以下に説明する実施形態は、本発明の様々な実施形態の一つに過ぎない。下記の実施形態は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
(実施形態)
以下では、本実施形態の空調システム10について、図1〜6に基づいて説明する。空調システム10は、建物20に設置することを想定している、以下に説明する実施形態においては、建物20として戸建て住宅を想定し、空調システム10として全館空調システムを想定している。この全館空調システムは、熱源機11が生成した熱エネルギー(冷気又は暖気)を建物20のほぼ全体に供給するように構成されている。また、この全館空調システムは、空調と換気とを行うように構成されている。
図1に示す空調システム10は、建物20に設置されている。建物20は、その内部に複数(例えば、9つ)の空調空間21を備える。空調空間21は、空調の対象となる空間である。複数の空調空間21は、例えば、建物20の複数の区画23に一対一に対応している。区画23は、例えば、部屋(リビング、寝室等)、キッチン、玄関、廊下等である。
空調システム10は、熱源機11と、エアフィルタ12と、複数(例えば、2台)の搬送ファン13と、複数(例えば、10個)のダンパ14と、複数(例えば、10個)の吹出口15と、を備える。熱源機11とエアフィルタ12と2台の搬送ファン13とは、建物20に設置される単一の筐体101に収納されており、ユニット化されている。
また、空調システム10は、熱源機11から空気を送り出す給気ダクト16と、熱源機11に外気(空気)を導入する外気ダクト171と、を備える。さらに、空調システム10は、制御装置30及び複数(例えば、9個)の温度センサ18を備えている。
熱源機11は、1台の室内機111と1台の室外機112とを備えたヒートポンプ式のエアコンディショナである。空調システム10では、室内機111からの空気は給気ダクト16を通して複数の空調空間21に供給される。また、室内機111が取り込む空気は、建物20の床下22から外気ダクト171を通して取り込まれる屋外の空気と、複数の空調空間21それぞれから建物20の内部を通って室内機111の吸込口にたどりつく屋内の空気と、である。図1では、複数の空調空間21それぞれから隙間(例えば、部屋の扉のスリット等)を通って室内機111の吸込口までたどりつく空気の流れを破線172で模式的に示している。外気ダクト171は、床下22の空気を取り込む換気ファン19に接続されている。空調システム10は、換気ファン19と外気ダクト171と室内機111とを含む経路内の少なくとも1箇所に配置されたフィルタ(以下、「プレフィルタ」という)を備えている。これにより、空調システム10では、比較的大きな粉塵、虫等をプレフィルタによって捕集することができ、比較的大きな粉塵、虫等がエアフィルタ12に到達するのを抑制することが可能となる。これにより、空調システム10では、エアフィルタ10の目詰まりが抑制される。
室内機111は、フィルタを内蔵している。室内機111のフィルタは、プレフィルタ17よりも比較的小さな粉塵等を捕集できるように構成されているのが好ましい。空調システム10では、プレフィルタ17を備えることにより、室内機111のフィルタの掃除の頻度を少なくすることが可能となる。室内機111からの空気は、エアフィルタ12を通して給気ダクト16に送られる。エアフィルタ12は、室内機111のフィルタよりも、相対的に粒径の小さな粒子を除去可能(捕集可能)なフィルタ性能を有する。エアフィルタ12は、例えば、HEPAフィルタ(HEPA:High Efficiency Particulate Air)であるのが望ましい。空調システム10では、エアフィルタ12がHEPAフィルタであれば、例えば、PM2.5等の微小粒子状物質を捕集することが可能である。PM2.5は、粒子径2.5μmで50%の捕集効率を持つ分粒装置を透過する微粒子である。
熱源機11は、夏季には室内機111から冷気を送り出す冷房運転を行い、冬季には室内機111から暖気を送り出す暖房運転を行う。熱源機11の冷房運転と暖房運転との切替は、春季あるいは秋季のような中間期に行う。冷房運転と暖房運転との違いは、熱源機11の設定温度を、上限値として用いるか、下限値として用いるかの相違である。熱源機11は、冷房運転の際は、室内機111から送り出す冷気の温度が上限値である熱源機11の設定温度を上回らないように動作し、暖房運転の際は、室内機111から送り出す暖気の温度が下限値である熱源機11の設定温度を下回らないように動作する。以下の説明において、暖房運転の際の熱量は暖気の熱量を意味し、冷房運転の際の熱量は冷気の熱量を意味する。
ダンパ14は、例えば、VAVユニット(VAV:Variable Air Volume)である。空調システム10では、ダンパ14と吹出口15とは一対一に対応しているため、ダンパ14の数と吹出口15の数とは同数(例えば、10個)である。ダンパ14の数及び吹出口15の数は、熱源機11の容量、建物20の構成及び規模等に応じて適宜に定められる。
