JP2018113679A - Method for manufacturing electronic device formed in cavity between boards and including vias - Google Patents

Method for manufacturing electronic device formed in cavity between boards and including vias Download PDF

Info

Publication number
JP2018113679A
JP2018113679A JP2017231535A JP2017231535A JP2018113679A JP 2018113679 A JP2018113679 A JP 2018113679A JP 2017231535 A JP2017231535 A JP 2017231535A JP 2017231535 A JP2017231535 A JP 2017231535A JP 2018113679 A JP2018113679 A JP 2018113679A
Authority
JP
Japan
Prior art keywords
substrate
wafer
sidewall
metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017231535A
Other languages
Japanese (ja)
Other versions
JP2018113679A5 (en
Inventor
敦 鷹野
Atsushi Takano
敦 鷹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skyworks Solutions Inc
Original Assignee
Skyworks Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skyworks Solutions Inc filed Critical Skyworks Solutions Inc
Publication of JP2018113679A publication Critical patent/JP2018113679A/en
Publication of JP2018113679A5 publication Critical patent/JP2018113679A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/94Batch processes at wafer-level, i.e. with connecting carried out on a wafer comprising a plurality of undiced individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0523Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for flip-chip mounting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/173Air-gaps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • H10N30/073Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies by fusion of metals or by adhesives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/086Shaping or machining of piezoelectric or electrostrictive bodies by machining by polishing or grinding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/088Shaping or machining of piezoelectric or electrostrictive bodies by machining by cutting or dicing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05166Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05171Chromium [Cr] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • H01L2224/1401Structure
    • H01L2224/1403Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8038Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/80399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83095Temperature settings
    • H01L2224/83096Transient conditions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/8382Diffusion bonding
    • H01L2224/83825Solid-liquid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers

Abstract

PROBLEM TO BE SOLVED: To prevent defects due to overetching, and the like, during a through hole formation process.SOLUTION: A method for manufacturing an electronic device includes the steps of: forming a first sidewall of a prescribed height on a bottom face 10a, in a first board 10 having the bottom face 10a and a top face 10b, so as to surround an electronic circuit 18 placed on the bottom face 10a; forming a vias 42 causing the bottom face 10a to communicate with the top face 10b; and forming a second sidewall of a prescribed height along a circumference of the top face 20a of a second board 20. Formation of the vias 42 includes the steps of: sequentially laminating a first stopper layer and a second stopper layer on a part of the bottom face 10a of the first board 10 corresponding to the via 42; sequentially laminating the first stopper layer and the second stopper layer on the part of the bottom face 10a of the first board 10; and etching the first board 10 for forming a through hole corresponding to the via 42. A speed of etching of the first board 10 is greater than a speed of etching of the first stopper layer, and a speed of etching of the first stopper layer is greater than a speed of etching of the second stopper layer.SELECTED DRAWING: Figure 2

Description

従来、携帯電話機等の通信デバイスにおいては、送信信号及び受信信号のような異なる帯域の信号を分離するためのフィルタデバイスが使用されている。圧電薄膜共振器(Film Bulk Acoustic Resonator(FBAR))及び音響多層膜共振器(Solidly Mounted Resonator(SMR))のようなバルク弾性波(Bulk Acoustic Resonator(BAW))共振器を含む電子デバイスが、フィルタデバイスとして使用されている。かかる電子デバイスには、電子回路が配置されたデバイス基板、及びキャップ基板が含まれ得る。かかる電子デバイスは、以下のように製造される。すなわち、デバイス基板及びキャップ基板間の接合部分が、金又は銅のような同種の金属で形成され、当該金属部分が高温高圧で共有接合され、その後、デバイス基板及びキャップ基板が一緒に接合される。   Conventionally, in a communication device such as a mobile phone, a filter device for separating signals of different bands such as a transmission signal and a reception signal is used. An electronic device comprising a bulk acoustic wave resonator (BAW) resonator such as a piezoelectric bulk resonator (FBAR) and an acoustic multilayer resonator (SMR) Used as a device. Such an electronic device may include a device substrate on which electronic circuits are disposed, and a cap substrate. Such an electronic device is manufactured as follows. That is, a joint portion between the device substrate and the cap substrate is formed of the same kind of metal as gold or copper, and the metal portion is covalently bonded at a high temperature and a high pressure, and then the device substrate and the cap substrate are bonded together. .

FBARフィルタ及び弾性表面波(Surface Acoustic Wave(SAW))フィルタを記載する背景資料には、非特許文献1が含まれる。   Non-patent document 1 is included in the background material describing the FBAR filter and the surface acoustic wave (SAW) filter.

FBARフィルタの開発:SAWフィルタとの比較,電子情報通信学会技術研究報告,ED,電子デバイス103(728),9−14,2004−03−09Development of FBAR filter: Comparison with SAW filter, IEICE technical report, ED, Electronic device 103 (728), 9-14, 2004-03-09

ここに開示される側面及び実施形態は、基板間のキャビティに形成されてビアを含むフィルタのような電子デバイスとその製造方法に関する。   Aspects and embodiments disclosed herein relate to electronic devices such as filters formed in cavities between substrates and including vias and methods of manufacturing the same.

電子デバイスを作製するいくつかの従来型の方法には、高温高圧のプロセスを必要とし得る金と金との接合、又は銅と銅との接合が含まれるので、デバイス基板、キャップ基板等の破損が生じたり、製造歩留まりが低下したりすることがある。これらの従来型のプロセスには、常温常圧ステップと高温高圧ステップとの間の繰り返しが含まれるので、サイクルタイムが不必要に長くなることがある。なおもさらに、これらの従来型のプロセスでは、スルーホールの形成プロセスにおけるオーバーエッチングに起因する欠陥が生じ得るので、製造の歩留まりが低下する。   Some conventional methods of making electronic devices include gold-gold bonding or copper-copper bonding, which can require high temperature and high pressure processes, which can damage device substrates, cap substrates, etc. May occur or the manufacturing yield may be reduced. These conventional processes involve repetitions between a normal temperature and normal pressure step and a high temperature and high pressure step, which can unnecessarily increase cycle time. Still further, in these conventional processes, defects due to over-etching in the through-hole formation process can occur, reducing manufacturing yield.

本開示の複数の側面により、歩留まりを向上させ、サイクルタイムを短縮し、スルーホール形成プロセス中のオーバーエッチング又は上述のすべてによる欠陥を防止するべく使用可能な電子デバイス及び当該電子デバイスの製造方法が得られる。   Several aspects of the present disclosure provide an electronic device that can be used to improve yield, reduce cycle time, and prevent over-etching during the through-hole formation process or defects due to all of the above, and a method for manufacturing the electronic device. can get.

所定の実施形態に係る電子デバイスを製造する方法は、底面の周縁に沿って形成された所定高さの、当該底面に配置された電子回路を取り囲む第1側壁を有する第1基板を与えることであって、第1側壁は第1金属からなる第1金属層により形成されることと、頂面の周縁に沿って形成された所定高さの第2側壁を有する第2基板を与えることであって、第2側壁は第2金属からなる第2金属層と第3金属からなる第3金属層とが順に積層されて形成されることと、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁によって内部にキャビティが画定されるように第1基板と第2基板とを位置合わせすることであって、第1側壁は第2側壁に対向かつ接触することと、第1側壁と第2側壁とを互いに接合するべく第1基板及び第2基板を加熱することであって、第1金属層、第2金属層及び第3金属層が液相拡散接合による合金層を形成するべく加熱されることとを含んでよい。第1基板は圧電体からなってよい。電子回路は、圧電薄膜共振器、バルク弾性波素子及び弾性表面波素子の少なくとも一つを含んでよい。   A method of manufacturing an electronic device according to a predetermined embodiment provides a first substrate having a first wall formed around a periphery of a bottom surface and having a first side wall surrounding an electronic circuit disposed on the bottom surface. The first side wall is formed by a first metal layer made of a first metal and provides a second substrate having a second side wall of a predetermined height formed along the periphery of the top surface. The second sidewall is formed by sequentially laminating a second metal layer made of the second metal and a third metal layer made of the third metal, a bottom surface of the first substrate, a top surface of the second substrate, Aligning the first substrate and the second substrate such that a cavity is defined therein by the first sidewall and the second sidewall, wherein the first sidewall faces and contacts the second sidewall; A first substrate and a second substrate for joining the first sidewall and the second sidewall to each other; The method comprising heating the first metal layer, second metal layer and the third metal layer may include a be heated to form an alloy layer by liquid-phase diffusion bonding. The first substrate may be made of a piezoelectric body. The electronic circuit may include at least one of a piezoelectric thin film resonator, a bulk acoustic wave element, and a surface acoustic wave element.

第3金属の融点は第2金属の融点より低くてよい。第3金属は第2金属とは異なってよい。第1基板及び第2基板を加熱することは、第3金属層を溶融させて第1金属層及び第2金属層それぞれと第1合金層及び第2合金層を形成させることを含んでよい。第1合金層及び第2合金層が形成されるときに第3金属層が消費されてよい。   The melting point of the third metal may be lower than the melting point of the second metal. The third metal may be different from the second metal. Heating the first substrate and the second substrate may include melting the third metal layer to form a first alloy layer and a second alloy layer, respectively, with the first metal layer and the second metal layer. The third metal layer may be consumed when the first alloy layer and the second alloy layer are formed.

第2側壁の高さは、第1側壁の高さよりも大きくてよい。第3金属層と第2金属層との間で合金の形成が開始される温度は、第3金属層と第1金属層との間で合金の形成が開始される温度よりも低くてよい。液相拡散接合の間に、第1金属、第2金属及び第3金属が一緒に溶融する状態が存在しなくともよい。第1基板の厚さは、第2基板の厚さと異なってよい。   The height of the second side wall may be greater than the height of the first side wall. The temperature at which alloy formation is started between the third metal layer and the second metal layer may be lower than the temperature at which alloy formation is started between the third metal layer and the first metal layer. There may not be a state in which the first metal, the second metal, and the third metal melt together during the liquid phase diffusion bonding. The thickness of the first substrate may be different from the thickness of the second substrate.

第1金属は金(Au)を含んでよい。第2金属は銅(Cu)を含んでよい。第3金属は、錫(Sn)及びインジウム(In)の少なくとも一方を含んでよい。   The first metal may include gold (Au). The second metal may include copper (Cu). The third metal may include at least one of tin (Sn) and indium (In).

所定の実施形態によれば、電子デバイスを製造する方法はさらに、プリント基板を与えることを含み、第1側壁及び第2側壁を介して互いに接合された第1基板及び第2基板がプリント基板の頂面に取り付けられ、第1基板及び第2基板が取り付けられたプリント基板の頂面は、所定径のフィラーを含む樹脂で覆われかつ封止され、第1側壁及び第2側壁はそれぞれ、第1基板第2基板の周縁から内側に、当該フィラーの平均径の半分以下である所定距離だけ後退して形成される。   According to certain embodiments, a method of manufacturing an electronic device further includes providing a printed circuit board, wherein the first substrate and the second substrate bonded together via the first sidewall and the second sidewall are of the printed circuit board. The top surface of the printed circuit board attached to the top surface, to which the first substrate and the second substrate are attached, is covered and sealed with a resin containing a filler having a predetermined diameter, and the first side wall and the second side wall are respectively The first substrate is formed so as to recede from the periphery of the second substrate by a predetermined distance that is not more than half of the average diameter of the filler.

所定の実施形態によれば、電子デバイスは、底面の周縁に沿って形成された所定高さの、当該底面に配置された電子回路を取り囲む第1側壁を有する第1基板と、頂面の周縁に沿って形成された所定高さの第2側壁を有する第2基板とを含み、第2側壁は、第1側壁が第2側壁に対向かつ接触して第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により画定されたキャビティが内部に形成されるように、第1側壁に位置合わせされて接合され、第1側壁は、液相拡散接合により第2側壁と接合されてよい。   According to certain embodiments, an electronic device includes a first substrate having a first wall formed around a periphery of the bottom surface and having a first side wall surrounding the electronic circuit disposed on the bottom surface, and a periphery of the top surface. A second substrate having a second side wall of a predetermined height formed along the first side wall, the second side wall being opposed to and in contact with the second side wall, the bottom surface of the first substrate, Aligned and bonded to the first sidewall such that a cavity defined by the top surface, the first sidewall, and the second sidewall is formed therein, and the first sidewall is bonded to the second sidewall by liquid phase diffusion bonding. May be joined.

所定の実施形態によれば、電子デバイスは、底面及び頂面を有する第1基板と、当該底面に配置された電子回路を取り囲むべく当該底面の周縁に沿って形成された所定高さの第1側壁と、当該頂面に形成された外部電極と、頂面の周縁に沿って形成された所定高さの第2側壁を有する第2基板とを含み、当該外部電極は、当該底面に連通するビアを介して当該電子回路に接続され、第2側壁は、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により画定されたキャビティを内部に形成するべく、第1側壁に位置合わせされて接合されてよい。   According to certain embodiments, an electronic device includes a first substrate having a bottom surface and a top surface, and a first height of a predetermined height formed along a periphery of the bottom surface to surround an electronic circuit disposed on the bottom surface. Including a side wall, an external electrode formed on the top surface, and a second substrate having a second side wall having a predetermined height formed along the periphery of the top surface, and the external electrode communicates with the bottom surface The second sidewall is connected to the electronic circuit through the via, and the second sidewall forms a cavity defined therein by the bottom surface of the first substrate, the top surface of the second substrate, the first sidewall, and the second sidewall. One side wall may be aligned and joined.

外部電極は、ビアの直上に配置されてよい。第1基板の厚さは、第2基板の厚さより小さくてよい。第1基板の頂面の表面粗さは、第1基板の底面の表面粗さよりも大きくてよい。ビアの側面の表面粗さは、第1基板の頂面の表面粗さよりも大きくてよい。第1基板は、キャビティを画定する一部分の厚さが周縁部の厚さよりも大きくてよい。   The external electrode may be disposed immediately above the via. The thickness of the first substrate may be smaller than the thickness of the second substrate. The surface roughness of the top surface of the first substrate may be greater than the surface roughness of the bottom surface of the first substrate. The surface roughness of the side surface of the via may be larger than the surface roughness of the top surface of the first substrate. The first substrate may have a thickness of a portion defining the cavity larger than a thickness of the peripheral portion.

所定の実施形態によれば、電子デバイスを製造する方法は、底面及び頂面を有する第1基板の底面の周縁に沿って、当該底面に配置された電子回路を取り囲むべく所定高さの第1側壁を形成することと、当該底面及び当該頂面間を連通させるビアを形成することと、第2基板の頂面の周縁に沿って所定高さの第2側壁を形成することと、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁によりキャビティを内部に画定するべく第1側壁及び第2側壁を位置合わせして接合することとを含み、当該ビアを形成することは、当該ビアに対応する第1基板の底面の一部分に第1ストッパ層及び第2ストッパ層を順に積層することと、当該ビアに対応するスルーホールを形成するべく第1基板をエッチングすることとを含み、第1基板をエッチングする速度は第1ストッパ層をエッチングする速度よりも大きく、第1ストッパ層をエッチングする速度は第2ストッパ層をエッチングする速度よりも大きくてよい。   According to certain embodiments, a method of manufacturing an electronic device includes: a first having a predetermined height to surround an electronic circuit disposed on a bottom surface along a periphery of a bottom surface of a first substrate having a bottom surface and a top surface. Forming a side wall; forming a via that communicates between the bottom surface and the top surface; forming a second side wall having a predetermined height along the periphery of the top surface of the second substrate; Aligning and bonding the first sidewall and the second sidewall to define a cavity therein by the bottom surface of the substrate, the top surface of the second substrate, the first sidewall, and the second sidewall, and forming the via To do this, a first stopper layer and a second stopper layer are sequentially stacked on a part of the bottom surface of the first substrate corresponding to the via, and the first substrate is etched to form a through hole corresponding to the via. The first substrate is Rate of quenching is greater than the speed of etching the first stopper layer, the rate of etching the first stopper layer may be greater than the speed of etching the second stopper layer.

第1基板の頂面に、ビアに接続された外部電極を配置してよい。第1基板のエッチングは、ドライエッチングにより行われてよい。第1ストッパ層はチタン(Ti)及びクロム(Cr)の少なくとも一方を含んでよく、第2ストッパ層は金(Au)を含んでよい。第2ストッパ層の厚さは、第1ストッパ層の厚さよりも大きくてよい。電子回路は配線パッド及び第1ストッパ層を含んでよく、第2ストッパ層は、配線パッドの上まで拡張されるように形成されてよい。   An external electrode connected to the via may be disposed on the top surface of the first substrate. The first substrate may be etched by dry etching. The first stopper layer may include at least one of titanium (Ti) and chromium (Cr), and the second stopper layer may include gold (Au). The thickness of the second stopper layer may be larger than the thickness of the first stopper layer. The electronic circuit may include a wiring pad and a first stopper layer, and the second stopper layer may be formed to extend over the wiring pad.

所定の実施形態によれば、電子デバイスを製造する方法は、底面及び頂面を有する第1基板を与えることであって、所定高さの第1側壁が第1基板の底面の周縁に沿って形成されて当該底面に配置された電子回路を取り囲み、当該底面及び当該頂面間を連通させるビアが形成され、当該底面において当該ビアの直下には当該ビアよりも直径が大きい所定高さの第1柱が配置され、第1側壁及び第1柱は第1金属からなる第1金属層により形成されることと、頂面を有する第2基板を与えることであって、所定高さの第2側壁が第2基板の頂面の周縁に沿って形成され、第1基板の底面に形成された第1柱に対応する位置において所定高さの第2柱が当該頂面に形成され、第2側壁及び第2柱は、第2金属からなる第2金属層と第3金属からなる第3金属層とが順に積層されることにより形成されることと、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁によりキャビティを内部に画定するべく第1側壁が第2側壁に対向かつ接触し、第1柱が第2柱に対向かつ接触するように第1側壁を第2側壁に位置合わせすることと、第1柱及び第2柱が溶融して互いに接合されるように第1基板及び第2基板を加熱することであって、第1金属層、第2金属層及び第3金属層が加熱されて液相拡散接合により合金層を形成することとを含んでよい。   According to certain embodiments, a method of manufacturing an electronic device is to provide a first substrate having a bottom surface and a top surface, the first sidewall having a predetermined height being along the periphery of the bottom surface of the first substrate. A via that is formed and surrounds the electronic circuit disposed on the bottom surface and communicates between the bottom surface and the top surface is formed, and on the bottom surface, a via having a predetermined height larger than the via is directly below the via. One pillar is disposed, the first side wall and the first pillar are formed by a first metal layer made of a first metal, and a second substrate having a top surface is provided, and a second of a predetermined height is provided. A side wall is formed along the periphery of the top surface of the second substrate, and a second column having a predetermined height is formed on the top surface at a position corresponding to the first column formed on the bottom surface of the first substrate. The side wall and the second pillar are made of the second metal layer made of the second metal and the third metal. The first metal sidewall is formed by sequentially stacking the third metal layer, and the first sidewall is defined by the bottom surface of the first substrate, the top surface of the second substrate, the first sidewall, and the second sidewall. Aligning the first side wall with the second side wall so that the first column faces and contacts the second side wall, and the first column and the second column melt to each other. Heating the first substrate and the second substrate so as to be bonded, and heating the first metal layer, the second metal layer, and the third metal layer to form an alloy layer by liquid phase diffusion bonding; May be included.

所定の実施形態において、電子デバイスは、底面及び頂面を有する第1基板と、頂面を有する第2基板とを含み、当該底面に配置された電子回路を取り囲むように第1基板の底面の周縁に沿って所定高さの第1側壁が形成され、当該底面及び当該頂面間を連通させるようにビアが形成され、当該ビアよりも直径が大きい所定高さの第1柱が当該底面において当該ビアの直下に配置され、所定高さの第2側壁が第2基板の頂面の周縁に沿って形成され、第1基板の底面に形成された第1柱に対応する位置において当該頂面に所定高さの第2柱が形成され、第2側壁及び第2柱が、第1側壁が第2側壁に対向かつ接触して第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により画定されたキャビティが内部に形成されるように、第1側壁及び第1柱に位置合わせされて接合され、第1側壁及び第1柱は、液相拡散接合により第2側壁及び第2柱それぞれと接合されてよい。   In certain embodiments, an electronic device includes a first substrate having a bottom surface and a top surface, and a second substrate having a top surface, wherein the electronic device surrounds an electronic circuit disposed on the bottom surface. A first side wall having a predetermined height is formed along the peripheral edge, a via is formed so as to communicate between the bottom surface and the top surface, and a first column having a predetermined height larger than the via is formed on the bottom surface. The top surface is located immediately below the via, and a second side wall having a predetermined height is formed along the periphery of the top surface of the second substrate, and corresponds to the first pillar formed on the bottom surface of the first substrate. A second pillar having a predetermined height is formed, and the second side wall and the second pillar face the first side wall opposite to and in contact with the second side wall, the bottom surface of the first substrate, the top surface of the second substrate, and the first side wall. , And a first side such that a cavity defined by the second sidewall is formed therein And which are joined aligned in the first column, the first side wall and the first pillar may be bonded to the second side wall and the second pillar respectively by the liquid phase diffusion bonding.

圧電体は、タンタル酸リチウム及びニオブ酸リチウムの少なくとも一方を含んでよい。ビアは、ドライエッチングにより形成されたスルーホールを含んでよい。第1基板の頂面には、ビアに接続された外部電極がさらに配置されてよい。第1柱の直径は、第2柱の直径よりも大きくてよい。第2基板の頂面には他の電子回路が配置されてよく、第2側壁は当該他の電子回路を取り囲むように形成されてよい。第2基板は圧電体からなってよい。第2基板の頂面に配置された電子回路は、圧電薄膜共振器、バルク弾性波素子及び弾性表面波素子の少なくとも一つを含んでよい。   The piezoelectric body may include at least one of lithium tantalate and lithium niobate. The via may include a through hole formed by dry etching. An external electrode connected to the via may be further disposed on the top surface of the first substrate. The diameter of the first pillar may be larger than the diameter of the second pillar. Another electronic circuit may be disposed on the top surface of the second substrate, and the second side wall may be formed so as to surround the other electronic circuit. The second substrate may be made of a piezoelectric body. The electronic circuit disposed on the top surface of the second substrate may include at least one of a piezoelectric thin film resonator, a bulk acoustic wave element, and a surface acoustic wave element.

所定の実施形態によれば、電子デバイスは、底面の周縁に沿って形成された所定高さの、当該底面に配置された電子回路を取り囲む第1側壁を有する第1基板と、頂面の周縁に沿って形成された所定高さの第2側壁を有する第2基板とを含み、第2側壁は、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁によりキャビティを内部に画定するべく、第1側壁に位置合わせされて接合され、当該キャビティは、1気圧よりも低い圧力の雰囲気を含んでよい。   According to certain embodiments, an electronic device includes a first substrate having a first wall formed around a periphery of the bottom surface and having a first side wall surrounding the electronic circuit disposed on the bottom surface, and a periphery of the top surface. A second substrate having a second sidewall having a predetermined height and formed along the second sidewall, wherein the second sidewall is a cavity formed by a bottom surface of the first substrate, a top surface of the second substrate, a first sidewall, and a second sidewall. And the cavity may include an atmosphere at a pressure lower than 1 atmosphere.

所定の実施形態において、電子デバイスを製造する方法は、底面の周縁に沿って形成された所定高さの、当該底面に配置された電子回路を取り囲む第1側壁を有する第1基板を与えることと、所定高さの第2側壁を有して平坦な頂面の周縁に沿って形成された第2基板を与えることと、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により内部にキャビティを画定するように第1基板と第2基板とを位置合わせすることであって、第1側壁は第2側壁に対向かつ接触することと、第1側壁と第2側壁とを互いに接合するべく第1基板及び第2基板を加熱することであって、当該加熱は真空下で行われることとを含んでよい。   In certain embodiments, a method of manufacturing an electronic device provides a first substrate having a first sidewall formed around a peripheral edge of a bottom surface and surrounding a electronic circuit disposed on the bottom surface. Providing a second substrate having a second sidewall of a predetermined height and formed along the periphery of the flat top surface; the bottom surface of the first substrate; the top surface of the second substrate; the first sidewall; Aligning the first substrate and the second substrate so as to define a cavity therein by the second side wall, wherein the first side wall faces and contacts the second side wall; and the first side wall and the second side wall Heating the first substrate and the second substrate to join the sidewalls to each other, the heating may include performing under vacuum.

加熱における真空度は、コントロールバルブによって制御されてよい。第1基板及び第2基板は、加熱の前に大気圧下かつ温度100℃以下で予備加熱されてよい。   The degree of vacuum in heating may be controlled by a control valve. The first substrate and the second substrate may be preheated at atmospheric pressure and at a temperature of 100 ° C. or lower before heating.

