JP2018111057A - Wet oxidation method and device for water containing organic material - Google Patents

Wet oxidation method and device for water containing organic material Download PDF

Info

Publication number
JP2018111057A
JP2018111057A JP2017001987A JP2017001987A JP2018111057A JP 2018111057 A JP2018111057 A JP 2018111057A JP 2017001987 A JP2017001987 A JP 2017001987A JP 2017001987 A JP2017001987 A JP 2017001987A JP 2018111057 A JP2018111057 A JP 2018111057A
Authority
JP
Japan
Prior art keywords
reactor
organic substance
wet oxidation
water
containing water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017001987A
Other languages
Japanese (ja)
Inventor
晴義 山川
Haruyoshi Yamakawa
晴義 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017001987A priority Critical patent/JP2018111057A/en
Publication of JP2018111057A publication Critical patent/JP2018111057A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wet oxidation method and device for water containing an organic material conducting wet oxidative decomposition of an organic compound by making the waste water containing the organic compound come in contact with a catalyst carrying a platinum group metal, which can obtain stable oxidative decomposition effect without being influenced by shape of a reactor and a direction of fluid supply.SOLUTION: Heated air is made to flow through a rector 8. Then, the water containing an organic material in a tank 20 heated by a heat exchanger 6 and a heater 7 is made to flow through the reactor 8, to come in contact with a catalyst carrying a noble metal, and wet oxidation of the organic material is carried out. Water flowing out the reactor 8 is introduced, via a valve 24 and a back pressure valve 25, into a heat source side of the heat exchanger 6; is heat-exchanged with the water containing the organic material from the tank 20; and is taken out as treated water. Subsequently, the air passing step and the water passing step are repeated.SELECTED DRAWING: Figure 1

Description

本発明は有機物含有水の湿式酸化処理方法及び装置に係り、特に被処理水中の有機物を金属触媒によって分解する方法及び装置に関する。   The present invention relates to a method and apparatus for wet oxidation treatment of organic substance-containing water, and more particularly to a method and apparatus for decomposing organic substances in water to be treated with a metal catalyst.

金属触媒を利用して有機化合物を含有する廃水を湿式酸化処理する方法として、特許文献1には、白金族金属を担持した触媒に排水を通液する際、反応温度200〜270℃、反応圧力30〜70kg/cmGで処理することが記載されている。特許文献1では、酸素源として酸素ガス、酸素を高めた空気、あるいは通常の空気を用いている。特許文献1の実施例には、オートクレーブを用いた回分処理が記載されている。この実施例では、排水と空気を同時にオートクレーブに導入し、オートクレーブ内を撹拌することにより有機化合物の湿式分解を行う。 As a method for wet oxidation treatment of wastewater containing an organic compound using a metal catalyst, Patent Document 1 discloses a reaction temperature of 200 to 270 ° C. and a reaction pressure when drainage is passed through a catalyst supporting a platinum group metal. The treatment with 30 to 70 kg / cm 2 G is described. In Patent Literature 1, oxygen gas, oxygen-enriched air, or normal air is used as an oxygen source. In the example of Patent Document 1, batch processing using an autoclave is described. In this embodiment, wastewater and air are simultaneously introduced into an autoclave, and the inside of the autoclave is stirred to perform wet decomposition of the organic compound.

特許文献2には、貴金属担持触媒を充填した反応塔に、温度100〜270℃、液相が保持される反応圧力下において廃水および酸素含有ガスを下向流で流通させ、有機化合物を湿式酸化処理する方法が記載されている。この特許文献2の方法は連続式であり、廃水と酸素含有ガスを同時に連続供給している。   In Patent Document 2, waste water and an oxygen-containing gas are circulated in a downward flow in a reaction column filled with a noble metal-supported catalyst at a temperature of 100 to 270 ° C. and a reaction pressure at which a liquid phase is maintained, and an organic compound is wet-oxidized. A method of processing is described. The method of Patent Document 2 is a continuous type, and waste water and oxygen-containing gas are continuously supplied simultaneously.

特許文献3には、貴金属担持活性炭触媒層を充填した反応槽に100℃以下の温度で下向流で廃水と酸素含有ガスを通過させて湿式酸化処理する方法が記載されている。   Patent Document 3 describes a wet oxidation process in which wastewater and oxygen-containing gas are passed through a reaction tank filled with a noble metal-supported activated carbon catalyst layer in a downward flow at a temperature of 100 ° C. or lower.

特許文献4には、圧損の増大や目詰まり現象を回避することを目的とした湿式触媒酸化塔として、ハニカム構造の酸化触媒を収容した反応塔に廃水と酸素含有ガスを同時に上向流で流して処理を行う湿式触媒酸化塔が記載されている。   In Patent Document 4, as a wet catalytic oxidation tower for the purpose of avoiding an increase in pressure loss and a clogging phenomenon, waste water and an oxygen-containing gas are simultaneously caused to flow upward in a reaction tower containing an oxidation catalyst having a honeycomb structure. A wet catalytic oxidation tower is described.

