JPH11182641A - Slide pulley of belt type continuously variable transmission, and its manufacture - Google Patents

Slide pulley of belt type continuously variable transmission, and its manufacture

Info

Publication number
JPH11182641A
JPH11182641A JP36647897A JP36647897A JPH11182641A JP H11182641 A JPH11182641 A JP H11182641A JP 36647897 A JP36647897 A JP 36647897A JP 36647897 A JP36647897 A JP 36647897A JP H11182641 A JPH11182641 A JP H11182641A
Authority
JP
Japan
Prior art keywords
pulley
shaft
cone
belt
shaft hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36647897A
Other languages
Japanese (ja)
Other versions
JP3211157B2 (en
Inventor
Tadashi Suzuki
正 鈴木
Shoji Yamada
昌二 山田
Shoichi Koyama
祥一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Univance Corp
Original Assignee
Fuji Univance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Univance Corp filed Critical Fuji Univance Corp
Priority to JP36647897A priority Critical patent/JP3211157B2/en
Publication of JPH11182641A publication Critical patent/JPH11182641A/en
Application granted granted Critical
Publication of JP3211157B2 publication Critical patent/JP3211157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the wear and damages of a cone surface by forming a large-diameter and conical intermediate pulley by making stock fiber flow spirally flow, and forming a shaft hole in an axial part of the intermediate pulley. SOLUTION: A lower die 17 is fitted to a center part of an upper surface of a movable base to be moved in the vertical direction. A boss part 6b of a primary formed produced is fitted to a fitting hole 17a of the lower die 17, an oscillating base 19 is oscillated in the prescribed direction, and the lower die 17 is moved upward through the movable base 16. An upper die indenter 20 fitted to the oscillating base 19 is moved in the tangential direction relative to the upper surface while being brought into contact with the upper surface of the primary formed product on the radius in a linearly manner, and an upper part of the primary formed product is plastically deformed into a large-diameter and conical shape while making its fiber flow spirally flow. Then, an axial part of an intermediate pulley 14 is punched with a press to form a shaft hole to be communicated with a preliminary shaft hole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ベルト式無段変速
機のスライドプーリー及びその製造方法に関するもので
ある。
The present invention relates to a slide pulley for a belt-type continuously variable transmission and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来は、図10に示すように、素材ファ
イバーフロー21aが軸方向に延在する円柱状の素材2
1を約750°C以上で加熱し、これを図11に示すよ
うに、鍛造機の上型22と下型23とにより軸方向に圧
縮、つまり熱間鍛造して大径かつコーン状の中間プーリ
ー24’を形成し、次いで図12に示すように、上記中
間プーリー24’の軸心部をパンチにより孔を明けて軸
孔25を形成した後、コーン部24a及びボス部24b
の表面を切削加工、及び軸孔25にスプライン溝等の加
工をして所定寸法のスライドプーリー24を形成するよ
うにしていた。
2. Description of the Related Art Conventionally, as shown in FIG. 10, a material fiber flow 21a has a cylindrical material 2 extending in the axial direction.
1 is heated at about 750 ° C. or higher, and is compressed in the axial direction by an upper die 22 and a lower die 23 of a forging machine, as shown in FIG. A pulley 24 'is formed, and then, as shown in FIG. 12, a shaft hole 25 is formed by punching a hole in the center of the intermediate pulley 24' by a punch, and then a cone 24a and a boss 24b are formed.
The surface of the slide pulley 24 is cut and the shaft hole 25 is formed with a spline groove or the like to form a slide pulley 24 having a predetermined size.

【0003】[0003]

【発明が解決しようとする課題】上記従来のものは、素
材ファイバーフロー21aが軸方向に延在する素材21
を軸方向に圧縮して大径かつコーン状に形成していたの
で、このスライドプーリー24のコーン面24a−1に
発生するファイバーフロー21aは、図13に示すよう
に、放射方向に延在することになる。これは、ベルトの
側面がスライドプーリー24のコーン面24a−1に当
たる際の渦巻き状の当たりパターンと異なるため、耐久
性の向上が期待できなくなる。
In the above-mentioned prior art, the material fiber flow 21a has a material 21 extending in the axial direction.
Is axially compressed to form a large diameter and cone shape, so that the fiber flow 21a generated on the cone surface 24a-1 of the slide pulley 24 extends in the radial direction as shown in FIG. Will be. This is different from the spiral contact pattern when the side surface of the belt hits the cone surface 24a-1 of the slide pulley 24, so that improvement in durability cannot be expected.