空調システム10は、熱源機11により生成された熱エネルギーを10個の吹出口15に分配するために、上述の、2台の搬送ファン13、給気ダクト16及び10個のダンパ14を備えている。空調システム10では、2台の搬送ファン13と給気ダクト16と10個のダンパ14とは、熱源機11により生成された熱エネルギーを10個の吹出口15に分配する分配装置102を構成している。空調システム10では、熱源機11により生成された熱エネルギーを10個の吹出口15に分配する割合は、2台の搬送ファン13それぞれの風量と、10個のダンパ14それぞれの開度と、により決まる。ここにおいて、空調システム10では、制御装置30が分配装置102を制御する。これにより、空調システム10では、熱源機11により生成された熱エネルギーを10個の吹出口15に分配する割合が決まる。
空調システム10では、複数の空調空間21の各々に吹出口15及び温度センサ18が配置される。ここにおいて、空調システム10では、複数の空調空間21の各々に、吹出口15から空気を供給する。また、空調システム10では、複数の空調空間21の各々に温度センサ18が1つずつ配置される。空調システム10は、複数の空調空間21の各々の温度を温度センサ18により計測する。複数の空調空間21の各々に単位時間に供給される熱量は、吹出口15から空調空間21に供給される空気の温度及び流量により決まる。
温度センサ18の位置は、吹出口15から吹き出した空気が温度センサ18に直接当たることがないように定められる。温度センサ18の位置は、建物20において空調空間21を囲む壁面であって、例えば床から110cm以上120cm以下の高さとなるように定められる。このような温度センサ18の位置は、適宜に変更することが可能である。
制御装置30は、9個の温度センサ18それぞれが計測した温度を9つの空調空間21それぞれの現在温度として取得して、現在温度と複数の空調空間21それぞれの目標温度との差を小さくするように、熱源機11と分配装置102とを制御する。これにより、制御装置30は、10個の吹出口15への単位時間当たりの熱量の分配量を調節する。温度センサ18は、輻射熱の影響を受けずに温度を計測するように、通気口を有したケースに収納されているのが望ましい。
空調システム10では、給気ダクト16は、2系統の分岐ダクト161に分岐している。これにより、空調システム10では、室内機111から送り出されエアフィルタ12を通った空気が、2系統の分岐ダクト161それぞれに導入される。空調システム10では、2系統の分岐ダクト161それぞれの上流側に搬送ファン13が配置されている。図1において、筐体101内の破線は、空気の流れる経路を模式的に示している。2台の搬送ファン13はそれぞれ室内機111からの空気を加速する。空調システム10では、2系統の分岐ダクト161それぞれが、更に複数系統(5系統)の末端ダクト162に分岐している。つまり、室内機111からの空気は10系統の末端ダクト162に導入される。2つの分岐ダクト161それぞれから分岐する末端ダクト162の数は、5〜7の範囲で適宜設定され、互いに異なっていてもよい。
空調システム10では、10系統の末端ダクト162の各々に、ダンパ14が配置される。空調システム10では、制御装置30が各ダンパ14それぞれを制御することによって、各ダンパ14それぞれの開度を調節する。ダンパ14は、その開度を調節されることにより、末端ダクト162を通る空気の流量を変化させる。末端ダクト162の末端には吹出口15が接続されている。したがって、室内機111からの空気は、搬送ファン13を通してダンパ14に送られ、ダンパ14により流量を調節された後、吹出口15を通して空調空間21に吹き出す。
空調システム10は、建物20の換気を常時行う。そのため、空調システム10は、各搬送ファン13を常時稼働する。ただし、空調システム10では、メンテナンス等の必要に応じて搬送ファン13を停止させてもよい。
以下では、制御装置30について詳述する。制御装置30は、図2に示すように、処理部31と、制御部32と、を備える。処理部31は、複数の空調空間21のそれぞれに供給する熱量の分配量を定める。制御部32は、熱源機11、各搬送ファン13及び各ダンパ14の制御を行う。また、制御装置30は、操作表示装置40との間で情報の入力及び出力を行うためのインターフェイス部33を備える。
操作表示装置40は、表示装置とタッチパッドとを含むタッチパネルを備え、ユーザインターフェイス(GUI:Graphic User Interface)として機能する。すなわち、制御装置30は、操作表示装置40の表示装置に情報を出力し、操作表示装置40のタッチパッドから入力される情報を受け付ける。操作表示装置40には、必要に応じて様々な画面が表示される。操作表示装置40は、専用でなくても、スマートフォン、タブレットコンピュータ、パーソナルコンピュータ等であってもよい。空調システム10では、操作表示装置40が、ユーザが操作可能な操作部を構成している。また、空調システム10は、操作表示装置40の代わりに、表示装置と操作装置とを個別に備えていてもよい。この場合、操作装置が、ユーザが操作可能な操作部を構成する。
空調システム10では、施工業者等が操作表示装置40を利用して、複数の空調空間21の各々に対してダンパ14及び温度センサ18を対応付けることができるように構成されている。空調システム10では、複数の空調空間21の各々に対して互いに異なる1つの温度センサ18が対応付けられる。複数の空調空間21の各々に対応付けられるダンパ14の数は、1つとは限らず、複数の場合もある。空調空間21に対応付けるダンパ14の数は、区画23の広さ等により決まる空調空間21の空調負荷等に応じて適宜に定められる。例えば、空調空間21が8畳の部屋であれば、ダンパ14の数は1つであり、空調空間21が16畳の部屋(例えば、リビング等)であれば、ダンパ14の数は2つである。