所定の実施形態によれば、電子デバイスを製造する方法は、底面及び頂面を有する第1基板の当該底面の周縁に沿って所定高さの第1側壁を形成し、当該底面に配置された電子回路を取り囲むことと、当該底面及び当該頂面間を連通させるビアと当該頂面の外部電極とを形成することと、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により内部にキャビティを画定するべく第1側壁及び第2側壁を位置合わせして接合することとを含み、当該ビア及び当該外部電極を形成することは、第1基板において当該ビアに対応するスルーホールを形成することと、第1基板の頂面にスパッタ膜を形成することと、当該外部電極に対応するパターンをフォトリソグラフィーにより当該スパッタ膜上に形成することと、金属をメッキして当該スルーホール内に充填することにより当該ビア及び当該外部電極を同時に形成することとを含んでよい。フォトリソグラフィーには、ネガ型液体レジストを使用してよい。   According to certain embodiments, a method of manufacturing an electronic device includes forming a first sidewall having a predetermined height along a periphery of a bottom surface of a first substrate having a bottom surface and a top surface, and arranging the first sidewall on the bottom surface. Surrounding the electronic circuit, forming vias that communicate between the bottom surface and the top surface and external electrodes on the top surface, the bottom surface of the first substrate, the top surface of the second substrate, the first sidewall, and Forming the via and the external electrode correspond to the via in the first substrate, including aligning and joining the first and second sidewalls to define a cavity therein by the second sidewall Forming a through hole to be formed, forming a sputtered film on the top surface of the first substrate, forming a pattern corresponding to the external electrode on the sputtered film by photolithography, plating a metal This It may include and forming the via and the external electrodes at the same time by filling in the through holes. For photolithography, a negative liquid resist may be used.

所定の実施形態によれば、電子デバイスを製造する方法が与えられ、当該電子デバイスは、底面に配置された電子回路を取り囲むように周縁に沿って形成された所定高さの第1側壁を有する第1基板と、頂面の周縁に沿って形成された所定高さの第2側壁を有する第2基板とを含み、第1側壁は、第1基板の底面として第1ウェハの底面に形成され、所定高さの第1封止部が当該周縁に沿って形成され、第2側壁は、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁によりキャビティを内部に画定するべく、第1側壁に位置合わせされて接合されてよい。方法は、第1基板の底面としての第1ウェハの底面に第1側壁を形成するとともに周縁に沿って所定高さを有する第1封止部を形成することと、第2基板の頂面としての第2ウェハの頂面に第2側壁を形成するとともに当該周縁に沿って所定高さの第2封止部を形成することと、第1ウェハの底面、第2ウェハの頂面、第1封止部、及び第2封止部により内部にキャビティを画定するべく第1ウェハと第2ウェハとを互いに位置合わせして接合することとを含み、第1封止部及び第1側壁はそれぞれが、液相拡散接合により第2封止部及び第2側壁と接合されてよい。   According to certain embodiments, a method of manufacturing an electronic device is provided, the electronic device having a first sidewall of a predetermined height formed along a periphery to surround an electronic circuit disposed on a bottom surface. A first substrate and a second substrate having a second sidewall having a predetermined height formed along the periphery of the top surface, the first sidewall being formed on the bottom surface of the first wafer as the bottom surface of the first substrate. The first sealing portion having a predetermined height is formed along the peripheral edge, and the second side wall has the cavity inside by the bottom surface of the first substrate, the top surface of the second substrate, the first side wall, and the second side wall. To define, it may be aligned and joined to the first sidewall. The method includes forming a first side wall on the bottom surface of the first wafer as the bottom surface of the first substrate and forming a first sealing portion having a predetermined height along the periphery, and as a top surface of the second substrate. Forming a second side wall on the top surface of the second wafer and forming a second sealing portion having a predetermined height along the peripheral edge, the bottom surface of the first wafer, the top surface of the second wafer, The first and second wafers are aligned and joined to each other to define a cavity therein by the sealing portion and the second sealing portion, and the first sealing portion and the first sidewall are respectively However, the second sealing portion and the second sidewall may be joined by liquid phase diffusion joining.

第1ウェハ及び第2ウェハはそれぞれが、実質的に円板形状を有してよい。方法はさらに、第1ウェハ及び第2ウェハにおいて、第1封止部及び第2封止部の外側エッジをトリミングすることを含んでよい。トリミングすることは、第1封止部及び/又は第2封止部を、第1ウェハ及び第2ウェハの周縁に露出させてよい。トリミングすることは、第1ウェハ及び第2ウェハにおいて、第1ウェハの底面又は第2ウェハの頂面に対して所定角度をなす封止部を形成してよい。第1ウェハの頂面及び第2ウェハの底面それぞれを、所定深さまで研磨してよい。電子デバイスは、第1ウェハ及び第2ウェハをダイシングにより個片化して形成してよい。第1側壁及び第2側壁並びに第1封止部及び第2封止部は、液相拡散接合により接合された第1合金層及び第2合金層を含んでよい。   Each of the first wafer and the second wafer may have a substantially disk shape. The method may further include trimming outer edges of the first sealing portion and the second sealing portion in the first wafer and the second wafer. Trimming may expose the first sealing portion and / or the second sealing portion to the periphery of the first wafer and the second wafer. Trimming may form a sealing portion at a predetermined angle with respect to the bottom surface of the first wafer or the top surface of the second wafer in the first wafer and the second wafer. Each of the top surface of the first wafer and the bottom surface of the second wafer may be polished to a predetermined depth. The electronic device may be formed by dicing the first wafer and the second wafer by dicing. The first side wall and the second side wall, and the first sealing portion and the second sealing portion may include a first alloy layer and a second alloy layer joined by liquid phase diffusion bonding.

所定の実施形態によれば、電子デバイスを製造する方法が与えられ、当該電子デバイスは、底面に配置された電子回路を取り囲む周縁に沿って形成された所定高さの第1側壁を有する第1基板と、頂面の周縁に沿って形成された所定高さの第2側壁を有する第2基板とを含み、第2側壁は、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により内部にキャビティを画定するべく、液相拡散接合により第1側壁と位置合わせされて接合されてよい。方法は、第1基板の底面としての第1ウェハの底面に第1側壁を形成するとともに周縁に沿って所定高さの第1封止部を形成することと、第2基板の頂面としての第2ウェハの頂面に第2側壁を形成することと、周縁に沿って所定高さの第2封止部を形成し、第1ウェハの底面、第2ウェハの頂面、第1封止部、及び第2封止部により内部にキャビティを画定するべく、第1ウェハと第2ウェハとを互いに位置合わせして接合することと、第1封止部と第2封止部とを接合することにより、第1ウェハ及び第2ウェハの周縁に沿って第1ウェハの底面と第2ウェハの頂面との間に封止部を形成することと、当該封止部により画定された内部領域において第1ウェハ及び第2ウェハをプラズマにより適切に切り離して個片化することとを含んでよい。封止部は、リング形状を有してよい。   According to certain embodiments, there is provided a method of manufacturing an electronic device, the electronic device having a first sidewall having a predetermined height formed along a periphery surrounding an electronic circuit disposed on a bottom surface. And a second substrate having a second sidewall having a predetermined height formed along the periphery of the top surface, wherein the second sidewall is a bottom surface of the first substrate, a top surface of the second substrate, and a first sidewall. , And the second sidewall may be aligned and bonded to the first sidewall by liquid phase diffusion bonding to define a cavity therein. The method includes forming a first side wall on the bottom surface of the first wafer as the bottom surface of the first substrate and forming a first sealing portion having a predetermined height along the peripheral edge, and forming a top surface of the second substrate. Forming a second side wall on the top surface of the second wafer, forming a second sealing portion having a predetermined height along the periphery, and forming the bottom surface of the first wafer, the top surface of the second wafer, and the first sealing; The first wafer and the second wafer are aligned and joined to each other, and the first sealing part and the second sealing part are joined together to define a cavity inside the part and the second sealing part By forming a sealing portion between the bottom surface of the first wafer and the top surface of the second wafer along the peripheral edges of the first wafer and the second wafer, and an interior defined by the sealing portion Appropriately separating the first wafer and the second wafer by plasma in a region and dividing them into pieces. There. The sealing part may have a ring shape.

ここに記載される複数の側面及び実施形態によれば、液相拡散接合を使用することにより、電子デバイスのデバイス基板とキャップ基板とを、高温高圧プロセスを必要とすることなく接合することができる。ひいては、電子デバイスを製造するサイクルタイムを低減することができる。さらに、スルーホールを形成するプロセスにおけるオーバーエッチングゆえに生じる欠陥を防止し、ひいては歩留まりを向上させることができる。   According to the multiple aspects and embodiments described herein, the device substrate and cap substrate of an electronic device can be joined without the need for high temperature and high pressure processes by using liquid phase diffusion bonding. . As a result, the cycle time which manufactures an electronic device can be reduced. Furthermore, defects caused by over-etching in the process of forming a through hole can be prevented, and thus the yield can be improved.

所定の実施形態によれば、電子デバイスを製造する方法は、底面の周縁に沿って形成された第1側壁を有する第1基板を与えることであって、第1側壁は第1基板の底面に配置された電子回路を取り囲み、第1側壁は第1金属からなる第1金属層から形成されることと、頂面の周縁に沿って形成された第2側壁を有する第2基板を与えることであって、第2側壁は、第2金属からなる第2金属層と第3金属からなる第3金属層とが順に積層されることにより形成され、第2金属及び第3金属は互いに異なりかつ第1金属と異なることと、第1基板の底面、第2基板の頂面、第1側壁、及び第1側壁により内部にキャビティを画定するべく、第1基板と第2基板とを位置合わせすることであって、第1側壁は第2側壁に対向かつ接触することと、液相拡散接合により第1側壁と第2側壁とを互いに接合させるべく第1基板及び第2基板を加熱することであって、第3金属層が溶融されて第1金属層及び第2金属層それぞれと第1合金層及び第2合金層を形成することとを含んでよい。   According to certain embodiments, a method of manufacturing an electronic device provides a first substrate having a first sidewall formed along a periphery of a bottom surface, the first sidewall being on the bottom surface of the first substrate. Surrounding the disposed electronic circuit, the first sidewall is formed from a first metal layer made of a first metal, and a second substrate having a second sidewall formed along the periphery of the top surface is provided. The second side wall is formed by sequentially stacking a second metal layer made of the second metal and a third metal layer made of the third metal, the second metal and the third metal being different from each other and the second metal layer. The first substrate and the second substrate are aligned to be different from one metal and to define a cavity therein by the bottom surface of the first substrate, the top surface of the second substrate, the first sidewall, and the first sidewall. The first side wall is opposite and in contact with the second side wall; Heating the first substrate and the second substrate to bond the first side wall and the second side wall to each other by liquid phase diffusion bonding, the third metal layer being melted and the first metal layer and the second metal layer Forming each with a first alloy layer and a second alloy layer.

所定の実施形態によれば、電子デバイスを製造する方法は、第1基板の底面の周縁に沿って第1側壁を形成して第1基板の底面に配置された電子回路を取り囲むことと、第1基板の底面と第1基板の頂面とを連通させるビアを形成することと、第2基板の頂面において周縁に沿って第2側壁を形成することと、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により内部にキャビティを画定するべく第1側壁と第2側壁とを位置決めして接合することとを含み、当該ビアを形成することは、当該ビアに対応する第1基板の底面の一部分に第1ストッパ層及び第2ストッパ層を順に積層することと、当該ビアに対応するスルーホールを形成するべく第1基板をエッチングすることとを含み、第1基板をエッチングする速度は第1ストッパ層をエッチングする速度よりも大きく、第1ストッパ層をエッチングする速度は第2ストッパ層をエッチングする速度よりも大きくてよい。   According to certain embodiments, a method of manufacturing an electronic device includes forming a first sidewall along a peripheral edge of a bottom surface of a first substrate and surrounding an electronic circuit disposed on the bottom surface of the first substrate; Forming a via that connects the bottom surface of the first substrate and the top surface of the first substrate; forming a second sidewall along the periphery of the top surface of the second substrate; Forming and forming the via includes positioning and bonding the first and second sidewalls to define a cavity therein by the top surface of the substrate, the first sidewall, and the second sidewall. And sequentially stacking a first stopper layer and a second stopper layer on a part of the bottom surface of the first substrate corresponding to the first substrate, and etching the first substrate to form a through hole corresponding to the via, The rate at which one substrate is etched is the first Greater than the speed of etching the path layer, the rate of etching the first stopper layer may be greater than the speed of etching the second stopper layer.

所定の実施形態によれば、底面に配置された電子回路を取り囲むように周縁に沿って形成された第1側壁を有する第1基板と、頂面において周縁に沿って形成された第2側壁を有する第2基板とを含む電子デバイスであって、第2側壁は、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により内部にキャビティを画定するべく、第1側壁と位置合わせされて接合される電子デバイスを製造する方法は、第1基板の底面としての第1ウェハの底面に第1側壁を形成するとともに第1ウェハの底面の周縁まわりに第1封止部を形成することと、第2基板の頂面としての第2ウェハの頂面に第2側壁を形成するとともに第2ウェハの頂面の周縁まわりに第2封止部を形成することと、第1ウェハの底面、第2ウェハの頂面、第1封止部、及び第2封止部により内部にキャビティを画定するべく、第1ウェハと第2ウェハとを互いに位置合わせして接合することとを含み、第1封止部及び第1側壁はそれぞれが、液相拡散接合により第2封止部及び第2側壁と接合されてよい。   According to certain embodiments, a first substrate having a first sidewall formed along the periphery to surround an electronic circuit disposed on the bottom surface, and a second sidewall formed along the periphery on the top surface. And a second substrate having a first sidewall to define a cavity therein by a bottom surface of the first substrate, a top surface of the second substrate, a first sidewall, and a second sidewall. A method of manufacturing an electronic device that is aligned and bonded to a side wall includes: forming a first side wall on a bottom surface of a first wafer as a bottom surface of a first substrate; and first sealing around a periphery of the bottom surface of the first wafer. Forming a portion, forming a second side wall on the top surface of the second wafer as the top surface of the second substrate and forming a second sealing portion around the periphery of the top surface of the second wafer; Bottom surface of first wafer, top surface of second wafer, first sealing portion And aligning and bonding the first wafer and the second wafer to each other to define a cavity therein by the second sealing portion, wherein the first sealing portion and the first sidewall are each a liquid The second sealing portion and the second sidewall may be joined by phase diffusion joining.

所定の実施形態によれば、電子デバイスは、第1基板、外部電極及び第2基板を含み、第1基板は、第1基板の底面の周縁に沿って形成された第1側壁であって、第1基板の底面に配置された電子回路を取り囲む第1側壁を有し、当該外部電極は第1基板の頂面に形成され、当該外部電極は、第1基板の底面と連通するビアを介して当該電子回路に接続され、第2基板は、第2基板の頂面の周縁にそって形成された第2側壁を有し、第2側壁は、第1基板の底面、第2基板の頂面、第1側壁、及び第2側壁により内部にキャビティを画定するべく、第1側壁と位置合わせされて接合され、第1側壁は第1金属と第3金属との第1合金を含み、第2側壁は第2金属と第3金属との第2合金を含み、第1金属は、第2金属と異なりかつ第3金属とも異なってよい。   According to certain embodiments, the electronic device includes a first substrate, an external electrode, and a second substrate, the first substrate being a first sidewall formed along the periphery of the bottom surface of the first substrate, A first side wall surrounding the electronic circuit disposed on the bottom surface of the first substrate; the external electrode is formed on the top surface of the first substrate; and the external electrode is connected via a via communicating with the bottom surface of the first substrate. The second substrate has a second side wall formed along the periphery of the top surface of the second substrate, and the second side wall is a bottom surface of the first substrate and a top surface of the second substrate. A surface, a first side wall, and a second side wall to align and join the first side wall to define a cavity therein, the first side wall including a first alloy of a first metal and a third metal; The two sidewalls include a second alloy of a second metal and a third metal, the first metal being different from the second metal and the third metal It may be different.

少なくとも一つの実施形態の様々な側面が、縮尺どおりであることを意図しない添付図面を参照して以下に説明される。図面は、様々な側面及び実施形態の例示及びさらなる理解を与えるべく含められ、本明細書に組み入れられかつその一部を構成するが、本発明の限界を定めることは意図しない。図面において、様々な図面に例示される同一又はほぼ同一の構成要素はそれぞれが、同じ番号で表される。明確性を目的として、すべての図面においてすべての構成要素が標識されているわけではない。   Various aspects of at least one embodiment are described below with reference to the accompanying drawings, which are not intended to be drawn to scale. The drawings are included to provide illustration and further understanding of various aspects and embodiments, and are incorporated in and constitute a part of this specification, but are not intended to limit the invention. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For clarity, not all components are labeled in all drawings.

一実施形態に係る電子デバイスの模式的構成を示す断面図である。It is sectional drawing which shows the typical structure of the electronic device which concerns on one Embodiment. ここに記載の実施形態に係る電子デバイスがプリント基板に実装された一構造を示す断面図である。It is sectional drawing which shows one structure where the electronic device which concerns on embodiment described here was mounted in the printed circuit board. 第1基板と第2基板との位置合わせを示す断面図である。It is sectional drawing which shows position alignment with a 1st board | substrate and a 2nd board | substrate. 図4A〜4Cは、液相拡散接合を説明する断面図である。4A to 4C are cross-sectional views illustrating liquid phase diffusion bonding. 金及び錫(Au−Sn)の状態図である。It is a phase diagram of gold and tin (Au-Sn). 銅及び錫(Cu−Sn)の状態図である。It is a phase diagram of copper and tin (Cu-Sn). 金及びインジウム(Au−In)の状態図である。It is a phase diagram of gold and indium (Au-In). 銅及びインジウム(Cu−In)の状態図である。It is a phase diagram of copper and indium (Cu-In). 一実施形態に係るビアのストッパ層を説明する一部拡大断面図である。It is a partially expanded sectional view explaining the stopper layer of the via concerning one embodiment. 図8A〜8Cは、従来型のビアを説明する一部拡大断面図である。8A to 8C are partially enlarged cross-sectional views illustrating a conventional via. 一実施形態に係るビア及び外部電極を形成するプロセスのフローチャートである。3 is a flowchart of a process for forming vias and external electrodes according to an embodiment. 従来型のビア及び外部電極の一構造を説明する一部拡大断面図である。It is a partial expanded sectional view explaining one structure of the conventional via | veer and external electrode. 従来型のビア及び外部電極を形成するプロセスのフローチャートである。2 is a flowchart of a process for forming conventional vias and external electrodes. 図12A及び12Bは、ここに記載の実施形態に係る電子デバイスを製造する方法を説明する。12A and 12B illustrate a method of manufacturing an electronic device according to embodiments described herein. 図13A及び13Bは、エッジがトリミングされた第1ウェハ及び第2ウェハを示す断面図である。13A and 13B are cross-sectional views showing a first wafer and a second wafer with edges trimmed. 図14A及び14Bは、ここに記載の実施形態に係る電子デバイスを製造する方法を説明する。14A and 14B illustrate a method of manufacturing an electronic device according to embodiments described herein. 図15A〜15Iは、電子デバイスを製造する方法の一連のステップを説明する第1セットの模式図である。15A-15I are a first set of schematic diagrams illustrating a series of steps in a method of manufacturing an electronic device. 図15A〜15Iは、電子デバイスを製造する方法の一連のステップを説明する第1セットの模式図である。15A-15I are a first set of schematic diagrams illustrating a series of steps in a method of manufacturing an electronic device. 図16A〜16Eは、電子デバイスを製造する方法一連のステップを説明する第2セットの模式図である。16A-16E are a second set of schematic diagrams illustrating a series of steps for manufacturing an electronic device. 図17A〜17Eは、電子デバイスを製造する方法の一連のステップを説明する第3セットの模式図である。17A-17E are a third set of schematic diagrams illustrating a series of steps in a method of manufacturing an electronic device. 図18A〜18Gは、電子デバイスを製造する方法の一連のステップを説明する第4セットの模式図である。18A-18G are a fourth set of schematic diagrams illustrating a series of steps in a method of manufacturing an electronic device. 図18A〜18Gは、電子デバイスを製造する方法の一連のステップを説明する第4セットの模式図である。18A-18G are a fourth set of schematic diagrams illustrating a series of steps in a method of manufacturing an electronic device. 図19A〜19Dは、電子デバイスを製造する方法の一連のステップを説明する第5セットの模式図である。19A to 19D are schematic diagrams of a fifth set illustrating a series of steps of a method for manufacturing an electronic device. 本開示の複数の側面に係る電子デバイスの第1変形例の模式的構成を示す断面図である。It is sectional drawing which shows the typical structure of the 1st modification of the electronic device which concerns on the several side surface of this indication. 第1変形例の電子デバイスがプリント基板に実装された一構造を示す断面図である。It is sectional drawing which shows one structure where the electronic device of the 1st modification was mounted in the printed circuit board. 第1変形例に係る第1基板と第2基板との位置合わせを示す断面図である。It is sectional drawing which shows alignment with the 1st board | substrate and 2nd board | substrate which concern on a 1st modification. 本開示の複数の側面に係る電子デバイスの第2変形例の模式的構成を示す断面図である。It is sectional drawing which shows the typical structure of the 2nd modification of the electronic device which concerns on the several side surface of this indication. 様々な実施形態に係るフィルタ回路群を含むパッケージモジュールの一例のブロック図である。It is a block diagram of an example of a package module including a filter circuit group according to various embodiments. 所定の実施形態に係るフィルタ回路群の複数の例を使用して実装されたアンテナデュプレクサを含むフロントエンドモジュールの一例のブロック図である。It is a block diagram of an example of a front end module including an antenna duplexer implemented using a plurality of examples of filter circuit groups according to a predetermined embodiment. フィルタ回路群の複数の例が様々な実施形態により使用可能な無線デバイスの一例のブロック図である。FIG. 6 is a block diagram of an example wireless device in which multiple examples of filter circuits may be used in accordance with various embodiments.

理解するべきことだが、ここで述べられた方法及び装置の実施形態は、以下の明細書に記載され又は添付図面に例示された構成要素の構造及び配列の詳細への適用に限られない。方法及び装置は、他の実施形態で実装し、様々な態様で実施又は実行することができる。特定の実装例は、例示のみを目的としてここに与えられ、限定されることを意図しない。また、ここで使用される表現及び用語は、説明目的であって、限定としてみなすべきではない。ここでの「含む」、「備える」、「有する」、「包含する」及びこれらの変形の使用は、以降に列挙される項目及びその均等物並びに付加項目の包括を意味する。「又は(若しくは)」の言及は、「又は(若しくは)」を使用して記載される任意の用語が、当該記載の用語の一つの、一つを超える、及びすべてのものを示すように解釈され得る。前後左右、頂底上下、及び横縦への言及はいずれも、記載の便宜を意図しており、本システム及び方法又はこれらの構成要素がいずれか一つの位置的又は空間的配向に限られるものではない。   It should be understood that the method and apparatus embodiments described herein are not limited to application to the details of the structure and arrangement of components set forth in the following specification or illustrated in the accompanying drawings. The method and apparatus may be implemented in other embodiments and implemented or performed in various ways. Particular implementations are provided herein for illustrative purposes only and are not intended to be limiting. Also, the terms and terms used herein are for illustrative purposes and should not be considered limiting. The use of “including”, “comprising”, “having”, “including” and variations thereof herein means inclusion of items listed below and equivalents thereof and additional items. Reference to “or (or)” is intended to be interpreted as any term described using “or (or)” indicates one, more than one, and all of the described terms. Can be done. All references to front, back, left and right, top and bottom, top and bottom, and horizontal and vertical are intended for convenience of description, and the system and method or components thereof are limited to any one positional or spatial orientation. is not.

以下、本開示の複数の側面に係る電子デバイス及びその製造方法について図面を参照して詳細に説明する。図1は、一実施形態に係る電子デバイスの模式的構成を示す断面図である。図2は、一実施形態に係る電子デバイスがプリント基板に実装された一構造を示す断面図である。   Hereinafter, an electronic device according to a plurality of aspects of the present disclosure and a manufacturing method thereof will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view illustrating a schematic configuration of an electronic device according to an embodiment. FIG. 2 is a cross-sectional view showing a structure in which an electronic device according to an embodiment is mounted on a printed circuit board.