特開平7−232182号公報Japanese Patent Laid-Open No. 7-232182 特開平10−113680号公報Japanese Patent Application Laid-Open No. 10-113680 特開平11−179378号公報JP 11-179378 A 特開2003−340471号公報JP 2003-340471 A

有機物含有水の湿式酸化処理では、貴金属担持触媒の貴金属に酸素分子が吸着し、そこに廃水中の有機化合物が接触すると有機化合物の酸化反応が進行する。そのため、回分式処理を行う特許文献1の湿式酸化処理方法では、貴金属担持触媒が充填された反応器内を撹拌して廃水とガスとを貴金属担持触媒に均一に接触させることが必要となり、反応器に撹拌機構を設けることが必要となる。また、特許文献2〜4では、反応塔に対し下向流または上向流で気液二相流を流通させる必要があった。   In the wet oxidation treatment of organic substance-containing water, oxygen molecules are adsorbed to the noble metal of the noble metal-supported catalyst, and when the organic compound in the wastewater comes into contact therewith, the oxidation reaction of the organic compound proceeds. Therefore, in the wet oxidation method of Patent Document 1 in which batch processing is performed, it is necessary to stir the reactor filled with the noble metal-supported catalyst so that the waste water and gas are brought into uniform contact with the noble metal-supported catalyst. It is necessary to provide a stirring mechanism in the vessel. Moreover, in patent documents 2-4, it was necessary to distribute | circulate a gas-liquid two-phase flow by a downward flow or an upward flow with respect to a reaction tower.

本発明は、有機化合物を含有する廃水を貴金属担持触媒と接触させて有機化合物を湿式酸化分解処理する方法及び装置として、反応器の形状や流体の供給向きに影響されることなく安定した酸化分解効果を得ることができる有機物含有水の湿式酸化処理方法及び装置を提供することを目的とする。   The present invention is a method and apparatus for wet oxidative decomposition treatment of an organic compound by contacting waste water containing the organic compound with a noble metal-supported catalyst, and stable oxidative decomposition without being affected by the shape of the reactor and the direction of fluid supply It is an object of the present invention to provide a method and apparatus for wet oxidation treatment of organic substance-containing water capable of obtaining the effect.

本発明の有機物含有水の湿式酸化処理方法は、貴金属担持触媒が充填された反応器を用いて有機物含有水を湿式酸化処理する方法において、該反応器に酸素含有ガスを通気する通気工程と、その後、該反応器に有機物含有水のみを通水する通水工程とを有することを特徴とするものである。   The method for wet oxidation treatment of organic substance-containing water according to the present invention is a method for wet oxidation treatment of organic substance-containing water using a reactor filled with a noble metal-supported catalyst, and a venting step of ventilating an oxygen-containing gas through the reactor; Then, it has a water flow process which allows only water containing organic substance to flow through the reactor.

本発明の有機物含有水の湿式酸化処理装置は、湿式酸化触媒が充填された反応器を有する有機物含有水の湿式酸化処理装置において、該反応器に酸素含有ガスと有機物含有水とを切り替えて供給する供給手段を備えたことを特徴とするものである。   The wet oxidation treatment apparatus for organic matter-containing water according to the present invention is a wet oxidation treatment apparatus for organic matter-containing water having a reactor filled with a wet oxidation catalyst, and supplies the reactor with an oxygen-containing gas and organic matter-containing water by switching. It is characterized by having a supply means.

本発明の一態様では、反応器温度を80℃以上にして酸素含有ガスを反応器に供給する。   In one embodiment of the present invention, the reactor temperature is set to 80 ° C. or higher, and the oxygen-containing gas is supplied to the reactor.

本発明の一態様では、酸素含有ガスが空気であり、反応器内の触媒層に対してSV1〜200hr−1で1〜10hr通気する。 In one embodiment of the present invention, the oxygen-containing gas is air, and is passed through the catalyst layer in the reactor at SV1 to 200 hr −1 for 1 to 10 hr.

本発明の一態様では、反応器からの廃ガスを熱交換器に通し、酸素含有ガスを加熱し、該熱交換器から流出した廃ガスを有機物含有水のタンクに吹き込む。   In one embodiment of the present invention, waste gas from the reactor is passed through a heat exchanger, the oxygen-containing gas is heated, and the waste gas flowing out of the heat exchanger is blown into a tank containing organic matter-containing water.

本発明では、反応器内に有機物含有水を供給する前に該反応器内に酸素含有ガスを供給して貴金属担持触媒の貴金属に酸素分子を十分吸着させる。その後、酸素含有ガスの供給を停止し、有機物含有水を反応器に供給し、貴金属に吸着していた酸素と有機物とを反応させて有機物を酸化分解処理する。本発明方法及び装置では、反応器に撹拌手段を設けたり、反応器の形状、あるいは気液分離が起きない流れ方向等を考慮する必要がなく、触媒反応器のサイズや配置を所望の条件で設置することが可能になる。   In the present invention, before supplying the organic substance-containing water into the reactor, an oxygen-containing gas is supplied into the reactor to sufficiently adsorb oxygen molecules on the noble metal of the noble metal-supported catalyst. Thereafter, the supply of the oxygen-containing gas is stopped, the organic substance-containing water is supplied to the reactor, and the organic substance is oxidized and decomposed by reacting the oxygen adsorbed on the noble metal with the organic substance. In the method and apparatus of the present invention, it is not necessary to provide a stirring means in the reactor, or to consider the shape of the reactor or the flow direction in which gas-liquid separation does not occur, and the size and arrangement of the catalytic reactor can be set under desired conditions. It becomes possible to install.