空調システム10では、1又は複数のダンパ14と温度センサ18との対応関係が定まると、ダンパ14に一対一に対応する吹出口15と温度センサ18とが結び付く。これにより、空調システム10では、複数の温度センサ18それぞれにより温度を計測する空調空間21が特定される。
空調システム10では、ユーザ等による操作表示装置40の操作等により、複数の空調空間21の各々に、予め設定された部屋名を対応付けることができる。また、空調システム10では、ユーザ等による操作表示装置40の操作により、複数の空調空間21それぞれのユーザ希望温度を指示することが可能である。
制御装置30は、ユーザ等による操作表示装置40の操作等により複数の空調空間21それぞれについて指示されたユーザ希望温度を記憶部34に格納する。
制御装置30の処理部31は、複数の温度センサ18それぞれと通信することで複数の温度センサ18それぞれが計測した現在温度を取得する取得部310を備える。取得部310は、複数の温度センサ18それぞれとの間で有線通信を行い、複数の温度センサ18に対して定期的に現在温度を問い合わせるように構成されている。すなわち、取得部310は、複数の温度センサ18に対してポーリングを行うことにより、個々の温度センサ18から現在温度を取得する。取得部310が複数の温度センサ18それぞれに現在温度を問い合わせる周期は、例えば、1分以上15分以下の範囲、望ましくは5分以上10分以下の範囲に定められている。この周期は、例えば、空調空間21の温度が変化する速さ、温度センサ18の計測精度等により適宜決めればよい。
取得部310が温度センサ18から取得した現在温度は、取得部310が温度センサ18に問い合わせたときに温度センサ18が計測した温度(空調空間21の気温)である。ただし、取得部310が温度センサ18から取得する現在温度は、温度センサ18が取得部310からの問い合わせを受けた時点付近に定めた所定期間での温度の平均値であってもよい。この所定期間は、温度センサ18が取得部310から問い合わせを受けた時点の前と後とのどちらか、あるいは、その時点を跨ぐ。この所定期間は、例えば10秒以上3分以下の範囲、望ましくは30秒以上1分以下の範囲に定められている。
制御装置30の処理部31は、取得部310に加えて、第1計算部311、第2計算部312及び決定部313を備える。以下では、説明の便宜上、取得部310が取得する現在温度の時系列に順序を表す正の整数値iを対応付け、複数の空調空間21を互いに区別するための識別情報をjで表す。識別情報jは、例えば正の整数値で表される。
第1計算部311は、複数の空調空間21それぞれについて、記憶部34に格納されているユーザ希望温度と、取得部310が取得した現在温度とを入力として、現在温度と目標温度との温度差を計算する。ここにおいて、第1計算部311は、ユーザ希望温度から、制御装置30内での計算、判定等に用いる目標温度を算出する。目標温度は、ユーザ希望温度と同じの場合、異なる場合のいずれの場合もある。ユーザ希望温度は、ユーザ等による操作表示装置40の操作等により複数の空調空間21それぞれについて指示される温度である。制御装置30は、動作モードとして、通常運転モードと、省エネルギー運転モード(例えば、お出かけモード)と、を有している。制御装置30は、通常運転モードでは、複数の空調空間21それぞれについてのユーザ希望温度を記憶部34から取得して目標温度とする。まず、制御装置30の動作モードが通常運転モードである場合の動作について説明し、その後、省エネルギー運転モードである場合の動作について説明する。識別情報がjである空調空間21について、取得部310が取得した現在温度をθj1(i)で表し、目標温度をθj2で表すと、第1計算部311は、温度差Δθj(i)を、Δθj(i)=θj1(i)−θj2という計算で求め、正負の符号付きで出力する。第1計算部311は、複数の空調空間21それぞれについて温度差Δθj(i)を求める。第1計算部311は、計算により求めた温度差Δθj(i)を、空調空間21の識別情報jに対応付けて記憶部34に一時的に格納させる。記憶部34は、空調空間21ごとに少なくとも2つの温度差Δθj(i)、Δθj(i−1)を記憶する。記憶部34に格納されている2つの温度差Δθj(i)、Δθj(i−1)は、取得部310が現在温度θj1(i)を取得すると更新される。すなわち、記憶部34は、最新の温度差Δθj(i)と1つ前の温度差Δθj(i−1)とを記憶する。最新の温度差Δθj(i)は、取得部310が現在温度θj1(i)を取得した後、次の現在温度θj1(i+1)を取得するまでの期間に求められる温度差である。また、1つ前の温度差Δθj(i−1)は、取得部310が現在温度θj1(i)を取得する前で、1つ前の現在温度θj1(i−1)を取得した後の期間に求められた温度差である。
