JP2018114534A - Hub and manufacturing method thereof - Google Patents

Hub and manufacturing method thereof Download PDF

Info

Publication number
JP2018114534A
JP2018114534A JP2017006910A JP2017006910A JP2018114534A JP 2018114534 A JP2018114534 A JP 2018114534A JP 2017006910 A JP2017006910 A JP 2017006910A JP 2017006910 A JP2017006910 A JP 2017006910A JP 2018114534 A JP2018114534 A JP 2018114534A
Authority
JP
Japan
Prior art keywords
boss
hub
axial direction
wall
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017006910A
Other languages
Japanese (ja)
Other versions
JP6750513B2 (en
Inventor
隆一 西村
Ryuichi Nishimura
隆一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017006910A priority Critical patent/JP6750513B2/en
Publication of JP2018114534A publication Critical patent/JP2018114534A/en
Application granted granted Critical
Publication of JP6750513B2 publication Critical patent/JP6750513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To manufacture by cold forging unnecessary in post-treatment after molding, excellent in a material yield and shape accuracy, without causing reduction in fatigue strength by cutting of a flow line on a surface of meeting parts 14 and 15 between a flange 12 and bosses 8 and 13, while realizing a low processing load in a large-sized hub 7.SOLUTION: A hub 7 is integrally provided with a flange 12, a first boss 8 and a second boss 13. In a cross section including an axial direction, inclination angles θ, θformed by respective outer walls 8b and 13b of the first and second bosses 8 and 13 and the axial direction are a critical angle or more expressed by 200×arctan[H/{R×(1-cos(arcsin(H/R)))}]/π[deg.]. A diameter of the flange 12 is 1.5 times or more and 70 mm or more of a diameter of the outer walls 8b and 13b of the boss large in a diameter among the first boss 8 and the second boss 13. H: a height [mm] of the boss large in a diameter among the first boss 8 and the second boss 13, R: a distance [mm] of an outer wall to the product center of the boss large in a diameter among the first boss 8 and the second boss 13SELECTED DRAWING: Figure 1

Description

本発明は、ハブおよびその製造方法に関し、具体的には、自動車や建設機械等の回転部品に用いられるハブおよびその製造方法に関する。   The present invention relates to a hub and a method for manufacturing the hub, and more specifically to a hub used for a rotating part such as an automobile or a construction machine and a method for manufacturing the hub.

ハブは、一般的に、円形または放射状の回転部品における回転軸付近に設けられる中空筒状の部品であり、その内部に、軸受とともに回転軸が貫通して配置される。ハブは、略略軸対称の形状を有し、軸方向の一部に軸径方向へ張り出したフランジと、フランジの双方または一方の表面から軸方向へ突き出たボスとを備える。ハブとしては、例えば、回転する自動車ホイールを支持するホイールハブや、自動車の常時噛み合いマニュアルトランスミッションに組み込まれるクラッチハブ等が知られる。   The hub is generally a hollow cylindrical part provided in the vicinity of a rotation shaft in a circular or radial rotation component, and the rotation shaft is disposed therethrough along with a bearing. The hub has a substantially substantially axisymmetric shape, and includes a flange projecting in a part of the axial direction in the axial radial direction and a boss projecting in the axial direction from both or one surface of the flange. As the hub, for example, a wheel hub that supports a rotating automobile wheel, a clutch hub that is incorporated in a constantly meshing manual transmission of an automobile, and the like are known.

これまで、ホイールハブやクラッチハブといった比較的大型(フランジ径70〜180mm)のハブは、熱間鍛造により製造されてきた。すなわち、C含有量が0.5質量%程度の素材である丸鋼を所定寸法に切断し、1200℃程度の加工温度に加熱し、熱間鍛造により、フランジおよびボスを有する所定の形状に成形し、切削加工やショットブラスト処理等の後処理を行って表面のスケールを除去するとともに形状精度を高めた後に、高周波焼入れして硬化させることにより、製造されてきた。   So far, relatively large hubs (flange diameter 70 to 180 mm) such as wheel hubs and clutch hubs have been manufactured by hot forging. That is, round steel, which is a material having a C content of about 0.5% by mass, is cut into a predetermined size, heated to a processing temperature of about 1200 ° C., and formed into a predetermined shape having a flange and a boss by hot forging. However, it has been manufactured by performing post-processing such as cutting or shot blasting to remove surface scale and improving shape accuracy, and then induction hardening and curing.

しかし、熱間鍛造によりハブを製造すると、成形後にスケール除去や形状精度仕上げ等のための後処理を行う必要があるため、製造コストの上昇は否めないばかりか、フランジおよびボスの会合部の表面における鍛流線の一部が後処理により不可避的に切断されるため、この会合部の疲労強度の低下が避けられない。   However, when hubs are manufactured by hot forging, post-processing for scale removal, shape accuracy finishing, etc. is necessary after molding, which increases the manufacturing cost. Since a part of the forging line is inevitably cut by post-processing, a decrease in the fatigue strength of this meeting part is inevitable.

一方、大型のハブを、材料歩留まりや形状精度に優れる冷間鍛造により製造しようとすると、フランジを張り出す成形において極めて高い加工荷重が必要になる。このため、大規模で高価な鍛造加工設備を用いらざるを得ないために設備費が著しく嵩み、現実には実施できない。したがって、通常の冷間鍛造により大型のハブを製造することは難しい。   On the other hand, if a large hub is to be manufactured by cold forging which is excellent in material yield and shape accuracy, a very high processing load is required in the molding for extending the flange. For this reason, since a large-scale and expensive forging processing facility must be used, the facility cost is remarkably increased and cannot be implemented in practice. Therefore, it is difficult to manufacture a large hub by ordinary cold forging.

一方、通常の冷間鍛造に替えて、冷間回転鍛造により製品の一部を逐次加工することにより加工荷重を低減する発明がこれまでにも知られている。   On the other hand, instead of ordinary cold forging, there has been known an invention that reduces the processing load by sequentially processing a part of a product by cold rotary forging.

例えば、特許文献1には、展延性を有する金属からなり、軸の片端部にフランジを有するホイールハブを、フランジと接触する金型と被加工材との摩擦係数μを0.10以上として、回転鍛造により逐次冷間加工することにより、押し込み量を小さくして加工荷重を抑制し、これにより、金型の長寿命化および回転鍛造機の小型化を実現しながら、局所変形の発生を抑制して従来よりも拡径比(回転鍛造後の拡径部分の直径/回転鍛造前の素材直径)を安定的に増大させる発明が開示されている。   For example, in Patent Document 1, a wheel hub made of a metal having a malleability and having a flange at one end of a shaft, a friction coefficient μ between a mold contacting a flange and a workpiece is set to 0.10 or more, Sequential cold working by rotary forging reduces the push-in amount and suppresses the processing load, thereby suppressing the occurrence of local deformation while extending the life of the mold and reducing the size of the rotary forging machine. Thus, an invention has been disclosed in which the diameter expansion ratio (diameter of the expanded portion after rotational forging / material diameter before rotational forging) is stably increased as compared with the prior art.

特許文献2には、上下の回転金型の位相ずれを抑制する回転鍛造加工装置が開示されている。   Patent Document 2 discloses a rotary forging device that suppresses a phase shift between upper and lower rotary molds.

さらに、非特許文献1には、回転鍛造の短所として、回転鍛造による材料の変形様式は主として素材の軸方向の圧縮変形であるために、製造可能な製品形状が限定されることが指摘されている。   Furthermore, Non-Patent Document 1 points out that as a disadvantage of rotary forging, the deformation mode of the material by rotary forging is mainly compressive deformation in the axial direction of the material, so that the shape of products that can be manufactured is limited. Yes.