本発明の有機物含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the organic substance containing water of this invention. 本発明の有機物含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the organic substance containing water of this invention. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1. 実施例2の結果を示すグラフである。10 is a graph showing the results of Example 2. 比較例1の結果を示すグラフである。6 is a graph showing the results of Comparative Example 1.

以下に本発明の有機物含有水の処理方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method for treating organic substance-containing water of the present invention will be described in detail.

本発明の有機物含有水の湿式酸化処理方法及び装置では、反応器内に収容した貴金属担持触媒を乾燥させながら酸素含有ガスを供給して貴金属担持触媒の貴金属に酸素を吸着させた後、反応器内に有機物含有水を通水して有機物の湿式酸化処理を行う。   In the method and apparatus for wet oxidation treatment of organic substance-containing water according to the present invention, the oxygen-containing gas is supplied while drying the noble metal-supported catalyst accommodated in the reactor to adsorb oxygen to the noble metal of the noble metal-supported catalyst, and then the reactor Water containing organic matter is passed through to carry out wet oxidation treatment of the organic matter.

貴金属担持触媒に用いる貴金属としては、白金族(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)を挙げることができる。こられの白金族は、1種を単独で用いることができ、2種以上を組み合わせて用いることもでき、2種以上の合金として用いることもでき、あるいは、天然に産出される混合物の精製品を単体に分離することなく用いることもできる。これらの中で、白金、パラジウム、白金/パラジウム合金の単独又はこれらの2種以上の混合物は、触媒活性が強いので特に好適に用いることができる。   Examples of the noble metal used for the noble metal-supported catalyst include a platinum group (ruthenium, rhodium, palladium, osmium, iridium and platinum). These platinum groups can be used alone, in combinations of two or more, can be used as alloys of two or more, or can be a naturally produced mixture of refined products. Can also be used without separating them into single bodies. Among these, platinum, palladium, a platinum / palladium alloy alone or a mixture of two or more of them is particularly suitable because of its strong catalytic activity.

この白金族の金属は、白金族の金属微粒子でもよく、白金族の金属ナノコロイド粒子を担体の表面に担持させた金属担持触媒でもよい。   The platinum group metal may be platinum group metal fine particles, or may be a metal supported catalyst in which platinum group metal nanocolloid particles are supported on the surface of the support.

白金族の金属ナノコロイド粒子を製造する方法に特に制限はなく、例えば、金属塩還元反応法、燃焼法などを挙げることができる。これらの中で、金属塩還元反応法は、製造が容易であり、安定した品質の金属ナノコロイド粒子を得ることができるので好適に用いることができる。金属塩還元反応法としては、例えば、白金などの塩化物、硝酸塩、硫酸塩、金属錯化物などの0.1〜0.4mmol/L水溶液に、アルコール、クエン酸又はその塩、ギ酸、アセトン、アセトアルデヒドなどの還元剤を4〜20当量倍添加し、1〜3時間煮沸することにより、金属ナノコロイド粒子を製造することができる。また、例えば、ポリビニルピロリドン水溶液に、ヘキサクロロ白金酸、ヘキサクロロ白金酸カリウムなどを1〜2mmol/L溶解し、エタノールなどの還元剤を加え、窒素雰囲気下で2〜3時間加熱還流することにより、白金ナノコロイド粒子を製造することができる。   There is no restriction | limiting in particular in the method of manufacturing a platinum group metal nano colloid particle, For example, a metal salt reduction reaction method, a combustion method, etc. can be mentioned. Among these, the metal salt reduction reaction method can be suitably used because it is easy to produce and stable metal nanocolloid particles can be obtained. As the metal salt reduction reaction method, for example, 0.1 to 0.4 mmol / L aqueous solution of chloride such as platinum, nitrate, sulfate, metal complex, etc., alcohol, citric acid or a salt thereof, formic acid, acetone, Metal nanocolloid particles can be produced by adding 4 to 20 equivalents of a reducing agent such as acetaldehyde and boiling for 1 to 3 hours. Further, for example, by dissolving 1-2 mmol / L of hexachloroplatinic acid, potassium hexachloroplatinate, etc. in an aqueous polyvinylpyrrolidone solution, adding a reducing agent such as ethanol, and heating and refluxing in a nitrogen atmosphere for 2 to 3 hours, Nanocolloid particles can be produced.