第2計算部312は、取得部310が現在温度θj1(i)を取得するたびに、温度変化Vj(i)を計算する。温度変化Vj(i)は、取得部310が取得した2回分の現在温度θj1(i)、θj1(i−1)の差分である。すなわち、第2計算部312は、単位時間における温度変化Vj(i)を、Vj(i)=θj1(i−1)−θj1(i)という計算で求める。温度変化Vj(i)は、時間に対する温度変化を表している。第1計算部311が温度差Δθj(i)を求めているから、第2計算部312は、温度変化Vj(i)を求めるために、現在温度θj1(i)、θj1(i−1)の差分に代えて、2つの温度差Δθj(i)、Δθj(i−1)の差分を求めてもよい。取得部310が2回分の現在温度θj1(i)、θj1(i−1)を取得する期間に目標温度θj2が変化しなければ、2回分の現在温度θj1(i)、θj1(i−1)の差分と、2回分の温度差θj1(i)、θj1(i−1)の差分とは同じ値である。
決定部313は、複数の空調空間21それぞれについて、第1計算部311が求めたi番目の温度差Δθj(i)と、第2計算部312が求めた温度変化Vj(i)と、に基づいて、複数の空調空間21それぞれに熱源機11から供給する熱量の分配量を定める。熱量の分配量は、複数のダンパ14それぞれの開度と、2台の搬送ファン13それぞれの風量と、熱源機11が単位時間当たりに生成する熱量と、により定まる。すなわち、決定部313は、複数の空調空間21それぞれの温度差Δθj(i)及び温度変化Vj(i)に基づいて、複数のダンパ14それぞれの開度を定めた後に、2台の搬送ファン13の風量及び熱源機11が単位時間当たりに生成する熱量を定める。
決定部313の具体的な動作例を以下に説明する。以下では、決定部313に関して、1つの空調空間21についてダンパ14の開度を定める機能を説明した後、建物20に配置されたすべてのダンパ14の開度に基づいて、2台の搬送ファン13の風量及び熱源機11において単位時間当たりに生成させる熱量を定める機能を説明する。
決定部313は、空調システム10の冷房運転の期間における空調空間21の温度差とダンパ14の開度とを対応付けた表1のような第1制御テーブルを備える。表1は、想定した標準の熱負荷の空調空間21において、空調システム10が冷房運転である期間の第1制御テーブルを示している。
第1制御テーブルでは、温度差Δθjが複数の区間に区分され、複数の区間それぞれにダンパ14の開度が対応している。
空調システム10は、冷房運転では、温度センサ18により計測された空調空間21の現在温度θj1(i)が目標温度θj2を上回っていることは、その空調空間21に対する冷房が不足であることを表している。また、空調空間21の現在温度θj1(i)が設定温度目標温度θj2に一致していることは、その空調空間21に対する冷房の充足を表している。また、空調空間21の現在温度θj1(i)が目標温度θj2を下回っていることは、その空調空間21に対する冷房が過剰であることを表している。
空調システム10では、空調空間21の冷房が不足である場合、現在温度θj1(i)が目標温度θj2を上回り、現在温度θj1(i)と目標温度θj2との差が大きいほど、冷房の不足の程度が大きい。
第1計算部311は、現在温度θj1(i)から目標温度θj2を減算した温度差Δθj(i)を求める。空調システム10では、空調空間21に関して第1計算部311が求めた温度差Δθj(i)が正であれば、その空調空間21の冷房が不足している。また、空調システム10では、空調空間21に関して第1計算部311が求めた温度差Δθj(i)が大きいほど冷房の不足の程度が大きい。
第1制御テーブルは、一例として、温度差Δθj(i)について互いに異なる5つの区間が定められている。第1制御テーブルでは、温度差Δθj(i)が正でありかつ相対的に温度差Δθj(i)が大きい区間に対してダンパ14の開度として相対的に大きい開度が対応している。第1制御テーブルは、温度差Δθj(i)が2℃以上の場合、ダンパ14の開度が最大値(例えば、100%)になるように定められている。
第1制御テーブルでは、温度差Δθj(i)が負であっても、現在温度θj1(i)が目標温度θj2より1℃下がるまでは、空調空間21の温度が上昇しない程度の熱量がその空調空間21へ供給されるように、ダンパ14の開度が所定値(例えば、25%)に設定されている。また、第1制御テーブルでは、現在温度θj1(i)が目標温度θj2に対して1℃を超えて下がった場合に、ダンパ14の開度が最小値(例えば、5%)になるように定められている。ダンパ14の開度の最小値は、5%に限らない。例えば、空調システム10とは別系統で常時換気を行う系統があれば、ダンパ14の開度の最小値は、0%でもよい。
ところで、温度差Δθj(i)は、「不足度」と言い換えることができる。表1に付記した不足度は、温度差Δθj(i)に対応させ「−1」から「3」までの5段階の整数値で表している。表1では、不足度が0である場合は空調の充足を表し、不足度が正である場合は空調の不足を表し、不足度が負である場合は空調の過剰を表す。表1では、空調の不足は、不足度において3段階の整数値で表しており、数値が大きいほど空調の不足の程度が大きいことを表している。
決定部313は、空調システム10が暖房運転である期間に表2のような第2制御テーブルを用いる。暖房運転の際には目標温度θj2が下限値であるから、第2制御テーブルでは、温度差Δθj(i)が負である区間を正である区間よりも多く設けている。また、不足度は、温度差Δθj(i)が負でありかつ絶対値が大きいほど大きい数値になるように温度差の区間と対応付けている。