特開2016−159337号公報Japanese Patent Laid-Open No. 2006-159337 特開平2−30350号公報JP-A-2-30350

日本塑性加工学会編,塑性加工技術シリーズ「回転加工−転造とスピニング−」P.100,コロナ社発行,1990Edited by the Japan Society for Technology of Plasticity, “Plastic Processing Technology Series“ Rotating Machining-Rolling and Spinning ”” p. 100, issued by Corona, 1990

特許文献1により開示された発明によれば、確かに、通常の冷間鍛造よりも押し込み量を小さくすることにより加工荷重を小さくすることは可能であるものの、加工荷重の低減の程度は、大型のハブを冷間鍛造するには十分ではなく、加工荷重のいっそうの抑制が望まれる。   According to the invention disclosed in Patent Document 1, it is possible to reduce the processing load by reducing the indentation amount as compared with normal cold forging, but the degree of reduction of the processing load is large. It is not sufficient for cold forging the hub of this type, and further suppression of the processing load is desired.

特許文献2には、冷間回転鍛造における加工荷重を低減する手法は開示されていない。   Patent Document 2 does not disclose a technique for reducing a processing load in cold rotary forging.

さらに、非特許文献1には、製品形状が限定されることは開示されるものの、具体的な形状の制約やそれらの解決手段は何も開示されていない。   Further, Non-Patent Document 1 discloses that the shape of the product is limited, but does not disclose any specific shape restrictions or solving means thereof.

冷間回転鍛造や冷間揺動鍛造により上述の大型のハブを実際に成形することは、これまで行われていない。この理由は、ハブのボスを冷間回転鍛造や冷間揺動鍛造によって成形すると、成形性が不足して素材が割れたり、要求される形状精度を得られないため、現実には困難であると考えられてきたためである。   The above-described large hub has not been actually formed by cold rotary forging or cold swing forging. This is because it is difficult in practice to form the hub boss by cold rotary forging or cold swing forging because the formability is insufficient and the material is cracked or the required shape accuracy cannot be obtained. This is because it has been considered.

本発明は、従来の技術が有するこのような課題に鑑みてなされたものであり、ホイールハブやクラッチハブといった大型のハブを、低加工荷重化を実現しながら、フランジとボスとの会合部の表面における鍛流線の切断による疲労強度の低下を生じることなく、冷間鍛造により製造する技術を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. A large-sized hub such as a wheel hub or a clutch hub can be formed at a meeting portion between a flange and a boss while realizing a low processing load. It aims at providing the technique manufactured by cold forging, without producing the fall of the fatigue strength by the cutting | disconnection of the forging line in the surface.

本発明は、以下に列記の通りである。   The present invention is listed below.

(1)軸方向の一部に該軸方向と略直交する方向へ張り出して設けられる中空のフランジと、該フランジの一方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第1のボスと、前記フランジの他方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第2のボスとを前記軸方向へ一体に備える金属製の冷間回転鍛造品または冷間揺動鍛造品であるハブであって、
前記軸方向を含む断面において、前記第1のボスの内側へ向けて傾斜する該第1のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、下記(1)式により表される臨界角度以上であり、
前記断面において、前記第2のボスの内側へ向けて傾斜する該第2のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、前記臨界角度未満であり、
前記フランジの直径は、前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁の直径の1.5倍以上であり、かつ70mm以上、好ましくは70〜180mmである、ハブ。
(1) A hollow cylindrical body having a hollow flange provided in a part of the axial direction so as to project in a direction substantially orthogonal to the axial direction, and an outer wall projecting in the axial direction from one surface of the flange. A metal cold rotation integrally including a first boss and a second boss which is a hollow cylindrical body having an outer wall protruding in the axial direction from the other surface of the flange in the axial direction A hub which is a forged product or a cold swing forged product,
In a cross section including the axial direction, an inclination angle that is an inferior angle formed by the outer wall of the first boss and the axial direction that is inclined toward the inside of the first boss is expressed by the following equation (1). Is greater than the critical angle
In the cross section, an inclination angle that is an inferior angle formed by the outer wall of the second boss inclined toward the inside of the second boss and the axial direction is less than the critical angle,
The hub has a diameter of 1.5 or more times a diameter of an outer wall of a boss having a larger diameter among the first boss and the second boss, and 70 mm or more, preferably 70 to 180 mm. .

臨界角度[deg.]=200×arctan[H/{R×(1-cos(arcsin(H/R)))}]/π・・・(1)
(1)式において、
H:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの高さ[mm]
R:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁〜製品中心の距離[mm]
である。
Critical angle [deg.] = 200 × arctan [H / {R × (1-cos (arcsin (H / R)))}] / π (1)
In the formula (1),
H: Height of a boss having a large diameter among the first boss and the second boss [mm]
R: Distance from the outer wall of the boss having a large diameter to the center of the product [mm] among the first boss and the second boss
It is.

(2)前記フランジと前記第1のボスとの会合部の表面における鍛流線が連続するとともに、前記フランジと前記第2のボスとの会合部の表面における鍛流線が連続する、1項に記載のハブ。   (2) The forging stream line on the surface of the meeting part between the flange and the first boss is continuous, and the forging line on the surface of the meeting part between the flange and the second boss is continued. Hub described in.

(3)金属製の素材に前方押出しによる冷間鍛造を行うことにより前記第1ボスを成形した後に、冷間回転鍛造または冷間揺動鍛造を行うことにより前記フランジおよび前記第2のボスを成形する、1または2項に記載のハブの製造方法。   (3) After forming the first boss by performing cold forging by forward extrusion on a metal material, the flange and the second boss are formed by performing cold rotary forging or cold swing forging. The manufacturing method of the hub according to 1 or 2, wherein the forming is performed.

(4)軸方向の一部に該軸方向と略直交する方向へ張り出して設けられる中空のフランジと、該フランジの一方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第1のボスと、前記フランジの他方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第2のボスとを前記軸方向へ一体に備える金属製の冷間回転鍛造品または冷間揺動鍛造品であるハブであって、
前記軸方向を含む断面において、前記第1のボスの内側へ向けて傾斜する該第1のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、下記(1)式により表される臨界角度以上であり、
前記断面において、前記第2のボスの内側へ向けて傾斜する該第2のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、下記(1)式により表される臨界角度以上であり、
前記フランジの直径は、前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁の直径の1.5倍以上であり、かつ70mm以上、好ましくは70〜180mmである、ハブ。
(4) A hollow cylindrical body having a hollow flange provided in a part of the axial direction so as to project in a direction substantially orthogonal to the axial direction, and an outer wall projecting in the axial direction from one surface of the flange. A metal cold rotation integrally including a first boss and a second boss which is a hollow cylindrical body having an outer wall protruding in the axial direction from the other surface of the flange in the axial direction A hub which is a forged product or a cold swing forged product,
In a cross section including the axial direction, an inclination angle that is an inferior angle formed by the outer wall of the first boss and the axial direction that is inclined toward the inside of the first boss is expressed by the following equation (1). Is greater than the critical angle
In the cross section, an inclination angle that is an inferior angle formed by the outer wall of the second boss and the axial direction inclined toward the inside of the second boss is a critical angle represented by the following equation (1): That's it,
The hub has a diameter of 1.5 or more times a diameter of an outer wall of a boss having a larger diameter among the first boss and the second boss, and 70 mm or more, preferably 70 to 180 mm. .

臨界角度[deg.]=200×arctan[H/{R×(1-cos(arcsin(H/R)))}]/π・・・(1)
(1)式において、
H:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの高さ[mm]
R:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁〜製品中心の距離[mm]
である。
Critical angle [deg.] = 200 × arctan [H / {R × (1-cos (arcsin (H / R)))}] / π (1)
In the formula (1),
H: Height of a boss having a large diameter among the first boss and the second boss [mm]
R: Distance from the outer wall of the boss having a large diameter to the center of the product [mm] among the first boss and the second boss
It is.

