 22 according to the modification is applied, and are diagrams corresponding to FIG. 4.

図5は、遮蔽部材22が配線板21の表面からその略直角方向に延出している例を示す。説明の便宜上、第1の表面の側に延出している部分を「第1の延出部221」と称し、第2の表面の側に延出している部分を「第2の延出部222」と称する。   FIG. 5 shows an example in which the shielding member 22 extends from the surface of the wiring board 21 in a substantially perpendicular direction. For convenience of explanation, a portion extending to the first surface side is referred to as a “first extension portion 221”, and a portion extending to the second surface side is referred to as a “second extension portion 222”. ".

第1の延出部221は、上下方向視において、配線板21の第1の表面に実装されている光電変換素子4に重なっている。上下方向視において、光電変換素子4の少なくとも一部に第1の延出部221が重なっている構成であると、遮蔽部材22の第1の延出部221によって、光電変換素子4に直接的に入射する放射線の量を減少させることができる。したがって、光電変換素子4において放射線の入射によるノイズの発生を抑制できる。特に、配線板21の光電変換素子4が実装される面に直角な方向を厚さ方向とすると、第1の延出部221の厚さ方向の延出寸法B1が光電変換素子4の厚さ以上であり、上下方向視において、光電変換素子4の全体に第1の延出部221が重なっていることが好ましい。このような構成であると、光電変換素子4に上側から直接的に入射する放射線をなくすことができる。したがって、光電変換素子4におけるノイズの発生の抑制の効果を高めることができる。 The first extending portion 221 overlaps the photoelectric conversion element 4 mounted on the first surface of the wiring board 21 when viewed in the vertical direction. When the first extension part 221 overlaps at least a part of the photoelectric conversion element 4 in the vertical direction, the first extension part 221 of the shielding member 22 directly contacts the photoelectric conversion element 4. The amount of radiation incident on can be reduced. Therefore, generation of noise due to incidence of radiation can be suppressed in the photoelectric conversion element 4. In particular, when the direction perpendicular to the surface on which the photoelectric conversion element 4 of the wiring board 21 is mounted is the thickness direction, the extension dimension B 1 in the thickness direction of the first extension portion 221 is the thickness of the photoelectric conversion element 4. It is preferable that the first extending portion 221 overlaps the entire photoelectric conversion element 4 when viewed in the vertical direction. With such a configuration, radiation that directly enters the photoelectric conversion element 4 from above can be eliminated. Therefore, the effect of suppressing the generation of noise in the photoelectric conversion element 4 can be enhanced.

一方、第1の延出部221は、上下方向視(放射線の入射方向視)において、波長変換部材3の上側(放射線が入射する側)に重なっていないことが好ましい。このような構成であると、波長変換部材3に直接的に入射する放射線が遮蔽されないから、波長変換部材3に入射する放射線の量の減少を抑制でき、放射線検出器1による放射線の検出感度を維持できる。この場合、第1の延出部221の厚さ方向寸法の延出寸法B1は、光電変換素子4の厚さと同じであればよい。なお、光電変換素子4と波長変換部材3との間に隙間が存在する場合には、第1の延出部221の厚さ方向寸法の延出寸法B1は、光電変換素子4の厚さ以上で、光電変換素子4の厚さと隙間の寸法の合計値以下であればよい。このような構成であれば、上下方向視において、遮蔽部材22は波長変換部材3と重ならない。このため、開口部112から入射した放射線は、遮蔽部材22に遮蔽されることなく波長変換部材3に到達する。ただし、第1の延出部221は、波長変換部材3の一部に重なっていてもよい。波長変換部材3の一部に第1の延出部221が重なっていても、重なっていない他の部分には上側から直接的に放射線が入射する。したがって、このような構成とすることにより、波長変換部材3の少なくとも一部には上側から直接的に放射線が入射するようにできるから、放射線検出器1による放射線の検出感度を確保することができる。 On the other hand, it is preferable that the first extending portion 221 does not overlap the upper side (the side on which the radiation is incident) of the wavelength conversion member 3 when viewed in the vertical direction (viewed in the incident direction of radiation). With such a configuration, since radiation directly incident on the wavelength conversion member 3 is not shielded, a decrease in the amount of radiation incident on the wavelength conversion member 3 can be suppressed, and the radiation detection sensitivity of the radiation detector 1 can be increased. Can be maintained. In this case, the extension dimension B 1 in the thickness direction dimension of the first extension part 221 may be the same as the thickness of the photoelectric conversion element 4. When there is a gap between the photoelectric conversion element 4 and the wavelength conversion member 3, the extension dimension B 1 in the thickness direction dimension of the first extension part 221 is the thickness of the photoelectric conversion element 4. Above, it should just be below the total value of the thickness of the photoelectric conversion element 4, and the dimension of a clearance gap. With such a configuration, the shielding member 22 does not overlap the wavelength conversion member 3 when viewed in the vertical direction. For this reason, the radiation incident from the opening 112 reaches the wavelength conversion member 3 without being shielded by the shielding member 22. However, the first extension part 221 may overlap a part of the wavelength conversion member 3. Even if the first extension part 221 overlaps with a part of the wavelength conversion member 3, radiation is directly incident on the other part not overlapping from above. Therefore, with such a configuration, radiation can be directly incident on at least a part of the wavelength conversion member 3 from above, so that the radiation detection sensitivity of the radiation detector 1 can be ensured. .