図1に示すように、一実施形態によれば、電子デバイス100は、所定厚さを有する第1基板10と、所定厚さを有して第1基板10と所定間隔で対向する第2基板20とを含む。第1基板10はデバイス基板と称してよい。第1基板10の底面10aは第2基板20に対向し、圧電薄膜共振器(FBAR)11を含む電子回路18が設けられる。第2基板20はキャップ基板と称してよい。第2基板20の頂面20aと第1基板10の底面10aとの間には側壁30が形成されて所定間隔が画定される。第1基板10の底面10a、第2基板20の頂面20a、及び側壁30により、第1基板10の底面10aに配置された電子回路18が内部に含まれるキャビティ19が画定される。   As shown in FIG. 1, according to one embodiment, an electronic device 100 includes a first substrate 10 having a predetermined thickness, and a second substrate having a predetermined thickness and facing the first substrate 10 at a predetermined interval. 20 and so on. The first substrate 10 may be referred to as a device substrate. The bottom surface 10 a of the first substrate 10 faces the second substrate 20, and an electronic circuit 18 including a piezoelectric thin film resonator (FBAR) 11 is provided. The second substrate 20 may be referred to as a cap substrate. A side wall 30 is formed between the top surface 20a of the second substrate 20 and the bottom surface 10a of the first substrate 10 to define a predetermined interval. The bottom surface 10 a of the first substrate 10, the top surface 20 a of the second substrate 20, and the sidewall 30 define a cavity 19 in which the electronic circuit 18 disposed on the bottom surface 10 a of the first substrate 10 is contained.

電子デバイス100がプリント基板110に実装された構造150を示す図2を参照すると、図1の電子デバイス100が、ここでは上下を反転されてプリント基板110の頂面110aに配置される。プリント基板110の頂面110aには、電子デバイス100を覆う樹脂層120が配置される。この構造150において、第2基板20は、電子デバイス100の上にある樹脂層120を支持してキャビティ19を保護するキャップの役割を果たす。   Referring to FIG. 2 showing the structure 150 in which the electronic device 100 is mounted on the printed circuit board 110, the electronic device 100 of FIG. 1 is arranged upside down on the top surface 110a of the printed circuit board 110 here. A resin layer 120 that covers the electronic device 100 is disposed on the top surface 110 a of the printed circuit board 110. In the structure 150, the second substrate 20 serves as a cap that supports the resin layer 120 on the electronic device 100 and protects the cavity 19.

詳しくは、第1基板10は、窒化アルミニウム(AlN)及び酸化亜鉛(ZnO)のような圧電体からなる。第1基板10の底面10aには、圧電体の薄膜により複数の圧電薄膜共振器11が形成される。圧電薄膜共振器11は配線パッド12により互いに適切に接続され、フィルタ及びフィルタデバイスのような電子回路18を形成する。なお、電子回路18が圧電薄膜共振器11を含むにもかかわらず、圧電薄膜共振器11とともに、又は圧電薄膜共振器11に代えて、弾性表面波(SAW)素子、又は音響多層膜共振器(SMR)のようなバルク弾性波(BAW)素子を使用することもできる。   Specifically, the first substrate 10 is made of a piezoelectric material such as aluminum nitride (AlN) and zinc oxide (ZnO). A plurality of piezoelectric thin film resonators 11 are formed on the bottom surface 10a of the first substrate 10 by a thin film of piezoelectric material. The piezoelectric thin film resonators 11 are appropriately connected to each other by wiring pads 12 to form an electronic circuit 18 such as a filter and a filter device. Although the electronic circuit 18 includes the piezoelectric thin film resonator 11, a surface acoustic wave (SAW) element or an acoustic multilayer resonator (with the piezoelectric thin film resonator 11 or instead of the piezoelectric thin film resonator 11) Bulk acoustic wave (BAW) elements such as SMR can also be used.

第2基板20は、例えばシリコン又は同様の材料からなる。第2基板20は、第1基板10の底面10aと第2基板20の頂面20aとが所定間隔を介して離間されるように、第1基板10上の側壁30によって支持される。側壁30は、第1基板10の底面10aに配置された電子回路18を取り囲むように、かつ、第1基板10の周縁10d及び第2基板20の周縁20dに沿って延びるように形成される。側壁30は、第1基板10の底面10aと第2基板20の頂面20aとの間に、金(Au)及び錫(Sn)の合金からなる第1合金層31と、錫(Sn)及び銅(Cu)の合金からなり第1合金層31に積層された第2合金層32とを含む。   The second substrate 20 is made of, for example, silicon or a similar material. The second substrate 20 is supported by the side wall 30 on the first substrate 10 such that the bottom surface 10a of the first substrate 10 and the top surface 20a of the second substrate 20 are separated from each other by a predetermined interval. The side wall 30 is formed so as to surround the electronic circuit 18 disposed on the bottom surface 10 a of the first substrate 10 and to extend along the peripheral edge 10 d of the first substrate 10 and the peripheral edge 20 d of the second substrate 20. The side wall 30 includes a first alloy layer 31 made of an alloy of gold (Au) and tin (Sn), a tin (Sn), and a bottom surface 10a of the first substrate 10 and a top surface 20a of the second substrate 20. A second alloy layer 32 made of an alloy of copper (Cu) and laminated on the first alloy layer 31.

図3は、第1基板10と第2基板20との位置合わせを示す断面図である。この断面図は、第1基板10と第2基板20とが側壁30によって接合される前の状態を示す。第1基板10の底面10aにはその周縁10dに沿って第1側壁33が形成され、第2基板20の頂面20aにはその周縁20dに沿って第2側壁34が形成される。第1側壁33は、所定高さを有し、第1基板10の周縁10dから内側に所定距離だけ後退して配置される。第1側壁33は、第1厚さを有して第1金属としての金(Au)からなる第1金属層36により形成される。第2側壁34は、所定高さを有し、第2基板20の周縁20dから内側に所定距離だけ後退して配置される。第2側壁34は、第2厚さを有して第2金属としての銅(Cu)からなる第2金属層37と、第3厚さを有して第3金属としての錫(Sn)からなる第3金属層38とにより形成され、第3金属層38が第2金属層37上に積層される。ここで、第1側壁33の幅は、第2側壁34の幅よりも小さい。   FIG. 3 is a cross-sectional view showing alignment between the first substrate 10 and the second substrate 20. This sectional view shows a state before the first substrate 10 and the second substrate 20 are joined by the side wall 30. A first side wall 33 is formed on the bottom surface 10a of the first substrate 10 along its peripheral edge 10d, and a second side wall 34 is formed on the top surface 20a of the second substrate 20 along its peripheral edge 20d. The first side wall 33 has a predetermined height and is disposed so as to recede from the peripheral edge 10d of the first substrate 10 by a predetermined distance. The first side wall 33 is formed by a first metal layer 36 having a first thickness and made of gold (Au) as a first metal. The second side wall 34 has a predetermined height, and is disposed so as to recede from the peripheral edge 20d of the second substrate 20 by a predetermined distance. The second side wall 34 has a second metal layer 37 having a second thickness and made of copper (Cu) as a second metal, and has a third thickness and made of tin (Sn) as a third metal. The third metal layer 38 is laminated on the second metal layer 37. Here, the width of the first side wall 33 is smaller than the width of the second side wall 34.

第1基板10は、第1基板10の底面10a、第2基板20の頂面20a、第1側壁33、及び第2側壁34が内部にキャビティ19を画定するように、及び第1側壁33が第2側壁34に対向かつ接触するように、第2基板20に位置合わせされる。すなわち、第1側壁33の底面が第2側壁34の頂面に当接する。本開示の一側面によれば、第1基板10及び第2基板20は、位置合わせされた状態が維持されて加熱され、第1側壁33及び第2側壁34が互いに液相拡散(TLP)接合により接合されて単一の側壁30が形成される。   The first substrate 10 includes a bottom surface 10a of the first substrate 10, a top surface 20a of the second substrate 20, a first side wall 33, and a second side wall 34 that define a cavity 19 therein, and the first side wall 33 includes The second substrate 20 is aligned so as to face and contact the second side wall 34. That is, the bottom surface of the first side wall 33 contacts the top surface of the second side wall 34. According to one aspect of the present disclosure, the first substrate 10 and the second substrate 20 are heated while being aligned, and the first sidewall 33 and the second sidewall 34 are bonded to each other by liquid phase diffusion (TLP). To form a single side wall 30.

図4A〜4Cは、TLP接合を説明する一部拡大断面図である。図4A〜4Cは特に、図3に示した第1基板10及び第2基板20において、第1側壁33及び第2側壁34を含む一部分を示す。図4Aは、位置合わせ前の第1基板10及び第2基板20を示す。第1基板10の底面10aには、第1厚さを有して第1金属としての金(Au)からなる第1金属層36が配置されて第1側壁33が形成される。第2基板20の頂面20aには、第2厚さを有して第2金属としての銅(Cu)からなる第2金属層37が配置され、第2金属層37には、第3厚さを有して第3金属としての錫(Sn)からなる第3金属層38が積層され、第2金属層37と第3金属層38とにより第2側壁34が形成される。   4A to 4C are partially enlarged cross-sectional views illustrating TLP bonding. 4A to 4C show a part including the first side wall 33 and the second side wall 34 in the first substrate 10 and the second substrate 20 shown in FIG. FIG. 4A shows the first substrate 10 and the second substrate 20 before alignment. On the bottom surface 10a of the first substrate 10, a first metal layer 36 having a first thickness and made of gold (Au) as a first metal is disposed to form a first sidewall 33. A second metal layer 37 having a second thickness and made of copper (Cu) as a second metal is disposed on the top surface 20a of the second substrate 20, and the second metal layer 37 has a third thickness. A third metal layer 38 made of tin (Sn) as a third metal is stacked, and the second metal layer 37 and the third metal layer 38 form a second side wall 34.

図4Bは、第1基板10及び第2基板20が互いに位置決めされ、第1側壁33の底面と第2側壁34の頂面とが対向かつ接触することを示す。すなわち、第1側壁33の底面が第2側壁34の頂面に当接する。   FIG. 4B shows that the first substrate 10 and the second substrate 20 are positioned relative to each other, and the bottom surface of the first side wall 33 and the top surface of the second side wall 34 face each other and contact each other. That is, the bottom surface of the first side wall 33 contacts the top surface of the second side wall 34.

本開示の一側面によれば、第1側壁33及び第2側壁34が、図4Bに示すように、第1側壁33の底面と第2側壁34の頂面とが接触した状態で加熱され、ひいてはTLP接合により互いに接合され、第1合金層31及び第2合金層32からなる側壁30が形成される。この加熱プロセスは、第1基板10及び第2基板20を240℃から260℃の温度範囲で5分から10分にわたり低圧の雰囲気に維持している間に行われる。このプロセスにより、第1側壁33の第1金属層36の第1金属としての金と、第2側壁34の第3金属層38の第3金属としての錫とに由来する金及び錫の第1合金からなる第1合金層31がもたらされる。このプロセスにより、第2金属層37の第2金属としての銅と、第2側壁34の第3金属層38の第3金属としての錫とに由来する銅及び錫の第2合金からなる第2合金層32も、もたらされる。   According to one aspect of the present disclosure, the first side wall 33 and the second side wall 34 are heated with the bottom surface of the first side wall 33 and the top surface of the second side wall 34 in contact with each other as shown in FIG. As a result, the side walls 30 composed of the first alloy layer 31 and the second alloy layer 32 are formed by TLP bonding. This heating process is performed while maintaining the first substrate 10 and the second substrate 20 in a low pressure atmosphere at a temperature range of 240 ° C. to 260 ° C. for 5 minutes to 10 minutes. By this process, the first gold and tin derived from gold as the first metal of the first metal layer 36 of the first side wall 33 and tin as the third metal of the third metal layer 38 of the second side wall 34. A first alloy layer 31 made of an alloy is provided. By this process, the second metal composed of the second alloy of copper and tin derived from copper as the second metal of the second metal layer 37 and tin as the third metal of the third metal layer 38 of the second sidewall 34. An alloy layer 32 is also provided.

図4Cは、第1側壁33及び第2側壁34がTLP接合によって互いに接合された状態を示す。第1側壁33及び第2側壁34はTLP接合によって接合され、第1基板10の底面10aと第2基板20の頂面20aとの間に第1合金層31及び第2合金層32が順に積層される。第1合金層31は、第1金属層36の第1金属としての金と、第3金属層38の第3金属としての錫とに由来する金及び錫の第1合金からなる。第2合金層32は、第2金属層37の第2金属としての銅と、第3金属層38の第3金属としての錫とに由来する銅及び錫の第2合金からなる。   FIG. 4C shows a state in which the first side wall 33 and the second side wall 34 are bonded to each other by TLP bonding. The first side wall 33 and the second side wall 34 are joined by TLP bonding, and the first alloy layer 31 and the second alloy layer 32 are sequentially stacked between the bottom surface 10a of the first substrate 10 and the top surface 20a of the second substrate 20. Is done. The first alloy layer 31 is made of a first alloy of gold and tin derived from gold as the first metal of the first metal layer 36 and tin as the third metal of the third metal layer 38. The second alloy layer 32 is made of a second alloy of copper and tin derived from copper as the second metal of the second metal layer 37 and tin as the third metal of the third metal layer 38.

本開示の一側面によれば、第2側壁34を形成する第3金属層38の第3金属の融点は、第2金属層37の第2金属の融点よりも低い。実際のところ、第3金属としての錫の融点は、第2金属としての銅の融点よりも低い。このように、第3金属の融点を第2金属の融点よりも低くすることにより、第1側壁33と第2側壁34とを低温かつ短時間で接合することができる。ここで、低温で接合することにより、第1基板10及び第2基板20の内部に累積される加工歪み等が、望ましくない程度に高くなることが回避されるので、接合を安定して行うことができる。さらに、接合が短時間で行うことができるので、生産性が向上する。   According to one aspect of the present disclosure, the melting point of the third metal of the third metal layer 38 that forms the second sidewall 34 is lower than the melting point of the second metal of the second metal layer 37. Actually, the melting point of tin as the third metal is lower than the melting point of copper as the second metal. Thus, by making the melting point of the third metal lower than the melting point of the second metal, the first side wall 33 and the second side wall 34 can be joined at a low temperature in a short time. Here, by joining at a low temperature, it is possible to avoid an undesirably high processing strain and the like accumulated in the first substrate 10 and the second substrate 20, so that the joining is performed stably. Can do. Furthermore, since joining can be performed in a short time, productivity is improved.

加えて、本開示によれば、第2側壁34において、第2金属層37の第2金属と第3金属層38の第3金属とが異なる。第2金属は銅でよく、第3金属は錫でよい。すなわち、第2側壁34が異なる金属からなるように構成され、第2金属層37及び第3金属層38がそれぞれ第2金属及び第3金属からなるので、合金形成開始温度及び合金形成速度が第2金属層37と第3金属層38とで異なる。したがって、第3金属層38の第3金属が、第2金属層37の第2金属よりも融点が低いことに起因して流れ出すことを抑制することができる。   In addition, according to the present disclosure, the second metal of the second metal layer 37 and the third metal of the third metal layer 38 are different on the second side wall 34. The second metal may be copper and the third metal may be tin. That is, since the second side wall 34 is made of different metals, and the second metal layer 37 and the third metal layer 38 are made of the second metal and the third metal, respectively, the alloy formation start temperature and the alloy formation speed are the first. The second metal layer 37 and the third metal layer 38 are different. Therefore, it is possible to suppress the third metal of the third metal layer 38 from flowing out due to the melting point being lower than that of the second metal of the second metal layer 37.

さらに、本開示の複数の側面によれば、図4A及び4Bに示すように、第1金属としての金の第1金属層36により形成された第1側壁33の幅は、第2金属としての銅の第2金属層37と、第3金属としての錫の第3金属層38とにより形成された第2側壁34の幅よりも小さくなるように構成される。これにより、第1側壁33の第1金属層36において使用され得る第1金属としての高価な金の使用量が少なくなるとともに、第2側壁34の大きな幅により側壁30の強度を確保することができる。   Furthermore, according to multiple aspects of the present disclosure, as shown in FIGS. 4A and 4B, the width of the first sidewall 33 formed by the gold first metal layer 36 as the first metal is It is configured to be smaller than the width of the second side wall 34 formed by the second metal layer 37 of copper and the third metal layer 38 of tin as the third metal. As a result, the amount of expensive gold used as the first metal that can be used in the first metal layer 36 of the first sidewall 33 is reduced, and the strength of the sidewall 30 is ensured by the large width of the second sidewall 34. it can.

図5A及び5Bは、金及び錫(Au−Sn)、並びに銅及び錫(Cu−Sn)それぞれの状態図である。これらの状態図からわかるように、第1金属としての金、第2金属としての銅、及び第3金属としての錫は融点が異なり、第3金属としての錫の融点が当該3つの金属中、最も低い。したがって、加熱により周囲温度が上昇すると、第3金属としての錫が溶融を開始し、第1金属としての金と金−錫の第1合金を形成し、その後、第2金属としての銅と銅−錫の第2合金を形成する。   5A and 5B are phase diagrams of gold and tin (Au—Sn), and copper and tin (Cu—Sn), respectively. As can be seen from these phase diagrams, gold as the first metal, copper as the second metal, and tin as the third metal have different melting points, and the melting point of tin as the third metal is in the three metals, The lowest. Therefore, when the ambient temperature rises due to heating, tin as the third metal begins to melt, forming a first alloy of gold and gold-tin as the first metal, and then copper and copper as the second metal -Forming a second alloy of tin.

図5Aに示す温度T1、及び図5Bに示す温度T2は、加熱の工程で予測される温度の上限を示す。これらの温度T1及びT2を上限とする領域では、所定の構成成分を有する合金の融点が一意に決まるので、合金の形成を容易に管理することができる。さらに、図5A及び5Bからわかるように、合金の形成開始温度、又は合金形成温度が、金及び錫(Au−Sn)の第1合金と、銅及び錫(Cu−Sn)の第2合金とでは異なる。したがって、3元系の溶融状態ではなく、実質的に2元系の溶融状態が重なった状態となり、合金の形成を容易に管理することができる。   A temperature T1 shown in FIG. 5A and a temperature T2 shown in FIG. 5B indicate the upper limit of the temperature predicted in the heating process. In the region where the temperatures T1 and T2 are the upper limit, the melting point of the alloy having a predetermined constituent component is uniquely determined, so that the formation of the alloy can be easily managed. Further, as can be seen from FIGS. 5A and 5B, the alloy formation start temperature or alloy formation temperature is such that the first alloy of gold and tin (Au—Sn) and the second alloy of copper and tin (Cu—Sn) It is different. Therefore, not the ternary molten state but the binary molten state is substantially overlapped, and the formation of the alloy can be easily managed.

図4Cに示すように、TLP接合により形成された側壁30は、第1合金層31及び第2合金層32を含むので、第3金属としての錫からなる第3金属層38は消費されて第1合金層31及び第2合金層32に組み入れられている。ここで、融点が低い第3金属としての錫を含まない側壁30は、300℃を超える再溶融温度を有している。したがって、側壁30を含む電子デバイス100は、リフロー及び実装時に求められる耐熱基準を満たすことができる。   As shown in FIG. 4C, the side wall 30 formed by the TLP bonding includes the first alloy layer 31 and the second alloy layer 32. Therefore, the third metal layer 38 made of tin as the third metal is consumed and the second metal layer 38 is consumed. The first alloy layer 31 and the second alloy layer 32 are incorporated. Here, the side wall 30 which does not contain tin as the third metal having a low melting point has a remelting temperature exceeding 300 ° C. Therefore, the electronic device 100 including the sidewall 30 can satisfy the heat resistance standard required at the time of reflow and mounting.

図3、4A又は4Bに示すように、第2側壁34の高さは、第1側壁33の高さよりも大きくなるように構成される。すなわち、第2側壁34に含まれる第2金属層37の第2厚さと第3金属層38の第3厚さとの合計が、第1側壁33に含まれる第1金属層36の第1厚さよりも大きくなるように構成される。さらに、合金形成が開始されるときの温度について、第3金属としての錫の融点は銅又は金よりも低く、第2側壁34を形成する第2金属層37の第2金属としての銅の融点は、第1側壁33を形成する第1金属層36の第1金属としての金よりも高い。したがって、第3金属層38の、融点が低い第3金属としての錫は、当該融点に到達する前に、厚さが大きく第2側壁34を形成する第2金属層37の第2金属としての銅との合金形成を開始する。加えて、第3金属層38の厚さが小さくなるように構成することで、第3金属層38の、接合中に溶融して側方に流れる第3金属としての錫の量を、第3金属としての錫が融点に到達するときの適切な温度プロファイルに従って制御することができる。   As shown in FIG. 3, 4 </ b> A or 4 </ b> B, the height of the second side wall 34 is configured to be larger than the height of the first side wall 33. That is, the sum of the second thickness of the second metal layer 37 included in the second sidewall 34 and the third thickness of the third metal layer 38 is greater than the first thickness of the first metal layer 36 included in the first sidewall 33. Also configured to be larger. Further, regarding the temperature at which the alloy formation is started, the melting point of tin as the third metal is lower than that of copper or gold, and the melting point of copper as the second metal of the second metal layer 37 forming the second sidewall 34. Is higher than gold as the first metal of the first metal layer 36 forming the first side wall 33. Accordingly, the tin as the third metal having a low melting point of the third metal layer 38 has a large thickness as the second metal of the second metal layer 37 forming the second side wall 34 before reaching the melting point. Initiate alloy formation with copper. In addition, by configuring the thickness of the third metal layer 38 to be small, the amount of tin as the third metal that melts and flows to the side of the third metal layer 38 is reduced to the third level. It can be controlled according to an appropriate temperature profile when the tin as metal reaches the melting point.

図6A及び6Bは、金及びインジウム(Au−In)、並びに銅及びインジウム(Cu−In)それぞれの状態図である。図1〜5に示す実施形態において、第2側壁34を形成する第3金属層の第3金属として錫が例示されるが、インジウム(In)も第3金属として代替的に使用することができる。図6A及び6Bの状態図からわかるように、インジウムが第3金属として使用される場合、第1金属としての金、第2金属としての銅、及び第3金属としてのインジウムの融点は異なり、第3金属としてのインジウムの融点が最も低い。したがって、加熱により周囲温度が上昇すると、第3金属としてのインジウムが溶融し、第1金属としての金と金−インジウムの第1合金を形成し、その後、第2金属としての銅と銅−インジウムの第2合金を形成する。   6A and 6B are phase diagrams of gold and indium (Au—In), and copper and indium (Cu—In), respectively. In the embodiment shown in FIGS. 1 to 5, tin is exemplified as the third metal of the third metal layer forming the second sidewall 34, but indium (In) can alternatively be used as the third metal. . As can be seen from the phase diagrams of FIGS. 6A and 6B, when indium is used as the third metal, the melting points of gold as the first metal, copper as the second metal, and indium as the third metal are different. Indium as the three metals has the lowest melting point. Therefore, when the ambient temperature rises by heating, indium as the third metal melts to form a first alloy of gold and gold-indium as the first metal, and then copper and copper-indium as the second metal Forming a second alloy.

インジウムが第3金属として使用される場合、加熱プロセスは、第1基板10及び第2基板20が、170℃から200℃の温度範囲で5分から10分にわたり低圧の雰囲気に維持されている間に行われる。図6Aに示す温度T3、及び図6Bに示す温度T4は、加熱の工程で予測される温度の上限を示す。加熱された周囲温度等を除き、インジウムが第3金属層38の第3金属として使用される場合も、錫が第3金属層38の第3金属として使用された実施形態と同様である。   When indium is used as the third metal, the heating process is performed while the first substrate 10 and the second substrate 20 are maintained in a low pressure atmosphere at a temperature range of 170 ° C. to 200 ° C. for 5 to 10 minutes. Done. A temperature T3 illustrated in FIG. 6A and a temperature T4 illustrated in FIG. 6B indicate the upper limit of the temperature predicted in the heating process. The case where indium is used as the third metal of the third metal layer 38 is the same as the embodiment in which tin is used as the third metal of the third metal layer 38 except for the heated ambient temperature and the like.

本開示の一側面によれば、第1基板10の厚さは、第2基板20の厚さと異なる。例えば、第1基板10の厚さは第2基板20の厚さよりも大きくてよく、さらには第1基板10の厚さは第2基板20の厚さよりも小さくてよい。第1基板10の厚さは第2基板20の厚さと異なるので、図3に示すように第1側壁33及び第2側壁34が互いに位置決めされて接触した場合、第3金属層38に接触する第1金属層36の温度は、熱伝導の差に起因して、第3金属層38が積層された第2金属層37の温度とは異なる。本開示の一側面によれば、第3金属層38の第3金属としての錫は、第1金属層36の第1金属としての金、及び第2金属層37の第2金属としての銅それぞれとの合金形成の開始温度が異なるので、当該開始温度の差は、第1基板10と第2基板20との厚さの差に由来する温度の差よりも大きい。したがって、第1基板10と第2基板20との厚さの差の影響を受けることなく接合を行うことができる。   According to one aspect of the present disclosure, the thickness of the first substrate 10 is different from the thickness of the second substrate 20. For example, the thickness of the first substrate 10 may be larger than the thickness of the second substrate 20, and the thickness of the first substrate 10 may be smaller than the thickness of the second substrate 20. Since the thickness of the first substrate 10 is different from the thickness of the second substrate 20, when the first sidewall 33 and the second sidewall 34 are positioned and contact each other as shown in FIG. 3, the first substrate 10 contacts the third metal layer 38. The temperature of the first metal layer 36 is different from the temperature of the second metal layer 37 on which the third metal layer 38 is laminated due to the difference in heat conduction. According to one aspect of the present disclosure, tin as the third metal of the third metal layer 38 is gold as the first metal of the first metal layer 36 and copper as the second metal of the second metal layer 37. Therefore, the difference in the start temperature is larger than the difference in temperature derived from the difference in thickness between the first substrate 10 and the second substrate 20. Therefore, bonding can be performed without being affected by the difference in thickness between the first substrate 10 and the second substrate 20.