決定部313は、取得部310が現在温度θj1(i)を取得するたびに、第1計算部311から温度差Δθj(i)を受け取り、この温度差Δθj(i)が属する区間を第2制御テーブルから求める。決定部313は、温度差Δθj(i)が属する区間に応じてダンパ14の開度を決める。表1及び表2における不足度は必須ではない。
空調システム10では、決定部313が、表1の第1制御テーブル及び表2の第2制御テーブルそれぞれを順次更新できるように構成されている。
表1及び表2の各々において、温度差Δθj(i)は、現在温度θj1(i)から目標温度θj2を減算した値である。このため、表1に示す第1制御テーブルと表2に示す第2制御テーブルとでは、空調が不足している状態を表す温度差Δθj(i)の正負の符号が反転する。以下の説明では、空調システム10が冷房運転である場合を例として説明する。したがって、空調システム10が暖房運転である場合には、温度差Δθj(i)の正負の符号を逆にして読み替えることが必要である。
空調システム10では、空調空間21の空調負荷が他の空調空間21の空調負荷に対して相対的に大きくて空調が不足している場合、相対的に空調負荷の大きな空調空間21に供給する単位時間当たりの熱量を多くするほうが、相対的に空調負荷の大きな空調空間21の現在温度θj1(i)が目標温度θj2に達するまでの時間が短縮される。また、空調空間21の空調負荷が他の空調空間21の空調負荷に対して小さい場合には、現在温度θj1(i)が目標温度θj2を超えて空調が過剰になる可能性がある。また、現在温度θj1(i)が目標温度θj2に達した状態で、単位時間当たりに空調空間21に供給される熱量がその空調空間21の空調負荷に見合っていないと、その空調空間21の現在温度θj1(i)の変動が大きくなる可能性がある。これに対して、空調システム10では、相対的に空調負荷の小さな空調空間21に供給する単位時間当たりの熱量を減らすことにより、相対的に空調負荷の小さな空調空間21の空調が過剰になるのを抑制したり、現在温度θj1(i)が目標温度θj2に達した状態での現在温度θj1(i)の変動を抑制することが可能となる。
空調システム10では、決定部313は、ダンパ14の開度を温度差Δθj(i)のみに基づいて決めるのではなく、時間に対する温度変化Vj(i)も用いて決めている。ここにおいて、決定部313は、第1制御テーブル及び第2制御テーブルを順次更新する補正部315を備えている。補正部315は、空調が不足であり、かつ時間に対する温度変化Vj(i)が相対的に小さい場合、時間に対する温度変化Vj(i)が相対的に大きくなるようにダンパ14の開度を更新する。また、補正部315は、空調が充足あるいは過剰であり、かつ時間に対する温度変化Vj(i)が相対的に大きい場合、温度変化Vj(i)が相対的に小さくなるようにダンパ14の開度を更新する。ここに、時間に対する温度変化Vj(i)の大きさは、空調空間21における温度変化の速さを表している。言い換えれば、時間に対する温度変化Vj(i)は、空調空間21の空調負荷の指標の大きさとして用いることができる。空調空間21は、時間に対する温度変化Vj(i)が大きいほど、空調負荷が小さく、時間に対する温度変化Vj(i)が小さいほど空調負荷が大きい。ここにおいて、空調負荷は、空調空間21の属性(断熱特性、容積、部屋の向き等)、目標温度等によって異なる。空調空間21では、例えば空調空間21の容積が大きいほど空調負荷が大きく、空調空間の容積が小さいほど空調負荷が小さくなる傾向にある。また、空調空間21では、空調システム10の冷房運転のときの目標温度が低いほど空調負荷が大きく、目標温度が高いほど空調負荷が小さい傾向にある。また、空調空間21では、空調システム10の暖房運転のときの目標温度が高いほど空調負荷が大きく、目標温度が低いほど空調負荷が小さい傾向にある。
第1制御テーブルにおけるダンパ14の開度あるいは第2制御テーブルにおけるダンパ14の開度を更新するか否かの条件は、温度差Δθj(i)若しくはΔθj(i−1)と時間に対する温度変化Vj(i)とを組み合わせて定められている。決定部313は、温度差Δθj(i)若しくはΔθj(i−1)を第1閾値と比較することによって、空調が不足であるか否かを評価する。また、決定部313は、時間に対する温度変化Vj(i)を第2閾値と比較することによって、その空調空間21の単位時間当たりの温度変化量から単位時間当たりに供給する熱量の評価を行う。
決定部313には、温度差Δθj(i)と比較される第3閾値及び温度変化Vj(i)と比較される第4閾値も定められている。第3閾値は、温度差Δθj(i)と比較されることにより空調が充足又は過剰であるか否かを評価するために用いられる。第4閾値は、第2閾値と同様に、その空調空間21の単位時間当たりの温度変化量から単位時間当たりに供給する熱量の評価を行うために用いられる。ただし、上述の第2閾値は、空調が不足している空調空間21の単位時間当たりの温度変化量から単位時間当たりに供給する熱量を判断するために用いられる。これに対して、第4閾値は、空調が過剰である空調空間21の単位時間当たりの温度変化量から単位時間当たりに供給する熱量を判断するために用いられる。以下では、第1閾値をTH1、第2閾値をTH2、第3閾値をTH3、第4閾値をTH4として説明する。