白金族の金属ナノコロイド粒子の平均粒子径は好ましくは1〜50nmであり、より好ましくは1.2〜20nmであり、さらに好ましくは1.4〜5nmである。金属ナノコロイド粒子の平均粒子径が1nm未満であると、TOCの分解除去に対する触媒活性が低下するおそれがある。金属ナノコロイド粒子の平均粒子径が50nmを超えると、ナノコロイド粒子の比表面積が小さくなって、TOCの分解除去に対する触媒活性が低下するおそれがある。   The average particle size of the platinum group metal nanocolloid particles is preferably 1 to 50 nm, more preferably 1.2 to 20 nm, and still more preferably 1.4 to 5 nm. If the average particle size of the metal nanocolloid particles is less than 1 nm, the catalytic activity for TOC decomposition and removal may be reduced. When the average particle diameter of the metal nanocolloid particles exceeds 50 nm, the specific surface area of the nanocolloid particles becomes small, and the catalytic activity for TOC decomposition and removal may be reduced.

白金族の金属ナノコロイド粒子を担持させる担体に特に制限はなく、例えば、マグネシア、チタニア、アルミナ、シリカ−アルミナ、ジルコニア、活性炭、ゼオライト、ケイソウ土、イオン交換樹脂などを挙げることができる。担体の平均粒径(JISメッシュによる測定値)は20〜2000μm特に50〜1000μm程度が好ましい。   There is no restriction | limiting in particular in the support | carrier which carry | supports the platinum group metal nano colloid particle, For example, a magnesia, a titania, an alumina, a silica-alumina, a zirconia, activated carbon, a zeolite, a diatomaceous earth, an ion exchange resin etc. can be mentioned. The average particle size (measured by JIS mesh) of the carrier is preferably about 20 to 2000 μm, particularly about 50 to 1000 μm.

担体への貴金属の担持量は0.1〜30wt%特に1〜10wt%程度が好適である。   The amount of noble metal supported on the carrier is preferably about 0.1 to 30 wt%, particularly about 1 to 10 wt%.

反応器内に供給する酸素含有ガスとしては、純酸素を用いることが最も好ましいが、空気、酸素富化空気などを用いることもできる。   As the oxygen-containing gas supplied into the reactor, pure oxygen is most preferably used, but air, oxygen-enriched air, and the like can also be used.

酸素含有ガスを反応器に供給する場合、反応器の温度を80℃以上にして、酸素含有ガスを反応器に供給し、反応器内の貴金属担持触媒を乾燥させる。   When supplying the oxygen-containing gas to the reactor, the temperature of the reactor is set to 80 ° C. or higher, the oxygen-containing gas is supplied to the reactor, and the noble metal-supported catalyst in the reactor is dried.

反応器内に充填された貴金属担持触媒の充填層への酸素含有ガスの供給SV(標準状態。以下、同様)は1〜200hr−1特に6〜120hr−1程度が好ましい。酸素含有ガスの供給時間は1〜10hr特に2〜5hr程度が好ましい。 The supply SV (standard state; hereinafter the same) of the oxygen-containing gas to the packed bed of the noble metal-supported catalyst packed in the reactor is preferably about 1 to 200 hr −1, particularly about 6 to 120 hr −1 . The supply time of the oxygen-containing gas is preferably about 1 to 10 hours, particularly about 2 to 5 hours.

反応器に酸素含有ガスを流通させた後、有機物含有水を反応器に通水する。   After circulating the oxygen-containing gas through the reactor, the organic substance-containing water is passed through the reactor.

本発明は、産業廃水等、有機物が含まれる廃水を処理する場合に好適である。本発明は、この原水の有機物濃度がTOC(全有機炭素)として1〜10000mg/L特に10〜500mg/L程度である場合に適用するのに好適である。ただし、本発明はこれ以外の各種の有機物含有水の処理に適用することができる。   The present invention is suitable for treating wastewater containing organic matter such as industrial wastewater. The present invention is suitable for application when the organic matter concentration of this raw water is 1 to 10,000 mg / L, particularly about 10 to 500 mg / L as TOC (total organic carbon). However, the present invention can be applied to treatment of various other organic substance-containing water.

本発明では、反応器自体を80℃以上に加温して、被処理液の温度を60〜200℃特に80〜180℃になるように加温することにより、有機物の湿式酸化速度を大きくすることができる。有機物含有水の貴金属担持触媒充填層への通水SVは0.1〜10hr−1特に0.5〜5hr−1程度が好ましい。 In the present invention, the reactor itself is heated to 80 ° C. or higher, and the temperature of the liquid to be treated is heated to 60 to 200 ° C., particularly 80 to 180 ° C., thereby increasing the wet oxidation rate of the organic matter. be able to. The water passing SV to the noble metal-supported catalyst packed bed of organic substance-containing water is preferably about 0.1 to 10 hr −1, particularly about 0.5 to 5 hr −1 .