図2に示すように電子デバイス100がプリント基板110に実装された構造150において、樹脂層120は、それぞれが所定の直径を有するフィラー121を含む。ここで、樹脂層120は、例えば、エポキシ樹脂からなり、フィラー121はシリカからなる。本開示の一側面によれば、第1基板10の周縁10d及び第2基板20の周縁20dから内部に後退した側壁30により画定される距離tと、フィラー121の粒径dとの間には以下の関係が存在する。
t≦(dの平均)/2
As shown in FIG. 2, in the structure 150 in which the electronic device 100 is mounted on the printed circuit board 110, the resin layer 120 includes fillers 121 each having a predetermined diameter. Here, the resin layer 120 is made of, for example, an epoxy resin, and the filler 121 is made of silica. According to one aspect of the present disclosure, the distance t defined by the side wall 30 receding from the peripheral edge 10d of the first substrate 10 and the peripheral edge 20d of the second substrate 20 and the particle diameter d of the filler 121 are between The following relationships exist:
t ≦ (average of d) / 2

すなわち、第1基板10の周縁10d及び第2基板20の周縁20dから内部に後退した側壁30が画定する距離tは、樹脂層120に含まれるフィラー121の粒径の平均の半分以下である。   That is, the distance t defined by the side wall 30 receding from the peripheral edge 10d of the first substrate 10 and the peripheral edge 20d of the second substrate 20 is not more than half of the average particle diameter of the filler 121 included in the resin layer 120.

本開示の一側面によれば、第1基板10の周縁10d及び第2基板20の周縁20dから内部に後退した側壁30が画定する距離tが、上述したフィラー121の粒径dとの関係を満たす場合、フィラー121は、第1基板10の底面10aと第2基板20の頂面20aとの間に画定された間隙内に侵入することが防止される。したがって、この間隙は、弾性率の高いフィラー121ではなく、弾性率の低い樹脂層120によって充填されるので、電子デバイス100がプリント基板110に実装された構造150の耐ヒートサイクル性を向上させることができる。さらに、本開示によれば、側壁30が第1基板10の周縁10d及び第2基板20の周縁20dから所定距離tだけ内部に後退しているので、ウェハから第1基板10及び第2基板20を個片化するダイシングプロセスにおいて金属からなる側壁30を切断する必要がなく、当該ダイシングプロセスを容易に行うことができる。例えば、ウェハ切断用のダイシングブレードは、金属側壁30を切断する必要がないので、厚さを大きく構成する必要がない。   According to one aspect of the present disclosure, the distance t defined by the side wall 30 receding from the peripheral edge 10d of the first substrate 10 and the peripheral edge 20d of the second substrate 20 is related to the particle diameter d of the filler 121 described above. When filled, the filler 121 is prevented from entering a gap defined between the bottom surface 10 a of the first substrate 10 and the top surface 20 a of the second substrate 20. Therefore, since this gap is filled with the resin layer 120 with a low elastic modulus instead of the filler 121 with a high elastic modulus, the heat cycle resistance of the structure 150 in which the electronic device 100 is mounted on the printed circuit board 110 is improved. Can do. Further, according to the present disclosure, the side wall 30 is retracted inward from the peripheral edge 10d of the first substrate 10 and the peripheral edge 20d of the second substrate 20 by a predetermined distance t, so that the first substrate 10 and the second substrate 20 from the wafer. It is not necessary to cut the side wall 30 made of metal in the dicing process for separating the pieces, and the dicing process can be easily performed. For example, since the dicing blade for cutting a wafer does not need to cut the metal side wall 30, it is not necessary to increase the thickness.

図1に示すように、本開示によれば、外部電極40が、電子デバイス100におけるデバイス基板として構成された第1基板10の頂面10bに形成される。外部電極40は、ビア42を介して第1基板10の底面10aに配置された電子回路18の配線パッド12に接続される。ビア42は、頂面10b及び底面10a間で第1基板10を貫通するスルーホール10c(図7参照)に形成される。外部電極40は、ビア42と、ビア42の頂面に配置された外部電極層43とを含む。本開示の一側面によれば、ビア42は、スルーホール10cに充填される金属のみで形成されるわけではなく、頂面10bにおいてスルーホール10cまわりの所定領域に所定厚さを有するように形成された金属層とも一体となって形成される。ここで、ビア42は銅メッキにより形成され、外部電極層43は半田メッキにより形成される。ビア42の一部分は、下地処理を目的として成膜されたスパッタ膜41の上に形成される。   As shown in FIG. 1, according to the present disclosure, the external electrode 40 is formed on the top surface 10 b of the first substrate 10 configured as a device substrate in the electronic device 100. The external electrode 40 is connected to the wiring pad 12 of the electronic circuit 18 disposed on the bottom surface 10 a of the first substrate 10 through the via 42. The via 42 is formed in the through hole 10c (see FIG. 7) penetrating the first substrate 10 between the top surface 10b and the bottom surface 10a. The external electrode 40 includes a via 42 and an external electrode layer 43 disposed on the top surface of the via 42. According to one aspect of the present disclosure, the via 42 is not formed of only the metal filling the through hole 10c, but is formed to have a predetermined thickness in a predetermined region around the through hole 10c on the top surface 10b. The formed metal layer is also integrally formed. Here, the via 42 is formed by copper plating, and the external electrode layer 43 is formed by solder plating. A portion of the via 42 is formed on the sputtered film 41 that is formed for the purpose of ground processing.

一実施形態によれば、外部電極40は、電子回路18が配置されるデバイス基板として構成された第1基板10に配置される。さらに、外部電極40は、頂面10bのレベルにおいてスルーホール10c(図7参照)の直上に配置される。したがって、電子回路18から外部電極40まで延びる配線の距離が短くなるように構成されるので、接続点数を減らすことができる。ひいては、フィルタ特性の挿入損失のような電子デバイスの特性を向上させることができる。   According to one embodiment, the external electrode 40 is disposed on the first substrate 10 configured as a device substrate on which the electronic circuit 18 is disposed. Furthermore, the external electrode 40 is disposed immediately above the through hole 10c (see FIG. 7) at the level of the top surface 10b. Therefore, since the distance of the wiring extending from the electronic circuit 18 to the external electrode 40 is shortened, the number of connection points can be reduced. As a result, the characteristics of the electronic device such as the insertion loss of the filter characteristics can be improved.

さらに、図2に示すように電子デバイス100がプリント基板110に実装された構造150において、電子デバイス100は、デバイス基板として構成された第1基板10の頂面10bに配置された外部電極40を介して電極111に接続される。この電極111は、プリント基板110の頂面110aに配置される。したがって、プリント基板110及び第1基板10間の距離、すなわちプリント基板110の頂面110aと第1基板10の頂面10bとの間の距離を最小限にすることができるので、プリント基板110と第1基板10又はキャップ基板として構成された第2基板20との線膨張係数の差に起因して作用する応力を低減することができる。ひいては、信頼性試験における周波数変動を低減することができる。   Further, in the structure 150 in which the electronic device 100 is mounted on the printed circuit board 110 as shown in FIG. 2, the electronic device 100 includes the external electrode 40 disposed on the top surface 10b of the first substrate 10 configured as a device substrate. To the electrode 111. The electrode 111 is disposed on the top surface 110 a of the printed circuit board 110. Therefore, the distance between the printed board 110 and the first board 10, that is, the distance between the top face 110a of the printed board 110 and the top face 10b of the first board 10 can be minimized. It is possible to reduce the stress acting due to the difference in linear expansion coefficient from the first substrate 10 or the second substrate 20 configured as the cap substrate. As a result, frequency fluctuations in the reliability test can be reduced.

さらに、本開示に係る電子デバイスは、第1基板10を第2基板20よりも薄く構成することができる。一実施形態によれば、電子回路18は、スルーホール10c及び外部電極40を含むデバイス基板として構成された第1基板の底面10aに配置されるので、図2に示すように実装された後の第1基板10における応力を低減することができる。その結果、第1基板10の厚さを低減するように構成することができる。第1基板10の厚さが小さくなればなるほど、スルーホール10cのアスペクト比も小さくなる。したがって、スルーホール10cに充填したビア42の金属と第1基板10との線膨張係数の差に由来する応力を低減し、ひいては耐ヒートサイクル性を向上させることができる。   Furthermore, in the electronic device according to the present disclosure, the first substrate 10 can be configured to be thinner than the second substrate 20. According to one embodiment, since the electronic circuit 18 is disposed on the bottom surface 10a of the first substrate configured as a device substrate including the through hole 10c and the external electrode 40, the electronic circuit 18 after being mounted as shown in FIG. The stress in the first substrate 10 can be reduced. As a result, the thickness of the first substrate 10 can be reduced. The smaller the thickness of the first substrate 10, the smaller the aspect ratio of the through hole 10c. Therefore, the stress derived from the difference in the linear expansion coefficient between the metal of the via 42 filled in the through hole 10c and the first substrate 10 can be reduced, and the heat cycle resistance can be improved.

図1に示す実施形態の電子デバイス100において、外部電極40が配置される第1基板10の頂面10bは、電子回路18が配置される底面10aよりも粗くなるように構成される。さらに、外部電極40と第1基板10の頂面10bとの密着性を確保するために、スパッタ膜41が配置される。このため、第1基板10の頂面10bが粗く構成されるので、スパッタ膜41との接触面積が増えて密着強度が向上される。   In the electronic device 100 of the embodiment shown in FIG. 1, the top surface 10b of the first substrate 10 on which the external electrode 40 is disposed is configured to be rougher than the bottom surface 10a on which the electronic circuit 18 is disposed. Further, a sputtered film 41 is disposed in order to ensure adhesion between the external electrode 40 and the top surface 10 b of the first substrate 10. For this reason, since the top surface 10b of the first substrate 10 is configured to be rough, the contact area with the sputtered film 41 is increased and the adhesion strength is improved.

さらに、本開示の電子デバイス100において、第1基板10に形成されたスルーホール10cの側面の粗さは、電子回路18が配置された第1基板の底面10aの粗さよりも大きい。スルーホール10cにはビア42を形成する金属が充填されるが、スルーホール10cの側面が斜行するように構成されるので、成膜エネルギーが分散されて密着強度が低下することがある。本開示によれば、スルーホール10cの粗い側面にスパッタ膜41が成膜されるので、スパッタ膜41とスルーホール10cの側面との密着強度が、スパッタ膜41と頂面10bとの密着強度と同様に確保される。   Furthermore, in the electronic device 100 of the present disclosure, the roughness of the side surface of the through hole 10c formed in the first substrate 10 is larger than the roughness of the bottom surface 10a of the first substrate on which the electronic circuit 18 is disposed. The through hole 10c is filled with the metal forming the via 42. However, since the side surface of the through hole 10c is inclined, the deposition energy may be dispersed and the adhesion strength may be lowered. According to the present disclosure, since the sputtered film 41 is formed on the rough side surface of the through hole 10c, the adhesion strength between the sputtered film 41 and the side surface of the through hole 10c is equal to the adhesion strength between the sputtered film 41 and the top surface 10b. Similarly secured.

図1に示す実施形態の電子デバイス100において、第1基板10の厚さは、電子回路18を含んでキャビティ19を画定する部分が、第1基板10の底面10aと第2基板20の頂面20aとが側壁30により接続される部分よりも厚くなるように勾配がつけられてよい。勾配のついた厚さにより、第1基板10の電子回路18を含んでキャビティ19を画定する部分が、プリント基板110が実装された構造150において、基板撓み試験等で生じる引っ張り応力に耐えることができる。   In the electronic device 100 of the embodiment shown in FIG. 1, the thickness of the first substrate 10 is such that the portion including the electronic circuit 18 and defining the cavity 19 is the bottom surface 10 a of the first substrate 10 and the top surface of the second substrate 20. Gradient may be given so that 20a may become thicker than the part connected by the side wall 30. FIG. Due to the sloped thickness, the portion of the first substrate 10 that includes the electronic circuit 18 and that defines the cavity 19 can withstand the tensile stress generated in the substrate bending test or the like in the structure 150 on which the printed circuit board 110 is mounted. it can.

図7は、ビアのストッパ層を説明する一部拡大断面図である。図1に示すように、電子デバイス100において、第1基板10の底面10aには、ビア42の直下に第1ストッパ層16及び第2ストッパ層17が順に積層される。第1基板10、第1ストッパ層16及び第2ストッパ層間でエッチング速度が異なる。特に、第1基板10のエッチング速度が第1ストッパ層16のエッチング速度よりも大きい一方、第1ストッパ層16のエッチング速度は第2ストッパ層17のエッチング速度よりも大きい。   FIG. 7 is a partially enlarged cross-sectional view for explaining the stopper layer of the via. As shown in FIG. 1, in the electronic device 100, the first stopper layer 16 and the second stopper layer 17 are sequentially stacked on the bottom surface 10 a of the first substrate 10 immediately below the via 42. The etching rate is different among the first substrate 10, the first stopper layer 16, and the second stopper layer. In particular, the etching rate of the first substrate 10 is higher than the etching rate of the first stopper layer 16, while the etching rate of the first stopper layer 16 is higher than the etching rate of the second stopper layer 17.

本開示の電子デバイス100は、第1基板10においてビア42の直下に第1ストッパ層16及び第2ストッパ層17が順に積層されるように構成されるとともに、第1基板10のエッチング速度が第1ストッパ層16のエッチング速度よりも大きく、かつ、第1ストッパ層16のエッチング速度が第2ストッパ層17のエッチング速度よりも大きくなるように構成される。その結果、ビア42の底部において、すなわち、スルーホール10cの側面が第1基板10の底面10aと交差する部分において、スルーホール10cの形成時にオーバーエッチングによるノッチの発生を抑制することができる。これにより、ビア42の形成時に欠陥を有することなくスルーホール10cに金属を充填することができるので、製品の歩留まり及び信頼性を向上させることができる。   The electronic device 100 according to the present disclosure is configured such that the first stopper layer 16 and the second stopper layer 17 are sequentially stacked in the first substrate 10 immediately below the vias 42, and the etching rate of the first substrate 10 is the first. The etching rate of the first stopper layer 16 is higher than that of the first stopper layer 16, and the etching rate of the first stopper layer 16 is higher than that of the second stopper layer 17. As a result, it is possible to suppress the occurrence of notches due to over-etching when the through hole 10c is formed at the bottom of the via 42, that is, at the portion where the side surface of the through hole 10c intersects the bottom surface 10a of the first substrate 10. Thereby, the metal can be filled into the through hole 10c without having a defect when forming the via 42, so that the yield and reliability of the product can be improved.

ここに開示の実施形態によれば、第1基板10のスルーホール10cは、ドライエッチングプロセスにより形成することができる。第1基板10のエッチング速度を第1ストッパ層16のエッチング速度よりも大きくなるように構成し、かつ、第1ストッパ層16のエッチング速度を第2ストッパ層17のエッチング速度よりも大きくなるように構成することにより、材料の広範な選択肢によるドライエッチングが可能となる。対照的に、スルーホール10cがウェットエッチングプロセスにより形成される場合、第1基板10のエッチング速度を第1ストッパ層16のエッチング速度よりも大きくし、かつ、第1ストッパ層16のエッチング速度を第2ストッパ層17のエッチング速度よりも大きくするような材料の選択は困難となる。   According to the embodiment disclosed herein, the through hole 10c of the first substrate 10 can be formed by a dry etching process. The etching rate of the first substrate 10 is configured to be higher than the etching rate of the first stopper layer 16, and the etching rate of the first stopper layer 16 is higher than the etching rate of the second stopper layer 17. By configuring, dry etching with a wide range of material options is possible. In contrast, when the through hole 10c is formed by a wet etching process, the etching rate of the first substrate 10 is made larger than the etching rate of the first stopper layer 16, and the etching rate of the first stopper layer 16 is set to the first etching rate. It is difficult to select a material that is larger than the etching rate of the two stopper layers 17.

本開示によれば、第1ストッパ層16のためにチタン(Ti)、クロム(Cr)等が使用され、第2ストッパ層17のために金(Au)等が使用される。これらの種類の金属を使用すると、第1基板10のエッチング速度が第1ストッパ層16のエッチング速度よりも大きく、かつ、第1ストッパ層16のエッチング速度が第2ストッパ層17のエッチング速度よりも大きい関係を達成することができるので、ビア42の底部におけるノッチ発生を抑制することができる。   According to the present disclosure, titanium (Ti), chromium (Cr) or the like is used for the first stopper layer 16, and gold (Au) or the like is used for the second stopper layer 17. When these types of metals are used, the etching rate of the first substrate 10 is higher than the etching rate of the first stopper layer 16, and the etching rate of the first stopper layer 16 is higher than the etching rate of the second stopper layer 17. Since a large relationship can be achieved, the occurrence of notches at the bottom of the via 42 can be suppressed.

本開示の一側面によれば、チタン又はクロムからなる第1ストッパ層16が与えられるので、第2ストッパ層17を密着させるための密着層が不要となる。かかる密着層は通常、当該面と蒸着又はスパッタリングで成膜された膜との密着を目的として使用されてきたが、チタン又はクロムからなる第1ストッパ層16は、密着層として機能することができる。   According to one aspect of the present disclosure, since the first stopper layer 16 made of titanium or chromium is provided, an adhesion layer for closely attaching the second stopper layer 17 becomes unnecessary. Such an adhesion layer has usually been used for the purpose of adhesion between the surface and a film formed by vapor deposition or sputtering, but the first stopper layer 16 made of titanium or chromium can function as an adhesion layer. .

本開示の一側面によれば、第1ストッパ層16は第2ストッパ層17よりも薄い。第1ストッパ層16の厚さを低減することにより、第1ストッパ層16をエッチングするときのエッチング速度の低下に起因する面内でのエッチング状態のばらつきを防止することができる。すなわち、第1ストッパ層16がエッチングによりスルーホール10cの底面から完全に除去され得ることを保証することができるので、第1ストッパ層16が部分的に残存することがなくなる。さらに、第2ストッパ層17の厚さを大きくすることにより、エッチング後に第2ストッパ層17の強度を確保することができる。エッチングが完了すると、スルーホール10cの底面には、薄くなった第2ストッパ層17が残存する。   According to one aspect of the present disclosure, the first stopper layer 16 is thinner than the second stopper layer 17. By reducing the thickness of the first stopper layer 16, it is possible to prevent variations in the etching state in the plane due to a decrease in the etching rate when the first stopper layer 16 is etched. That is, since it can be ensured that the first stopper layer 16 can be completely removed from the bottom surface of the through-hole 10c by etching, the first stopper layer 16 does not partially remain. Furthermore, by increasing the thickness of the second stopper layer 17, the strength of the second stopper layer 17 can be ensured after etching. When the etching is completed, the thinned second stopper layer 17 remains on the bottom surface of the through hole 10c.

図1及び7に示すように、第1ストッパ層16及び第2ストッパ層17が第1基板10の底面10aにおいてビア42の直下に配置されるが、第1ストッパ層16及び第2ストッパ層17は、第1基板10の底面10aに配置された電子回路18の配線パッド12を覆うように拡張されてよい。さらに、第1ストッパ層16及び第2ストッパ層17は、電子回路18の配線パッド12の代替として、使用することができる。第1ストッパ層16及び第2ストッパ層17は、配線パッド12よりも厚さが大きいので、配線抵抗を下げることができる。したがって、第1ストッパ層16及び第2ストッパ層17を配線パッド12の上まで拡張したり配線パッド12のために使用することができるので、電子デバイス100の挿入損失を低減することができる。   As shown in FIGS. 1 and 7, the first stopper layer 16 and the second stopper layer 17 are disposed immediately below the vias 42 on the bottom surface 10 a of the first substrate 10, but the first stopper layer 16 and the second stopper layer 17. May be extended to cover the wiring pads 12 of the electronic circuit 18 disposed on the bottom surface 10 a of the first substrate 10. Furthermore, the first stopper layer 16 and the second stopper layer 17 can be used as an alternative to the wiring pad 12 of the electronic circuit 18. Since the first stopper layer 16 and the second stopper layer 17 are thicker than the wiring pad 12, the wiring resistance can be lowered. Therefore, since the first stopper layer 16 and the second stopper layer 17 can be extended over the wiring pad 12 or used for the wiring pad 12, insertion loss of the electronic device 100 can be reduced.

図8A〜8Cは、比較例として、底にストッパ層が存在しない従来型のビアを説明する一部拡大断面図である。図8Aに示すように、電子回路18の配線パッド12は、ビア42の直下の位置まで延ばされ、ストッパ層の介在なしにビア42に接続される。図8Bに示すこのような従来型の構成によれば、エッチングにより第1基板10にスルーホール10cが形成されるとき、スルーホール10cの側面が底面10aと交差する部分において、オーバーエッチングによりノッチ10dが発生することがある。図8Cに示すように、底部に生じたノッチ10dを含むスルーホール10cに金属を充填してビア42を形成すると、金属がノッチ10dの部分に入らずに不十分な金属の欠陥がもたらされる場合があり、ひいては電子デバイス100の歩留まりが低下することがある。   8A to 8C are partially enlarged sectional views for explaining a conventional via having no stopper layer at the bottom as a comparative example. As shown in FIG. 8A, the wiring pad 12 of the electronic circuit 18 extends to a position immediately below the via 42 and is connected to the via 42 without the intervention of the stopper layer. According to such a conventional configuration shown in FIG. 8B, when the through hole 10c is formed in the first substrate 10 by etching, the notch 10d is formed by over-etching at the portion where the side surface of the through hole 10c intersects the bottom surface 10a. May occur. As shown in FIG. 8C, when the through hole 10c including the notch 10d formed at the bottom is filled with metal to form the via 42, the metal does not enter the notch 10d portion, resulting in insufficient metal defects. As a result, the yield of the electronic device 100 may decrease.

図1に示す実施形態の電子デバイス100は、第1基板10の底面10aと第2基板20の頂面20aとの間においてビア42の直下に形成された柱50を含む。柱50の直径は、ビア42の直径よりも大きくなるように構成される。第1基板10の底面10aと柱50との間には、第1ストッパ層16及び第2ストッパ層17が介在される。側壁30と同様、柱50も、金−錫の合金からなる第1合金層51と、錫−銅の合金からなる第2合金層52とが順に積層されることにより形成される。   The electronic device 100 of the embodiment shown in FIG. 1 includes a column 50 formed immediately below the via 42 between the bottom surface 10a of the first substrate 10 and the top surface 20a of the second substrate 20. The diameter of the pillar 50 is configured to be larger than the diameter of the via 42. A first stopper layer 16 and a second stopper layer 17 are interposed between the bottom surface 10 a of the first substrate 10 and the pillar 50. Similar to the side wall 30, the column 50 is formed by sequentially laminating a first alloy layer 51 made of a gold-tin alloy and a second alloy layer 52 made of a tin-copper alloy.

図3に示すように第1基板10及び第2基板20が位置合わせされると、第1基板10の底面10aにはビア42の直下に第1柱53が配置され、第1基板10の頂面20aには第1柱53に対応する箇所に第2柱54が配置される。第1柱53は、第1金属としての金からなる第1厚さを有する第1金属層56によって形成される。第2柱54は、第2金属層57及び第3金属層58が順に積層されることによって形成される。第2金属層57は、第2金属としての銅からなり、第2厚さを有する。第3金属層58は、第3金属としての錫からなり、第3厚さを有する。ここで、第1柱53の直径は、第2柱54の直径よりも大きい。   As shown in FIG. 3, when the first substrate 10 and the second substrate 20 are aligned, the first pillar 53 is disposed on the bottom surface 10 a of the first substrate 10 immediately below the via 42, and the top of the first substrate 10 is placed. A second pillar 54 is disposed on the surface 20 a at a location corresponding to the first pillar 53. The first pillar 53 is formed by a first metal layer 56 having a first thickness made of gold as the first metal. The second pillar 54 is formed by sequentially laminating the second metal layer 57 and the third metal layer 58. The second metal layer 57 is made of copper as the second metal and has a second thickness. The third metal layer 58 is made of tin as a third metal and has a third thickness. Here, the diameter of the first pillar 53 is larger than the diameter of the second pillar 54.