(5)前記フランジと前記第1のボスとの会合部の表面における鍛流線が連続するとともに、前記フランジと前記第2のボスとの会合部の表面における鍛流線が連続する、4項に記載のハブ。   (5) The forged streamline on the surface of the meeting portion between the flange and the first boss is continuous, and the forged streamline on the surface of the meeting portion between the flange and the second boss is continued. Hub described in.

(6)金属製の素材に前方押出しによる冷間鍛造を行うことにより前記第2ボスを有する第1の中間成形品を成形する事前加工と、
前記第1の中間成形品に冷間回転鍛造または冷間揺動鍛造を行って、前記フランジと、前記軸方向を含む断面において、前記第1のボスに成形される部分の内側へ向けて傾斜する該部分の外壁と前記軸方向とがなす劣角である傾斜角度が下記(1)式により表される臨界角度未満である、前記第1のボスに成形される部分とを備える第2の中間成形品を成形する第1の加工と、
パンチ金型により前方押出しによる冷間鍛造を行って、前記第2の中間成形品の前記第1のボスに成形される部分を押圧することによって、前記第1のボスに成形される部分を外側に曲げ倒す口拡げ加工を行う第2の加工を含む、4または5項に記載のハブの製造方法。
(6) Pre-processing for forming a first intermediate formed product having the second boss by performing cold forging by forward extrusion on a metal material;
Cold rotating forging or cold swing forging is performed on the first intermediate molded product, and the flange and the cross section including the axial direction are inclined toward the inside of the portion formed on the first boss. A second portion provided with a portion formed on the first boss, wherein an inclination angle which is an inferior angle formed by the outer wall of the portion and the axial direction is less than a critical angle represented by the following equation (1): A first process for forming an intermediate molded product;
Cold forging by forward extrusion is performed by a punch die, and a portion formed on the first boss of the second intermediate molded product is pressed, thereby causing the portion formed on the first boss to be outside. 6. The method for manufacturing a hub according to 4 or 5, including a second process of performing a widening process of bending and bending.

(7)前記第2の加工により、前記第2の中間成形品の前記第1のボスに成形される部分の外壁の前記傾斜角度を65°以上とする、6項に記載のハブの製造方法。   (7) The manufacturing method of the hub according to item 6, wherein the inclination angle of the outer wall of the portion formed on the first boss of the second intermediate molded product by the second processing is 65 ° or more. .

すなわち、第1のボスに成形される部分の外壁の前記傾斜角度と、ハブの第1のボスの外壁の前記傾斜角度との差を25°以下とする。   That is, the difference between the inclination angle of the outer wall of the portion formed on the first boss and the inclination angle of the outer wall of the first boss of the hub is set to 25 ° or less.

(8)前記第2の加工において、前記金型により前記第2の中間成形品の前記第1のボスに成形される部分押圧する前に、前記第1のボスに成形される部分の外壁の外側に、前記ハブの前記第1のボスの外面形状に一致する内面形状を有する金型を配置する、6または7項に記載のハブの製造方法。   (8) In the second processing, before the partial pressing of the second intermediate molded product to be molded to the first boss by the mold, the outer wall of the portion molded to the first boss is The hub manufacturing method according to claim 6 or 7, wherein a mold having an inner surface shape that coincides with an outer surface shape of the first boss of the hub is disposed outside.

本発明により、ホイールハブやクラッチハブといった直径が70mm以上の大型のハブを、逐次成形(冷間回転鍛造または冷間揺動鍛造)を活用することにより、低加工荷重化を実現しながら、冷間鍛造により製造することができる。   According to the present invention, a large hub having a diameter of 70 mm or more, such as a wheel hub or a clutch hub, is utilized by using sequential molding (cold rotary forging or cold swing forging) to achieve a low work load while cooling. It can be manufactured by hot forging.

このため、本発明によれば、成形後の後処理が不要であるために大型のハブのフランジおよびボスの会合部の表面における鍛流線の切断による疲労強度の低下を防ぎながら、大型のハブを良好な形状精度で高い材料歩留まりにより成形できるとともに、設備投資額を抑制でき低コスト化を図ることができる。   For this reason, according to the present invention, since no post-processing after molding is required, the large hub is prevented while preventing a decrease in fatigue strength due to the cutting of the streamline at the surface of the large hub flange and the boss. Can be molded with good shape accuracy and a high material yield, and the amount of capital investment can be suppressed, and the cost can be reduced.

図1(a)は、本発明の事前加工で用いる鍛造を模式的に示す説明図であり、図1(b)は、本発明の第1の加工で用いる回転鍛造を模式的に示す説明図であり、図1(c)は、本発明の第2の加工で用いる鍛造を模式的に示す説明図である。Fig.1 (a) is explanatory drawing which shows typically the forging used by the prior process of this invention, FIG.1 (b) is explanatory drawing which shows typically the rotary forging used by the 1st process of this invention. FIG.1 (c) is explanatory drawing which shows typically the forging used by the 2nd process of this invention. 図2(a)〜図2(e)は、本発明の第1の加工で用いる揺動鍛造を模式的かつ経時的に示す説明図である。FIG. 2A to FIG. 2E are explanatory views schematically and chronologically showing the swing forging used in the first processing of the present invention. 図3は、回転鍛造時の素材の変形状況を示す説明図である。FIG. 3 is an explanatory view showing a deformation state of a material at the time of rotary forging. 図4(a)は、本発明に係るハブを示す断面図であり、図4(b)は、図4(a)のA部を拡大して示す説明図であり、図4(c)は、熱間鍛造により製造された従来のハブにおける前記A部に相当する部位を拡大して示す説明図である。4 (a) is a cross-sectional view showing a hub according to the present invention, FIG. 4 (b) is an explanatory view showing an enlarged portion A of FIG. 4 (a), and FIG. It is explanatory drawing which expands and shows the site | part corresponded to the said A part in the conventional hub manufactured by the hot forging.

添付図面を参照しながら本発明を説明する。   The present invention will be described with reference to the accompanying drawings.

本発明では、上述した大型のハブの冷間鍛造に、部分的に逐次に加工を行う逐次加工、具体的には回転鍛造または揺動鍛造を適用することにより、加工荷重を低減しながら、材料歩留まりや形状精度に優れる冷間鍛造化を実現する。以下、本発明に係るハブおよびその製造方法を順次説明する。
1.本発明に係るハブ7
図1(a)は、本発明の事前加工で用いる鍛造を模式的に示す説明図であり、図1(b)は、本発明の第1の加工で用いる回転鍛造を模式的に示す説明図であり、図1(c)は、本発明の第2の加工で用いる鍛造を模式的に示す説明図である。
In the present invention, the above-described cold forging of the large hub is applied with sequential processing that performs partial sequential processing, specifically, rotary forging or swing forging, thereby reducing the processing load and Realize cold forging with excellent yield and shape accuracy. Hereinafter, the hub and the manufacturing method thereof according to the present invention will be sequentially described.
1. Hub 7 according to the present invention
Fig.1 (a) is explanatory drawing which shows typically the forging used by the prior process of this invention, FIG.1 (b) is explanatory drawing which shows typically the rotary forging used by the 1st process of this invention. FIG.1 (c) is explanatory drawing which shows typically the forging used by the 2nd process of this invention.

図2(a)〜図2(e)は、本発明の第1の加工で用いる揺動鍛造を模式的かつ経時的に示す説明図である。図3は、回転鍛造時の素材の変形状況を示す説明図である。   FIG. 2A to FIG. 2E are explanatory views schematically and chronologically showing the swing forging used in the first processing of the present invention. FIG. 3 is an explanatory view showing a deformation state of a material at the time of rotary forging.