【0004】また、従来のものは、高温に加熱した素材
21を鍛造機により軸方向に圧縮して所定形状に形成、
つまり熱間鍛造により形成するようにしていたので、大
容量の鍛造機を要し、設備費が嵩むとともに、高精度に
形成することができず、後工程で機械切削する際に、コ
ーン部24a及びボス部24bの表面を約1mm〜2m
mの深さで切削して仕上げる必要があり、切削量が増大
して材料の歩留りが悪くなる不具合があった。本発明
は、素材のファイバーフローを渦巻き状に流動させてコ
ーン状に塑性変形させることにより、上記不具合を解消
した新規なベルト式無段変速機のスライドプーリー及び
その製造方法を得ることを目的とする。
[0004] Further, in the prior art, a raw material 21 heated to a high temperature is axially compressed by a forging machine to form a predetermined shape.
In other words, since it is formed by hot forging, a large-capacity forging machine is required, equipment costs are increased, and it is not possible to form with high precision. And the surface of the boss portion 24b is about 1 mm to 2 m.
It is necessary to finish by cutting at a depth of m, and there is a problem that the amount of cutting increases and the yield of the material deteriorates. An object of the present invention is to obtain a novel slide pulley for a belt-type continuously variable transmission and a method for manufacturing the same, in which the above-mentioned problems are eliminated by causing the fiber flow of the material to flow spirally and plastically deform in a cone shape. I do.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために以下の如く構成したものである。即ち、請
求項1に記載の発明は、軸心部に軸孔を有するコーン型
のスライドプーリーを、軸心部に軸部を有するコーン型
のシャフトプーリーと対向させるとともに、該スライド
プーリーの軸孔を前記シャフトプーリーの軸部に摺動可
能に嵌合させてなるベルト式無段変速機のスライドプー
リーにおいて、素材のファイバーフローを渦巻き状に流
動させて大径かつコーン状の中間プーリーを形成し、該
中間プーリーの軸心部に軸孔を形成する構成にしたもの
である。また、請求項2に記載の発明は、前記請求項1
に記載した素材のファイバーフローをベルトの側面がス
ライドプーリーのコーン面に当たる際の渦巻き状の当た
りパターンと略同方向の渦巻き状に流動させて大径かつ
コーン状の中間プーリーを形成し、該中間プーリーの軸
心部に軸孔を形成する構成にしたものである。
Means for Solving the Problems The present invention is configured as follows to achieve the above object. That is, according to the first aspect of the present invention, a cone-shaped slide pulley having a shaft hole at a shaft center portion is opposed to a cone-shaped shaft pulley having a shaft portion at a shaft center portion, and a shaft hole of the slide pulley is formed. In the slide pulley of the belt-type continuously variable transmission, which is slidably fitted to the shaft portion of the shaft pulley, the fiber flow of the material is spirally formed to form a large-diameter and cone-shaped intermediate pulley. , A shaft hole is formed in the shaft center of the intermediate pulley. Further, the invention according to claim 2 is the invention according to claim 1.
To form a large-diameter cone-shaped intermediate pulley by flowing the fiber flow of the material described in the above in a spiral shape substantially in the same direction as the spiral contact pattern when the side surface of the belt hits the cone surface of the slide pulley. The shaft hole is formed in the shaft center of the pulley.

【0006】また、請求項3に係る発明は、素材ファイ
バーフローが軸方向に延在する円柱状の素材を設け、該
素材の他端部に予備軸孔を冷間鍛造により形成し、次い
で揺動回転する圧子型により前記素材の一端部を冷間で
加圧し、該素材の一端部を、そのファイバーフローを渦
巻き状に流動させながら大径かつコーン状に塑性変形さ
せて中間プーリーを形成し、該中間プーリーの軸心部に
前記予備軸孔と連通する軸孔を形成する構成にしたもの
である。また、請求項4に係る発明は、前記請求項3に
記載した圧子型の揺動回転方向を、ベルトの側面がスラ
イドプーリーのコーン面に当たる際の渦巻き状の当たり
パターンと略同方向にする構成にしたものである。
According to a third aspect of the present invention, there is provided a columnar material having a material fiber flow extending in an axial direction, a preliminary shaft hole formed at the other end of the material by cold forging, and then shaking. One end of the material is cold-pressed by a dynamically rotating indenter mold, and the one end of the material is plastically deformed into a large diameter and cone while the fiber flow is swirled to form an intermediate pulley. A shaft hole communicating with the spare shaft hole is formed in the shaft center of the intermediate pulley. According to a fourth aspect of the present invention, the swinging rotation direction of the indenter type according to the third aspect is substantially the same as the spiral contact pattern when the side surface of the belt hits the cone surface of the slide pulley. It was made.