補正部315は、Δθj(i)>TH1若しくはΔθj(i−1)>TH1かつVj(i)<TH2という条件が満たされると、温度変化Vj(i)が増加するようにダンパ14の開度を補正する。ここでの条件は、温度差Δθj(i)が第1閾値TH1より大きいから空調が不足であることを表し、かつ温度変化Vj(i)が第2閾値TH2より小さいから空調空間21の空調負荷が大きく単位時間当たりに供給する熱量が不足していることを意味している。すなわち、この条件が成立する空調空間21は、温度差Δθj(i)と第1閾値TH1との比較により空調が不足であると評価され、かつ温度変化Vj(i)が第2閾値TH2より小さいと評価されている。そのため、補正部315は、この空調空間21に対応するダンパ14の開度を大きくするように第1制御テーブルを補正して更新する。空調システム10は、制御装置30においてこのような補正を行うことにより、相対的に空調負荷の大きな空調空間21の現在温度θj(i)を相対的に空調負荷の小さな空調空間21と同等の時間で目標温度θj2に近づけることを可能にしている。
また、補正部315は、Δθj(i)<TH3かつVj(i)>TH4という条件が満たされると、温度変化Vj(i)が減少するように第1制御テーブルにおけるダンパ14の開度を補正して更新する。ここでの条件は、温度差Δθj(i)が第3閾値TH3より小さいから空調が充足又は過剰であることを表し、かつ温度変化Vj(i)が第4閾値TH4より大きいから空調空間21の空調負荷が小さく単位時間当たりに供給する熱量が過大であることを意味している。すなわち、この条件が成立する空調空間21は、温度差Δθj(i)と第3閾値TH3との比較により空調が充足又は過剰であると評価され、かつ温度変化Vj(i)が第4閾値TH4より大きいと評価されている。そのため、補正部315は、この空調空間21に対応するダンパ14の開度を小さくするように第1制御テーブルを補正して更新する。空調システム10は、制御装置30においてこのような補正を行うことにより、相対的に空調負荷の小さな空調空間21への空調が過剰になるのを抑制することが可能となる。
第1閾値TH1は、空調が不足であることを評価するために用いられるから、比較的大きい値であって、例えば1℃に定められる。第2閾値TH2は、上述のように、空調空間21の単位時間当たりの温度変化量から単位時間当たりに供給する熱量を評価するために用いられる。第2閾値TH2は、例えば、0℃以上1℃以下の範囲から選択され、望ましくは0.2℃以上0.5℃以下の範囲から選択され、一例として0.3℃に設定される。一方、第3閾値TH3は、空調が充足又は過剰であることを評価するために用いられるから、比較的小さい値であって、例えば0.5℃に定められる。第4閾値TH4は、単位時間当たりに供給する熱量が多いことを評価するために用いられるから、例えば0℃以上1.0℃以下、望ましくは0.3℃以上0.7℃以下の範囲から選択され、一例として0.5℃に設定される。
以下に、第1制御テーブルを補正する方法を具体的に説明する。補正部315は、第1制御テーブルにおけるダンパ14の開度を相対的に大きくするように補正する場合、補正前の第1制御テーブル(例えば、表1に示した第1制御テーブル)を、表3のように補正された第1制御テーブルに更新する。
ここでは、空調システム10が冷房運転である場合を想定しているから、表3に示す第1制御テーブルは表1に示した第1制御テーブルを補正して作成されている。すなわち、温度差Δθj(i)が1℃以上2℃未満の場合、ダンパ14の開度は70%から100%に変更され、温度差Δθj(i)が0℃以上1℃未満の場合、ダンパ14の開度は40%から70%に変更される。また、表3の第1制御テーブルにおいて、温度差Δθj(i)が−1℃以上0℃未満の場合、表1の第1制御テーブルに対して、ダンパ14の開度が25%から40%に変更されている。
温度差Δθj(i)が2℃以上である場合、表3の第1制御テーブルにおいても、ダンパ14の開度は100%に維持される。また、温度差Δθj(i)が−1℃未満の場合、表3の第1制御テーブルにおいても、ダンパ14の開度は5%に維持される。ただし、建物20において空調システム10とは別系統で常時換気の系統があれば、温度差Δθj(i)が−1℃未満の場合、ダンパ14の開度は0%でもよい。
一方、補正部315は、第1制御テーブルにおけるダンパ14の開度を相対的に小さくするように補正する場合、補正前の第1制御テーブル(例えば、表1に示した第1制御テーブル)を、表4のように補正された第1制御テーブルに更新する。
表4に示す第1制御テーブルは、表1に示した第1制御テーブルに対して、ダンパ14の開度を相対的に小さくするように補正されている。すなわち、温度差Δθj(i)が1℃以上2℃未満の場合、ダンパ14の開度は70%から40%に変更され、温度差Δθj(i)が0℃以上1℃未満の場合、ダンパ14の開度は40%から25%に変更される。また、表4の第1制御テーブルにおいて、温度差Δθj(i)が−1℃以上0℃未満の場合、表1の第1制御テーブルに対して、ダンパ14の開度は25%から5%に変更されている。
ここに、温度差Δθj(i)が−1℃未満の場合、空調システム10において常時換気を行うために、表3に示した第1制御テーブルと同様に、ダンパ14の開度は5%に維持される。ただし、建物20において空調システム10とは別系統で常時換気系統があれば、ダンパ14の開度を0%としてもよい。また、温度差Δθj(i)が2℃以上の場合、ダンパ14の開度は100%に維持される。