さらに、図4(a)は、本発明に係るハブ7を示す断面図であり、図4(b)は、図4(a)のA部を拡大して示す説明図であり、図4(c)は、熱間鍛造により製造された従来のハブ7における前記A部に相当する部位を拡大して示す説明図である。   Further, FIG. 4A is a cross-sectional view showing the hub 7 according to the present invention, and FIG. 4B is an explanatory view showing an enlarged portion A of FIG. 4A. c) It is explanatory drawing which expands and shows the site | part corresponded to the said A part in the conventional hub 7 manufactured by the hot forging.

図1(c)および図4(a)に示すように、ハブ7は、フランジ12と、第1のボス8と、第2のボス13とを軸方向(図1(c)における一点鎖線が延びる方向)へ一体に備える。ハブ7は、金属製(例えば鋼製やアルミニウム合金製)の冷間回転鍛造品または冷間揺動鍛造品である。   As shown in FIGS. 1 (c) and 4 (a), the hub 7 has a flange 12, a first boss 8 and a second boss 13 in the axial direction (the one-dot chain line in FIG. (In the extending direction). The hub 7 is a cold rotating forged product or a cold swing forged product made of metal (for example, steel or aluminum alloy).

中空のフランジ12は、軸方向の一部に軸方向と直交する方向へ張り出して設けられる。第1のボス8は、フランジ12の一方の表面12aから軸方向へ向けて突出する内壁8aおよび外壁8bを有する。第1のボス8は、中空かつ円柱状に設けられる。   The hollow flange 12 is provided so as to protrude in a direction orthogonal to the axial direction in a part of the axial direction. The first boss 8 has an inner wall 8 a and an outer wall 8 b that protrude in the axial direction from one surface 12 a of the flange 12. The first boss 8 is provided in a hollow and cylindrical shape.

さらに、第2のボス13は、フランジ12の他方の表面12bから軸方向へ向けて突出する内壁13aおよび外壁13bを有する。第2のボス13は、中空かつ円柱状に設けられる。   Further, the second boss 13 has an inner wall 13 a and an outer wall 13 b that protrude in the axial direction from the other surface 12 b of the flange 12. The second boss 13 is provided in a hollow and cylindrical shape.

本発明は、形状が異なる二種類のハブ7を提供するので、これらを順次説明する。   Since the present invention provides two types of hubs 7 having different shapes, these will be described sequentially.

(1−1)第1のハブ7
図1(b)に示すように、軸方向を含む断面において、第1のボス8の内側へ向けて傾斜する第1のボス8の外壁8bと軸方向とがなす劣角である傾斜角度θは、下記(1)式により表される臨界角度以上である。
(1-1) First hub 7
As shown in FIG. 1B, in the cross section including the axial direction, an inclination angle θ that is an inferior angle formed by the outer wall 8b of the first boss 8 that inclines toward the inside of the first boss 8 and the axial direction. 1 is not less than the critical angle represented by the following formula (1).

また、前記断面において、第2のボス13の内側へ向けて傾斜する第2のボス13の外壁13bと軸方向とがなす劣角である傾斜角度θは、臨界角度未満である。 Further, in the cross section, the inclined angle theta 2 is a minor angle to the outer wall 13b and the axial direction forms a second boss 13 which is inclined towards the inside of the second boss 13 is less than the critical angle.

さらに、フランジ12の直径は、第1のボス8および第2のボス13のうちで直径が大きいボス(図1,4に示すハブ7では第1のボス8)の外壁8bの直径の1.5倍以上であり、かつ70mm以上、好ましくは70〜180mmである。   Further, the diameter of the flange 12 is set to 1... Of the diameter of the outer wall 8b of the boss having the larger diameter among the first boss 8 and the second boss 13 (the first boss 8 in the hub 7 shown in FIGS. 1 and 4). 5 times or more and 70 mm or more, preferably 70 to 180 mm.

臨界角度[deg.]=200×arctan[H/{R×(1-cos(arcsin(H/R)))}]/π・・・(1)
(1)式において、Hは、第1のボス8および第2のボス13のうちで直径が大きいボスの高さ[mm]であり、Rは、第1のボス8および第2のボス13のうちで直径が大きいボスの外壁〜製品中心の距離[mm]である。
Critical angle [deg.] = 200 × arctan [H / {R × (1-cos (arcsin (H / R)))}] / π (1)
In the formula (1), H is the height [mm] of the boss having a large diameter among the first boss 8 and the second boss 13, and R is the first boss 8 and the second boss 13. The distance from the outer wall of the boss having a large diameter to the center of the product [mm].

(1−2)第2のハブ7
軸方向を含む断面において、第1のボス8,13の内側へ向けて傾斜する第1のボス8,13の外壁8b,13bと軸方向とがなす劣角である傾斜角度θ,θは、いずれも、上記臨界角度以上である。
(1-2) Second hub 7
In a cross section including the axial direction, inclination angles θ 1 and θ 2 that are inferior angles formed between the outer walls 8b and 13b of the first bosses 8 and 13 inclined toward the inside of the first bosses 8 and 13 and the axial direction. Are both above the critical angle.

また、フランジ12の直径は、第1のボス8および第2のボス13のうちで直径が大きいボスの外壁8bの直径の1.5倍以上であり、かつ70mm以上、好ましくは70〜180mmである。   The diameter of the flange 12 is 1.5 times or more the diameter of the outer wall 8b of the boss having the larger diameter among the first boss 8 and the second boss 13, and is 70 mm or more, preferably 70 to 180 mm. is there.

さらに、第1,2のハブ7は、いずれも、後述するように、冷間回転鍛造または冷間揺動鍛造により製造されるため、成形後にスケール除去や形状精度仕上げ等のための後処理(切削加工やショットブラスト処理等)を行う必要がない。   Furthermore, since the first and second hubs 7 are both manufactured by cold rotary forging or cold swing forging as will be described later, post-processing (such as scale removal and shape accuracy finishing after molding). There is no need to perform cutting or shot blasting.

このため、第1,2のハブ7は、いずれも、フランジ12と第1のボス8との会合部14の表面における鍛流線16が連続するとともに、フランジ12と第2のボス13との会合部15の表面における鍛流線(図示しない)が連続する。したがって、第1,2のハブ7では、いずれも、会合部14,15の表面における鍛流線16の切断による疲労強度の低下が防がれる。   For this reason, in both the first and second hubs 7, the forging lines 16 on the surface of the meeting portion 14 between the flange 12 and the first boss 8 are continuous, and the flange 12 and the second boss 13 are connected to each other. A forge line (not shown) on the surface of the meeting part 15 continues. Therefore, in both the first and second hubs 7, a decrease in fatigue strength due to the cutting of the forging lines 16 on the surfaces of the meeting portions 14 and 15 is prevented.

これに対し、熱間鍛造により製造された従来のハブでは、図4(c)に示すように、会合部14,15の表面における鍛流線17が成形後の後処理により切断されており、疲労強度の低下は免れない。

2.本発明に係る製造方法
図1(a)に示すように、本発明の事前加工では、上型1および下型2を用いて円柱素材3に前方押出しによる冷間鍛造を行うことにより第2ボス13を有する第1の中間成形品4を成形する。
On the other hand, in the conventional hub manufactured by hot forging, as shown in FIG. 4 (c), the forged lines 17 on the surfaces of the meeting portions 14 and 15 are cut by post-processing after molding, A decrease in fatigue strength is inevitable.

2. Production Method According to the Present Invention As shown in FIG. 1 (a), in the pre-processing of the present invention, the second boss is formed by performing cold forging by forward extrusion on the cylindrical material 3 using the upper mold 1 and the lower mold 2. First intermediate molded product 4 having 13 is molded.