【0007】[0007]

【発明の実施の形態】以下本発明の実施例を図面に基い
て説明する。図1は本発明が適用されるベルト式無段変
速機の要部断面図、図2〜図4は本発明の実施例による
スライドプーリーの製造工程を示し、図2は素材をその
ファイバーフローとともに示す側面図、図3は素材の他
端部に予備軸孔を形成した一次成形品をファイバーフロ
ーとともに示す断面図、図4は素材の一端部を大径かつ
コーン状に塑性変形した二次プーリーをファイバーフロ
ーとともに示す断面図、図5は素材の一端部を大径かつ
コーン状に塑性変形させる成形状態を示す断面図であ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a main part of a belt-type continuously variable transmission to which the present invention is applied, FIGS. 2 to 4 show a manufacturing process of a slide pulley according to an embodiment of the present invention, and FIG. FIG. 3 is a sectional view showing a primary molded product having a preliminary shaft hole formed at the other end of the material together with a fiber flow, and FIG. 4 is a secondary pulley in which one end of the material is plastically deformed into a large-diameter cone. FIG. 5 is a cross-sectional view showing a molding state in which one end of the material is plastically deformed into a large diameter and cone shape at one end.

【0008】図1において、1はベルト式無段変速機、
2は駆動側の変速プーリー、5は従動側の変速プーリー
である。駆動側の変速プーリー2は、コーン型のスライ
ドプーリー3をエンジン側に連結されるコーン型のシャ
フトプーリー4と対向させ、このシャフトプーリー4の
軸部4aに上記スライドプーリー3を軸方向移動可能に
かつ相対回転不能に嵌合させ、該スライドプーリー3を
油圧等により上記シャフトプーリー4方向に移動させ
る。
In FIG. 1, reference numeral 1 denotes a belt-type continuously variable transmission;
Reference numeral 2 denotes a drive-side transmission pulley, and reference numeral 5 denotes a driven-side transmission pulley. The drive-side speed change pulley 2 has a cone-type slide pulley 3 opposed to a cone-type shaft pulley 4 connected to the engine side, and the shaft pulley 4 has a shaft portion 4a capable of moving the slide pulley 3 in the axial direction. The slide pulley 3 is moved in the direction of the shaft pulley 4 by hydraulic pressure or the like.

【0009】また、従動側の変速プーリー5は、コーン
型のスライドプーリー6を車輪側に連結されるコーン型
のシャフトプーリー7と対向させ、このシャフトプーリ
ー7の軸部7aに上記スライドプーリー6を軸方向移動
可能にかつ相対回転不能に嵌合させ、該スライドプーリ
ー6をコイルバネ8等により上記シャフトプーリー7方
向に押圧付勢する。そして、上記駆動側の変速プーリー
2及び従動側の変速プーリー5間に無端状のベルト9を
巻回し、このベルト9を各変速プーリー2,5内で相反
する半径方向に移動させることによって駆動側の変速プ
ーリー2の回転速度を変速して従動側の変速プーリー5
に伝達する。
The driven speed change pulley 5 has a cone type slide pulley 6 opposed to a cone type shaft pulley 7 connected to the wheel side, and the slide pulley 6 is attached to a shaft portion 7a of the shaft pulley 7. The slide pulley 6 is urged in the direction of the shaft pulley 7 by a coil spring 8 or the like so as to be movable in the axial direction and non-rotatable. Then, an endless belt 9 is wound between the drive-side shift pulley 2 and the driven-side shift pulley 5, and the belt 9 is moved in the opposite radial direction in each of the shift pulleys 2 and 5, whereby the drive side is shifted. The rotational speed of the speed change pulley 2 is changed to change the speed of the speed change pulley 5 on the driven side.
To communicate.

【0010】ここで、上記スライドプーリー3,6は共
に略同様の方法で製造されており、このうち、従動側の
スライドプーリー6を代表して図2〜図6より説明す
る。まず、図2に示すように、例えばSCr、SCM等
の強靱鋼により、素材ファイバーフロー11が軸方向に
延在する円柱状の素材10を形成し、該素材10の他端
部(下部)を冷間により前方押出し成形して、図3に示
すように、下部に外径が小径にかつ軸心部に予備軸孔6
dが形成されたボス部6bを有する一次成形品13を得
る。
The slide pulleys 3 and 6 are manufactured by substantially the same method, and among them, the slide pulley 6 on the driven side will be described with reference to FIGS. First, as shown in FIG. 2, a columnar material 10 in which a material fiber flow 11 extends in the axial direction is formed of a tough steel such as SCr or SCM, and the other end (lower portion) of the material 10 is formed. As shown in FIG. 3, the outer diameter is small at the lower part and the preliminary shaft hole 6 is formed at the axial center part.
The primary molded article 13 having the boss portion 6b in which d is formed is obtained.