有機物含有水の通水時間は、触媒充填量に比例し、触媒1L当り1〜24hr程度が好ましい。有機物含有水を通水する際は、出口ラインに背圧弁を設け、反応器内で被処理水が沸騰しない圧力まで反応器内を加圧すればよい。   The passage time of the organic substance-containing water is proportional to the catalyst filling amount, and is preferably about 1 to 24 hours per liter of the catalyst. When passing water containing organic matter, a back pressure valve is provided in the outlet line, and the inside of the reactor may be pressurized to a pressure at which the water to be treated does not boil in the reactor.

図1は、実施の形態に係る有機物含有水の処理装置の構成を示している。この実施の形態では、1つの反応器に対し空気と有機物含有水とを交互に供給する。   FIG. 1 shows the configuration of an organic substance-containing water treatment apparatus according to an embodiment. In this embodiment, air and organic substance-containing water are alternately supplied to one reactor.

図1(a)は空気を反応器に供給している状態を示している。空気は、ブロワ1、フローコントローラ2、弁3、配管4,5を経て熱交換器6及びヒータ7で加熱された後、反応器8に流通される。反応器8にヒータHが設けられている。反応器8内には貴金属担持触媒の充填層が設けられている。反応器8を通過した空気(廃空気)は、配管9,10、弁11、配管12を経て熱交換器6の熱源側に流通され、ブロワ1からの空気と熱交換した後、配管13,14、弁15、配管16を介して有機物含有水のタンク20内に吹き込まれる。廃空気をタンク20内に吹き込むことにより、タンク20内の有機物含有水の加温を行うことができると共に、廃空気中のダスト等の捕集を行うことができる。   FIG. 1A shows a state where air is supplied to the reactor. The air is heated by the heat exchanger 6 and the heater 7 through the blower 1, the flow controller 2, the valve 3, the pipes 4 and 5, and then circulated to the reactor 8. A heater H is provided in the reactor 8. A packed bed of noble metal supported catalyst is provided in the reactor 8. The air that passed through the reactor 8 (waste air) is circulated to the heat source side of the heat exchanger 6 through the pipes 9 and 10, the valve 11, and the pipe 12, and after exchanging heat with the air from the blower 1, 14, the organic substance-containing water tank 20 is blown through the valve 15 and the pipe 16. By blowing waste air into the tank 20, it is possible to heat the organic substance-containing water in the tank 20 and to collect dust and the like in the waste air.

なお、図1(a)では、弁3,10,15が開とされ、弁22,24,28は閉とされている。また、ポンプ21は停止している。   In FIG. 1A, the valves 3, 10, and 15 are opened, and the valves 22, 24, and 28 are closed. Further, the pump 21 is stopped.

図1(b)は、その後、反応器8に有機物含有水を通水している状態を示している。   FIG. 1B shows a state in which the organic substance-containing water is subsequently passed through the reactor 8.

図1(b)では、タンク20内の有機物含有水がポンプ21、弁22、配管5を経て熱交換器6、ヒータ7にて加熱された後、反応器8に通水され、貴金属担持触媒と接触し、有機物の湿式酸化処理が行われる。反応器8から流出した水は、配管9、該配管9から分岐した配管23、弁24、背圧弁25、配管26及び配管12を経て熱交換器6の熱源側に導入され、タンク20からの有機物含有水と熱交換した後、配管13、該配管13から分岐した配管27及び弁28を介して処理水として取り出される。   In FIG. 1B, the organic substance-containing water in the tank 20 is heated by the heat exchanger 6 and the heater 7 through the pump 21, the valve 22 and the pipe 5, and then passed through the reactor 8, and the noble metal supported catalyst. And wet oxidation treatment of organic matter is performed. The water flowing out from the reactor 8 is introduced to the heat source side of the heat exchanger 6 through the pipe 9, the pipe 23 branched from the pipe 9, the valve 24, the back pressure valve 25, the pipe 26 and the pipe 12, and from the tank 20. After exchanging heat with organic substance-containing water, it is taken out as treated water through the pipe 13, the pipe 27 branched from the pipe 13, and the valve 28.

なお、図1(b)では、弁22,24,28が開、弁3,11,15は閉とされている。   In FIG. 1B, the valves 22, 24, and 28 are opened, and the valves 3, 11, and 15 are closed.

図1(b)のように、有機物含有水を通水して処理した後、図1(a)の工程に復帰し、以下、同様の工程を繰り返して有機物含有水の処理を行う。   As shown in FIG. 1 (b), after processing the organic substance-containing water, the process returns to the process of FIG. 1 (a), and thereafter, the same process is repeated to treat the organic substance-containing water.

図1では、1つの反応器8に空気と有機物含有水とを交互に供給しているが、本発明では2以上の反応器を並列設置し、一部の反応器に酸素含有ガスを通気している間に他の反応器に有機物含有水を通水するようにしてもよい。図2にその一例を示す。   In FIG. 1, air and organic substance-containing water are alternately supplied to one reactor 8, but in the present invention, two or more reactors are installed in parallel, and oxygen-containing gas is vented to some reactors. Meanwhile, water containing organic matter may be passed through the other reactor. An example is shown in FIG.