図1(b)に示すように、本発明の第1の加工(回転鍛造)は、上型5および下型6がともに回転しながら、第1の中間成形品4を加工して第2の中間成形品18を成形する回転鍛造プロセスである。   As shown in FIG. 1B, in the first processing (rotational forging) of the present invention, the first intermediate molded product 4 is processed while the upper die 5 and the lower die 6 are rotated, and the second processing is performed. This is a rotary forging process for forming the intermediate molded product 18.

下型6は、回転のみの動作を行い、下型6に支持される第1の中間成形品4は、下型6とともに回転する。上型5は、鉛直線に対して所定角度θ傾斜して回転しながら、下型6へ向けて下降する動作を行う。 The lower mold 6 performs only rotation, and the first intermediate molded product 4 supported by the lower mold 6 rotates together with the lower mold 6. The upper mold 5 is moved downward toward the lower mold 6 while rotating at a predetermined angle θ 3 with respect to the vertical line.

第1の加工により、第1の中間成形品4は、図3に示すように変形され、割れ不具合を生じることなく、第2の中間成形品18が製造される。   By the first processing, the first intermediate molded product 4 is deformed as shown in FIG. 3, and the second intermediate molded product 18 is manufactured without causing a crack defect.

図1(c)に示すように、本発明の第2の加工では、第2の中間成形品18を下型2に設置した後、最終の製品形状に合致する形状の外壁19aを有する金型(上型)19を、第2の中間成形品18における、第1のボス8に成形される部分18aの外壁の外側に、第2の中間成形品18のフランジ18bを押さえるように配置する。   As shown in FIG. 1 (c), in the second processing of the present invention, after the second intermediate molded product 18 is placed on the lower mold 2, a mold having an outer wall 19a having a shape that matches the final product shape. The (upper mold) 19 is arranged on the outer side of the outer wall of the portion 18a formed on the first boss 8 in the second intermediate molded product 18 so as to press the flange 18b of the second intermediate molded product 18.

その後、円錐台形状を有するパンチ金型20を下降させることにより、第2の中間成形品18における、第1のボス8に成形される部分18aの内壁を外側に口拡げる口拡げ加工を行う。このようにしてハブ7が製造される。   Thereafter, the punch die 20 having a truncated cone shape is lowered to perform a squeezing process for squeezing the inner wall of the portion 18a formed in the first boss 8 in the second intermediate molded product 18 outward. In this way, the hub 7 is manufactured.

以上の説明は、冷間回転鍛造により大型のハブ7を成形する場合を例にとったが、冷間回転鍛造ではなく、図2に示す冷間揺動鍛造であっても事情は同じである。すなわち、冷間回転鍛造では、図1(b)に示したように上型5は傾斜回転するとともに第1の中間成形品4は下型6とともに水平回転することによって、第1の中間成形品4に逐次加工を行う。   In the above description, the case where the large hub 7 is formed by cold rotary forging is taken as an example. However, the situation is the same even in the case of cold swing forging shown in FIG. 2 instead of cold rotary forging. . That is, in the cold rotary forging, as shown in FIG. 1B, the upper mold 5 rotates in an inclined manner and the first intermediate molded article 4 rotates horizontally with the lower mold 6 to thereby form the first intermediate molded article. 4 is sequentially processed.

一方、冷間揺動鍛造では、図2に示すように、上型21は回転軸を旋回させる揺動運動をしながら下降する。第1の中間成形品4は下型6とともに動かない。このようにして、第1の中間成形品4に逐次加工を行う。このため、回転鍛造および揺動鍛造ともに、素材が上型5,21および下型2から負荷される加工荷重は同じである。   On the other hand, in the cold swing forging, as shown in FIG. 2, the upper die 21 is lowered while performing a swinging motion for turning the rotating shaft. The first intermediate molded product 4 does not move with the lower mold 6. In this way, the first intermediate molded product 4 is sequentially processed. For this reason, the processing load on which the material is loaded from the upper molds 5, 21 and the lower mold 2 is the same for both rotary forging and swing forging.

大型のハブ7を冷間回転鍛造または冷間揺動鍛造により製造することにより、加工荷重は、通常の冷間鍛造の1/3〜1/10程度にまで大幅に低減される。   By manufacturing the large hub 7 by cold rotary forging or cold swing forging, the processing load is greatly reduced to about 1/3 to 1/10 of the normal cold forging.

しかし、本発明が製造対象とする大型のハブ7を、冷間回転鍛造または冷間揺動鍛造によって製造する場合、ハブ7の第1のボス8の形状によっては、加工の途中で、素材における第1のボス8に成形される部分4aの破断または顕著な形状精度不良を生じ、製造できない場合がある。   However, when the large hub 7 to be manufactured by the present invention is manufactured by cold rotary forging or cold swing forging, depending on the shape of the first boss 8 of the hub 7, In some cases, the portion 4a formed in the first boss 8 is broken or has a remarkable shape accuracy, and cannot be manufactured.

冷間回転鍛造または冷間揺動鍛造による加工領域10(上型5が第1の中間成形品4に接触して押圧する領域)とは反対側の非加工領域11(上型5が第1の中間成形品4から離れる領域)において、上型5により、第1の中間成形品4における第1のボス8に成形される部分4aの外壁を内側へ向けて曲げ倒す方向へ力が発生する。非加工領域11での上型5および第1の中間成形品4の接触の程度が激しい場合には、第1の中間成形品4の破断または顕著な形状精度不良が発生する。   The non-working region 11 (the upper die 5 is the first one) opposite to the working region 10 (the region where the upper die 5 contacts and presses the first intermediate molded product 4) by cold rotary forging or cold swing forging. In the region away from the intermediate molded product 4), the upper die 5 generates a force in a direction in which the outer wall of the portion 4a formed on the first boss 8 of the first intermediate molded product 4 is bent inward. . When the degree of contact between the upper mold 5 and the first intermediate molded product 4 in the non-working region 11 is severe, the first intermediate molded product 4 is broken or has a remarkable shape accuracy failure.

上述の第1の中間成形品4の破断または顕著な形状精度不良の原因になる、製品であるハブ7の第1のボス8の外壁8bの形状の要件は、上記(1)式により示される。すなわち、(1)式により規定される臨界角度よりも、第1のボス8の外壁8bの形状が緩やかな形状、すなわち第1のボス8の外壁8bの傾斜角度θが臨界角度よりも小さい場合には、冷間回転鍛造である第1の加工による形状精度不良を回避できる。 The requirement of the shape of the outer wall 8b of the first boss 8 of the hub 7 that is the product, which causes the above-described first intermediate molded product 4 to break or the remarkable poor shape accuracy, is expressed by the above equation (1). . That is, (1) is than the critical angle is, less gentle shape shape of the outer wall 8b of the first boss 8, i.e. the inclined angle theta 1 is critical angle of the outer wall 8b of the first boss 8 defined by the formula In this case, it is possible to avoid a shape accuracy defect due to the first processing that is cold forging.

次に、(1)式の範囲外の形状、すなわち外壁8bの形状が急峻な第1のボス8は、回転鍛造によって加工できない。そこで、本発明では、素材4に前方押出しによる冷間鍛造を行う事前加工によって、第2ボスの13を有する第1の中間成形品4を成形する。   Next, the first boss 8 whose shape outside the range of the expression (1), that is, the shape of the outer wall 8b is steep, cannot be processed by rotary forging. Therefore, in the present invention, the first intermediate molded product 4 having the second boss 13 is formed by pre-processing for performing cold forging by forward extrusion on the material 4.

次に、回転鍛造である第1の加工によって加工可能な形状を有する第2の中間成形品18を成形する。   Next, the second intermediate molded product 18 having a shape that can be processed by the first processing that is rotary forging is formed.