第2の延出部222は、上下方向視において、配線板21の第2の表面に実装されている素子や電子・電気部品などに重なっている。この場合、第2の延出部222の厚さ方向の延出寸法B2は、配線板21の第2の表面に実装されている素子や電子・電気部品等の厚さ以上であることが好ましい。このような構成によれば、第2の延出部222によって、配線板21の第2の表面に実装されている素子や電子・電気部品などに上側から放射線が直接的に入射しないように遮蔽される。したがって、配線板21の第2の表面に実装されている素子や電子・電気部品などにおいてノイズが発生することを抑制できる。なお、遮蔽部材22が第2の延出部222を有すると、配線板21の第2の表面に素子や電子・電気部品などが実装されていない場合であっても、配線板21に設けられる配線パターンに放射線が入射しないように遮蔽する効果を高めることができる。したがって、配線板21に設けられている配線パターンにおいてノイズが発生することが抑制される。 The second extending part 222 overlaps an element or an electronic / electrical component mounted on the second surface of the wiring board 21 when viewed in the vertical direction. In this case, the extension dimension B 2 in the thickness direction of the second extension part 222 may be equal to or greater than the thickness of elements, electronic / electrical components, etc. mounted on the second surface of the wiring board 21. preferable. According to such a configuration, the second extending portion 222 shields radiation from directly entering the elements, electronic / electrical components, and the like mounted on the second surface of the wiring board 21 from above. Is done. Therefore, it is possible to suppress the occurrence of noise in the elements and electronic / electrical components mounted on the second surface of the wiring board 21. When the shielding member 22 has the second extending portion 222, the shielding member 22 is provided on the wiring board 21 even when elements, electronic / electrical components, and the like are not mounted on the second surface of the wiring board 21. The effect of shielding radiation from entering the wiring pattern can be enhanced. Therefore, the occurrence of noise in the wiring pattern provided on the wiring board 21 is suppressed.

なお、図5においては、遮蔽部材22が、第1の延出部221と第2の延出部222の両方を有している構成を例に示しているが、このような構成に限定されるものではない。例えば、遮蔽部材22が第1の延出部221と第2の延出部222のいずれか一方のみを有する構成であってもよい。   In addition, in FIG. 5, although the shielding member 22 has shown as an example the structure which has both the 1st extension part 221 and the 2nd extension part 222, it is limited to such a structure. It is not something. For example, the structure in which the shielding member 22 has only any one of the 1st extension part 221 and the 2nd extension part 222 may be sufficient.

図6は、遮蔽部材22が、配線板21の上側の端面のみならず、第1の表面と第2の表面にも設けられる構成の例を示す。このような構成によれば、配線板21の第1の表面と第2の表面とは、遮蔽部材22により覆われるから、上側から入射した放射線が直接的に配線板21に入射しないように遮蔽されるのみならず、他の部材などで反射した放射線(すなわち、進行方向が上下方向に平行でない放射線)の入射も抑制できる。したがって、このような構成によれば、配線板21への放射線の入射を抑制する効果を高めることができる。   FIG. 6 shows an example of a configuration in which the shielding member 22 is provided not only on the upper end face of the wiring board 21 but also on the first surface and the second surface. According to such a configuration, since the first surface and the second surface of the wiring board 21 are covered with the shielding member 22, the radiation incident from above is shielded so as not to directly enter the wiring board 21. In addition, the incidence of radiation reflected by other members (that is, radiation whose traveling direction is not parallel to the vertical direction) can be suppressed. Therefore, according to such a configuration, the effect of suppressing the incidence of radiation on the wiring board 21 can be enhanced.