【0011】次いで上記一次成形品13のボス部6bを
除く上部を回転揺動鍛造機15により冷間鍛造して、図
4に示すように、大径かつコーン状の中間プーリー14
を得る。上記回転揺動鍛造機15は図5に示すようにな
っている。図5において、16は上下方向に移動される
可動台16であり、該可動台16の上面の中心部に下型
17を取付ける。この下型17は、軸心部に前述した一
次成形品13のボス部6bが嵌合する嵌合孔17aを有
し、該嵌合孔17a及び可動台16の軸心部に成形品排
出用のエジェクターピン16aを上下動可能に嵌合させ
る。
Next, the upper part of the primary molded product 13 excluding the boss portion 6b is cold forged by a rotary swing forging machine 15, and as shown in FIG.
Get. The rotary swing forging machine 15 is as shown in FIG. In FIG. 5, reference numeral 16 denotes a movable base 16 which is moved in a vertical direction. The lower die 17 has a fitting hole 17a at the shaft center portion, into which the boss portion 6b of the above-described primary molded product 13 is fitted, and a molded product discharging shaft at the fitting hole 17a and the shaft center portion of the movable base 16. Ejector pin 16a is vertically movably fitted.

【0012】また、上部フレーム18に下半部が裁断さ
れた半球状の揺動台19をその下面中心部を中心として
揺動回転可能に設け、この揺動台19の下面中心部にコ
ーン状に凹む成形面20aを有する上型圧子20を取付
ける。なお、上記揺動台19の揺動角度αは約2°とな
っている。
Further, a hemispherical rocking table 19 having a lower half cut out is provided on the upper frame 18 so as to be rotatable about the center of the lower surface thereof. The upper die indenter 20 having the molding surface 20a that is recessed is mounted. The swing angle α of the swing table 19 is about 2 °.

【0013】そして、上記下型17の嵌合孔17aに前
述した一次成形品13のボス部6bを嵌合させ、揺動台
19を所定の方向、本例では、図7に示すように、ベル
ト9の側面がスライドプーリー6のコーン面6a−1に
当たる際の渦巻き状の当たりパターン(ア)と同方向に
揺動回転させ、この状態で可動台16を介して下型17
を上方に移動させる。さすれば、上記揺動台19に取り
付けた上型圧子20が上記一次成形品13の上面の半径
線上で線状に接触しつつ、該上面に対して接線方向に移
動し、一次成形品13の上部を、そのファイバーフロー
11を渦巻き状に流動させながら大径かつコーン状に塑
性変形させることになる。
Then, the boss 6b of the primary molded article 13 is fitted into the fitting hole 17a of the lower die 17, and the swing table 19 is moved in a predetermined direction, in this example, as shown in FIG. When the side surface of the belt 9 hits the cone surface 6a-1 of the slide pulley 6, the belt 9 is swung and rotated in the same direction as the spiral contact pattern (a).
Is moved upward. Then, the upper mold indenter 20 attached to the rocking table 19 moves tangentially to the upper surface of the primary molded product 13 while making linear contact on the radial line of the upper surface of the primary molded product 13, and Is plastically deformed into a large-diameter cone while the fiber flow 11 is swirled.

【0014】これにより、図7に示すように、スライド
プーリー6のコーン面6a−1に、ベルト9の側面がス
ライドプーリー6のコーン面に当たる際の渦巻き状の当
たりパターン(ア)と略同方向の渦巻き状のファイバー
フロー11aが形成される。次いで、図6に示すよう
に、前述した中間プーリー14の軸心部をプレスにより
打ち抜いて予備軸孔6dと連通する軸孔6cを形成した
後、コーン部6a及びボス部6bの表面を切削加工、及
び軸孔6dにスプライン溝等の加工をして従動側のスラ
イドプーリー6を形成する。
As a result, as shown in FIG. 7, the spiral contact pattern (a) when the side surface of the belt 9 contacts the cone surface 6a-1 of the slide pulley 6 when the side surface of the belt 9 contacts the cone surface of the slide pulley 6 is substantially the same direction. Is formed as a spiral fiber flow 11a. Next, as shown in FIG. 6, the shaft portion of the intermediate pulley 14 is punched out by a press to form a shaft hole 6c communicating with the preliminary shaft hole 6d, and then the surfaces of the cone portion 6a and the boss portion 6b are cut. , And a spline groove is formed in the shaft hole 6d to form the driven side slide pulley 6.