表3、表4は、空調システム10が冷房運転である場合の補正後の第1制御テーブルを示しているが、空調システム10が暖房運転である場合、補正部315は、表2に示した第2制御テーブルを補正する。ダンパ14の開度は、表1に対する表3、表4と同様の考え方で補正される。また、上述した空調システム10は、温度差Δθj(i)とダンパ14の開度とを対応付けた第1制御テーブルを用いているが、温度差Δθj(i)に代えて不足度を用いると、表3、表4は空調システム10が暖房運転である場合も用いることができる。
上述の例では、空調システム10が冷房運転か暖房運転かに応じて温度差Δθj(i)の正負の符号が反転している。これに対して、第1計算部311が、冷房運転か暖房運転に応じて温度差Δθj(i)を求める際の現在温度θj(i)と目標温度θj2との2つの項を入れ替えると、冷房運転か暖房運転かにかかわらず、空調の不足の程度に対する温度差Δθj(i)の正負の符号を一致させることが可能である。すなわち、第1計算部311は、空調システム10の冷房運転の際には現在温度θj(i)から目標温度θj2を減算した値を温度差Δθj(i)として採用し、暖房運転の際には目標温度θj2から現在温度θj(i)を減算した値を温度差Δθj(i)として採用するように構成されていてもよい。この場合、決定部313は、冷房運転と暖房運転とで異なる制御テーブルを用いる必要がなく、冷房運転と暖房運転との両方で表1の第1制御テーブルを共用可能である。
ところで、空調システム10では、複数の空調空間21それぞれに単位時間当たりに供給する熱量は、熱源機11が単位時間当たりに生成した熱量と、2台の搬送ファン13それぞれの風量と、10個のダンパ14それぞれの開度と、により定まる。また、2台の搬送ファン13それぞれの風量と、10個のダンパ14それぞれの開度と、が定まると、9つの空調空間21それぞれに単位時間当たりに供給される空気の体積が定まる。すなわち、熱源機11が単位時間当たりに生成した熱エネルギーは、熱の損失がない理想的な条件では、単位時間当たりに9つの空調空間21それぞれに供給される空気の体積の比率に応じて、9つの空調空間21に分配される。そして、熱源機11が単位時間当たりに生成する熱エネルギーの量は、熱の損失がない理想的な条件では、建物20におけるすべての空調空間21それぞれに供給される熱エネルギーの合計に等しい。
上述の例では、取得部310において複数の空調空間21それぞれの現在温度を取得すると、決定部313が、複数の空調空間21それぞれに対応するダンパ14の開度を求める。決定部313は、複数の空調空間21それぞれに分配する単位時間当たりの熱量を決めるために、ダンパ14の開度を求めた後、2台の搬送ファン13それぞれの風量を決める。搬送ファン13の風量は、搬送ファン13の出力条件を出力調整用(風量調整用)の複数段階のノッチ(例えば、第1ノッチ、第2ノッチ、第3ノッチ、第4ノッチ)から選ぶことで決めることができる。搬送ファン13は、第1ノッチ(微)、第2ノッチ(弱)、第3ノッチ(中)、第4ノッチ(強)の順に、風量が多くなる。空調システム10では、決定部313が、搬送ファン13の運転条件を複数段階のノッチから選ぶことで搬送ファン13の風量を決める。空調システム10では1台の搬送ファン13に5個のダンパ14を対応させているから、決定部313は、搬送ファン13の風量を、搬送ファン13の下流側にある複数個(例えば、5個)のダンパ14の開度に基づいて決める。
決定部313は、搬送ファン13の風量をダンパ14の開度に基づいて決めるために、ダンパ14の開度に得点を対応付けた表5のような得点テーブルと、得点に搬送ファン13のノッチを対応付けた表6のような判定テーブルと、を備えている。
決定部313は、表5のような得点テーブルを参照することにより、10個のダンパ14それぞれの開度に対応した得点を求め、表6のような判定テーブルを参照することにより、2台の搬送ファン13それぞれの風量を決める。具体的には、決定部313は、1台の搬送ファン13に対応した5個のダンパ14の得点に基づいて、その搬送ファン13のノッチを選ぶことで搬送ファン13の風量を決める。
表6に示す判定テーブルにおける得点は、1台の搬送ファン13に対応した5個のダンパ14の得点の合計点ではなく平均点である。したがって、決定部313は、搬送ファン13に対応したダンパ14の個数にかかわりなく、表6に示す判定テーブルを用いて搬送ファン13の風量を決めることができる。
決定部313は、10個のダンパ14の開度に基づいて2台の搬送ファン13の流量を決めた後、熱源機11から分配装置102に単位時間当たりに供給する熱量を決める。ここにおいて、熱源機11から分配装置102に単位時間当たりに供給する熱量は、熱源機11の風量と熱源機11の設定温度との組み合わせで決めることができる。
熱源機11の設定温度は、冷房運転と暖房運転とにおいてそれぞれ一定温度である。したがって、空調システム10では、熱源機11から分配装置102に単位時間当たりに供給する熱量は、風量によって調節される。熱源機11の風量は、2台の搬送ファン13の風量の合計に応じて決められる。熱源機11の風量は、例えば、5段階で調節可能である。ただし、空調システム10は、2台の搬送ファン13の風量の合計よりも熱源機11の風量のほうが小さくなるように設計されている。