さらに、このような構成においては、光電変換素子4の上側にも遮蔽部材22が設けられることになる。したがって、遮蔽部材22のうちの配線板21の第1の表面に設けられる部分は、上下方向視において光電変換素子4に重なることになるから、光電変換素子4に放射線が直接的に入射することが抑制される。したがって、光電変換素子4において、放射線の入射によるノイズの発生を抑制できる。この場合、遮蔽部材22のうちの第1の表面に設けられる部分の厚さは、前述した第1の延出部221の副走査方向の延出寸法B1と同じ寸法が適用できる。このような寸法とすることにより、遮蔽部材22が第1の延出部221を有する場合と同様の効果を奏することができる。 Further, in such a configuration, the shielding member 22 is also provided on the upper side of the photoelectric conversion element 4. Accordingly, the portion of the shielding member 22 provided on the first surface of the wiring board 21 overlaps the photoelectric conversion element 4 when viewed in the vertical direction, and therefore radiation directly enters the photoelectric conversion element 4. Is suppressed. Therefore, in the photoelectric conversion element 4, generation | occurrence | production of the noise by incidence | injection of a radiation can be suppressed. In this case, the same dimension as the extension dimension B 1 of the first extension part 221 in the sub-scanning direction can be applied to the thickness of the portion of the shielding member 22 provided on the first surface. By setting it as such a dimension, the effect similar to the case where the shielding member 22 has the 1st extension part 221 can be show | played.

また、配線板21の第2の表面に素子や電子・電気部品が実装される場合には、配線板21の第2の表面に遮蔽部材22が設けられると、遮蔽部材22によってこれらの素子や電子・電気部品に放射線が入射しないように遮蔽される。したがって、第2の表面に実装される素子や電子・電気部品において、放射線の入射によるノイズの発生を抑制できる。この場合、配線板21の第2の表面に実装されている素子や電子・電気部品を覆うように、遮蔽部材22が貼り付けられる構成であってもよく、上下方向視において重なる構成であってもよい。上下方向視において重なるように設けられる場合には、遮蔽部材22のうちの第2の表面に設けられる部分の厚さは、前述した第2の延出部222の副走査方向の延出寸法B2と同じ寸法が適用できる。 Further, when elements and electronic / electrical components are mounted on the second surface of the wiring board 21, if the shielding member 22 is provided on the second surface of the wiring board 21, these elements and It is shielded so that radiation does not enter electronic / electrical components. Therefore, generation of noise due to radiation incidence can be suppressed in the elements and electronic / electrical components mounted on the second surface. In this case, the shielding member 22 may be affixed so as to cover the elements and electronic / electrical components mounted on the second surface of the wiring board 21, and is a configuration overlapping in the vertical direction. Also good. When provided so as to overlap when viewed in the vertical direction, the thickness of the portion of the shielding member 22 provided on the second surface is the extension dimension B in the sub-scanning direction of the second extension part 222 described above. The same dimensions as 2 can be applied.

なお、図6においては、一体の遮蔽部材22が配線板21の第1の表面と上側の端面と第2の表面とに跨るように設けられる構成を示すが、遮蔽部材22の構成はこのような構成に限定されない。例えば、配線板21の第1の表面と上側の端面と第2の表面のそれぞれに、別体の遮蔽部材22がそれぞれ接合される構成であってもよい。また、遮蔽部材22の厚さは、配線板21の第1の表面と上側の端面と第2の表面に設けられる部分とで互いに異なっていてもよい。さらに、遮蔽部材22は、配線板21の第1の表面と第2の表面の両面に設けられる構成でなくてもよく、上側の端面に加えて、第1の表面と第2の表面のいずれか一方にのみ設けられる構成であってもよい。   6 shows a configuration in which the integral shielding member 22 is provided so as to straddle the first surface, the upper end surface, and the second surface of the wiring board 21, but the configuration of the shielding member 22 is as described above. It is not limited to a simple configuration. For example, the separate shielding member 22 may be joined to each of the first surface, the upper end surface, and the second surface of the wiring board 21. Further, the thickness of the shielding member 22 may be different between the first surface of the wiring board 21, the upper end surface, and the portion provided on the second surface. Furthermore, the shielding member 22 does not have to be provided on both the first surface and the second surface of the wiring board 21, and in addition to the upper end surface, any one of the first surface and the second surface is possible. The structure provided only in one side may be sufficient.