図3に示すように、第1基板10及び第2基板20が互いに位置合わせされ、第1基板10の底面10a、第2基板20の頂面20a、第2側壁34、及び第1側壁33が内部にキャビティ19を画定する。第1側壁33及び第2側壁34が互いに対向かつ接触する一方、第1柱53及び第2柱54が互いに対向かつ接触する。すなわち、第1柱53の底面と第2柱54の頂面とが当接する。本開示の一側面によれば、第1基板10及び第2基板20は、位置合わせされかつ加熱された状態に維持され、液相拡散(TLP)接合により第1側壁33及び第2側壁34が互いに接合されて単一の側壁30となり、第1柱53及び第2柱54もTLP接合により互いに接合されて単一の柱50となる。第1柱53及び第2柱54に適用されるTLP接合プロセスは、図4に示す第1側壁33及び第2側壁34のTLP接合プロセスと同様である。   As shown in FIG. 3, the first substrate 10 and the second substrate 20 are aligned with each other, and the bottom surface 10a of the first substrate 10, the top surface 20a of the second substrate 20, the second sidewall 34, and the first sidewall 33 are formed. A cavity 19 is defined therein. The first side wall 33 and the second side wall 34 face and contact each other, while the first pillar 53 and the second pillar 54 face and contact each other. That is, the bottom surface of the first column 53 and the top surface of the second column 54 abut. According to one aspect of the present disclosure, the first substrate 10 and the second substrate 20 are maintained in an aligned and heated state, and the first sidewall 33 and the second sidewall 34 are formed by liquid phase diffusion (TLP) bonding. The first pillar 53 and the second pillar 54 are joined to each other by TLP joining to form a single pillar 50. The TLP joining process applied to the first pillar 53 and the second pillar 54 is the same as the TLP joining process of the first sidewall 33 and the second sidewall 34 shown in FIG.

図2に示すように電子デバイス100がプリント基板110に実装された構造150によれば、プリント基板110の頂面110aと電子デバイス100との間に樹脂層120が介在される。構造150に対してヒートサイクル試験が行われると、プリント基板110と電子デバイス100との間に介在する樹脂層120が膨張及び収縮することによりビア42に対する引っ張り応力が発生する。本開示によれば、ビア42よりも直径が大きい柱50が、ビア42の直下に配置される。したがって、かかる引っ張り応力及びヒートサイクルによりもたらされるビア42への影響に耐える強度が確保され、信頼性を向上させることができる。例えば、ビア42と第1ストッパ層16、第2ストッパ層17又は配線パッド12との間の金属疲労による断線を防止することができる。   As shown in FIG. 2, according to the structure 150 in which the electronic device 100 is mounted on the printed circuit board 110, the resin layer 120 is interposed between the top surface 110 a of the printed circuit board 110 and the electronic device 100. When the heat cycle test is performed on the structure 150, the resin layer 120 interposed between the printed circuit board 110 and the electronic device 100 expands and contracts, thereby generating a tensile stress on the via. According to the present disclosure, the pillar 50 having a diameter larger than that of the via 42 is disposed immediately below the via 42. Therefore, the strength to withstand the influence on the via 42 caused by the tensile stress and the heat cycle is ensured, and the reliability can be improved. For example, disconnection due to metal fatigue between the via 42 and the first stopper layer 16, the second stopper layer 17, or the wiring pad 12 can be prevented.

さらに、本開示によれば、第1金属としての金からなる第1金属層56により形成された第1柱53の直径は、第2金属としての銅からなる第2金属層57と、第3金属としての錫からなる第3金属層58とにより形成された第2柱54の直径よりも大きい。TLP接合により、融点の低い第3金属層58の第3金属としての錫が、第1金属層56の第1金属としての金の側に濡れ広がり、金−錫合金からなる第1合金層51の断面が、なだらかなテーパー状になる。したがって、第1基板10の底面10aと柱50とが交差する部分における応力集中を回避することができるので、さらに信頼性を向上させることができる。   Further, according to the present disclosure, the diameter of the first pillar 53 formed by the first metal layer 56 made of gold as the first metal is the same as the second metal layer 57 made of copper as the second metal, and the third metal layer 56. The diameter of the second pillar 54 formed by the third metal layer 58 made of tin as a metal is larger. By TLP bonding, tin as the third metal of the third metal layer 58 having a low melting point wets and spreads to the gold side as the first metal of the first metal layer 56, and the first alloy layer 51 made of a gold-tin alloy. The cross section becomes a gentle taper. Therefore, stress concentration at the portion where the bottom surface 10a of the first substrate 10 and the column 50 intersect can be avoided, and the reliability can be further improved.

さらに、本開示の複数の側面によれば、スルーホール10cは、レーザによって第1基板10に形成することができる。図1に示すように、一実施形態によれば、柱50は、第1ストッパ層16及び第2ストッパ層17が介在されてスルーホール10cの底部に配置される。したがって、スルーホール10cがレーザにより形成されるときに第1ストッパ層16及び第2ストッパ層17がスルーホール10cの底部から加熱されても、第1ストッパ層16及び第2ストッパ層17の直下に接続された柱50によって熱が速やかに散逸されるので、第1ストッパ層16及び第2ストッパ層17は熱から保護される。したがって、スルーホール10cを形成するときにウェットエッチング又はドライエッチングによっては加工が困難なタンタル酸リチウム、ニオブ酸リチウム、サファイア、ガラス等も、レーザにより加工される第1基板10の材料として使用することができる。   Furthermore, according to a plurality of aspects of the present disclosure, the through hole 10c can be formed in the first substrate 10 by a laser. As shown in FIG. 1, according to one embodiment, the pillar 50 is disposed at the bottom of the through hole 10c with the first stopper layer 16 and the second stopper layer 17 interposed therebetween. Therefore, even when the first stopper layer 16 and the second stopper layer 17 are heated from the bottom of the through hole 10c when the through hole 10c is formed by a laser, the first stopper layer 16 and the second stopper layer 17 are directly below. Since heat is quickly dissipated by the connected pillar 50, the first stopper layer 16 and the second stopper layer 17 are protected from heat. Therefore, lithium tantalate, lithium niobate, sapphire, glass, etc., which are difficult to process by wet etching or dry etching when forming the through hole 10c, should be used as the material of the first substrate 10 processed by the laser. Can do.

図1に示すように、電子デバイス100は、第1基板10の底面10a、第2基板20の頂面20a、及び側壁30により内部に画定されたキャビティ19を有する。本開示の一側面によれば、キャビティ19は、窒素又は空気が充填されて1気圧よりも低い圧力の雰囲気に維持される。キャビティ19を1気圧よりも低い気圧の雰囲気に維持することにより、電子回路18の圧電薄膜共振器11がキャビティ19内で振動するときに作用する空気抵抗を低減することができるので、Q値を確保して良好な特性を実現することができる。   As shown in FIG. 1, the electronic device 100 has a cavity 19 defined therein by a bottom surface 10 a of the first substrate 10, a top surface 20 a of the second substrate 20, and a sidewall 30. According to one aspect of the present disclosure, the cavity 19 is maintained in an atmosphere filled with nitrogen or air at a pressure lower than 1 atmosphere. By maintaining the cavity 19 in an atmosphere at a pressure lower than 1 atm, air resistance acting when the piezoelectric thin film resonator 11 of the electronic circuit 18 vibrates in the cavity 19 can be reduced. It can be ensured and good characteristics can be realized.

本開示の一側面によれば、第1基板10及び第2基板20が図3に示すように位置合わせされた状態のまま、第1側壁33及び第2側壁34は、真空下でTLP接合により接合される。したがって、TLP接合プロセス中に第1側壁33及び第2側壁34が加熱されても、第1側壁33を形成する第1金属層36の第1金属としての金、並びに第2側壁34を形成する第2金属層37の第2金属としての銅、及び第3金属層38の第3金属としてのインジウムの、酸化及び窒化を防止することができる。酸化防止が本開示のTLP接合にとって有利なのは、第2金属層37の第2金属としての銅が酸化されると、図1に示す側壁30の第2合金層32に、銅及び錫からなる第2合金が形成できなくなるからである。   According to one aspect of the present disclosure, the first side wall 33 and the second side wall 34 are formed by TLP bonding under vacuum while the first substrate 10 and the second substrate 20 are aligned as shown in FIG. Be joined. Therefore, even if the first sidewall 33 and the second sidewall 34 are heated during the TLP bonding process, the gold as the first metal of the first metal layer 36 that forms the first sidewall 33 and the second sidewall 34 are formed. Oxidation and nitridation of copper as the second metal of the second metal layer 37 and indium as the third metal of the third metal layer 38 can be prevented. Antioxidation is advantageous for the TLP junction of the present disclosure. When the copper as the second metal of the second metal layer 37 is oxidized, the second alloy layer 32 of the side wall 30 shown in FIG. This is because two alloys cannot be formed.

なおもさらに、本開示の複数の側面によれば、図3に示すように位置合わせされた第1基板10及び第2基板20は、低圧コントロールバルブにより適切な真空度に維持され得る適切なチャンバに格納してもよい。これにより、電子デバイス100のキャビティ19の内部を、適切な真空度に設定することができ、ひいては第1基板10と第2基板20とのTLP接合を確実に実現することができる。またなおもさらに、図3Aに示す位置合わせ状態にある第1基板10と第2基板20とのTLP接合に先立って、100℃以下の温度で予備加熱プロセスが行われる。予備加熱プロセスは、予備加熱温度が100℃以下に設定されるので、第2側壁34を形成する第3金属層38の第3金属としての低融点のインジウムでさえ溶融させることがない。加えて、第2側壁34における第2金属層37の第2金属としての銅もまた、酸化が防止され得る。したがって、図1に示す側壁30の第2合金層32の銅−錫からなる第2合金の形成が阻害されることはない。   Still further, according to aspects of the present disclosure, the first substrate 10 and the second substrate 20 aligned as shown in FIG. 3 may be maintained in a suitable chamber that can be maintained at a suitable degree of vacuum by a low pressure control valve. May be stored. Thereby, the inside of the cavity 19 of the electronic device 100 can be set to an appropriate degree of vacuum, and as a result, TLP bonding between the first substrate 10 and the second substrate 20 can be reliably realized. Still further, prior to TLP bonding of the first substrate 10 and the second substrate 20 in the aligned state shown in FIG. 3A, a preheating process is performed at a temperature of 100 ° C. or lower. In the preheating process, since the preheating temperature is set to 100 ° C. or lower, even the low melting point indium as the third metal of the third metal layer 38 forming the second side wall 34 is not melted. In addition, the copper as the second metal of the second metal layer 37 on the second sidewall 34 can also be prevented from oxidation. Therefore, the formation of the second alloy made of copper-tin in the second alloy layer 32 of the side wall 30 shown in FIG. 1 is not hindered.

図1に示すように、電子デバイス100は、互いに一体に形成された外部電極40及びビア42を有する。ビア42は、第1基板10の頂面10b及び底面10a間を貫通するスルーホール10cに充填された金属によるのみでなく、スルーホール10cまわりの所定領域において頂面10bに所定厚さを有するように形成された金属層によっても一体に形成される。外部電極層43はビア42上に配置される。   As shown in FIG. 1, the electronic device 100 includes an external electrode 40 and a via 42 that are integrally formed with each other. The via 42 has a predetermined thickness on the top surface 10b in a predetermined region around the through hole 10c as well as the metal filled in the through hole 10c penetrating between the top surface 10b and the bottom surface 10a of the first substrate 10. It is also integrally formed by the metal layer formed in the above. The external electrode layer 43 is disposed on the via 42.

図9は、本開示に係るビア及び外部電極を形成する一連のステップを示すフローチャートである。ステップ905において、第1基板10の底面10a及び頂面10b間を貫通するようにスルーホール10cが形成される。スルーホール10cの形成は、例えば、レーザ、ドライエッチング、又はウェットエッチングによってもよい。ステップ910において、第1基板10の頂面10b及びスルーホール10cの側面にスパッタ膜41が形成される。ここで、スパッタ膜41は、メッキによる金属の密着を可能にする。ステップ915において、ネガ型液体レジストが使用されて外部電極40のレジストパターンが形成される。   FIG. 9 is a flowchart illustrating a series of steps for forming vias and external electrodes according to the present disclosure. In step 905, the through hole 10c is formed so as to penetrate between the bottom surface 10a and the top surface 10b of the first substrate 10. The through hole 10c may be formed by, for example, laser, dry etching, or wet etching. In step 910, the sputtered film 41 is formed on the top surface 10b of the first substrate 10 and the side surfaces of the through holes 10c. Here, the sputtered film 41 enables metal adhesion by plating. In step 915, a negative liquid resist is used to form a resist pattern of the external electrode 40.

ステップ920において、スパッタ膜41に銅がメッキされる。これにより、銅が、スルーホール10cの中に充填されるとともに、第1基板10の頂面10bにおけるスルーホール10cまわりの所定領域に金属層としてもメッキされ、ビア42が形成される。さらに、ビア42の頂面には、外部電極層43が半田メッキにより所定厚さを有するように形成される。ビア42及び外部電極層43によって外部電極40が構成される。ステップ925において、ステップ915で形成されたレジストが除去される。ステップ930において、外部電極40が形成された領域を除き、第1基板10の頂面10bからスパッタ膜41が除去される。   In step 920, copper is plated on the sputtered film 41. As a result, copper is filled into the through hole 10c, and a predetermined region around the through hole 10c on the top surface 10b of the first substrate 10 is also plated as a metal layer to form the via 42. Furthermore, the external electrode layer 43 is formed on the top surface of the via 42 so as to have a predetermined thickness by solder plating. The external electrode 40 is configured by the via 42 and the external electrode layer 43. In step 925, the resist formed in step 915 is removed. In step 930, the sputtered film 41 is removed from the top surface 10 b of the first substrate 10 except for the region where the external electrode 40 is formed.

一実施形態によれば、第1基板10のスルーホール10cに充填された金属と、外部電極層43を支持するべく第1基板10の頂面10bでスルーホール10cまわりの所定領域に形成された金属層とが一体となってビア42を形成する。したがって、ビア42が、第1基板10の頂面10bに配置された外部電極40の外部電極層43と、第1基板10の底面10aに配置された第1ストッパ層16、第2ストッパ層17又は配線パッド12とを直接的に接続するので、電子デバイスの接続抵抗ひいては挿入損失を低下させることができる。   According to one embodiment, the metal filled in the through hole 10c of the first substrate 10 and the top surface 10b of the first substrate 10 formed in a predetermined region around the through hole 10c to support the external electrode layer 43. The via is formed integrally with the metal layer. Therefore, the via 42 has the external electrode layer 43 of the external electrode 40 disposed on the top surface 10 b of the first substrate 10, and the first stopper layer 16 and the second stopper layer 17 disposed on the bottom surface 10 a of the first substrate 10. Alternatively, since the wiring pad 12 is directly connected, the connection resistance of the electronic device and thus the insertion loss can be reduced.

さらに、本開示の一側面によれば、ネガ型液体レジストを使用して外部電極40のパターンが形成される。したがって、スルーホール10cの中へのレジストの流れ込みを防止することにより、外部電極40をパターニングすることができる。この防止は、スルーホール10の直径及び深さ、すなわちビア42の体積、レジストの粘度、並びに/又はレジストのプリベーク時間を制御することによって達成することができる。   Furthermore, according to one aspect of the present disclosure, the pattern of the external electrode 40 is formed using a negative liquid resist. Therefore, the external electrode 40 can be patterned by preventing the resist from flowing into the through hole 10c. This prevention can be achieved by controlling the diameter and depth of the through-hole 10, ie, the volume of the via 42, the resist viscosity, and / or the resist pre-bake time.

図10は、比較例としての従来型のビア及び外部電極の一構造を説明する一部拡大断面図である。従来型のビアは、第1スパッタ膜41aが介在されて第1基板10のスルーホール10cに形成された金属充填部42aを含む。従来型の外部電極40は、外部電極支持層42b及び外部電極層43を含む。第1基板10の頂面10bには、第2スパッタ膜41bが介在されて外部電極支持層42bが形成される。外部電極支持層42bには外部電極層43が形成される。従来型のビアの金属充填部42aと、外部電極40の外部電極支持層42bとは、既に述べた実施形態にかかる外部電極40のビア42と同様に銅メッキによって形成されるが、金属充填部42aと外部電極支持層42bとの間に第2スパッタ膜41bが介在される点が異なる。   FIG. 10 is a partially enlarged cross-sectional view illustrating one structure of a conventional via and an external electrode as a comparative example. The conventional via includes a metal filling portion 42a formed in the through hole 10c of the first substrate 10 with the first sputtered film 41a interposed therebetween. The conventional external electrode 40 includes an external electrode support layer 42 b and an external electrode layer 43. An external electrode support layer 42b is formed on the top surface 10b of the first substrate 10 with the second sputtered film 41b interposed therebetween. An external electrode layer 43 is formed on the external electrode support layer 42b. The conventional metal filling portion 42a of the via and the external electrode support layer 42b of the external electrode 40 are formed by copper plating in the same manner as the via 42 of the external electrode 40 according to the embodiment described above. The difference is that a second sputtered film 41b is interposed between 42a and the external electrode support layer 42b.

図11は、従来型のビア及び外部電極を形成する一連のステップを示すフローチャートである。ステップ1105において、第1基板10にスルーホール10cが形成される。ステップ1110において、1回目のスパッタリングにより、スルーホール10cの側面を含む領域を覆うように第1スパッタ膜41aが形成される。ステップ1115において、スルーホール10cの第1スパッタ膜41aには、銅メッキにより金属充填部42aが形成される。ステップ1120において、第1基板10の頂面10bが研磨され、頂面10bに形成された銅メッキ部分及び第1スパッタ膜41aが除去される。   FIG. 11 is a flowchart illustrating a series of steps for forming a conventional via and external electrode. In step 1105, a through hole 10 c is formed in the first substrate 10. In step 1110, the first sputtered film 41a is formed by the first sputtering so as to cover the region including the side surface of the through hole 10c. In step 1115, a metal filling portion 42a is formed on the first sputtered film 41a in the through hole 10c by copper plating. In step 1120, the top surface 10b of the first substrate 10 is polished, and the copper plating portion and the first sputtered film 41a formed on the top surface 10b are removed.

ステップ1125において、2回目のスパッタリングにより、金属充填部42aを含む第1基板10の頂面10bに第2スパッタ膜41bが形成される。ステップ1130において、フォトリソグラフィーにより外部電極40のレジストパターンが形成される。ステップ1135において、銅メッキにより外部電極支持層42bが形成され、半田メッキにより外部電極層43が形成される。ステップ1140において、レジストが除去される。ステップ1145において、外部電極40が形成された部分を除き、第1基板10の頂面10bから第2スパッタ膜41bが除去される。   In step 1125, the second sputtering film 41b is formed on the top surface 10b of the first substrate 10 including the metal filling portion 42a by the second sputtering. In step 1130, a resist pattern of the external electrode 40 is formed by photolithography. In step 1135, the external electrode support layer 42b is formed by copper plating, and the external electrode layer 43 is formed by solder plating. In step 1140, the resist is removed. In step 1145, the second sputtered film 41b is removed from the top surface 10b of the first substrate 10 except for the portion where the external electrode 40 is formed.

図10に示す従来型のビア及び外部電極40、並びに図11に示す従来型のビア及び外部電極40を製造する方法によれば、金属充填部42a及び外部電極支持層42bが別個のステップにより形成されるので、金属充填部42aと外部電極支持層42bとの間に第2スパッタ膜41bが介在される。このため、工数が増加するとともに、第2スパッタ膜41bが介在することにより金属充填部42aと外部電極層43との間の接続抵抗が増加する。   According to the conventional via and external electrode 40 shown in FIG. 10 and the conventional via and external electrode 40 shown in FIG. 11, the metal filling portion 42a and the external electrode support layer 42b are formed in separate steps. Therefore, the second sputtered film 41b is interposed between the metal filling portion 42a and the external electrode support layer 42b. For this reason, the number of man-hours increases, and the connection resistance between the metal filling portion 42a and the external electrode layer 43 increases due to the second sputtered film 41b interposed.

図1及び2への参照、並びに図13A及び13Bへの参照に引き続き、図12A及び12Bは、本開示に係る電子デバイスを製造する方法を例示する。図12Aは、電子デバイス100を形成するべく配列された複数の第1基板10を有する第1ウェハ210と、同じ電子デバイス100を形成するべく配列された複数の第2基板20を有する第2ウェハ220とを含む構造200を示し、第1ウェハ210と第2ウェハ220とは互いに位置合わせされてTLP接合により接合される。換言すれば、図12Aは、図1に示す電子デバイス100が、第1ウェハ210及び第2ウェハ220から未だ個片化されておらず、複数の電子デバイス100が互いに結合されている状態を示す。   Following reference to FIGS. 1 and 2 and to FIGS. 13A and 13B, FIGS. 12A and 12B illustrate a method of manufacturing an electronic device according to the present disclosure. FIG. 12A shows a first wafer 210 having a plurality of first substrates 10 arranged to form an electronic device 100 and a second wafer having a plurality of second substrates 20 arranged to form the same electronic device 100. The first wafer 210 and the second wafer 220 are aligned with each other and bonded by TLP bonding. In other words, FIG. 12A shows a state in which the electronic device 100 shown in FIG. 1 is not yet separated from the first wafer 210 and the second wafer 220 and a plurality of electronic devices 100 are coupled to each other. .

図12Bは、実質的に円形状の第1ウェハ210及び第2ウェハ220を含む構造200を示す図12Aにおけるボックス領域Rの一部拡大図である。図12A及び12Bに示すように、電子デバイス100の構成が形成された部分が有効エリア201に対応する。有効エリア201から外側において周縁205に沿って所定幅の無効エリア202、リング状の封止部203、及びメッキ給電部204が順に形成される。   FIG. 12B is a partially enlarged view of box region R in FIG. 12A showing a structure 200 that includes a substantially circular first wafer 210 and a second wafer 220. As shown in FIGS. 12A and 12B, the portion where the configuration of the electronic device 100 is formed corresponds to the effective area 201. An invalid area 202 having a predetermined width, a ring-shaped sealing portion 203, and a plating power feeding portion 204 are formed in this order along the peripheral edge 205 outside the effective area 201.

本開示によれば、封止部203は、第1基板10の底面10aに配置された第1側壁33、及び第2基板20の頂面20aに配置された第2側壁34と同様に構成される。すなわち、第1ウェハの底面210には周縁205に沿って第1封止部が形成され、第2ウェハの頂面220において第1封止部に対応する部分には第2封止部が形成される。第1封止部は、第1金属としての金からなり第1厚さを有する第1金属層を含む。第2封止部は、第2金属としての銅からなり第2厚さを有する第2金属層と、第3金属としての錫からなり第3厚さを有する第3金属層とが、順に積層されて構成される。   According to the present disclosure, the sealing portion 203 is configured in the same manner as the first side wall 33 disposed on the bottom surface 10 a of the first substrate 10 and the second side wall 34 disposed on the top surface 20 a of the second substrate 20. The That is, the first sealing portion is formed along the peripheral edge 205 on the bottom surface 210 of the first wafer, and the second sealing portion is formed in a portion corresponding to the first sealing portion on the top surface 220 of the second wafer. Is done. The first sealing portion includes a first metal layer made of gold as the first metal and having a first thickness. The second sealing portion includes a second metal layer made of copper as the second metal and having a second thickness, and a third metal layer made of tin as the third metal and having the third thickness, which are sequentially stacked. Configured.

第1ウェハ210と第2ウェハ220とを互いに位置合わせしてTLP接合により接合するとき、図3に示すように第1基板10及び第2基板20が位置合わせされる場合と同様、第1側壁33及び第2側壁34が互いに対向かつ接触するように位置合わせされる一方、第1封止部及び第2封止部は互いに対向かつ接触するように位置合わせされ、第1ウェハ210に形成された第1側壁33と第2ウェハ220に形成された第2側壁34とによりキャビティ19が内部に画定される。すなわち、第1封止部の底面と第2封止部の頂面とが当接する。第1ウェハ210及び第2ウェハ220はその後、位置合わせされた状態で加熱されると、第1側壁33及び第2側壁34がTLP接合により接合されて単一の側壁30を形成する一方、第1封止部及び第2封止部がTLP接合により接合されて単一の封止部203を形成する。第1封止部及び第2封止部のTLP接合プロセスは、図4A〜4Cに示す第1側壁33及び第2側壁34のTLP接合プロセスと同様である。   When the first wafer 210 and the second wafer 220 are aligned with each other and bonded by TLP bonding, as in the case where the first substrate 10 and the second substrate 20 are aligned as shown in FIG. 33 and the second side wall 34 are aligned so as to face each other and contact each other, while the first sealing portion and the second sealing portion are aligned so as to face each other and contact each other, and are formed on the first wafer 210. The cavity 19 is defined inside by the first side wall 33 and the second side wall 34 formed on the second wafer 220. That is, the bottom surface of the first sealing portion and the top surface of the second sealing portion abut. When the first wafer 210 and the second wafer 220 are then heated in an aligned state, the first side wall 33 and the second side wall 34 are joined by TLP bonding to form a single side wall 30, while The first sealing portion and the second sealing portion are joined by TLP bonding to form a single sealing portion 203. The TLP bonding process of the first sealing portion and the second sealing portion is the same as the TLP bonding process of the first side wall 33 and the second side wall 34 shown in FIGS.