図2の実施の形態では、2個の反応器71,72が並列設置され、一方の反応器に有機物含有水を通水している間に他方の反応器に酸素含有ガスを通気するようにしている。   In the embodiment shown in FIG. 2, two reactors 71 and 72 are installed in parallel, and oxygen-containing gas is vented to the other reactor while the organic substance-containing water is passed through the one reactor. ing.

図2は、第1反応器71に有機物含有水を通水し、第2反応器72に酸素含有ガスとして空気を通気している状態となっている。   FIG. 2 shows a state in which organic substance-containing water is passed through the first reactor 71 and air is passed as oxygen-containing gas through the second reactor 72.

すなわち、タンク30内の有機物含有水がポンプ31、熱交換器32、ウォーターヒータ33、配管34、弁35を経て第1反応器71に供給され、有機物の湿式酸化処理が行われる。第1反応器71からの流出水は、弁36、配管37、背圧弁38、配管39を経て熱交換器32の熱源側に通水され、次いで配管40を介して処理水として取り出される。   That is, the organic substance-containing water in the tank 30 is supplied to the first reactor 71 through the pump 31, the heat exchanger 32, the water heater 33, the pipe 34, and the valve 35, and the wet oxidation process of the organic substance is performed. Outflow water from the first reactor 71 is passed through the valve 36, the pipe 37, the back pressure valve 38, and the pipe 39 to the heat source side of the heat exchanger 32, and then taken out as treated water through the pipe 40.

空気は、ブロワ51から熱交換器52及びエアヒータ53で加温された後、配管54,55、弁56、配管57を介して第2反応器72に通気される。第2反応器72から流出した廃空気は、弁58、配管59,60を介して熱交換器52の熱源側に通気され、次いで配管61を介してタンク30に吹き込まれる。なお、この状態では、弁35,36,56,58が開とされ、弁42,44,63,65は閉とされている。   The air is heated by the heat exchanger 52 and the air heater 53 from the blower 51 and then vented to the second reactor 72 through the pipes 54 and 55, the valve 56 and the pipe 57. Waste air flowing out from the second reactor 72 is vented to the heat source side of the heat exchanger 52 through the valve 58 and the pipes 59 and 60, and then blown into the tank 30 through the pipe 61. In this state, the valves 35, 36, 56, and 58 are opened, and the valves 42, 44, 63, and 65 are closed.

第1反応器71に空気を通気し、第2反応器72に有機物含有水を通水する場合には、弁35,36,56,58を閉、弁42,44,63,65を開とする。これにより、タンク30内の有機物含有水は、ポンプ31、熱交換器32、ウォーターヒータ33、配管34、配管34から分岐した配管41、弁42、配管43、第2反応器72、弁44、配管45,37、背圧弁38、配管39、熱交換器32、配管40の順に流れて処理水として取り出される。   When air is passed through the first reactor 71 and organic substance-containing water is passed through the second reactor 72, the valves 35, 36, 56, 58 are closed and the valves 42, 44, 63, 65 are opened. To do. Thereby, the organic substance-containing water in the tank 30 is supplied from the pump 31, the heat exchanger 32, the water heater 33, the pipe 34, the pipe 41 branched from the pipe 34, the valve 42, the pipe 43, the second reactor 72, the valve 44, The pipes 45 and 37, the back pressure valve 38, the pipe 39, the heat exchanger 32, and the pipe 40 flow in this order and are taken out as treated water.

空気はブロワ51、熱交換器52、エアヒータ53、配管54、配管54から分岐した配管62、弁63、配管64、第1反応器71、弁65、配管66,60、熱交換器52、配管61の順に流れてタンク30内の有機物含有水に吹き込まれる。   Air is blower 51, heat exchanger 52, air heater 53, pipe 54, pipe 62 branched from pipe 54, valve 63, pipe 64, first reactor 71, valve 65, pipes 66, 60, heat exchanger 52, pipe. It flows in the order of 61 and is blown into the organic substance-containing water in the tank 30.

このように、第1反応器71に有機物含有水と空気とを交互に供給し、第2反応器72に空気と有機物含有水とを交互に供給することにより、装置全体としては、有機物含有水を連続的に処理することができる。   Thus, by supplying organic substance-containing water and air alternately to the first reactor 71 and supplying air and organic substance-containing water alternately to the second reactor 72, the entire apparatus has organic substance-containing water. Can be processed continuously.

[実施例1]
図1に示す湿式酸化装置を用いて、IPAをTOCとして100mg/L含有する有機物含有水を処理した。反応器8は内径22mm、長さ630mmのPFA製円筒容器を水平に設置し、平均粒径1000μmのアルミナ担体にPtを10wt%担持した触媒を240mL充填したものである。反応器8に電気ヒータを巻き付け、反応器8の全体を120℃となるように加温した。この反応器8に、図1(a)の通り、空気をマスフローコントローラ2で100mL/min(SV=25hr−1)に調整すると共にヒータ7で120℃に加熱しながら3時間供給した。
[Example 1]
Using the wet oxidation apparatus shown in FIG. 1, water containing organic matter containing 100 mg / L of IPA as TOC was treated. In the reactor 8, a PFA cylindrical container having an inner diameter of 22 mm and a length of 630 mm is horizontally installed, and 240 mL of a catalyst in which 10 wt% of Pt is supported on an alumina carrier having an average particle diameter of 1000 μm is packed. An electric heater was wound around the reactor 8, and the entire reactor 8 was heated to 120 ° C. As shown in FIG. 1A, air was adjusted to 100 mL / min (SV = 25 hr −1 ) by the mass flow controller 2 and supplied to the reactor 8 while heating to 120 ° C. with the heater 7 for 3 hours.