<放射線検出装置>
次に、放射線検出装置5の構成例について、図7を参照して説明する。図7は、放射線検出装置5の構成例を模式的に示す断面図である。放射線検出装置5は、放射線源51と、本発明の実施形態に係る放射線検出器1とを有する。放射線源51には、主走査方向に長い線状の放射線を曝射することができる放射線源が適用される。なお、放射線源51は、線状の放射線を曝射できる構成であればよく、具体的な構成は限定されない。そして、放射線源51と放射線検出器1とは、検査対象物Qの搬送経路Pを挟んで対向して配置される。放射線源51が曝射した放射線は、搬送経路Pを搬送される検査対象物Qを透過して、放射線検出器1に入射する。そして、放射線検出器1は、前述の動作によって、検査対象物Qの内部情報を有する2次元の放射線画像信号(放射線画像データ)を生成して出力する。
<Radiation detection device>
Next, a configuration example of the radiation detection apparatus 5 will be described with reference to FIG. FIG. 7 is a cross-sectional view schematically showing a configuration example of the radiation detection apparatus 5. The radiation detection apparatus 5 includes a radiation source 51 and the radiation detector 1 according to the embodiment of the present invention. The radiation source 51 is a radiation source capable of exposing linear radiation that is long in the main scanning direction. The radiation source 51 only needs to have a configuration capable of exposing linear radiation, and the specific configuration is not limited. The radiation source 51 and the radiation detector 1 are disposed to face each other across the conveyance path P of the inspection object Q. The radiation exposed by the radiation source 51 passes through the inspection object Q transported along the transport path P and enters the radiation detector 1. Then, the radiation detector 1 generates and outputs a two-dimensional radiation image signal (radiation image data) having the internal information of the inspection object Q by the above-described operation.

以上、本発明の実施形態について詳細に説明したが、前述の実施形態は、本発明を実施するにあたっての具体例を示したに過ぎない。本発明の技術的範囲は、前述の実施形態に限定されるものではない。本発明は、その趣旨を逸脱しない範囲において、種々の変更が可能である。   As mentioned above, although embodiment of this invention was described in detail, above-mentioned embodiment is only a specific example in implementing this invention. The technical scope of the present invention is not limited to the above-described embodiment. The present invention can be variously modified without departing from the spirit of the present invention.

例えば、前述した実施形態では、光電変換素子にフォトダイオードアレイが適用される構成を示したが、光電変換素子はフォトダイオードアレイに限定されない。光電変換素子は、蛍光層が発する蛍光(可視光)を光電変換できるものであればよい。   For example, in the above-described embodiment, the configuration in which the photodiode array is applied to the photoelectric conversion element is shown, but the photoelectric conversion element is not limited to the photodiode array. The photoelectric conversion element should just be what can photoelectrically convert the fluorescence (visible light) which a fluorescent layer emits.

本発明は、蛍光層および蛍光層が発する蛍光を光電変換する光電変換素子を有する放射線検出器と、この放射線検出器を有する放射線検出装置に有効に利用できるものである。そして、本発明によれば、放射線の入射に起因して生じるノイズを抑制することができる。   INDUSTRIAL APPLICABILITY The present invention can be effectively used for a radiation detector having a fluorescent layer and a photoelectric conversion element that photoelectrically converts fluorescence emitted from the fluorescent layer, and a radiation detection apparatus having this radiation detector. And according to this invention, the noise which originates in incidence | injection of a radiation can be suppressed.

1:放射線検出器、11:本体フレーム、111:センサ基板モジュール収容部、112:開口部、12:本体カバー、2:センサ基板モジュール、21:配線板、211:パッド、22:遮蔽部材、221:第1の延出部、222:第2の延出部、23:コネクタ、24:ボンディングワイヤー、3:波長変換部材、31:基材層、32:蛍光層、33:反射層、4:光電変換素子、41:受光面、42:受光部、43:電極、5:放射線検出装置、51:放射線源、Q:検査対象物、P:搬送経路 DESCRIPTION OF SYMBOLS 1: Radiation detector, 11: Main body frame, 111: Sensor board module accommodating part, 112: Opening part, 12: Main body cover, 2: Sensor board module, 21: Wiring board, 211: Pad, 22: Shielding member, 221 : First extension part, 222: second extension part, 23: connector, 24: bonding wire, 3: wavelength conversion member, 31: base material layer, 32: fluorescent layer, 33: reflection layer, 4: Photoelectric conversion element, 41: light receiving surface, 42: light receiving unit, 43: electrode, 5: radiation detection device, 51: radiation source, Q: inspection object, P: transport path