【0015】図8及び図9は第2の実施例を示す。図8
において、17−1は前述した可動台16に取り付けら
れる下型、20−1は前述した揺動台19に取り付けら
れる上型圧子である。上記下型17−1は、上面の外周
部に環状かつ段状の逃げ面17bを形成し、軸心部には
前述と同様の嵌合孔17aを形成する。16aは成形品
排出用のエジェクターピンである。
FIGS. 8 and 9 show a second embodiment. FIG.
In the figure, reference numeral 17-1 denotes a lower die attached to the movable table 16 described above, and reference numeral 20-1 denotes an upper die indenter mounted to the swing table 19 described above. The lower die 17-1 has an annular and stepped flank 17b formed on the outer peripheral portion of the upper surface, and the same fitting hole 17a as described above is formed in the axial center portion. Reference numeral 16a denotes an ejector pin for discharging a molded product.

【0016】そして、上記下型17−1の嵌合孔17a
に前述した一次成形品13のボス部6bを嵌合させ、揺
動台19を前述と同様に揺動回転させながら、下型17
−1を上方に移動させると、上型圧子20−1が前述と
同様にして一次成形品13の上部を、そのファイバーフ
ロー11を渦巻き状に流動させながら大径かつコーン状
に塑性変形させる。この時、コーンに塑性変形された外
周部は、下型17−1の逃げ面17bに向かって下方に
流動し、図8に示すように、外周部に下方に屈曲する環
状の余肉部14aを有する中間プーリー14−1が形成
される。
The fitting hole 17a of the lower mold 17-1 is provided.
The lower mold 17 is fitted with the boss portion 6b of the primary molded product 13 described above while the swing table 19 is swung and rotated in the same manner as described above.
When -1 is moved upward, the upper mold indenter 20-1 plastically deforms the upper part of the primary molded article 13 into a large diameter and cone shape while causing the fiber flow 11 to spirally flow in the same manner as described above. At this time, the outer peripheral portion plastically deformed into the cone flows downward toward the flank 17b of the lower mold 17-1, and as shown in FIG. Is formed.

【0017】次いで上記中間プーリー14−1の軸心部
をプレスにより打ち抜いて予備軸孔6dと連通する軸孔
6cを形成した後、焼き戻し処理する。ついで、上記余
肉部14aを薄肉かつ円筒状にスエージング加工し、図
9に示すように、外周部に円筒状のスカート部6eを有
する従動側のスライドプーリー6−1を形成する。
Next, the shaft center portion of the intermediate pulley 14-1 is punched out by a press to form a shaft hole 6c communicating with the preliminary shaft hole 6d, and then tempered. Next, the excess thickness portion 14a is swaged into a thin and cylindrical shape to form a driven-side slide pulley 6-1 having a cylindrical skirt portion 6e on the outer peripheral portion, as shown in FIG.

【0018】[0018]

【発明の効果】以上の説明から明らかな如く、請求項1
記載の発明によれば、スライドプーリーのコーン面に形
成される渦巻き状のファイバーフローが、ベルトの側面
が上記コーン面に当たる際の渦巻き状の当たりパターン
と類似することになり、上記コーン面の磨耗・損傷の低
減が期待できる。また、請求項2記載の発明によれば、
上記コーン面に形成されるファイバーフローが、該コー
ン面に当たるベルトの当たりパターンと略同方向の渦巻
き状となるので、上記期待が更に大きくなる。また、請
求項3記載の発明によれば、素材の面を局部的に加圧し
てそのファイバーフローを渦巻き状に流動させながら大
径かつコーン状に塑性変形させるので、素材を小さな動
力で冷間鍛造することができ、設備費が低減するととも
に、高精度に成形できるので後工程で機械切削する際に
その切削量が低減して材料の歩留りが良くなる。しかも
コーン面のファイバーフローは、ベルトの側面が上記コ
ーン面に当たる際の渦巻き状の当たりパターンと類似
し、コーン面の磨耗・損傷の低減が期待できる。また、
請求項4記載の発明によれば、上記コーン面のファイバ
ーフローに形成されるファイバーフローが、該コーン面
に当たるベルトの当たりパターンと略同方向の渦巻き状
となるので、該コーン面の磨耗・損傷の低減がさらに期
待できる。等の効果を奏する。
As is apparent from the above description, claim 1
According to the described invention, the spiral fiber flow formed on the cone surface of the slide pulley is similar to the spiral hit pattern when the side surface of the belt hits the cone surface, and the wear of the cone surface is reduced.・ Damage reduction can be expected. According to the second aspect of the present invention,
The expectation is further increased because the fiber flow formed on the cone surface has a spiral shape substantially in the same direction as the contact pattern of the belt hitting the cone surface. According to the third aspect of the present invention, since the surface of the material is locally pressurized and the fiber flow is swirled and plastically deformed into a large diameter and a cone while being swirled, the material can be cold-cooled with small power. Forging can be performed, equipment costs can be reduced, and molding can be performed with high precision. Therefore, when machining is performed in a subsequent process, the amount of cutting is reduced, and the yield of the material is improved. In addition, the fiber flow on the cone surface is similar to a spiral hit pattern when the side surface of the belt hits the cone surface, and a reduction in wear and damage on the cone surface can be expected. Also,
According to the fourth aspect of the present invention, the fiber flow formed in the fiber flow on the cone surface has a spiral shape substantially in the same direction as the contact pattern of the belt hitting the cone surface, so that the cone surface is worn and damaged. Can be further expected to be reduced. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用されるベルト式無段変速機の要部
断面図である。
FIG. 1 is a sectional view of a main part of a belt-type continuously variable transmission to which the present invention is applied.