その後、空気供給を停止し、図1(b)の通り、有機物含有水をヒータ7で120℃に加熱し、3mL/minで通液した。このときの空筒速度(SV)は0.75hr−1である。反応器8の温度は120℃とし、背圧弁25にて反応器8内の圧力を0.2MPaに調整した。 Thereafter, the air supply was stopped, and the organic substance-containing water was heated to 120 ° C. with the heater 7 and passed at 3 mL / min as shown in FIG. At this time, the cylinder speed (SV) is 0.75 hr −1 . The temperature of the reactor 8 was 120 ° C., and the pressure in the reactor 8 was adjusted to 0.2 MPa with the back pressure valve 25.

処理水を1時間毎に10時間までサンプリングしてTOC濃度の経時変化を測定した。その結果を図3に示す。図3の通り、TOC濃度は通水開始から約7時間経過するまでは約2mg/L以下の低い値となっていることが認められた。   The treated water was sampled every hour for up to 10 hours, and the change in TOC concentration over time was measured. The result is shown in FIG. As shown in FIG. 3, the TOC concentration was found to be a low value of about 2 mg / L or less until about 7 hours passed from the start of water flow.

[実施例2]
空気供給時間を5時間、有機物含有水の通水時間を5時間としたこと以外は実施例1と同一条件とし、空気通気(5hr)→有機物含有水通水(5hr)→空気通気(5hr)→有機物含有水通水(5hr)の通り空気供給と有機物含有水供給とを2回繰り返した。処理水を1時間毎にサンプリングし、TOCの経時変化を測定した結果を図4に示す。図4の通り、処理水のTOC濃度は2mg/L以下で安定しており、安定した処理ができることが認められた。
[Example 2]
The conditions are the same as in Example 1 except that the air supply time is 5 hours and the organic material-containing water flow time is 5 hours. Air aeration (5 hr) → organic substance-containing water flow (5 hr) → air aeration (5 hr) → The air supply and the organic substance-containing water supply were repeated twice as the organic substance-containing water flow (5 hr). The results of sampling the treated water every hour and measuring the TOC change over time are shown in FIG. As shown in FIG. 4, the TOC concentration of treated water was stable at 2 mg / L or less, and it was confirmed that stable treatment was possible.

[比較例1]
実施例1と同装置を用いて、空気と廃水を同時に供給する処理を行った。実施例1と同じTOC濃度の有機物含有水を3mL/minで供給し、空気を6mL/minで供給した。このときの空気供給量はTOCを完全に炭酸ガスに分解するために必要な酸素理論量の約2倍に相当する。反応器温度、圧力は実施例1と同じとした。
[Comparative Example 1]
Using the same apparatus as in Example 1, a process for simultaneously supplying air and wastewater was performed. Water containing organic matter having the same TOC concentration as in Example 1 was supplied at 3 mL / min, and air was supplied at 6 mL / min. The air supply amount at this time corresponds to about twice the theoretical oxygen amount necessary for completely decomposing TOC into carbon dioxide gas. The reactor temperature and pressure were the same as in Example 1.

処理水を1時間毎に10時間までサンプリングしてTOC濃度の経時変化を測定した。その結果を図5に示す。図5に示す通り、TOC濃度は時間とともに上昇し、処理効果が低下することが認められた。また、PFA製触媒反応器を観察すると、供給する空気が反応器の上部に溜まって気液が分離しながら反応器を通過しており、供給した空気中の酸素が触媒に十分接触しておらず、不十分な処理効果となっていることが認められた。   The treated water was sampled every hour for up to 10 hours, and the change in TOC concentration over time was measured. The result is shown in FIG. As shown in FIG. 5, it was recognized that the TOC concentration increased with time and the treatment effect decreased. Further, when observing the catalyst reactor made of PFA, the supplied air is accumulated in the upper part of the reactor and the gas-liquid is separated while passing through the reactor, and the oxygen in the supplied air is not sufficiently in contact with the catalyst. It was recognized that the treatment effect was insufficient.