Claims (9)

光を電気信号に変換する光電変換部と、
前記光電変換部が実装されている配線板と、
入射した放射線を遮蔽する遮蔽部材と、
を有する放射線検出器であって、
前記配線板は、前記放射線の入射方向に沿って設けられており、
前記配線板には、入射した放射線を遮蔽する遮蔽部材が設けられており、
前記遮蔽部材は、放射線の入射方向視において前記配線板に重なって設けられていることを特徴とする放射線検出器。
A photoelectric conversion unit that converts light into an electrical signal;
A wiring board on which the photoelectric conversion unit is mounted;
A shielding member for shielding incident radiation;
A radiation detector comprising:
The wiring board is provided along the incident direction of the radiation,
The wiring board is provided with a shielding member that shields incident radiation,
The radiation detector is characterized in that the shielding member is provided so as to overlap the wiring board in a radiation incident direction view.
放射線が入射すると光を発する波長変換部を有し、
前記遮蔽部材は、放射線の入射方向視において、前記波長変換部と重なっていように配置されていることを特徴とする請求項1に記載の放射線検出器。
It has a wavelength converter that emits light when radiation is incident,
The radiation detector according to claim 1, wherein the shielding member is disposed so as to overlap the wavelength conversion unit when viewed in the incident direction of radiation.
前記遮蔽部材は、前記配線板の前記放射線が入射する側の端面に設けられていることを特徴とする請求項1または2に記載の放射線検出器。   3. The radiation detector according to claim 1, wherein the shielding member is provided on an end surface of the wiring board on the side on which the radiation is incident. 4. 前記遮蔽部材は、前記配線板の前記光電変換部が実装されている面の側に延出している第1の延出部を有することを特徴とする請求項1から3のいずれか1項に記載の放射線検出器。   The said shielding member has a 1st extension part extended to the side by which the said photoelectric conversion part of the said wiring board is mounted, The any one of Claim 1 to 3 characterized by the above-mentioned. The radiation detector described. 前記配線板の前記光電変換部が実装されている面に直角な方向を厚さ方向としたときの前記第1の延出部の厚さ方向寸法は、前記光電変換部の厚さ方向寸法以上であることを特徴とする請求項4に記載の放射線検出器。   The thickness direction dimension of the first extending part when the direction perpendicular to the surface of the wiring board on which the photoelectric conversion part is mounted is the thickness direction dimension of the photoelectric conversion part or more. The radiation detector according to claim 4, wherein 前記遮蔽部材は、前記配線板の前記光電変換部が実装されている面とは反対の面の側に延出している第2の延出部を有することを特徴とする請求項1から5のいずれか1項に記載の放射線検出器。   The said shielding member has the 2nd extension part extended to the surface side on the opposite side to the surface where the said photoelectric conversion part of the said wiring board is mounted, The Claim 1 to 5 characterized by the above-mentioned. The radiation detector of any one of Claims. 前記遮蔽部材は、前記配線板の前記光電変換部が実装されている面に積層する部分と前記配線板の前記光電変換部が実装されている面とは反対側に積層する部分との少なくとも一方をさらに有することを特徴とする請求項1に記載の放射線検出器。   The shielding member is at least one of a portion laminated on the surface of the wiring board on which the photoelectric conversion unit is mounted and a portion of the wiring board on the opposite side of the surface on which the photoelectric conversion unit is mounted. The radiation detector according to claim 1, further comprising: 前記遮蔽部材は、タングステンであるか、または、タングステンを含むことを特徴とする請求項1から7のいずれか1項に記載の放射線検出器。   The radiation detector according to claim 1, wherein the shielding member is tungsten or contains tungsten. 放射線源と前記放射線が曝射した放射線を検出する放射線検出器とを有する放射線検出装置であって、
前記放射線検出器は請求項1から8のいずれか1項に記載の放射線検出器であることを特徴とする放射線検出装置。
A radiation detection apparatus comprising a radiation source and a radiation detector for detecting radiation exposed to the radiation,
The radiation detector is a radiation detector according to claim 1, wherein the radiation detector is a radiation detector.
JP2017006792A 2017-01-18 2017-01-18 Radiation detector and radiation detector Active JP7062362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006792A JP7062362B2 (en) 2017-01-18 2017-01-18 Radiation detector and radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006792A JP7062362B2 (en) 2017-01-18 2017-01-18 Radiation detector and radiation detector