【図2】本発明による素材をそのファイバーフローとと
もに示す側面図である。
FIG. 2 is a side view showing the material according to the present invention together with its fiber flow.

【図3】本発明による一次成形品をファイバーフローと
ともに示す断面図である。
FIG. 3 is a sectional view showing a primary molded product according to the present invention together with a fiber flow.

【図4】本発明による中間プーリーをファイバーフロー
とともに示す断面図である。
FIG. 4 is a sectional view showing an intermediate pulley according to the present invention together with a fiber flow.

【図5】本発明の第1実施例による中間プーリーの成形
状態をファイバーフローとともに示す断面図である。
FIG. 5 is a sectional view showing a molding state of the intermediate pulley according to the first embodiment of the present invention together with a fiber flow.

【図6】本発明の第1実施例によるスライドプーリーを
ファイバーフローとともに示す断面図である。
FIG. 6 is a sectional view showing a slide pulley according to a first embodiment of the present invention together with a fiber flow.

【図7】本発明によるスライドプーリーのファイバーフ
ローとベルトの当たりパターンとの関係を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing a relationship between a fiber flow of a slide pulley and a contact pattern of a belt according to the present invention.

【図8】本発明の第2実施例による中間プーリーの成形
状態を示す断面図である。
FIG. 8 is a cross-sectional view illustrating a molding state of an intermediate pulley according to a second embodiment of the present invention.

【図9】本発明の第2実施例によるスライドプーリーの
断面図である。
FIG. 9 is a sectional view of a slide pulley according to a second embodiment of the present invention.

【図10】従来例による素材をそのファイバーフローと
ともに示す側面図である。
FIG. 10 is a side view showing a conventional material together with its fiber flow.

【図11】従来例による中間プーリーの成形状態をファ
イバーフローとともに示す断面図である。
FIG. 11 is a cross-sectional view showing a molding state of a conventional intermediate pulley together with a fiber flow.

【図12】従来例によるスライドプーリーの断面図であ
る。
FIG. 12 is a sectional view of a conventional slide pulley.

【図13】従来例によるスライドプーリーのコーン面に
発生するファイバーフローの延出状態を示す正面図であ
る。
FIG. 13 is a front view showing an extended state of a fiber flow generated on a cone surface of a slide pulley according to a conventional example.

【符号の説明】[Explanation of symbols]