図13Aは、第1ウェハ210及び第2ウェハ220が互いに接合された構造00にエッジトリミングが施された状態を説明する断面図である。図13Aに示すように、第1ウェハ210及び第2ウェハ220が互いに接合された構造200は、周縁205から、リング状の封止部203が形成された位置まで研削される。ここで、封止部203は、第1ウェハの底面210又は第2ウェハの頂面220に沿って、例えば150μmの長さw1が確保されるように加工される。研削により加工された斜面251は、第1ウェハの底面210又は第2ウェハの頂面220に対して、例えば60度の角度θをなす。さらに、エッジトリミングによる斜面251は、第2ウェハの頂面220から深さd3まで形成され、深さd3を超えるフランジ部255は残される。深さd3は、例えば210μmである。   FIG. 13A is a cross-sectional view illustrating a state in which edge trimming is performed on the structure 00 in which the first wafer 210 and the second wafer 220 are bonded to each other. As shown in FIG. 13A, the structure 200 in which the first wafer 210 and the second wafer 220 are bonded to each other is ground from the peripheral edge 205 to a position where the ring-shaped sealing portion 203 is formed. Here, the sealing portion 203 is processed along the bottom surface 210 of the first wafer or the top surface 220 of the second wafer so as to ensure a length w1 of, for example, 150 μm. The inclined surface 251 processed by grinding forms an angle θ of 60 degrees with respect to the bottom surface 210 of the first wafer or the top surface 220 of the second wafer, for example. Further, the slope 251 by edge trimming is formed from the top surface 220 of the second wafer to the depth d3, and the flange portion 255 exceeding the depth d3 is left. The depth d3 is, for example, 210 μm.

図13Aに示すように、第1ウェハ210及び第2ウェハ220が接合されて構造200となるが、構成200がエッジトリミングされて斜面251が形成された後、第1ウェハ210は、厚さd1が達成されるまで頂面から研磨される。厚さd1は、例えば70μmである。第2ウェハ220は、厚さd2が達成されるまで底面から研磨される。厚さd2は、例えば110μmである。この研磨加工の間にフランジ部255は、研削されて除去される。   As shown in FIG. 13A, the first wafer 210 and the second wafer 220 are joined to form the structure 200, but after the configuration 200 is edge trimmed to form the slope 251 the first wafer 210 has a thickness d1. Polishing from the top surface until is achieved. The thickness d1 is, for example, 70 μm. The second wafer 220 is polished from the bottom surface until the thickness d2 is achieved. The thickness d2 is, for example, 110 μm. During this polishing process, the flange portion 255 is ground and removed.

上述した製造方法により、第1ウェハ210及び第2ウェハ220が互いに接合された構造200は、周縁205からリング状の封止部203まで研削によりエッジトリミングされる。第1ウェハ210及び第2ウェハ220は封止部203により支持されるので、第1ウェハ210及び第2ウェハ220が薄くなるように研磨されるときでも、第1ウェハ210及び第2ウェハ220が破壊されることがない。   The structure 200 in which the first wafer 210 and the second wafer 220 are bonded to each other by the manufacturing method described above is edge trimmed by grinding from the peripheral edge 205 to the ring-shaped sealing portion 203. Since the first wafer 210 and the second wafer 220 are supported by the sealing portion 203, even when the first wafer 210 and the second wafer 220 are polished to be thin, the first wafer 210 and the second wafer 220 are It will not be destroyed.

さらに、上述した製造方法によれば、第1ウェハ210及び第2ウェハ220が互いに接合された構造200は、エッジトリミングにより形成されて、第1ウェハの底面210又は第2ウェハの頂面220に対し、例えば60度の角度θを有する斜面251を含む。封止部203が斜面251で露出するので、メッキ用のシード層を、斜面251に沿って周縁205から第1ウェハ210及び第2ウェハ220の中心まで連続して、低抵抗で成膜することができる。   Furthermore, according to the manufacturing method described above, the structure 200 in which the first wafer 210 and the second wafer 220 are bonded to each other is formed by edge trimming, and is formed on the bottom surface 210 of the first wafer or the top surface 220 of the second wafer. On the other hand, for example, a slope 251 having an angle θ of 60 degrees is included. Since the sealing portion 203 is exposed on the inclined surface 251, a plating seed layer is continuously formed along the inclined surface 251 from the peripheral edge 205 to the center of the first wafer 210 and the second wafer 220 with low resistance. Can do.

ここで、角度θを90度未満に構成することにより、斜面251上の封止部203の露出面積が大きくなるので、当該低抵抗に寄与し得る。しかしながら、角度θが小さくなりすぎると、封止部203がウェハの中に入り込むので有効エリア201が狭まり、結果的に、第1ウェハ210及び第2ウェハ220からダイシングして取り出せる電子デバイスの数が減少し得る。したがって、ダイシングして取り出せる電子デバイスの数の低下を防止し、かつ、メッキ用のシード層の低抵抗を確保するべく、角度θは60±20度又は60±10度とすることができる。   Here, by configuring the angle θ to be less than 90 degrees, the exposed area of the sealing portion 203 on the inclined surface 251 is increased, which can contribute to the low resistance. However, if the angle θ is too small, the sealing portion 203 enters the wafer and the effective area 201 is narrowed. As a result, the number of electronic devices that can be diced out from the first wafer 210 and the second wafer 220 is reduced. May decrease. Therefore, the angle θ can be set to 60 ± 20 degrees or 60 ± 10 degrees in order to prevent a decrease in the number of electronic devices that can be taken out by dicing and to secure a low resistance of the seed layer for plating.

さらに、上述した製造方法によれば、エッジトリミングにより形成された斜面251は、封止部203を含む。したがって、第1ウェハ210及び第2ウェハ220が薄くなるように研磨するか又はウェットプロセスに投入するとき、封止部203は、第1ウェハの底面210と第2ウェハの頂面220とにより画定されるキャビティへの水の侵入を阻止することができる。なおもさらに、第2ウェハの底面220が研磨されるとき、第2ウェハ220の周縁205に沿って形成されたフランジ部255を、同時に研削して除去することができる。   Furthermore, according to the manufacturing method described above, the slope 251 formed by edge trimming includes the sealing portion 203. Accordingly, when the first wafer 210 and the second wafer 220 are polished to be thin or put into a wet process, the sealing portion 203 is defined by the bottom surface 210 of the first wafer and the top surface 220 of the second wafer. Water can be prevented from entering the cavity. Still further, when the bottom surface 220 of the second wafer is polished, the flange portion 255 formed along the peripheral edge 205 of the second wafer 220 can be simultaneously ground and removed.

図13Bは、比較例として、第1ウェハ210及び第2ウェハ220が互いに接合された構造200が、従来型の製造方法によりエッジトリミングが施された状態を説明する断面図である。従来型の製造方法では、第1ウェハ210はエッジトリミングにより研削され、第1ウェハの底面210又は第2ウェハの頂面220に対して90度をなす垂直面253が形成される。第1ウェハ210及び第2ウェハ220が互いに接合されてエッジトリミングされた構造200は、第1ウェハの底面210と第2ウェハの頂面220との間に封止部203を含まない。このため、第1ウェハ210及び第2ウェハ220が互いに接合された構造では、第1ウェハの頂面210又は第2ウェハの底面220を研磨するか又はウェットプロセスに投入するとき、第1ウェハの底面210と第2ウェハの頂面220との間のギャップに水が浸入することがある。   FIG. 13B is a cross-sectional view illustrating a state in which the structure 200 in which the first wafer 210 and the second wafer 220 are bonded to each other is subjected to edge trimming by a conventional manufacturing method as a comparative example. In the conventional manufacturing method, the first wafer 210 is ground by edge trimming to form a vertical surface 253 that forms 90 degrees with respect to the bottom surface 210 of the first wafer or the top surface 220 of the second wafer. The structure 200 in which the first wafer 210 and the second wafer 220 are bonded to each other and edge trimmed does not include the sealing portion 203 between the bottom surface 210 of the first wafer and the top surface 220 of the second wafer. Therefore, in the structure in which the first wafer 210 and the second wafer 220 are bonded to each other, when the top surface 210 of the first wafer or the bottom surface 220 of the second wafer is polished or put into a wet process, Water may enter the gap between the bottom surface 210 and the top surface 220 of the second wafer.

図14A及び14Bは、本開示のさらなる側面に係る電子デバイスを製造する方法を説明する。図14Aに示すように、第1ウェハ210及び第2ウェハ220が位置合わせされて接合された構造200は、裏面研削保護テープ250に貼り付けられて固定される。ここで、構造200は図12Aに示すようになる。詳しくは、電子デバイス100を形成するべく配列された複数の第1基板10を有する第1ウェハ210と、同じ電子デバイス100を形成するべく配列された複数の第2基板20を有する第2ウェハ220とが、互いに位置合わせされて接合される。第1ウェハ210及び第2ウェハ220は、周縁205に沿ってリング状の封止部203により接合される。この接合はTLP接合により行われるが、適切な接合を達成するべく他のオプションを使用することもできる。例えば、有機樹脂による接着を使用することができる。   14A and 14B illustrate a method of manufacturing an electronic device according to a further aspect of the present disclosure. As shown in FIG. 14A, the structure 200 in which the first wafer 210 and the second wafer 220 are aligned and joined is affixed and fixed to the back surface grinding protection tape 250. Here, the structure 200 is as shown in FIG. 12A. Specifically, a first wafer 210 having a plurality of first substrates 10 arranged to form the electronic device 100 and a second wafer 220 having a plurality of second substrates 20 arranged to form the same electronic device 100. Are aligned and joined together. The first wafer 210 and the second wafer 220 are joined by a ring-shaped sealing portion 203 along the peripheral edge 205. This joining is done by TLP joining, but other options can be used to achieve proper joining. For example, adhesion with an organic resin can be used.

本開示によれば、第1ウェハ210及び第2ウェハ220が封止部203で接合された構造200が、プラズマダイシングビフォアグラインディング(Dicing−Before−Grinding(DBG))技術を使用してダイシングされ、別個の電子デバイス100のチップに個片化される。詳しくは、第1ウェハ210及び第2ウェハ220が封止部203で接合された構造200に電子デバイス100の複数のチップが形成された有効エリア201が、第1ウェハの頂面210から適切な深さまで、プラズマによりダイシングされる。その後、裏面研削保護テープ250が剥離され、他の裏面研削保護テープが第1ウェハの頂面210に貼り付けられる。引き続き、第2ウェハの底面220が適切な深さまで研磨されて別個のチップが形成される。当該頂面から裏面研削保護テープが剥離されて構造200が分離されて個片化されることにより、最終製品としての電子デバイス100を得ることができる。   According to the present disclosure, the structure 200 in which the first wafer 210 and the second wafer 220 are joined by the sealing portion 203 is diced using a plasma dicing before grinding (DBG) technique. , Separated into separate electronic device 100 chips. Specifically, an effective area 201 in which a plurality of chips of the electronic device 100 are formed on the structure 200 in which the first wafer 210 and the second wafer 220 are joined by the sealing portion 203 is appropriate from the top surface 210 of the first wafer. To the depth, it is diced by plasma. Thereafter, the back surface grinding protection tape 250 is peeled off, and another back surface grinding protection tape is attached to the top surface 210 of the first wafer. Subsequently, the bottom surface 220 of the second wafer is polished to an appropriate depth to form separate chips. The back surface grinding protection tape is peeled from the top surface, and the structure 200 is separated and separated into individual pieces, whereby the electronic device 100 as the final product can be obtained.

本開示の一側面によれば、第2ウェハの底面220が研磨された後であっても、リング状の封止部203の剛性ゆえに、第1ウェハ210及び第2ウェハ220の形状を維持することができる。したがって、研磨プロセス中にチップが研磨抵抗を受けて動くことが防止されるので、互いに隣接して配列されたチップが、チッピングを引き起こすことがなくなり、ひいては損傷なく電子デバイス100を分離することができる。したがって、ダイシングされる隣接チップ同士間の幅を狭くすることができるので、有効エリア201内で得られるチップの数を最大化することができる。   According to one aspect of the present disclosure, the shape of the first wafer 210 and the second wafer 220 is maintained due to the rigidity of the ring-shaped sealing portion 203 even after the bottom surface 220 of the second wafer is polished. be able to. Accordingly, since the chips are prevented from moving due to polishing resistance during the polishing process, the chips arranged adjacent to each other do not cause chipping, and thus the electronic device 100 can be separated without damage. . Accordingly, since the width between adjacent chips to be diced can be reduced, the number of chips obtained in the effective area 201 can be maximized.

図14Bは、比較例として、従来型のダイシングプロセスを説明する。従来、周縁205に沿って封止部203を固定することなく第1ウェハ210及び第2ウェハ220を含む構造200は、裏面研削保護テープ250に接着され、電子デバイス100の複数のチップが有効エリア201から切り出されていた。ウェハは、ダイヤモンド砥石を使用したメカニカルな研磨及びダイシング技術によって薄膜化されていた。かかる従来型のメカニカルな研磨及びダイシング技術は、チッピング、チップ割れ及びウェア割れを引き起こし、歩留まり及び生産性が低下し得る。   FIG. 14B illustrates a conventional dicing process as a comparative example. Conventionally, the structure 200 including the first wafer 210 and the second wafer 220 without fixing the sealing portion 203 along the peripheral edge 205 is bonded to the back surface grinding protection tape 250, and a plurality of chips of the electronic device 100 are effective areas. It was cut out from 201. The wafer was thinned by a mechanical polishing and dicing technique using a diamond grindstone. Such conventional mechanical polishing and dicing techniques can cause chipping, chip cracking and wear cracking, which can reduce yield and productivity.

図15A〜15Iは、本開示の複数の側面に係る電子デバイスを製造する方法の一連のステップを説明する。図15Aに示すように、第2ウェハ220が用意され、第2ウェハ220の頂面220aにスパッタ膜311が形成される。図15Bに示すように、第2ウェハ220上に形成されたスパッタ膜311に、スピンコーティングによりレジスト313が塗布される。図15Cに示すように、レジスト313が塗布された第2ウェハ220は、露光されて所定パターンが転写される。図15Dに示すように、露光された第2ウェハ220に露光後ベーク(PEB)及び現像が施される。これにより、レジスト313から所定部分が除去され、凹部315が形成される。図15Eに示すように、凹部315には銅メッキ317が形成される。図15Fに示すように、レジスト313及び銅メッキ317が研磨されて表面が平坦にされる。図15Gに示すように、銅メッキ317の上には錫メッキ319が施される。図15Hに示すように、レジスト313が除去される。図15Iに示すように、さらにスパッタ膜311が除去される。図15Iからわかるように、第2金属としての銅からなる第2金属層と、第3金属としての錫からなる第3金属層とが順に、第2ウェハ220の頂面220aに積層される。   15A-15I illustrate a series of steps in a method of manufacturing an electronic device according to aspects of the present disclosure. As shown in FIG. 15A, a second wafer 220 is prepared, and a sputtered film 311 is formed on the top surface 220 a of the second wafer 220. As shown in FIG. 15B, a resist 313 is applied to the sputtered film 311 formed on the second wafer 220 by spin coating. As shown in FIG. 15C, the second wafer 220 coated with the resist 313 is exposed to transfer a predetermined pattern. As shown in FIG. 15D, the exposed second wafer 220 is subjected to post-exposure baking (PEB) and development. As a result, a predetermined portion is removed from the resist 313 and a recess 315 is formed. As shown in FIG. 15E, a copper plating 317 is formed in the recess 315. As shown in FIG. 15F, the resist 313 and the copper plating 317 are polished to flatten the surface. As shown in FIG. 15G, tin plating 319 is applied on the copper plating 317. As shown in FIG. 15H, the resist 313 is removed. As shown in FIG. 15I, the sputtered film 311 is further removed. As can be seen from FIG. 15I, the second metal layer made of copper as the second metal and the third metal layer made of tin as the third metal are sequentially stacked on the top surface 220 a of the second wafer 220.

図16A〜16Eは、図15A〜15Iのステップに引き続いての、本開示の複数の側面に係る電子デバイスを製造する方法の一連のステップを説明する。図16Aに示すように、圧電薄膜共振器325と、ストッパ層323と、及び底面210aに適切に形成された第1金属としての金からなる第1金属層36(図3及び4を参照)とを含む第1ウェハ210が、図15Iに示す第2ウェハ220と位置合わせされる。その後、第2ウェハ220の頂面220aに順に積層された第2金属層及び第3金属層と、第1ウェハ210の底面210aに形成された第1金属層とが、TLP接合により接合される。この接合により、金−錫の合金からなる第1合金層321と、銅−錫の合金からなる第2合金層322とが、第1ウェハ210の底面210aと第2ウェハ220の頂面220aとの間に順に積層される。図16Bに示すように、第1ウェハ210がその周縁に沿って研削され、第1合金層321及び第2合金層322が露出する斜面327が形成される。図16Cに示すように、第2ウェハ220の底面220bには裏面研削保護テープ329が貼り付けられる。図16Dに示すように、第1ウェハ210が所定厚さになるように、第1ウェハ210が頂面210bから研磨される。図16Eに示すように、第2ウェハ220の底面220bから裏面研削保護テープ329が剥離される。   16A-16E illustrate a series of steps in a method of manufacturing an electronic device according to aspects of the present disclosure following the steps of FIGS. 15A-15I. As shown in FIG. 16A, a piezoelectric thin film resonator 325, a stopper layer 323, and a first metal layer 36 (see FIGS. 3 and 4) made of gold as a first metal appropriately formed on the bottom surface 210a. Is aligned with the second wafer 220 shown in FIG. 15I. Thereafter, the second metal layer and the third metal layer sequentially stacked on the top surface 220a of the second wafer 220 and the first metal layer formed on the bottom surface 210a of the first wafer 210 are bonded by TLP bonding. . By this bonding, the first alloy layer 321 made of a gold-tin alloy and the second alloy layer 322 made of a copper-tin alloy are connected to the bottom surface 210a of the first wafer 210 and the top surface 220a of the second wafer 220. Are laminated in order. As shown in FIG. 16B, the first wafer 210 is ground along the peripheral edge thereof to form a slope 327 where the first alloy layer 321 and the second alloy layer 322 are exposed. As shown in FIG. 16C, a back surface grinding protection tape 329 is attached to the bottom surface 220 b of the second wafer 220. As shown in FIG. 16D, the first wafer 210 is polished from the top surface 210b so that the first wafer 210 has a predetermined thickness. As shown in FIG. 16E, the back surface grinding protection tape 329 is peeled from the bottom surface 220b of the second wafer 220.

図17A〜17Eは、図16A〜16Eのステップに引き続いての、本開示の複数の側面に係る電子デバイスを製造する方法の一連のステップを説明する。図17Aに示すように、第1ウェハ210の頂面210bにはスピンコーティングによりレジスト337が塗布される。図17Bに示すように、レジスト337が塗布された第1ウェハ210は、露光されて所定パターンが転写される。図17Cに示すように、露光された第1ウェハ210にPEB及び現像が施される。これにより、レジスト337から所定部分が除去され、凹部339が形成される。図17Dに示すように、第1ウェハ210が加工されるように凹部339を介するドライエッチングが行われ、頂面210bが底面210aと連通し、スルーホール341が、底面210aに形成されたストッパ層323に到達するようになる。図17Eに示すように、レジスト337が除去される。   17A-17E illustrate a series of steps in a method for manufacturing an electronic device according to aspects of the present disclosure following the steps of FIGS. 16A-16E. As shown in FIG. 17A, a resist 337 is applied to the top surface 210b of the first wafer 210 by spin coating. As shown in FIG. 17B, the first wafer 210 coated with the resist 337 is exposed to transfer a predetermined pattern. As shown in FIG. 17C, the exposed first wafer 210 is subjected to PEB and development. As a result, a predetermined portion is removed from the resist 337 and a recess 339 is formed. As shown in FIG. 17D, dry etching is performed through the recess 339 so that the first wafer 210 is processed, the top surface 210b communicates with the bottom surface 210a, and a through layer 341 is a stopper layer formed on the bottom surface 210a. 323 is reached. As shown in FIG. 17E, the resist 337 is removed.

図18A〜18Gは、図17A〜17Eのステップに引き続いての、本開示の一側面に係る電子デバイスを製造する方法の一連のステップを説明する。図18Aに示すように、第1ウェハ210の頂面210bと、スルーホール341の側面及び底面とが覆われるようにスパッタ膜345が形成される。図18Bに示すように、第1ウェハ210の頂面210bには、スピンコーティングによりレジスト347が、スパッタ膜345が介在されて塗布される。図18Cに示すように、露光、PEB及び現像により、スルーホール341の頂部のレジスト347が除去され、凹部349が形成される。図18Dに示すように、スルーホール341及び凹部349に銅メッキ351が形成される。図18Eに示すように、銅メッキ351に半田メッキ353が施される。図18Fに示すように、レジスト347が除去される。図18Gに示すように、スパッタ膜345が除去される。   18A-18G illustrate a series of steps in a method of manufacturing an electronic device according to one aspect of the present disclosure following the steps of FIGS. 17A-17E. As shown in FIG. 18A, the sputtered film 345 is formed so as to cover the top surface 210b of the first wafer 210 and the side and bottom surfaces of the through holes 341. As shown in FIG. 18B, a resist 347 is applied to the top surface 210b of the first wafer 210 by spin coating with a sputtered film 345 interposed. As shown in FIG. 18C, the resist 347 at the top of the through hole 341 is removed by exposure, PEB, and development, and a recess 349 is formed. As shown in FIG. 18D, copper plating 351 is formed in the through hole 341 and the recess 349. As shown in FIG. 18E, solder plating 353 is applied to the copper plating 351. As shown in FIG. 18F, the resist 347 is removed. As shown in FIG. 18G, the sputtered film 345 is removed.

図19A〜19Dは、図18A〜18Gのステップに引き続いての、本開示の一側面に係る電子デバイスを製造する方法の一連のステップを説明する。図19Aに示すように、第1ウェハ210及び第2ウェハ220が上下に反転され、ここで下側になった第1ウェハ210の頂面210bに裏面研削保護テープ357が貼り付けられる。図19Bに示すように、ここで上側になった第2ウェハ220の底面220bが、第2ウェハ220所定厚さを有するまで研磨される。図19Cに示すように、ここで下側になった第1ウェハ210の頂面210bから、裏面研削保護テープ357が剥離される。図19Dに示すように、構造200はプラズマDBGによりダイシングされて電子デバイス100の別個のチップに個片化される。すなわち、構造200は、第1ウェハ210の頂面210bから適切な深さまでプラズマによりダイシングされ、切目359が形成される。引き続き、第1ウェハ210の頂面210bに裏面研削保護テープが貼り付けられ、第2ウェハ220の底面220bが研磨されて電子デバイス100の複数のチップが分離され、個片化される。   19A-19D illustrate a series of steps in a method of manufacturing an electronic device according to one aspect of the present disclosure following the steps of FIGS. 18A-18G. As shown in FIG. 19A, the first wafer 210 and the second wafer 220 are turned upside down, and a back surface grinding protection tape 357 is attached to the top surface 210b of the first wafer 210 which is on the lower side. As shown in FIG. 19B, the bottom surface 220b of the second wafer 220 that is on the upper side is polished until the second wafer 220 has a predetermined thickness. As shown in FIG. 19C, the back surface grinding protection tape 357 is peeled from the top surface 210b of the first wafer 210 which is the lower side here. As shown in FIG. 19D, the structure 200 is diced by plasma DBG and singulated into separate chips of the electronic device 100. That is, the structure 200 is diced by plasma from the top surface 210b of the first wafer 210 to an appropriate depth, and a cut 359 is formed. Subsequently, a back surface grinding protection tape is attached to the top surface 210b of the first wafer 210, the bottom surface 220b of the second wafer 220 is polished, and a plurality of chips of the electronic device 100 are separated and separated into individual pieces.

図20は、本開示のさらなる側面に係る電子デバイスの第1変形例を示す断面図である。図21は、電子デバイスの第1変形例がプリント基板に実装された一構造を示す断面図である。第2基板20の底面20bに外部電極40が配置された第1変形例は、図1に示すように第1基板10の頂面10bに外部電極40が配置された既に述べた実施形態の電子デバイスとは異なる。第1変形例の他の構成は、既に述べた実施形態の電子デバイスのものと同様である。   FIG. 20 is a cross-sectional view illustrating a first modification of the electronic device according to a further aspect of the present disclosure. FIG. 21 is a cross-sectional view showing a structure in which a first modification of the electronic device is mounted on a printed circuit board. The first modification in which the external electrode 40 is disposed on the bottom surface 20b of the second substrate 20 is the same as that of the embodiment described above in which the external electrode 40 is disposed on the top surface 10b of the first substrate 10 as shown in FIG. Different from the device. Other configurations of the first modification are the same as those of the electronic device of the embodiment described above.