最後に、第2の中間成形品18に、回転鍛造を必要としない、換言すると低加工荷重で済む曲げ加工である第2の加工を行うことによって、第2の中間成形品18を、第1のボス8の外壁8bが急峻な形状であるハブ7を成形する。   Finally, the second intermediate molded product 18 is subjected to the second process which is a bending process that does not require rotary forging, in other words, a low processing load is required. The hub 7 having a steep shape on the outer wall 8b of the boss 8 is formed.

略述すると、(1)式で表わされる外壁の形状を満足する形状を、冷間回転鍛造によって加工した(第1の加工)後に、第2の加工として口拡げ加工によって、第2の中間成形品18における、第1のボス8の根本部8cを曲げ加工することによって、急峻な外壁8bを有する第1のボス8の仕上げ加工を行う。   Briefly, after the shape satisfying the shape of the outer wall represented by the formula (1) is processed by cold rotary forging (first processing), the second intermediate forming is performed by squeezing as the second processing. By bending the root portion 8c of the first boss 8 in the product 18, the first boss 8 having the steep outer wall 8b is finished.

ハブ7のフランジ12の加工は、加工部位が広く、それに応じて大きな加工荷重が必要になる。これに対し、ハブ7の第1のボス8の根元部8cに対する第2の加工(通常の前方押出しによる冷間鍛造)は、主に根元部8cに対する曲げ加工(口拡げ加工)となる。このため、回転鍛造に頼らずとも加工荷重を小さく抑えることができる。   The processing of the flange 12 of the hub 7 requires a large processing load corresponding to a wide processing site. On the other hand, the 2nd process (cold forging by normal forward extrusion) with respect to the root part 8c of the 1st boss | hub 8 of the hub 7 mainly becomes a bending process (mouth expansion process) with respect to the root part 8c. For this reason, a processing load can be restrained small, without resorting to rotary forging.

さらに、ハブ7の第1のボス8の外壁8bの形状が(1)式で表わされる外壁の形状を満足する場合であっても、過度に緩やかな形状である場合、具体的には、ハブ7の第1のボス8の外壁8bの傾斜角度と、第2の中間成形品18における、第1のボス8に成形される部分18aの外壁の傾斜角度との差が25°よりも大きい場合には、第2の加工により、第1のボス8の外壁の形状を精度良く加工できないか、あるいは加工荷重が過大となり、加工できない。   Furthermore, even when the shape of the outer wall 8b of the first boss 8 of the hub 7 satisfies the shape of the outer wall represented by the expression (1), if the shape is excessively gentle, specifically, the hub 7 when the difference between the inclination angle of the outer wall 8b of the first boss 8 and the inclination angle of the outer wall of the portion 18a formed on the first boss 8 in the second intermediate molded product 18 is greater than 25 °. In the second processing, the shape of the outer wall of the first boss 8 cannot be processed with high precision, or the processing load becomes excessive, and the processing cannot be performed.

このため、本発明が対象とするハブ7は、(1)式で表わされる外壁8bの形状を満足する場合には、冷間回転鍛造または冷間揺動鍛造によって加工し、(1)式で表わされる外壁8bの形状を満足しない場合には、冷間回転鍛造または冷間揺動鍛造(第1の加工)によって、(1)式で表わされる外壁の形状を満足し、かつ、ハブ7の第1のボス8の外壁8bの傾斜角度と、第2の中間成形品18における、第1のボス8に成形される部分18aの外壁の角度との差が25°以内となる形状に加工した後、第2の加工によって、(1)式の範囲外の急峻な外壁8bを備える形状に加工することにより、所望の形状を有するハブ7を成形できる。   For this reason, the hub 7 to which the present invention is applied is processed by cold rotary forging or cold swing forging when the shape of the outer wall 8b represented by the expression (1) is satisfied, When the shape of the outer wall 8b represented is not satisfied, the shape of the outer wall represented by the expression (1) is satisfied by cold rotary forging or cold swing forging (first processing), and the hub 7 The difference between the inclination angle of the outer wall 8b of the first boss 8 and the angle of the outer wall of the portion 18a formed on the first boss 8 in the second intermediate molded product 18 was processed within 25 °. Thereafter, the hub 7 having a desired shape can be formed by processing into a shape including the steep outer wall 8b outside the range of the expression (1) by the second processing.

素材として、機械構造用炭素鋼S55C(C:0.52〜0.58質量%、Si:0.15〜0.35質量%、Mn:0.60〜0.90質量%、P:0.030質量%以下、S:0.035質量%以下)の球状化焼鈍材を用いた。   As a raw material, carbon steel for mechanical structure S55C (C: 0.52-0.58 mass%, Si: 0.15-0.35 mass%, Mn: 0.60-0.90 mass%, P: 0.00. A spheroidizing annealing material of 030 mass% or less, S: 0.035 mass% or less) was used.

図1(a)に示すように、この素材3に前方押出しによる冷間鍛造を行う事前加工によって、第2ボスの13を有する第1の中間成形品4を成形した。   As shown in FIG. 1 (a), a first intermediate molded product 4 having a second boss 13 was formed by pre-working the material 3 by cold forging by forward extrusion.

次に、図1(b)に示すように、第1の加工では、上型5および下型6を回転させながら、第1の中間成形品4を加工して第2の中間成形品18に成形する冷間回転鍛造プロセスとした。上型5の下降速度は0.4mm/secに設定し、上型5および下型6の回転速度は約50rpmに設定し、上型1の傾斜角度θは4°に設定した。 Next, as shown in FIG. 1B, in the first processing, the first intermediate molded product 4 is processed into the second intermediate molded product 18 while rotating the upper mold 5 and the lower mold 6. A cold rotary forging process for forming was adopted. The lowering speed of the upper mold 5 was set to 0.4 mm / sec, the rotation speeds of the upper mold 5 and the lower mold 6 were set to about 50 rpm, and the inclination angle θ 3 of the upper mold 1 was set to 4 °.

図1(c)に示すように、第2の加工では、第2の中間成形品18を下型6に設置した後、金型(上型)19を、第2の中間成形品18における、第1のボス8に成形される部分18aの外壁の外側に、フランジ12に成形される部分を押さえるように配置した。   As shown in FIG. 1 (c), in the second processing, after the second intermediate molded product 18 is installed in the lower mold 6, the mold (upper mold) 19 is replaced with the second intermediate molded product 18. The portion formed on the flange 12 is arranged outside the outer wall of the portion 18a formed on the first boss 8 so as to press the portion formed on the flange 12.

そして、パンチ金型20を下降させることにより、第2の中間成形品18に対して口拡げ加工を行って、第1のボス8の直径:35または40mm,第2のボス13の直径:30または40mm,フランジ12の直径が80mmのハブ7を製造した。   Then, by lowering the punch die 20, the second intermediate molded product 18 is squeezed, and the diameter of the first boss 8 is 35 or 40 mm, and the diameter of the second boss 13 is 30. Alternatively, the hub 7 having a diameter of 40 mm and a flange 12 of 80 mm was manufactured.

表1に、第1の加工および第2の加工における金型および部品形状を、実験結果とともに、まとめて示す。表1は、鋼材割れ,形状精度不具合の実験結果を示す。なお、表1における第1の加工の結果は実験により、第2の加工の結果はFEM解析による。   Table 1 summarizes the molds and component shapes in the first processing and the second processing together with the experimental results. Table 1 shows the experimental results of steel material cracking and shape accuracy defects. The results of the first processing in Table 1 are based on experiments, and the results of the second processing are based on FEM analysis.