Publications (3)

Publication Number Publication Date
JP2018115955A true JP2018115955A (en) 2018-07-26
JP2018115955A5 JP2018115955A5 (en) 2020-07-09
JP7062362B2 JP7062362B2 (en) 2022-05-06

Family

ID=62985323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006792A Active JP7062362B2 (en) 2017-01-18 2017-01-18 Radiation detector and radiation detector

Country Status (1)

Country Link
JP (1) JP7062362B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101685952B1 (en) * 2009-12-03 2016-12-13 코웨이 주식회사 Toilet bowl

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054659A1 (en) * 2000-08-14 2002-05-09 Miwa Okumura Radiation detector, radiation detecting system and X-ray CT apparatus
JP2003172782A (en) * 2001-12-06 2003-06-20 Hamamatsu Photonics Kk Radiogram imaging device and its manufacturing method
US20120093283A1 (en) * 2010-10-15 2012-04-19 Zhiqiang Liu Method for placing a/d converter, front-lit detector and ct apparatus
US20130327947A1 (en) * 2011-02-03 2013-12-12 Koninklijke Philips N.V. Single or multi-energy vertical radiation sensitive detectors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020054659A1 (en) * 2000-08-14 2002-05-09 Miwa Okumura Radiation detector, radiation detecting system and X-ray CT apparatus
JP2008286800A (en) * 2000-08-14 2008-11-27 Toshiba Corp Radiation detector, radiation detection system, and x-ray ct apparatus having radiation detector
JP2003172782A (en) * 2001-12-06 2003-06-20 Hamamatsu Photonics Kk Radiogram imaging device and its manufacturing method
US20120093283A1 (en) * 2010-10-15 2012-04-19 Zhiqiang Liu Method for placing a/d converter, front-lit detector and ct apparatus
JP2012088301A (en) * 2010-10-15 2012-05-10 Ge Medical Systems Global Technology Co Llc Front irradiation detector, method for mounting a/d converter, and ct apparatus
US20130327947A1 (en) * 2011-02-03 2013-12-12 Koninklijke Philips N.V. Single or multi-energy vertical radiation sensitive detectors
JP2014510902A (en) * 2011-02-03 2014-05-01 コーニンクレッカ フィリップス エヌ ヴェ Single or multi-energy radiation sensitive vertical detector

Also Published As

Publication number Publication date
JP7062362B2 (en) 2022-05-06

Similar Documents

Publication Publication Date Title
TWI539789B (en) Image sensor unit, image reading apparatus, and image forming apparatus
JP5124226B2 (en) Radiation detector
JP2018141781A (en) Radiation detector and radiation detection device
US7148486B2 (en) Image detector for x-ray devices with rear-contact organic image sensors
JPWO2008126836A1 (en) Optical encoder
US11693130B2 (en) Radiation detection device
WO2006049112A1 (en) Image reading device
JP5124227B2 (en) Radiation detector
JP7062362B2 (en) Radiation detector and radiation detector
US20180067047A1 (en) Radiation detector
JP7023605B2 (en) Radiation detector and radiation detector
US20180246228A1 (en) Radiation detector and radiation detection apparatus
JP6718832B2 (en) Radiation detector and radiation detection device
JP2020041935A (en) Toner deposition amount sensor
JP2017076867A (en) Image sensor module
JP2008226969A (en) Optical communication module
JP2008277488A (en) Light-emitting/receiving module
JP5551752B2 (en) Radiation detector
US11774606B2 (en) Electromagnetic wave detector, electromagnetic wave detection apparatus, inspection apparatus, and circuit board
JP2018080989A (en) Radiation detector and radiation detection device
JP2011013093A (en) Photoelectric encoder
JP5513582B2 (en) Radiation detector
JP5960482B2 (en) Optical inspection device
JP5874417B2 (en) Image sensor
JP2019016624A (en) Photo interrupter and proximity sensor including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7062362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150