1 ベルト式無段変速機 2 駆動側の変速プーリー 3 スライドプーリー 4 シャフトプーリー 4a 軸部 5 従動側の変速プーリー 6 スライドプーリー 6−1 スライドプーリー 6a コーン部 6a−1 コーン面 6b ボス部 6c 軸孔 6d 予備軸孔 6e スカート部 7 シャフトプーリー 7a 軸部 8 コイルバネ 9 ベルト 10 素材 11 ファイバーフロー 11a ファイバーフロー 13 一次成形品 14,14−1 中間プーリー 14a 余肉部 15 回転揺動鍛造機 16 可動台 16a エジェクターピン 17,17−1 下型 17a 嵌合孔 17b 逃げ面 18 上部フレーム 19 揺動台 20,20−1 上型圧子 20a 成形面 Reference Signs List 1 belt-type continuously variable transmission 2 drive-side shift pulley 3 slide pulley 4 shaft pulley 4a shaft portion 5 driven-side shift pulley 6 slide pulley 6-1 slide pulley 6a cone portion 6a-1 cone surface 6b boss portion 6c shaft hole 6d Preliminary shaft hole 6e Skirt part 7 Shaft pulley 7a Shaft part 8 Coil spring 9 Belt 10 Material 11 Fiber flow 11a Fiber flow 13 Primary molded product 14, 14-1 Intermediate pulley 14a Excess wall part 15 Rotating swing forging machine 16 Movable table 16a Ejector pin 17, 17-1 Lower die 17a Fitting hole 17b Relief surface 18 Upper frame 19 Swing table 20, 20-1 Upper die indenter 20a Molding surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】軸心部に軸孔を有するコーン型のスライド
プーリーを、軸心部に軸部を有するコーン型のシャフト
プーリーと対向させるとともに、該スライドプーリーの
軸孔を前記シャフトプーリーの軸部に摺動可能に嵌合さ
せてなるベルト式無段変速機のスライドプーリーにおい
て、素材のファイバーフローを渦巻き状に流動させて大
径かつコーン状の中間プーリーを形成し、該中間プーリ
ーの軸心部に軸孔を形成したことを特徴とするベルト式
無段変速機のスライドプーリー。
A cone-shaped slide pulley having a shaft hole at a shaft center portion is opposed to a cone-shaped shaft pulley having a shaft portion at a shaft center portion, and a shaft hole of the slide pulley is connected to a shaft of the shaft pulley. In the slide pulley of the belt-type continuously variable transmission, which is slidably fitted to the portion, a fiber flow of the material is spirally flowed to form a large-diameter and cone-shaped intermediate pulley, and the shaft of the intermediate pulley A slide pulley for a belt-type continuously variable transmission, wherein a shaft hole is formed in a core portion.
【請求項2】前記素材のファイバーフローをベルトの側
面がスライドプーリーのコーン面に当たる際の渦巻き状
の当たりパターンと略同方向の渦巻き状に流動させて大
径かつコーン状の中間プーリーを形成し、該中間プーリ
ーの軸心部に軸孔を形成したことを特徴とする請求項1
記載のベルト式無段変速機のスライドプーリー。
2. A large-diameter, cone-shaped intermediate pulley is formed by causing the fiber flow of the material to flow in a spiral in a direction substantially the same as the spiral contact pattern when the side surface of the belt hits the cone surface of the slide pulley. A shaft hole is formed in a shaft center portion of the intermediate pulley.
A slide pulley for the belt-type continuously variable transmission according to the above description.
【請求項3】素材ファイバーフローが軸方向に延在する
円柱状の素材を設け、該素材の他端部に予備軸孔を冷間
鍛造により形成し、次いで揺動回転する圧子型により前
記素材の一端部を冷間で加圧し、該素材の一端部を、そ
のファイバーフローを渦巻き状に流動させながら大径か
つコーン状に塑性変形させて中間プーリーを形成し、該
中間プーリーの軸心部に前記予備軸孔と連通する軸孔を
形成したことを特徴とするベルト式無段変速機のスライ
ドプーリーの製造方法。
3. A cylindrical material having a material fiber flow extending in the axial direction is provided, and a spare shaft hole is formed at the other end of the material by cold forging, and then the material is formed by an indenter die which swings and rotates. One end of the material is cold-pressed, and one end of the material is plastically deformed into a large diameter and a cone while the fiber flow is swirled to form an intermediate pulley, and the shaft center of the intermediate pulley is formed. A method of manufacturing a slide pulley of a belt-type continuously variable transmission, wherein a shaft hole communicating with the auxiliary shaft hole is formed in the belt shaft.
【請求項4】前記圧子型の揺動回転方向は、ベルトの側
面がスライドプーリーのコーン面に当たる際の渦巻き状
の当たりパターンと略同方向としたことを特徴とする請
求項3記載のベルト式無段変速機のスライドプーリーの
製造方法。
4. The belt type according to claim 3, wherein said indenter type swinging rotation direction is substantially the same as the spiral contact pattern when the side surface of the belt hits the cone surface of the slide pulley. Manufacturing method of slide pulley for continuously variable transmission.
JP36647897A 1997-12-22 1997-12-22 Slide pulley for belt type continuously variable transmission and method of manufacturing the same Expired - Lifetime JP3211157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36647897A JP3211157B2 (en) 1997-12-22 1997-12-22 Slide pulley for belt type continuously variable transmission and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36647897A JP3211157B2 (en) 1997-12-22 1997-12-22 Slide pulley for belt type continuously variable transmission and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11182641A true JPH11182641A (en) 1999-07-06
JP3211157B2 JP3211157B2 (en) 2001-09-25