Figure 2018114534
Figure 2018114534

表1における、第1の加工の結果の「×」は、成形途中で第1のボス8に成形される部分が割れたことを示す。また、第2の加工の結果の「×」は、外壁形状を急峻な角度に立ち上げた上で金型に沿った狙いの形状に精度良く加工するためには、過大な加工荷重が必要となるため、鍛造加工設備が高価になることを示す。   In Table 1, “x” as a result of the first processing indicates that a part formed on the first boss 8 is broken during the forming. In addition, “x” as a result of the second machining indicates that an excessive machining load is required in order to accurately machine the outer wall shape to a desired shape along the mold after raising the steep angle. Therefore, it shows that forging processing equipment becomes expensive.

表1に示す結果より、本発明によれば、ホイールハブやクラッチハブといったフランジ12の直径が70mm以上の大型のハブ7を、冷間回転鍛造または冷間揺動鍛造により、低加工荷重化を実現しながら、フランジ12と第1,2のボス8,13との会合部14,15の表面における鍛流線16の切断による疲労強度の低下を生じることなく、良好な形状精度で高い材料歩留まりにより成形できるとともに、設備投資額を抑制でき低コスト化を図ることができることが分かる。   From the results shown in Table 1, according to the present invention, a large hub 7 such as a wheel hub or a clutch hub having a diameter of the flange 12 of 70 mm or more can be reduced by cold forging or cold swing forging. While realizing, high material yield with good shape accuracy without causing deterioration of fatigue strength due to cutting of the forged wire 16 at the surface of the meeting portion 14, 15 between the flange 12 and the first and second bosses 8, 13. It can be seen that the cost can be reduced by reducing the capital investment amount.

1 上型
2 下型
3 円柱素材
4 第1の中間成形品
4a 第1のボスに成形される部分
5 上型
6 下型
7 ハブ
8 第1のボス
8a 内壁
8b 外壁
8c 根元部
10 加工領域
11 非加工領域
12 フランジ
12a,12b 表面
13 第2のボス
13a 内壁
13b 外壁
14,15 会合部
16,17 鍛流線
18 第2の中間成形品
18a ハブの第1のボスに成形される部分
18b フランジ
19 金型(上型)
19a 外壁
20 パンチ金型
21 上型
DESCRIPTION OF SYMBOLS 1 Upper mold | type 2 Lower mold | type 3 Cylindrical raw material 4 1st intermediate molded product 4a The part 5 shape | molded by the 1st boss | hub 5 Upper mold | type 6 Lower mold | type 7 Hub 8 1st boss | hub 8a Inner wall 8b Outer wall 8c Root part 10 Processing area 11 Non-processed region 12 Flange 12a, 12b Surface 13 Second boss 13a Inner wall 13b Outer wall 14, 15 Meeting portion 16, 17 Forging line 18 Second intermediate molded product 18a Portion 18b molded to first boss of hub 19 Mold (Upper mold)
19a outer wall 20 punch mold 21 upper mold

Claims (8)

軸方向の一部に該軸方向と略直交する方向へ張り出して設けられる中空のフランジと、該フランジの一方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第1のボスと、前記フランジの他方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第2のボスとを前記軸方向へ一体に備える金属製の冷間回転鍛造品または冷間揺動鍛造品であるハブであって、
前記軸方向を含む断面において、前記第1のボスの内側へ向けて傾斜する該第1のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、下記(1)式により表される臨界角度以上であり、
前記断面において、前記第2のボスの内側へ向けて傾斜する該第2のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、前記臨界角度未満であり、
前記フランジの直径は、前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁の直径の1.5倍以上であり、かつ70mm以上である、ハブ。
臨界角度[deg.]=200×arctan[H/{R×(1-cos(arcsin(H/R)))}]/π・・・(1)
(1)式において、
H:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの高さ[mm]
R:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁〜製品中心の距離[mm]
である。
A hollow cylindrical body having a hollow flange projecting in a direction substantially perpendicular to the axial direction in a part of the axial direction, and an outer wall protruding from one surface of the flange toward the axial direction. A cold rotating forging made of metal, which is integrally provided in the axial direction, and a second boss which is a hollow cylindrical body having an outer wall protruding in the axial direction from the other surface of the flange, or A hub that is a cold rocking forging,
In a cross section including the axial direction, an inclination angle that is an inferior angle formed by the outer wall of the first boss and the axial direction that is inclined toward the inside of the first boss is expressed by the following equation (1). Is greater than the critical angle
In the cross section, an inclination angle that is an inferior angle formed by the outer wall of the second boss inclined toward the inside of the second boss and the axial direction is less than the critical angle,
The hub has a diameter that is 1.5 times or more of an outer wall diameter of a boss having a larger diameter among the first boss and the second boss, and is 70 mm or more.
Critical angle [deg.] = 200 × arctan [H / {R × (1-cos (arcsin (H / R)))}] / π (1)
In the formula (1),
H: Height of a boss having a large diameter among the first boss and the second boss [mm]
R: Distance from the outer wall of the boss having a large diameter to the center of the product [mm] among the first boss and the second boss
It is.
前記フランジと前記第1のボスとの会合部の表面における鍛流線が連続するとともに、前記フランジと前記第2のボスとの会合部の表面における鍛流線が連続する、請求項1に記載のハブ。   The forged streamline at the surface of the meeting portion between the flange and the first boss is continuous, and the forged streamline at the surface of the meeting portion between the flange and the second boss is continuous. Hub. 金属製の素材に前方押出しによる冷間鍛造を行うことにより前記第1ボスを成形した後に、冷間回転鍛造または冷間揺動鍛造を行うことにより前記フランジおよび前記第2のボスを成形する、請求項1または2に記載のハブの製造方法。   After forming the first boss by performing cold forging by forward extrusion on a metal material, forming the flange and the second boss by performing cold rotary forging or cold swing forging, The manufacturing method of the hub according to claim 1 or 2. 軸方向の一部に該軸方向と略直交する方向へ張り出して設けられる中空のフランジと、該フランジの一方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第1のボスと、前記フランジの他方の表面から前記軸方向へ向けて突出する外壁を有する中空の円柱体である第2のボスとを前記軸方向へ一体に備える金属製の冷間回転鍛造品または冷間揺動鍛造品であるハブであって、
前記軸方向を含む断面において、前記第1のボスの内側へ向けて傾斜する該第1のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、下記(1)式により表される臨界角度以上であり、
前記断面において、前記第2のボスの内側へ向けて傾斜する該第2のボスの前記外壁と前記軸方向とがなす劣角である傾斜角度は、下記(1)式により表される臨界角度以上であり、
前記フランジの直径は、前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁の直径の1.5倍以上であり、かつ70mm以上である、ハブ。
臨界角度[deg.]=200×arctan[H/{R×(1-cos(arcsin(H/R)))}]/π・・・(1)
(1)式において、
H:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの高さ[mm]
R:前記第1のボスおよび前記第2のボスのうちで直径が大きいボスの外壁〜製品中心の距離[mm]
である。
A hollow cylindrical body having a hollow flange projecting in a direction substantially perpendicular to the axial direction in a part of the axial direction, and an outer wall protruding from one surface of the flange toward the axial direction. A cold rotating forging made of metal, which is integrally provided in the axial direction, and a second boss which is a hollow cylindrical body having an outer wall protruding in the axial direction from the other surface of the flange, or A hub that is a cold rocking forging,
In a cross section including the axial direction, an inclination angle that is an inferior angle formed by the outer wall of the first boss and the axial direction that is inclined toward the inside of the first boss is expressed by the following equation (1). Is greater than the critical angle
In the cross section, an inclination angle that is an inferior angle formed by the outer wall of the second boss and the axial direction inclined toward the inside of the second boss is a critical angle represented by the following equation (1): That's it,
The hub has a diameter that is 1.5 times or more of an outer wall diameter of a boss having a larger diameter among the first boss and the second boss, and is 70 mm or more.
Critical angle [deg.] = 200 × arctan [H / {R × (1-cos (arcsin (H / R)))}] / π (1)
In the formula (1),
H: Height of a boss having a large diameter among the first boss and the second boss [mm]
R: Distance from the outer wall of the boss having a large diameter to the center of the product [mm] among the first boss and the second boss
It is.
前記フランジと前記第1のボスとの会合部の表面における鍛流線が連続するとともに、前記フランジと前記第2のボスとの会合部の表面における鍛流線が連続する、請求項4に記載のハブ。   The forged streamline on the surface of the meeting part of the said flange and the said 1st boss | hub continues, and the forged streamline on the surface of the meeting part of the said flange and the said 2nd boss | hub continues. Hub. 金属製の素材に前方押出しによる冷間鍛造を行うことにより前記第2ボスを有する第1の中間成形品を成形する事前加工と、
前記第1の中間成形品に冷間回転鍛造または冷間揺動鍛造を行って、前記フランジと、前記軸方向を含む断面において、前記第1のボスに成形される部分の内側へ向けて傾斜する該部分の外壁と前記軸方向とがなす劣角である傾斜角度が下記(1)式により表される臨界角度未満である、前記第1のボスに成形される部分とを備える第2の中間成形品を成形する第1の加工と、
パンチ金型により前方押出しによる冷間鍛造を行って、前記第2の中間成形品の前記第1のボスに成形される部分を押圧することによって、前記第1のボスに成形される部分を外側に曲げ倒す口拡げ加工を行う第2の加工を含む、請求項4または5に記載のハブの製造方法。
Pre-processing to form a first intermediate molded product having the second boss by performing cold forging by forward extrusion on a metal material;
Cold rotating forging or cold swing forging is performed on the first intermediate molded product, and the flange and the cross section including the axial direction are inclined toward the inside of the portion formed on the first boss. A second portion provided with a portion formed on the first boss, wherein an inclination angle which is an inferior angle formed by the outer wall of the portion and the axial direction is less than a critical angle represented by the following equation (1): A first process for forming an intermediate molded product;
Cold forging by forward extrusion is performed by a punch die, and a portion formed on the first boss of the second intermediate molded product is pressed, thereby causing the portion formed on the first boss to be outside. The manufacturing method of the hub according to claim 4 or 5 including the 2nd processing which carries out mouth widening processing bent down.
前記第2の加工により、前記第2の中間成形品の前記第1のボスに成形される部分の外壁の前記傾斜角度を65°以上とする、請求項6に記載のハブの製造方法。   The hub manufacturing method according to claim 6, wherein the inclination angle of the outer wall of the portion formed on the first boss of the second intermediate molded product by the second processing is 65 ° or more. 前記第2の加工において、前記金型により前記第2の中間成形品の前記第1のボスに成形される部分押圧する前に、前記第1のボスに成形される部分の外壁の外側に、前記ハブの前記第1のボスの外面形状に一致する内面形状を有する金型を配置する、請求項6または7に記載のハブの製造方法。   In the second processing, before the partial pressing to the first boss of the second intermediate molded product by the mold, on the outside of the outer wall of the portion to be molded to the first boss, The hub manufacturing method according to claim 6 or 7, wherein a mold having an inner surface shape that matches an outer surface shape of the first boss of the hub is disposed.
JP2017006910A 2017-01-18 2017-01-18 Hub and manufacturing method thereof Active JP6750513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017006910A JP6750513B2 (en) 2017-01-18 2017-01-18 Hub and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017006910A JP6750513B2 (en) 2017-01-18 2017-01-18 Hub and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018114534A true JP2018114534A (en) 2018-07-26
JP6750513B2 JP6750513B2 (en) 2020-09-02