1,51 ブロワ
6,32,52 熱交換器
8 反応器
25,38 背圧弁
20,30 有機物含有水タンク
1,51 Blower 6,32,52 Heat exchanger 8 Reactor 25,38 Back pressure valve 20,30 Organic substance-containing water tank

Claims (6)

貴金属担持触媒が充填された反応器を用いて有機物含有水を湿式酸化処理する方法において、
該反応器に酸素含有ガスのみを通気する通気工程と、
その後、該反応器に有機物含有水を通水する通水工程と
を有することを特徴とする有機物含有水の湿式酸化処理方法。
In the method of wet oxidation treatment of organic substance-containing water using a reactor filled with a noble metal supported catalyst,
A venting step of venting only oxygen-containing gas through the reactor;
Then, the wet oxidation method of the organic substance containing water characterized by having a water flow process of passing an organic substance containing water through this reactor.
請求項1において、前記通気工程において、反応器温度を80〜180℃に加温して酸素含有ガスを供給することを特徴とする有機物含有水の湿式酸化処理方法。   2. The wet oxidation method for organic substance-containing water according to claim 1, wherein in the aeration step, the oxygen-containing gas is supplied by heating the reactor temperature to 80 to 180 ° C. 請求項2において、酸素含有ガスが空気であり、反応器内の触媒層に対してSV1〜200hr−1で1〜10hr通気することを特徴とする有機物含有水の湿式酸化処理方法。 3. The wet oxidation method for organic substance-containing water according to claim 2, wherein the oxygen-containing gas is air and aeration is performed for 1 to 10 hours at SV1 to 200 hr- 1 with respect to the catalyst layer in the reactor. 湿式酸化触媒が充填された反応器を有する有機物含有水の湿式酸化処理装置において、
該反応器に酸素含有ガスと有機物含有水とを切り替えて供給する供給手段を備えたことを特徴とする有機物含有水の湿式酸化処理装置。
In a wet oxidation apparatus for water containing organic matter having a reactor filled with a wet oxidation catalyst,
An apparatus for wet oxidation of organic substance-containing water, characterized by comprising supply means for switching and supplying oxygen-containing gas and organic substance-containing water to the reactor.
請求項4において、酸素含有ガス及び有機物含有水の加熱手段を備えたことを特徴とする有機物含有水の湿式酸化処理装置。   5. The wet oxidation apparatus for organic substance-containing water according to claim 4, further comprising heating means for oxygen-containing gas and organic substance-containing water. 請求項5において、酸素含有ガスの加熱手段として、前記反応器から流出する廃ガスが熱源側に通気する熱交換器を備えており、
該熱交換器から流出した廃ガスを有機物含有水のタンクに吹き込むように構成されていることを特徴とする有機物含有水の湿式酸化処理装置。
In claim 5, as a heating means of the oxygen-containing gas, it comprises a heat exchanger through which waste gas flowing out of the reactor is vented to the heat source side,
An apparatus for wet oxidation of organic substance-containing water, wherein the waste gas flowing out of the heat exchanger is blown into a tank of organic substance-containing water.
JP2017001987A 2017-01-10 2017-01-10 Wet oxidation method and device for water containing organic material Pending JP2018111057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001987A JP2018111057A (en) 2017-01-10 2017-01-10 Wet oxidation method and device for water containing organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001987A JP2018111057A (en) 2017-01-10 2017-01-10 Wet oxidation method and device for water containing organic material

Publications (1)

Publication Number Publication Date
JP2018111057A true JP2018111057A (en) 2018-07-19

Family

ID=62911644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001987A Pending JP2018111057A (en) 2017-01-10 2017-01-10 Wet oxidation method and device for water containing organic material

Country Status (1)

Country Link
JP (1) JP2018111057A (en)

Similar Documents

Publication Publication Date Title
JP5889389B2 (en) Wastewater treatment method using wastewater treatment catalyst
JP4978144B2 (en) Method and apparatus for removing dissolved oxygen in water
TWI381883B (en) Catalyst for wastewater treatment and method for wastewater treatment using said catalyst
TWI392654B (en) Hydrogen peroxide removal method and removal device
TWI485114B (en) Wastewater treatment system
JP5499753B2 (en) Water treatment method and apparatus
JP2007268527A (en) Catalyst for wastewater treatment and method for wastewater treatment using the catalyst
JP5399235B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
JP6403481B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
Yadav et al. Removal of phenol from water by catalytic wet air oxidation using carbon bead–supported iron nanoparticle–containing carbon nanofibers in an especially configured reactor
JP2015093226A (en) Method and apparatus for manufacturing pure water
JP6439777B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP2018111057A (en) Wet oxidation method and device for water containing organic material
JP6132561B2 (en) Wastewater treatment catalyst and wastewater treatment method using the same
JP2015054828A (en) Method of producing alcohol
JP3652618B2 (en) Wastewater treatment method
JP3742290B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
JP3742289B2 (en) Wastewater treatment catalyst and wastewater treatment method using the catalyst
JP5919960B2 (en) Treatment method for organic water
JP5854163B2 (en) Ultrapure water production method and ultrapure water production facility
JP6933476B2 (en) Wastewater treatment equipment
JP4066527B2 (en) Treatment of wastewater containing hydrogen peroxide and ammonia
JP4223706B2 (en) Wastewater treatment method
RU2548093C2 (en) Catalytic process of formaldehyde removal from aqueous solutions
JP2013163150A (en) Method for treating wastewater containing organic compound