図22は、第1変形例に係る電子デバイスの第1基板と第2基板との位置合わせを示す断面図である。第1変形例においてはまた、図3に示す電子デバイスと同様、第1基板10の底面10a、第2基板20の頂面20a、第1側壁33及び第2側壁34により内部にキャビティ19が画定されて第1側壁33が第2側壁34に対向かつ接触するように、第1基板10と第2基板20とが位置合わせされる。第1基板10及び第2基板20が、位置合わせされた状態で維持されて加熱され、第1側壁33及び第2側壁34は互いにTLP接合により接合されて単一の側壁30となる。   FIG. 22 is a cross-sectional view showing alignment between the first substrate and the second substrate of the electronic device according to the first modification. In the first modification, as in the electronic device shown in FIG. 3, the cavity 19 is defined inside by the bottom surface 10 a of the first substrate 10, the top surface 20 a of the second substrate 20, the first side wall 33, and the second side wall 34. Thus, the first substrate 10 and the second substrate 20 are aligned so that the first side wall 33 faces and contacts the second side wall 34. The first substrate 10 and the second substrate 20 are maintained and heated in an aligned state, and the first sidewall 33 and the second sidewall 34 are joined to each other by TLP bonding to form a single sidewall 30.

圧電薄膜共振器11を含む図1及び図2に例示される電子回路18は、第1基板10に配置されるが、第1変形例の電子デバイスにおいて外部電極40は第2基板20に配置される。これにより、電子回路18を第1基板10に配置するプロセスを、外部電極40を第2基板20に配置するプロセスから分離することができるので、各基板を個別に加工することができる。したがって、第1基板10及び第2基板20について各プロセスの工数を低減するとともに、当該プロセスを容易に行うことができる。   The electronic circuit 18 illustrated in FIGS. 1 and 2 including the piezoelectric thin film resonator 11 is disposed on the first substrate 10, but the external electrode 40 is disposed on the second substrate 20 in the electronic device of the first modification. The Thereby, since the process of arranging the electronic circuit 18 on the first substrate 10 can be separated from the process of arranging the external electrode 40 on the second substrate 20, each substrate can be processed individually. Therefore, it is possible to reduce the number of processes for each process for the first substrate 10 and the second substrate 20 and easily perform the processes.

図23は、本開示のなおもさらなる側面に係る電子デバイスの第2変形例を示す断面図である。図1に示す電子デバイス100と比べると、第2変形例においては、第2基板20の頂面20aにも圧電薄膜共振器21を含む電子回路28が配置される。電子回路28は、配線パッド22により互いに適切に接続された圧電薄膜共振器21を有し、第1基板10の底面10aに配置された電子回路18とともにフィルタ、フィルタデバイス等を形成する。第2変形例によれば、第2基板20にも電子回路28が配置されるので、電子デバイス100における集積度を向上させて電子デバイス100の小型化とともに高機能化を図ることができる。   FIG. 23 is a cross-sectional view illustrating a second modification of the electronic device according to still further aspects of the present disclosure. Compared with the electronic device 100 shown in FIG. 1, in the second modified example, the electronic circuit 28 including the piezoelectric thin film resonator 21 is also disposed on the top surface 20 a of the second substrate 20. The electronic circuit 28 includes the piezoelectric thin film resonators 21 that are appropriately connected to each other by the wiring pads 22, and forms a filter, a filter device, and the like together with the electronic circuit 18 disposed on the bottom surface 10 a of the first substrate 10. According to the second modified example, since the electronic circuit 28 is also arranged on the second substrate 20, the degree of integration in the electronic device 100 can be improved, and the electronic device 100 can be miniaturized and enhanced in functionality.

フィルタ回路群18の複数の実施形態は、例えば無線通信デバイスのような電子デバイスにおいて究極的に使用されるモジュールに組み入れられて当該モジュールとしてパッケージ化され得る。図24は、フィルタ回路群18を含むモジュール2400の一例を説明するブロック図である。フィルタ回路群18は、一以上の接続パッド、例えば図1に示す外部電極40、を含む一以上のダイ100に実装することができる。例えば、フィルタ回路群18は、フィルタ回路群18の入力接触部に対応する接続パッド40と、フィルタ回路群18の出力接触部に対応する他の接続パッド40とを含んでよい。パッケージ状モジュール2400は、例えば、図2に示すプリント基板110のような、ダイ100を含む複数の構成要素を受容するように構成されたパッケージ基板を含む。例えば、図2に示す電極111のような複数の接続パッドを、パッケージ基板110に配置することができ、様々なフィルタ回路群18の様々な接続パッド40を、当該フィルタ回路群18への及びフィルタ回路群18からの様々な信号を通過させるべく、パッケージ基板110上の電極111に接続することができる。図24には、接続パッド40及び電極111が重なるように例示される。モジュール2400はさらに、オプションとして、ここでの開示に鑑みて半導体製作の当業者に知られているような、例えば一以上の付加フィルタ、増幅器、前置フィルタ、変調器、復調器、ダウンコンバータ等のような、他の回路群ダイ2410を含む。いくつかの実施形態において、モジュール2400はまた、例えば、モジュール2400の保護を与えてその取り扱いを容易にする一以上のパッケージ構造を含み得る。かかるパッケージ構造は、パッケージ基板110を覆うように形成されてその上に様々な回路及び構成要素を実質的にカプセル化する寸法とされたオーバーモールドを含み得る。オーバーモールドは、例えば、図2に示す樹脂120を含み得る。   Embodiments of the filter circuitry 18 may be incorporated into and packaged as a module ultimately used in an electronic device such as a wireless communication device. FIG. 24 is a block diagram illustrating an example of a module 2400 that includes the filter circuit group 18. The filter circuit group 18 can be mounted on one or more dies 100 including one or more connection pads, for example, the external electrodes 40 shown in FIG. For example, the filter circuit group 18 may include a connection pad 40 corresponding to the input contact portion of the filter circuit group 18 and another connection pad 40 corresponding to the output contact portion of the filter circuit group 18. Packaged module 2400 includes a package substrate configured to receive a plurality of components including die 100, such as, for example, printed circuit board 110 shown in FIG. For example, a plurality of connection pads such as the electrode 111 shown in FIG. 2 can be arranged on the package substrate 110, and the various connection pads 40 of the various filter circuit groups 18 are connected to the filter circuit group 18 and the filter circuit. In order to pass various signals from the circuit group 18, it can be connected to the electrode 111 on the package substrate 110. In FIG. 24, the connection pad 40 and the electrode 111 are illustrated as overlapping. Module 2400 may optionally further include, for example, one or more additional filters, amplifiers, pre-filters, modulators, demodulators, downconverters, etc., as known to those skilled in the art of semiconductor fabrication in light of the disclosure herein. Other circuit group dies 2410 are included. In some embodiments, the module 2400 may also include one or more package structures that, for example, provide protection for the module 2400 and facilitate its handling. Such a package structure may include an overmold formed over the package substrate 110 and dimensioned to substantially encapsulate various circuits and components thereon. The overmold may include, for example, the resin 120 illustrated in FIG.

上述したように、フィルタ回路群18の様々な例及び実施形態を、多様な電子デバイスに使用することができる。例えば、フィルタ回路群18は、アンテナデュプレクサにおいて使用することができる。アンテナデュプレクサは、それ自体が、RFフロントエンドモジュール及び通信デバイスのような様々な電子デバイスに組み入れ可能である。   As described above, various examples and embodiments of the filter circuit group 18 can be used in a variety of electronic devices. For example, the filter circuit group 18 can be used in an antenna duplexer. The antenna duplexer can itself be incorporated into various electronic devices such as RF front end modules and communication devices.

図25を参照すると、例えば、無線通信デバイス(例えば携帯電話機)のような電子デバイスにおいて使用され得るフロントエンドモジュール2500の一例のブロック図が示される。フロントエンドモジュール2500は、共通ノード2502、入力ノード2504及び出力ノード2506を有するアンテナデュプレクサ2510を含む。共通ノード2502にはアンテナ2610が接続される。   Referring to FIG. 25, a block diagram of an example of a front end module 2500 that can be used in an electronic device such as, for example, a wireless communication device (eg, a mobile phone) is shown. Front end module 2500 includes an antenna duplexer 2510 having a common node 2502, an input node 2504, and an output node 2506. An antenna 2610 is connected to the common node 2502.

アンテナデュプレクサ2510は、入力ノード2504及び共通ノード2502間に接続された一以上の送信フィルタ2512と、共通ノード2502及び出力ノード2506間に接続された一以上の受信フィルタ2514とを含んでよい。送信フィルタの通過帯域は、受信フィルタの通過帯域とは異なる。フィルタ回路18の実施形態は、一以上の送信フィルタ2512又は一以上の受信フィルタ2514に含まれ得る。インダクタ又は他の整合要素2520を共通ノード2502に接続することができる。   The antenna duplexer 2510 may include one or more transmit filters 2512 connected between the input node 2504 and the common node 2502 and one or more receive filters 2514 connected between the common node 2502 and the output node 2506. The pass band of the transmission filter is different from the pass band of the reception filter. Embodiments of the filter circuit 18 may be included in one or more transmit filters 2512 or one or more receive filters 2514. An inductor or other matching element 2520 can be connected to the common node 2502.

フロントエンドモジュール2500はさらに、デュプレクサ2510の入力ノード2504に接続された送信器回路2532と、デュプレクサ2510の出力ノード2506に接続された受信器回路2534とを含む。送信器回路2532は、アンテナ2610を介して送信される信号を生成し、受信器回路2534は、アンテナ2610を介して信号を受信して処理することができる。いくつかの実施形態において、受信器回路及び送信器回路は、図25に示すように別個の構成要素として実装されるが、他の実施形態において、これらの構成要素は共通の送受信器回路又はモジュールに組み入れることができる。当業者にわかることだが、フロントエンドモジュール2500は、図25に示されないスイッチ、電磁カプラ、増幅器、プロセッサ等を含むがこれらに限られない他の構成要素も含み得る。   Front end module 2500 further includes a transmitter circuit 2532 connected to input node 2504 of duplexer 2510 and a receiver circuit 2534 connected to output node 2506 of duplexer 2510. Transmitter circuit 2532 can generate a signal to be transmitted via antenna 2610 and receiver circuit 2534 can receive and process the signal via antenna 2610. In some embodiments, the receiver and transmitter circuits are implemented as separate components as shown in FIG. 25, but in other embodiments, these components are common transceiver circuits or modules. Can be incorporated into. As will be appreciated by those skilled in the art, the front end module 2500 may also include other components that are not shown in FIG. 25, including but not limited to switches, electromagnetic couplers, amplifiers, processors, and the like.

図26は、図25に示すアンテナデュプレクサ2510を含む無線デバイス2600の一例のブロック図である。無線デバイス2600は、音声又はデータ通信のために構成されたセルラー電話機、スマートフォン、タブレット、モデム、通信ネットワーク、又は任意の他のポータブル若しくは非ポータブルデバイスであってよい。無線デバイス2600は、アンテナ2610から信号を送受信することができる。無線デバイスは、図25を参照して上述したものと同様にフロントエンドモジュール2500の一実施形態を含む。フロントエンドモジュール2500は、上述したように、デュプレクサ2510を含む。図26に示される例において、フロントエンドモジュール2500はさらに、アンテナスイッチ2540を含む。これは、例えば送信モード及び受信モードのような異なる周波数帯域又はモードで切り替わるように構成することができる。図26に示される例において、アンテナスイッチ2540は、デュプレクサ2510及びアンテナ2610間に位置決めされる。しかしながら、他例において、デュプレクサ2510は、アンテナスイッチ2540及びアンテナ2610間に位置決めされてよい。他例において、アンテナスイッチ2540及びデュプレクサ2510は単一の構成要素に統合することができる。   FIG. 26 is a block diagram of an example of a wireless device 2600 that includes the antenna duplexer 2510 shown in FIG. The wireless device 2600 may be a cellular phone, smartphone, tablet, modem, communication network, or any other portable or non-portable device configured for voice or data communication. The wireless device 2600 can transmit and receive signals from the antenna 2610. The wireless device includes one embodiment of a front end module 2500 similar to that described above with reference to FIG. The front end module 2500 includes the duplexer 2510 as described above. In the example shown in FIG. 26, the front end module 2500 further includes an antenna switch 2540. This can be configured to switch in different frequency bands or modes, such as for example transmission mode and reception mode. In the example shown in FIG. 26, the antenna switch 2540 is positioned between the duplexer 2510 and the antenna 2610. However, in other examples, the duplexer 2510 may be positioned between the antenna switch 2540 and the antenna 2610. In other examples, antenna switch 2540 and duplexer 2510 can be integrated into a single component.

フロントエンドモジュール2500は、送信用の信号を生成し、又は受信された信号を処理するように構成された送受信器2530を含む。送受信器2530は、図25の例に示すように、デュプレクサ2510の入力ノード2504に接続することができる送信器回路2532と、デュプレクサ2510の出力ノード2506に接続することができる受信器回路2534とを含み得る。   Front end module 2500 includes a transceiver 2530 configured to generate a signal for transmission or to process a received signal. The transceiver 2530 includes a transmitter circuit 2532 that can be connected to the input node 2504 of the duplexer 2510 and a receiver circuit 2534 that can be connected to the output node 2506 of the duplexer 2510, as shown in the example of FIG. May be included.

送信器回路2532による送信のために生成された信号が、電力増幅器(PA)モジュール2550によって受信される。PAモジュール2550は、送受信器2530の送信器回路2532からの生成信号を増幅する。電力増幅器モジュール2550は一以上の電力増幅器を含み得る。電力増幅器モジュール2550は、多様なRF又は他の周波数帯域の送信信号を増幅するべく使用することができる。例えば、電力増幅器モジュール2550は、無線ローカルエリアネットワーク(WLAN)信号又は任意の他の適切なパルス信号を送信する補助となるように、電力増幅器の出力をパルス化するべく使用可能なイネーブル信号を受信することができる。電力増幅器モジュール2550は、例えば、GSM(Global System for Mobile)(登録商標)信号、符号分割多元接続(CDMA)信号、広帯域符号分割多元接続(W−CDMA)信号、ロングタームエボリューション(LTE)信号又はEDGE信号を含む様々なタイプの信号のいずれかを増幅するように構成することができる。所定の実施形態において、スイッチ等を含む電力増幅器モジュール2550及び関連構成要素は、例えば高電子移動度トランジスタ(pHEMT)若しくは絶縁ゲートバイポーラトランジスタ(BiFET)を使用してガリウム砒素(GaAs)基板に、又は相補型金属酸化物半導体(CMOS)電界効果トランジスタを使用してシリコン基板に作製することができる。   A signal generated for transmission by transmitter circuit 2532 is received by power amplifier (PA) module 2550. The PA module 2550 amplifies the generated signal from the transmitter circuit 2532 of the transceiver 2530. The power amplifier module 2550 may include one or more power amplifiers. The power amplifier module 2550 can be used to amplify transmit signals in various RF or other frequency bands. For example, the power amplifier module 2550 receives an enable signal that can be used to pulse the output of the power amplifier to assist in transmitting a wireless local area network (WLAN) signal or any other suitable pulse signal. can do. The power amplifier module 2550 may be, for example, a GSM (Global System for Mobile) signal, a code division multiple access (CDMA) signal, a wideband code division multiple access (W-CDMA) signal, a long term evolution (LTE) signal, or Any of various types of signals including EDGE signals can be configured to amplify. In certain embodiments, the power amplifier module 2550 and related components, including switches or the like, are formed on a gallium arsenide (GaAs) substrate using, for example, a high electron mobility transistor (pHEMT) or an insulated gate bipolar transistor (BiFET), or Complementary metal oxide semiconductor (CMOS) field effect transistors can be used to fabricate on a silicon substrate.

なおも図26を参照すると、フロントエンドモジュール2500はさらに、アンテナ2610からの受信信号を増幅して当該増幅信号を送受信器2530の受信回路2534に与える低雑音増幅器モジュール2560を含む。   Still referring to FIG. 26, the front end module 2500 further includes a low noise amplifier module 2560 that amplifies the received signal from the antenna 2610 and provides the amplified signal to the receiving circuit 2534 of the transceiver 2530.

図26の無線デバイス2600はさらに、送受信器2530に接続されて無線デバイス2600の動作のための電力を管理する電力管理サブシステム2620を含む。電力管理システム2620はまた、ベース帯域サブシステム2630、及び無線デバイス2600の様々な他の構成要素の動作を制御することができる。電力管理システム2620はまた、無線デバイス2600の様々な構成要素のために電力を供給する電池(図示せず)を含み又は当該電池に接続されてよい。電力管理システム2620はさらに、例えば信号の送信を制御することができる一以上のプロセッサ又はコントローラを含み得る。一実施形態において、ベース帯域サブシステム2630は、ユーザとの間でやりとりされる音声又はデータの様々な入力及び出力を容易にするべくユーザインタフェイス2640に接続される。ベース帯域サブシステム2630はまた、無線デバイスの動作を容易にし及び/又はユーザのための情報を格納するべく、データ及び/又は命令を格納するように構成されたメモリ2650に接続することができる。   The wireless device 2600 of FIG. 26 further includes a power management subsystem 2620 that is connected to the transceiver 2530 to manage power for operation of the wireless device 2600. The power management system 2620 can also control the operation of the baseband subsystem 2630 and various other components of the wireless device 2600. The power management system 2620 may also include or be connected to a battery (not shown) that provides power for the various components of the wireless device 2600. The power management system 2620 can further include one or more processors or controllers that can control the transmission of signals, for example. In one embodiment, the baseband subsystem 2630 is connected to the user interface 2640 to facilitate various inputs and outputs of voice or data exchanged with the user. Baseband subsystem 2630 can also be coupled to a memory 2650 configured to store data and / or instructions to facilitate operation of the wireless device and / or store information for a user.

少なくとも一つの実施形態のいくつかの側面を上述したが、様々な改変、修正及び改善が当業者にとって容易に想起されることを理解されたい。かかる改変、修正及び改善は、本開示の一部となることが意図され、かつ、本発明の範囲内にあることが意図される。理解するべきことだが、ここで述べられた方法及び装置の実施形態は、本明細書に記載され又は添付図面に例示された構成要素の構造及び配列の詳細への適用に限られない。方法及び装置は、他の実施形態で実装し、様々な態様で実施又は実行することができる。特定の実装例は、例示のみを目的としてここに与えられ、限定されることを意図しない。また、ここで使用される表現及び用語は、説明目的であって、限定としてみなすべきではない。ここでの「含む」、「備える」、「有する」、「包含する」及びこれらの変形の使用は、以降に列挙される項目及びその均等物並びに付加項目の包括を意味する。「又は(若しくは)」の言及は、「又は(若しくは)」を使用して記載される任意の用語が、当該記載の用語の一つの、一つを超える、及びすべてのものを示すように解釈され得る。前後左右、頂底上下、及び横縦への言及はいずれも、記載の便宜を意図しており、本システム及び方法又はこれらの構成要素がいずれか一つの位置的又は空間的配向に限られるものではない。したがって、上記説明及び図面は例示にすぎず、本発明の範囲は、添付の特許請求の範囲の適切な構造及びその均等物から決定されるべきである。
Although several aspects of at least one embodiment have been described above, it should be understood that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the scope of the invention. It should be understood that the method and apparatus embodiments described herein are not limited to application to the details of the structure and arrangement of the components described herein or illustrated in the accompanying drawings. The method and apparatus may be implemented in other embodiments and implemented or performed in various ways. Particular implementations are provided herein for illustrative purposes only and are not intended to be limiting. Also, the terms and terms used herein are for illustrative purposes and should not be considered limiting. The use of “including”, “comprising”, “having”, “including” and variations thereof herein means inclusion of items listed below and equivalents thereof and additional items. Reference to “or (or)” is intended to be interpreted as any term described using “or (or)” indicates one, more than one, and all of the described terms. Can be done. All references to front, back, left and right, top and bottom, top and bottom, and horizontal and vertical are intended for convenience of description, and the system and method or components thereof are limited to any one positional or spatial orientation. is not. Accordingly, the foregoing description and drawings are exemplary only, and the scope of the present invention should be determined from the appropriate structure of the appended claims and equivalents thereof.

Claims (31)