Family

ID=18486884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36647897A Expired - Lifetime JP3211157B2 (en) 1997-12-22 1997-12-22 Slide pulley for belt type continuously variable transmission and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3211157B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106658A (en) * 2000-10-03 2002-04-10 Fuji Heavy Ind Ltd Belt type continuously variable transmission
WO2005099929A1 (en) * 2004-04-16 2005-10-27 Bosch Automotive Systems Corporation Molding method by forging and molding method for case
US8312856B2 (en) 2006-07-13 2012-11-20 Yamaha Hatsudoki Kabushiki Kaisha Forged piston, internal combustion engine, transportation apparatus and method of making the forged piston
JP2013166157A (en) * 2012-02-14 2013-08-29 Toyota Motor Corp Rocking die forging method, workpiece used therefor and method for determination of workpiece shape
CN106670369A (en) * 2017-02-28 2017-05-17 中国第二重型机械集团德阳万航模锻有限责任公司 Core-embedded mold facilitating ejection-out of forging
JP2018114534A (en) * 2017-01-18 2018-07-26 新日鐵住金株式会社 Hub and manufacturing method thereof
CN109702130A (en) * 2017-10-26 2019-05-03 加特可株式会社 Model is used in forging
CN110918849A (en) * 2019-11-26 2020-03-27 武汉理工大学 Method for improving forming limit of thin-wall high-rib component space envelope forming high rib

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106658A (en) * 2000-10-03 2002-04-10 Fuji Heavy Ind Ltd Belt type continuously variable transmission
WO2005099929A1 (en) * 2004-04-16 2005-10-27 Bosch Automotive Systems Corporation Molding method by forging and molding method for case
US8312856B2 (en) 2006-07-13 2012-11-20 Yamaha Hatsudoki Kabushiki Kaisha Forged piston, internal combustion engine, transportation apparatus and method of making the forged piston
JP2013166157A (en) * 2012-02-14 2013-08-29 Toyota Motor Corp Rocking die forging method, workpiece used therefor and method for determination of workpiece shape
JP2018114534A (en) * 2017-01-18 2018-07-26 新日鐵住金株式会社 Hub and manufacturing method thereof
CN106670369A (en) * 2017-02-28 2017-05-17 中国第二重型机械集团德阳万航模锻有限责任公司 Core-embedded mold facilitating ejection-out of forging
CN109702130A (en) * 2017-10-26 2019-05-03 加特可株式会社 Model is used in forging
CN110918849A (en) * 2019-11-26 2020-03-27 武汉理工大学 Method for improving forming limit of thin-wall high-rib component space envelope forming high rib

Also Published As

Publication number Publication date
JP3211157B2 (en) 2001-09-25

Similar Documents

Publication Publication Date Title
EP1356878B1 (en) Method for forming pulley
JP4476913B2 (en) Method and apparatus for forming cup-shaped member
CN106425343B (en) A kind of welded type expansion tightening wheel processing method
JP3328234B2 (en) Hypoid ring gear for differential and manufacturing method thereof
JP3211157B2 (en) Slide pulley for belt type continuously variable transmission and method of manufacturing the same
CN107096866B (en) Hybrid vehicle automatic transmission deep slot type conjunction gear preparation method
CN101701605A (en) High-speed silent precision bearing retainer and manufacturing method thereof
CN103406728A (en) Method for manufacturing hub bearings of automobiles
CN105333103A (en) Two-grade coaxial multi-wedge type high-precision spinning belt wheel and manufacturing method thereof
JP3211158B2 (en) Shaft pulley for belt type continuously variable transmission and method of manufacturing the same
JP2004202499A (en) Method for manufacturing metallic ring-like shape material
WO2007067303A2 (en) Method of forming a part
CN103639675B (en) The processing method of curve surface of raceway and shaping dies in freewheel clutch
KR100474466B1 (en) Internal spun hub and method of making same
JP4301767B2 (en) Method for forming hollow shaft pulley for belt type continuously variable transmission
CN211707846U (en) Take big flange limit polywedge wheel shaping frock
US6334349B1 (en) Method for the manufacturing of a shaft with a larger diameter flange
US6981321B1 (en) Hydrostatic cylinder block and method of making the same
JPS63295034A (en) Manufacture of polyvinyl pulley wherein rim and disk are coupled and polyvinyl pulley manufactured by that method
US6146281A (en) Outer joint part of a constant velocity ball joint
JPS58135741A (en) Manufacture of pulley
CN216575368U (en) Ball sleeve type rotary die seat for cold header
KR20180029301A (en) Method for manufacturing flange type hub clutch through cold forging process using back pressure
JPS6064738A (en) Production of outer ring for universal joint
CN113944692A (en) Warm forging and cold extruding hub sleeve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080719

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090719

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100719