Family

ID=62984777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017006910A Active JP6750513B2 (en) 2017-01-18 2017-01-18 Hub and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6750513B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103099A (en) * 1976-02-25 1977-08-29 Toyota Motor Corp Forming method of clutch spline tooth part of speed change gear
JPS6182944A (en) * 1984-09-28 1986-04-26 Musashi Seimitsu Kogyo Kk Production of shaft component with large-sized flange
US5454248A (en) * 1994-05-02 1995-10-03 Rays Engineering Co., Ltd. Method of shaping a wheel
JPH10119503A (en) * 1996-10-18 1998-05-12 Sumitomo Metal Ind Ltd Wheel for railway rolling stock excellent in crack resistance and its manufacture
JPH11182641A (en) * 1997-12-22 1999-07-06 Fuji Univance Corp Slide pulley of belt type continuously variable transmission, and its manufacture
JP2006123890A (en) * 2004-10-01 2006-05-18 Jtekt Corp Rolling bearing device and its manufacturing method
US20140197677A1 (en) * 2013-01-11 2014-07-17 Aktiebolaget Skf Lightweight Hub Unit With integrated Bearing Rings And Process For Its Manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52103099A (en) * 1976-02-25 1977-08-29 Toyota Motor Corp Forming method of clutch spline tooth part of speed change gear
JPS6182944A (en) * 1984-09-28 1986-04-26 Musashi Seimitsu Kogyo Kk Production of shaft component with large-sized flange
US5454248A (en) * 1994-05-02 1995-10-03 Rays Engineering Co., Ltd. Method of shaping a wheel
JPH10119503A (en) * 1996-10-18 1998-05-12 Sumitomo Metal Ind Ltd Wheel for railway rolling stock excellent in crack resistance and its manufacture
JPH11182641A (en) * 1997-12-22 1999-07-06 Fuji Univance Corp Slide pulley of belt type continuously variable transmission, and its manufacture
JP2006123890A (en) * 2004-10-01 2006-05-18 Jtekt Corp Rolling bearing device and its manufacturing method
US20140197677A1 (en) * 2013-01-11 2014-07-17 Aktiebolaget Skf Lightweight Hub Unit With integrated Bearing Rings And Process For Its Manufacture

Also Published As

Publication number Publication date
JP6750513B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
CN109093048B (en) Large-scale machine brake type forging die and forging method
US7337647B2 (en) Gear and method and device for manufacturing the gear
JP4798674B1 (en) Rack bar and manufacturing method thereof
KR102007106B1 (en) Burring method
JP5062760B2 (en) Bolt manufacturing method, bolt manufacturing apparatus, and bolt manufacturing mold
KR20150088688A (en) Method of manufacturing gear with double teeth patterns involving forging and two stage cold extrusion process
JP2009293465A (en) Method for manufacturing hollow valve
JPWO2007026756A1 (en) Manufacturing method of annular member and annular member with legs
JP2010155252A (en) Method of manufacturing coupling component and device of manufacturing the same
JP2018114534A (en) Hub and manufacturing method thereof
JP6123917B2 (en) Manufacturing method of annular member
JP5879409B2 (en) Forging method of long shaft parts with flange
JP5461990B2 (en) Method for forming hollow member
JP5863270B2 (en) Method for manufacturing ring shaped material
CN107876672A (en) A kind of flanged ball valve end cap rolling ring manufacturing process
JP6083552B2 (en) Method of manufacturing bearing blanks by cold forging
JP2006000884A (en) Method and apparatus for producing forged product having flange parts at both end parts
KR101295006B1 (en) Method of Forming Drum Component of Automatic Transmission
JP2010260098A (en) Method of forging long axis component with flange
JP2012045611A (en) Method for processing formation of metallic component
JP4840238B2 (en) Manufacturing method of flanged member and work member used therefor
JP2016073987A (en) Device and method for manufacturing end-thickened steel pipe
JP6534908B2 (en) Peeling bar for forging
JP2016159337A (en) Rotary forging method, rotary forging mold and rotary forging component
JP2014066336A (en) Gear with flange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200727

R151 Written notification of patent or utility model registration

Ref document number: 6750513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151