電子デバイスを製造する方法であって、
第1基板の底面の周縁に沿って第1側壁を形成して前記第1基板の底面に配置された電子回路を取り囲むことと、
前記第1基板の底面と前記第1基板の頂面とに連通するビアを形成することと、
第2基板の頂面の周縁に沿って第2側壁を形成することと、
前記第1基板の底面、前記第2基板の頂面、前記第1側壁、及び前記第2側壁により内部にキャビティを画定するべく前記第1側壁と前記第2側壁とを位置決めして接合することと
を含み、
前記ビアを形成することは、
前記ビアに対応する前記第1基板の底面の一部分に第1ストッパ層及び第2ストッパ層を順に積層することと、
前記ビアに対応するスルーホールを形成するべく前記第1基板をエッチングすることと
を含み、
前記第1基板のエッチング速度は前記第1ストッパ層のエッチング速度よりも大きく、
前記第1ストッパ層のエッチング速度は前記第2ストッパ層のエッチング速度よりも大きい方法。
A method of manufacturing an electronic device comprising:
Forming a first sidewall along a peripheral edge of the bottom surface of the first substrate to surround an electronic circuit disposed on the bottom surface of the first substrate;
Forming vias communicating with the bottom surface of the first substrate and the top surface of the first substrate;
Forming a second sidewall along the periphery of the top surface of the second substrate;
Positioning and bonding the first and second sidewalls to define a cavity therein by the bottom surface of the first substrate, the top surface of the second substrate, the first sidewall, and the second sidewall. Including
Forming the via includes
Laminating a first stopper layer and a second stopper layer in order on a part of the bottom surface of the first substrate corresponding to the via;
Etching the first substrate to form a through hole corresponding to the via;
The etching rate of the first substrate is larger than the etching rate of the first stopper layer,
The etching rate of the first stopper layer is larger than the etching rate of the second stopper layer.
前記第1基板は圧電体を含む請求項1の方法。 The method of claim 1, wherein the first substrate comprises a piezoelectric body. 前記電子回路は、圧電薄膜共振器、バルク弾性波素子、音響多層膜共振器及び弾性表面波素子の少なくとも一つを含む請求項1の方法。 The method of claim 1, wherein the electronic circuit includes at least one of a piezoelectric thin film resonator, a bulk acoustic wave device, an acoustic multilayer resonator, and a surface acoustic wave device. 前記第1基板のエッチングはドライエッチングにより行われる請求項1の方法。 The method of claim 1, wherein the etching of the first substrate is performed by dry etching. 前記第1ストッパ層はチタン及びクロムの少なくとも一方を含む請求項1の方法。 The method of claim 1, wherein the first stopper layer comprises at least one of titanium and chromium. 前記第2ストッパ層は金を含む請求項1の方法。 The method of claim 1, wherein the second stopper layer comprises gold. 前記第2ストッパ層の厚さは前記第1ストッパ層の厚さよりも大きい請求項1の方法。 The method of claim 1, wherein the thickness of the second stopper layer is greater than the thickness of the first stopper layer. 前記電子回路は配線パッドを含み、
前記第1ストッパ層及び前記第2ストッパ層は前記配線パッドの上まで拡張されるように形成される請求項1の方法。
The electronic circuit includes a wiring pad;
The method of claim 1, wherein the first stopper layer and the second stopper layer are formed to extend over the wiring pads.
前記電子回路は配線パッドを含み、
前記第1ストッパ層及び前記第2ストッパ層は前記配線パッドを形成する請求項1の方法。
The electronic circuit includes a wiring pad;
The method of claim 1, wherein the first stopper layer and the second stopper layer form the wiring pad.
前記第1側壁及び前記第2側壁を加熱することをさらに含み、
液相拡散接合により第1合金層が形成され、液相拡散接合により第2合金層が形成される請求項1の方法。
Heating the first sidewall and the second sidewall;
The method of claim 1, wherein the first alloy layer is formed by liquid phase diffusion bonding and the second alloy layer is formed by liquid phase diffusion bonding.
前記第1側壁及び前記第2側壁を真空下で加熱することをさらに含む請求項10の方法。 The method of claim 10, further comprising heating the first sidewall and the second sidewall under vacuum. 前記第1側壁は第1金属の第1金属層を含み、
前記第2側壁は、順に積層された第2金属の第2金属層及び第3金属の第3金属層を含み、
前記第3金属層は、第1金属層及び前記第2金属層それぞれと前記第1合金層及び前記第2合金層を形成するべく溶融される請求項11の方法。
The first sidewall includes a first metal layer of a first metal;
The second sidewall includes a second metal layer of a second metal and a third metal layer of a third metal, which are sequentially stacked.
12. The method of claim 11, wherein the third metal layer is melted to form the first metal layer and the second metal layer, respectively, and the first alloy layer and the second alloy layer.
前記第2側壁を形成することは、
前記第2金属層を前記第2基板の頂面に成膜することと、
前記第3金属層を第2金属層に成膜することと
を含み、
前記第3金属層の厚さは前記第2金属層の厚さよりも小さい請求項12の方法。
Forming the second sidewall includes:
Depositing the second metal layer on the top surface of the second substrate;
Depositing the third metal layer on the second metal layer,
The method of claim 12, wherein the thickness of the third metal layer is less than the thickness of the second metal layer.
前記第1側壁を形成することと前記第2側壁を形成することとは、前記第1側壁の幅が前記第2側壁の幅未満となるように形成することを含む請求項1の方法。 The method of claim 1, wherein forming the first sidewall and forming the second sidewall include forming the first sidewall such that a width of the first sidewall is less than a width of the second sidewall. 前記第1側壁を形成することと前記第2側壁を形成することとは、前記第1側壁及び第2側壁を、前記第1基板の周縁及び前記第2基板の周縁から内側に後退した所定位置に形成することを含む請求項1のいずれかの方法。 The formation of the first side wall and the formation of the second side wall are a predetermined position in which the first side wall and the second side wall are retreated inward from the peripheral edge of the first substrate and the peripheral edge of the second substrate. The method of any one of the preceding claims comprising forming into. スパッタ膜を前記第1基板の頂面に成膜することをさらに含む請求項1のいずれかの方法。 The method according to claim 1, further comprising forming a sputtered film on the top surface of the first substrate. 前記ビアに電気的に接続された外部電極を、前記スルーホールの上にある前記スパッタ膜に形成することをさらに含む請求項16の方法。 The method of claim 16, further comprising forming an external electrode electrically connected to the via on the sputtered film overlying the through hole. 前記第1基板の頂面が前記第1基板の底面よりも粗面化される請求項1の方法。 The method of claim 1, wherein a top surface of the first substrate is roughened more than a bottom surface of the first substrate. 前記スルーホールの側面が前記第1基板の底面よりも粗面化される請求項1の方法。 The method of claim 1, wherein a side surface of the through hole is roughened more than a bottom surface of the first substrate. スパッタ膜を前記スルーホールの側面に成膜することをさらに含む請求項19の方法。 20. The method of claim 19, further comprising depositing a sputtered film on the side surface of the through hole. 前記電子回路が配置された前記第1基板の一部分が、前記第1側壁が形成された前記第1基板の一部分よりも厚く形成される請求項1の方法。 The method of claim 1, wherein a portion of the first substrate on which the electronic circuit is disposed is formed thicker than a portion of the first substrate on which the first sidewall is formed. 前記スルーホールを形成するべく前記第1基板をエッチングすることは、前記第1ストッパ層を貫通するようにエッチングすることを含む請求項1の方法。 The method of claim 1, wherein etching the first substrate to form the through hole comprises etching through the first stopper layer. 前記ビアの下において前記第1基板の底面と前記第2基板の頂面との間に柱を形成することをさらに含む請求項1の方法。 The method of claim 1, further comprising forming a pillar between the bottom surface of the first substrate and the top surface of the second substrate under the via. 前記柱を形成することは、前記柱の直径が前記ビアの直径よりも大きくなるように形成することを含む請求項23の方法。 24. The method of claim 23, wherein forming the pillar includes forming the pillar such that a diameter of the pillar is greater than a diameter of the via. 前記柱を形成することは、金と錫及びインジウムの一方とを含む第1合金層を、銅と錫及びインジウムの一方とを含む第2合金層に積層することにより、前記柱を形成することを含む請求項23の方法。 The pillar is formed by laminating a first alloy layer containing gold and one of tin and indium on a second alloy layer containing copper, one of tin and indium. 24. The method of claim 23, comprising: 前記第1合金層を断面がテーパー状となるように形成することをさらに含む請求項25の方法。 26. The method of claim 25, further comprising forming the first alloy layer to have a tapered cross section. 前記第1ストッパ層及び前記第2ストッパ層を、前記第1基板の底面と前記柱との間に介在させることをさらに含む請求項23の方法。 24. The method of claim 23, further comprising interposing the first stopper layer and the second stopper layer between a bottom surface of the first substrate and the pillar. 前記第1基板は第1ウェハであり、
前記第2基板は第2ウェハであり、
前記方法は、
前記第1ウェハの底面の周縁まわりに第1封止壁を形成することと、
前記第2ウェハの頂面の周縁まわりに第2封止壁を形成することと、
前記第1封止壁と前記第2封止壁とを位置合わせすることと、
前記第1ウェハと前記第2ウェハとの間にウェハ封止部を形成するべく前記第1封止壁と前記第2封止壁とを接合することと
を含む請求項1の方法。
The first substrate is a first wafer;
The second substrate is a second wafer;
The method
Forming a first sealing wall around the periphery of the bottom surface of the first wafer;
Forming a second sealing wall around the periphery of the top surface of the second wafer;
Aligning the first sealing wall and the second sealing wall;
The method of claim 1, comprising bonding the first sealing wall and the second sealing wall to form a wafer sealing portion between the first wafer and the second wafer.
前記第1封止壁と前記第2封止壁とを接合することは、
液相拡散接合により前記第1封止壁を接合することと、
液相拡散接合により前記第2封止壁を接合することと
を含む請求項28の方法。
Joining the first sealing wall and the second sealing wall,
Bonding the first sealing wall by liquid phase diffusion bonding;
29. The method of claim 28, comprising joining the second sealing wall by liquid phase diffusion bonding.
前記第1ウェハ及び前記第2ウェハの一方の周縁をトリミングすることをさらに含み、
前記第1ウェハ及び前記第2ウェハの一方の周縁をトリミングすることにより、前記第1ウェハ及び前記第2ウェハの前記一方の周縁においてウェハ封止部が露出する請求項28の方法。
Trimming one peripheral edge of the first wafer and the second wafer;
29. The method of claim 28, wherein a wafer sealing portion is exposed at the one peripheral edge of the first wafer and the second wafer by trimming one peripheral edge of the first wafer and the second wafer.
前記第1封止壁と前記第2封止壁とを接合することは、前記第1側壁と前記第2側壁とを接合することと同時に行われる請求項29の方法。
30. The method of claim 29, wherein joining the first sealing wall and the second sealing wall is performed simultaneously with joining the first sidewall and the second sidewall.
JP2017231535A 2016-12-02 2017-12-01 Method for manufacturing electronic device formed in cavity between boards and including vias Pending JP2018113679A (en)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
US201662429179P 2016-12-02 2016-12-02
US201662429226P 2016-12-02 2016-12-02
US201662429186P 2016-12-02 2016-12-02
US201662429190P 2016-12-02 2016-12-02
US201662429183P 2016-12-02 2016-12-02
US201662429218P 2016-12-02 2016-12-02
US201662429188P 2016-12-02 2016-12-02
US201662429223P 2016-12-02 2016-12-02
US62/429,186 2016-12-02
US62/429,188 2016-12-02
US62/429,190 2016-12-02
US62/429,218 2016-12-02
US62/429,179 2016-12-02
US62/429,226 2016-12-02
US62/429,223 2016-12-02
US62/429,183 2016-12-02
US201762539861P 2017-08-01 2017-08-01
US201762539873P 2017-08-01 2017-08-01
US201762539863P 2017-08-01 2017-08-01
US201762539871P 2017-08-01 2017-08-01
US62/539,873 2017-08-01
US62/539,871 2017-08-01
US62/539,861 2017-08-01
US62/539,863 2017-08-01

Publications (2)

Publication Number Publication Date
JP2018113679A true JP2018113679A (en) 2018-07-19
JP2018113679A5 JP2018113679A5 (en) 2021-01-14

Family

ID=62240167

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2017231535A Pending JP2018113679A (en) 2016-12-02 2017-12-01 Method for manufacturing electronic device formed in cavity between boards and including vias
JP2017231513A Pending JP2018110381A (en) 2016-12-02 2017-12-01 Manufacturing method of electronic device to prevent water ingress during manufacturing
JP2017231501A Active JP7009186B2 (en) 2016-12-02 2017-12-01 How to Make Electronic Devices Formed in Cavities
JP2017231525A Pending JP2018113678A (en) 2016-12-02 2017-12-01 Electronic device formed in cavity between boards and including vias

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2017231513A Pending JP2018110381A (en) 2016-12-02 2017-12-01 Manufacturing method of electronic device to prevent water ingress during manufacturing
JP2017231501A Active JP7009186B2 (en) 2016-12-02 2017-12-01 How to Make Electronic Devices Formed in Cavities
JP2017231525A Pending JP2018113678A (en) 2016-12-02 2017-12-01 Electronic device formed in cavity between boards and including vias

Country Status (2)

Country Link
US (5) US10439587B2 (en)
JP (4) JP2018113679A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895771B2 (en) 2020-11-23 2024-02-06 Samsung Electro-Mechanics Co., Ltd. Printed circuit board
JP7456788B2 (en) 2020-01-28 2024-03-27 太陽誘電株式会社 Piezoelectric device and method for manufacturing the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6270506B2 (en) * 2014-01-27 2018-01-31 オリンパス株式会社 Laminated ultrasonic vibration device and ultrasonic medical device
US10541152B2 (en) 2014-07-31 2020-01-21 Skyworks Solutions, Inc. Transient liquid phase material bonding and sealing structures and methods of forming same
TWI661494B (en) 2014-07-31 2019-06-01 美商西凱渥資訊處理科技公司 Multilayered transient liquid phase bonding
US10439587B2 (en) 2016-12-02 2019-10-08 Skyworks Solutions, Inc. Methods of manufacturing electronic devices formed in a cavity
KR20180134238A (en) * 2017-06-08 2018-12-18 (주)와이솔 Wafer Level Package and manufacturing method
CN111066244B (en) * 2017-08-29 2023-03-24 株式会社村田制作所 Elastic wave device, high-frequency front-end circuit, and communication device
US10418294B1 (en) * 2018-05-15 2019-09-17 Texas Instruments Incorporated Semiconductor device package with a cap to selectively exclude contact with mold compound
US11251769B2 (en) * 2018-10-18 2022-02-15 Skyworks Solutions, Inc. Bulk acoustic wave components
US10903186B2 (en) 2018-10-19 2021-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronic assemblies with solder layer and exterior coating, and methods of forming the same
US11430758B2 (en) * 2018-12-29 2022-08-30 Texas Instruments Incorporated Creating 3D features through selective laser annealing and/or laser ablation
CN109795980B (en) * 2019-01-08 2020-09-29 上海华虹宏力半导体制造有限公司 Method for manufacturing MEMS device
US11581870B2 (en) * 2019-09-27 2023-02-14 Skyworks Solutions, Inc. Stacked acoustic wave resonator package with laser-drilled VIAS
CN111130493B (en) * 2019-12-31 2021-03-12 诺思(天津)微系统有限责任公司 Semiconductor structure with stacked units, manufacturing method and electronic equipment
CN111606297B (en) * 2020-04-28 2021-04-16 诺思(天津)微系统有限责任公司 Device structure, method of manufacturing the same, filter, and electronic apparatus
CN111786647B (en) * 2020-08-07 2021-06-15 展讯通信(上海)有限公司 Wafer-level surface acoustic wave filter and packaging method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194290A (en) * 2002-11-26 2004-07-08 Murata Mfg Co Ltd Method for manufacturing electronic component
JP2006197554A (en) * 2004-12-17 2006-07-27 Seiko Epson Corp Surface acoustic wave device and method of manufacturing the same, ic card, and mobile electronic equipment
JP2006246112A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method
JP2007082867A (en) * 2005-09-26 2007-04-05 Ge Medical Systems Global Technology Co Llc Mri equipment
JP2008252351A (en) * 2007-03-29 2008-10-16 Murata Mfg Co Ltd Elastic-surface wave device and manufacturing method thereof
JP2009177736A (en) * 2008-01-28 2009-08-06 Murata Mfg Co Ltd Method of manufacturing electronic component
JP2011223234A (en) * 2010-04-08 2011-11-04 Seiko Epson Corp Piezoelectric vibrator, piezoelectric device, through-electrode structure, semiconductor device, and semiconductor package
JP2015091065A (en) * 2013-11-06 2015-05-11 太陽誘電株式会社 Electronic component and module

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3439231A (en) 1967-02-13 1969-04-15 Mallory & Co Inc P R Hermetically encapsulated electronic device
DE68920537T2 (en) * 1988-10-11 1995-06-14 Sony Corp Optical wavelength conversion devices.
US5448014A (en) * 1993-01-27 1995-09-05 Trw Inc. Mass simultaneous sealing and electrical connection of electronic devices
JPH1050638A (en) * 1996-07-29 1998-02-20 Mitsubishi Electric Corp Manufacture of semiconductor device
US6521477B1 (en) * 2000-02-02 2003-02-18 Raytheon Company Vacuum package fabrication of integrated circuit components
US6578754B1 (en) 2000-04-27 2003-06-17 Advanpack Solutions Pte. Ltd. Pillar connections for semiconductor chips and method of manufacture
JP2002289768A (en) * 2000-07-17 2002-10-04 Rohm Co Ltd Semiconductor device and its manufacturing method
US6884313B2 (en) 2001-01-08 2005-04-26 Fujitsu Limited Method and system for joining and an ultra-high density interconnect
KR100396551B1 (en) 2001-02-03 2003-09-03 삼성전자주식회사 Wafer level hermetic sealing method
TW560018B (en) 2001-10-30 2003-11-01 Asia Pacific Microsystems Inc A wafer level packaged structure and method for manufacturing the same
US6793829B2 (en) 2002-02-27 2004-09-21 Honeywell International Inc. Bonding for a micro-electro-mechanical system (MEMS) and MEMS based devices
US7832177B2 (en) 2002-03-22 2010-11-16 Electronics Packaging Solutions, Inc. Insulated glazing units
JP2004095849A (en) * 2002-08-30 2004-03-25 Fujikura Ltd Method for manufacturing semiconductor substrate with through electrode, and method for manufacturing semiconductor device with through electrode
JP3892370B2 (en) 2002-09-04 2007-03-14 富士通メディアデバイス株式会社 Surface acoustic wave element, filter device, and manufacturing method thereof
US7089635B2 (en) * 2003-02-25 2006-08-15 Palo Alto Research Center, Incorporated Methods to make piezoelectric ceramic thick film arrays and elements
US7183622B2 (en) * 2004-06-30 2007-02-27 Intel Corporation Module integrating MEMS and passive components
JP4513513B2 (en) * 2004-11-09 2010-07-28 株式会社村田製作所 Manufacturing method of electronic parts
US7628309B1 (en) * 2005-05-03 2009-12-08 Rosemount Aerospace Inc. Transient liquid phase eutectic bonding
US7538401B2 (en) 2005-05-03 2009-05-26 Rosemount Aerospace Inc. Transducer for use in harsh environments
US7400042B2 (en) * 2005-05-03 2008-07-15 Rosemount Aerospace Inc. Substrate with adhesive bonding metallization with diffusion barrier
JP2006345170A (en) * 2005-06-08 2006-12-21 Toshiba Corp Thin-film piezoelectric resonator
JP2007019132A (en) * 2005-07-06 2007-01-25 Seiko Epson Corp Method of manufacturing piezoelectric vibrating device
JP4517992B2 (en) * 2005-09-14 2010-08-04 セイコーエプソン株式会社 Conducting hole forming method, piezoelectric device manufacturing method, and piezoelectric device
US7936062B2 (en) 2006-01-23 2011-05-03 Tessera Technologies Ireland Limited Wafer level chip packaging
US7892972B2 (en) * 2006-02-03 2011-02-22 Micron Technology, Inc. Methods for fabricating and filling conductive vias and conductive vias so formed
JP2007266294A (en) * 2006-03-28 2007-10-11 Kyocera Corp Semiconductor element integrated device, semiconductor device and its manufacturing method
US20090004500A1 (en) 2007-06-26 2009-01-01 Daewoong Suh Multilayer preform for fast transient liquid phase bonding
KR20150068495A (en) 2007-11-30 2015-06-19 스카이워크스 솔루션즈, 인코포레이티드 Wafer level packaging using flip chip mounting
CN101946401B (en) 2008-02-18 2014-09-03 精工电子水晶科技股份有限公司 Method of manufacturing piezoelectric vibrator, piezoelectric vibrator, oscillator, electronic device, and radio clock
JP2009200093A (en) * 2008-02-19 2009-09-03 Murata Mfg Co Ltd Hollow type electronic component
DE102008025202B4 (en) 2008-05-27 2014-11-06 Epcos Ag Hermetically sealed housing for electronic components and manufacturing processes
JP5610177B2 (en) 2008-07-09 2014-10-22 国立大学法人東北大学 Functional device and manufacturing method thereof
WO2010021267A1 (en) 2008-08-21 2010-02-25 株式会社村田製作所 Electronic component and method for manufacturing the same
US8686622B2 (en) * 2009-07-30 2014-04-01 Ngk Insulators, Ltd. Composite substrate and method for manufacturing the same
US8348139B2 (en) 2010-03-09 2013-01-08 Indium Corporation Composite solder alloy preform
JP5640610B2 (en) 2010-09-29 2014-12-17 三菱マテリアル株式会社 Power module substrate manufacturing equipment
US8592986B2 (en) 2010-11-09 2013-11-26 Rohm Co., Ltd. High melting point soldering layer alloyed by transient liquid phase and fabrication method for the same, and semiconductor device
DE102011016554B4 (en) * 2011-04-08 2018-11-22 Snaptrack, Inc. Wafer level package and method of manufacture
US8513806B2 (en) 2011-06-30 2013-08-20 Rohm Co., Ltd. Laminated high melting point soldering layer formed by TLP bonding and fabrication method for the same, and semiconductor device
CN103636124B (en) * 2011-07-08 2017-02-22 株式会社村田制作所 Circuit module
JP2013055632A (en) * 2011-08-11 2013-03-21 Nippon Dempa Kogyo Co Ltd Airtight sealing package and manufacturing method of the same
JP5588419B2 (en) * 2011-10-26 2014-09-10 株式会社東芝 package
US9773750B2 (en) * 2012-02-09 2017-09-26 Apple Inc. Method of transferring and bonding an array of micro devices
JP5837845B2 (en) * 2012-02-23 2015-12-24 京セラ株式会社 Electronic component manufacturing method and electronic component
US9044822B2 (en) 2012-04-17 2015-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. Transient liquid phase bonding process for double sided power modules
US10058951B2 (en) * 2012-04-17 2018-08-28 Toyota Motor Engineering & Manufacturing North America, Inc. Alloy formation control of transient liquid phase bonding
KR102061695B1 (en) * 2012-10-17 2020-01-02 삼성전자주식회사 Wafer processing method
DE102012110542B4 (en) 2012-11-05 2017-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Self-activating thin film getter in reactive multilayer systems
DE102012112058B4 (en) * 2012-12-11 2020-02-27 Snaptrack, Inc. MEMS component and method for encapsulating MEMS components
TW201427113A (en) 2012-12-21 2014-07-01 Ind Tech Res Inst Bonding method and structure for LED package
US9406577B2 (en) * 2013-03-13 2016-08-02 Globalfoundries Singapore Pte. Ltd. Wafer stack protection seal
JP6061248B2 (en) 2013-03-29 2017-01-18 国立研究開発法人産業技術総合研究所 Bonding method and semiconductor module manufacturing method
JP6385648B2 (en) * 2013-05-14 2018-09-05 太陽誘電株式会社 Acoustic wave device and method of manufacturing acoustic wave device
JP6374240B2 (en) 2013-07-05 2018-08-15 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Liquid phase diffusion bonding process for double-sided power modules
JP6158676B2 (en) 2013-10-15 2017-07-05 新光電気工業株式会社 WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
US9634641B2 (en) 2013-11-06 2017-04-25 Taiyo Yuden Co., Ltd. Electronic module having an interconnection substrate with a buried electronic device therein
US9793877B2 (en) 2013-12-17 2017-10-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Encapsulated bulk acoustic wave (BAW) resonator device
US9768345B2 (en) 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
TWI661494B (en) 2014-07-31 2019-06-01 美商西凱渥資訊處理科技公司 Multilayered transient liquid phase bonding
US10541152B2 (en) 2014-07-31 2020-01-21 Skyworks Solutions, Inc. Transient liquid phase material bonding and sealing structures and methods of forming same
JP6380539B2 (en) 2014-08-22 2018-08-29 株式会社豊田自動織機 Bonding structure, bonding material, and bonding method
US9893116B2 (en) * 2014-09-16 2018-02-13 Toshiba Memory Corporation Manufacturing method of electronic device and manufacturing method of semiconductor device
US10196745B2 (en) * 2014-10-31 2019-02-05 General Electric Company Lid and method for sealing a non-magnetic package
JP2016096265A (en) * 2014-11-14 2016-05-26 株式会社東芝 Manufacturing method of device
US9847310B2 (en) * 2015-07-18 2017-12-19 Semiconductor Components Industries, Llc Flip chip bonding alloys
US10374574B2 (en) 2015-12-08 2019-08-06 Skyworks Solutions, Inc. Method of providing protective cavity and integrated passive components in wafer level chip scale package using a carrier wafer
JP6718837B2 (en) * 2016-04-01 2020-07-08 スカイワークスフィルターソリューションズジャパン株式会社 Electronic component and manufacturing method thereof, and electronic device and manufacturing method thereof
US10439587B2 (en) 2016-12-02 2019-10-08 Skyworks Solutions, Inc. Methods of manufacturing electronic devices formed in a cavity
KR102064380B1 (en) * 2018-06-22 2020-01-10 (주)와이솔 Surface acoustic wave device package and method of manufacturing the same
US11251769B2 (en) * 2018-10-18 2022-02-15 Skyworks Solutions, Inc. Bulk acoustic wave components

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194290A (en) * 2002-11-26 2004-07-08 Murata Mfg Co Ltd Method for manufacturing electronic component
JP2006197554A (en) * 2004-12-17 2006-07-27 Seiko Epson Corp Surface acoustic wave device and method of manufacturing the same, ic card, and mobile electronic equipment
JP2006246112A (en) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd Surface acoustic wave device and its manufacturing method
JP2007082867A (en) * 2005-09-26 2007-04-05 Ge Medical Systems Global Technology Co Llc Mri equipment
JP2008252351A (en) * 2007-03-29 2008-10-16 Murata Mfg Co Ltd Elastic-surface wave device and manufacturing method thereof
JP2009177736A (en) * 2008-01-28 2009-08-06 Murata Mfg Co Ltd Method of manufacturing electronic component
JP2011223234A (en) * 2010-04-08 2011-11-04 Seiko Epson Corp Piezoelectric vibrator, piezoelectric device, through-electrode structure, semiconductor device, and semiconductor package
JP2015091065A (en) * 2013-11-06 2015-05-11 太陽誘電株式会社 Electronic component and module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456788B2 (en) 2020-01-28 2024-03-27 太陽誘電株式会社 Piezoelectric device and method for manufacturing the same
US11895771B2 (en) 2020-11-23 2024-02-06 Samsung Electro-Mechanics Co., Ltd. Printed circuit board

Also Published As

Publication number Publication date
JP7009186B2 (en) 2022-01-25
US20200021269A1 (en) 2020-01-16
US11050407B2 (en) 2021-06-29
US20180159503A1 (en) 2018-06-07
JP2018113677A (en) 2018-07-19
US10965269B2 (en) 2021-03-30
US20180159502A1 (en) 2018-06-07
US10763820B2 (en) 2020-09-01
US20180159493A1 (en) 2018-06-07
US10439587B2 (en) 2019-10-08
US20180158801A1 (en) 2018-06-07
JP2018110381A (en) 2018-07-12
JP2018113678A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP7009186B2 (en) How to Make Electronic Devices Formed in Cavities
JP6718837B2 (en) Electronic component and manufacturing method thereof, and electronic device and manufacturing method thereof
CN107134986B (en) Electronic device
JP6315716B2 (en) Elastic wave device
TWI543331B (en) Semiconductor integrated circuit
US11335669B2 (en) Wafer level chip scale filter packaging using semiconductor wafers with through wafer vias
US11545952B2 (en) Electronic package including cavity formed by removal of sacrificial material from within a cap
JP6810599B2 (en) Electronic components and their manufacturing methods
US10665566B2 (en) Surface acoustic wave resonator having ring-shaped metal sealing configuration
JP2014143305A (en) Semiconductor device mounting structure and semiconductor device manufacturing method
JP2021535663A (en) Packaged surface acoustic wave device
US10637434B2 (en) Elastic wave device, high-frequency front end circuit and communication device
KR20170108377A (en) Element package and manufacturing method for the same
US20210184649A1 (en) Packaging method and package structure for filter chip
CN117579015B (en) Wafer-level packaging method of BAW filter
JP2006049602A (en) Semiconductor device and its manufacturing method
CN116803002A (en) Chip packaging structure, chip packaging method and electronic equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220405