上述の通り、制御装置30は、複数の温度センサ18それぞれが計測した温度を複数の空調空間21それぞれの現在温度として取得して、現在温度と複数の空調空間21それぞれの目標温度との差を小さくするように熱源機11及び分配装置102を制御する。
ここにおいて、制御装置30は、上述のように、動作モードとして、通常運転モードと、省エネルギー運転モード(例えば、お出かけモード)と、を有する。通常運転モードは、ユーザが建物20内に居る間等におけるユーザの快適性を考慮した通常の動作モードである。お出かけモードは、ユーザが建物20から外出している間の空調システム10の省エネルギー性及びユーザが帰宅したときの快適性を考慮した動作モードである。
制御装置30は、通常運転モードでは、複数の空調空間21それぞれに関するユーザ希望温度を取得して目標温度とする。
図3Aは、制御装置30の動作モードが通常運転モードのときの操作表示装置40の画面P1の一例である。この画面P1は、複数のボタンB1〜B6を有している。ボタンB1は、例えば、ユーザ等が空調システム10の冷房運転と暖房運転との切り替えを空調システム10において自動で行うことをユーザ等が選択するとき等に、ユーザにより操作されるボタンである。ボタンB2は、空調システム10の冷房運転と暖房運転との切り替えをユーザ等が手動で行うことを選択するときにユーザにより操作されるボタンである。ボタンB3は、空調システム10を停止させるときにユーザ等により操作されるボタンである。ボタンB4は、画面P1を、図3Bのようなお出かけモードに必要な情報(帰宅予定日時を示す情報)を設定するための画面P2に変更するときにユーザ等により操作されるボタンである。ここにおいて、制御装置30は、日時を計時する時計部を備えている。空調システム10では、例えば、ユーザによる操作表示装置40の操作によって設定された帰宅予定日時が、省エネルギー運転モード解除日時であり、帰宅予定日時を示す情報が、省エネルギー運転モード解除日時を示す情報である。ボタンB5は、複数の空調空間21に共通のユーザ希望温度をその左側に表示されている温度(図示例では、26℃)よりも高くするときにユーザ等により操作されるボタンである。ボタンB6は、複数の空調空間21に共通のユーザ希望温度をその左側に表示されている温度(図示例では、26℃)よりも低くするときにユーザ等により操作されるボタンである。
画面P2は、お出かけモードに必要な情報(帰宅予定日時を示す情報)を帰宅時間として入力できるように構成されている。また、画面P2は、ユーザが制御装置30に対してお出かけモードの開始の指示を行うためのボタンB11を有する。
図4は、制御装置30の動作モードがお出かけモードのときの操作表示装置40の画面P3の一例である。画面P3は、制御装置30の動作モードがお出かけモードであることを示すメッセージが表示されている。また、画面P3は、ユーザが制御装置30に対してお出かけモードの解除の指示を行うためのボタンB21を有する。
制御装置30は、帰宅予定日時を示す情報及びお出かけモードの開始の指示を受け付けると、動作モードを通常運転モードからお出かけモードに変更する。ただし、制御装置30は、現在日時から帰宅予定日時までの時間が予め規定されている規定時間(例えば、6時間)未満で設定された場合には、動作モードをお出かけモードに変更せず通常運転モードのままとする。規定時間は、例えば、制御装置30の動作モードを通常運転モードからお出かけモードに変更することによる省エネルギー化の効果を期待できる最低限の時間(例えば、4時間)に基づいて規定されているが、これに限らない。例えば、規定時間は、制御装置30の動作モードを通常運転モードからお出かけモードに変更した後に目標温度をユーザ希望温度とした場合に、空調空間21の温度がユーザ希望温度に復帰するまでに要する最低限の時間、に基づいて規定されている。
また、制御装置30は、お出かけモードの解除の指示を受け付けると、複数の空調空間21それぞれの目標温度をユーザ希望温度に変更する。
制御装置30は、お出かけモードでは、お出かけモードが開始されたときに通常運転モードの場合よりも複数の空調空間21それぞれの空調負荷を相対的に小さくするように複数の空調空間21それぞれの目標温度を変化させることで空調システム10全体を省エネルギー運転に移行させる。例えば、制御装置30は、空調システム10が暖房運転のときにお出かけモードが開始された場合、帰宅予定日時までの時間が24時間以上であれば、熱源機11を停止させる若しくは熱源機11に送風を行わせるように熱源機11を制御することにより、空調システム10全体を省エネルギー運転に移行させる。熱源機11を停止させることは、熱源機11での熱エネルギーの生成を停止させることを意味する。また、制御装置30は、空調システム10が冷房運転のときにお出かけモードが開始された場合、帰宅予定日時までの時間が24時間以上であれば、熱源機11を停止させる若しくは熱源機11に送風を行わせるように熱源機11を制御することにより、空調システム10全体を省エネルギー運転に移行させる。
制御装置30は、空調システム10全体を省エネルギー運転に移行させた後、予め設定されたお出かけモード解除日時(省エネルギー運転モード解除日時)より前の調整期間(例えば、24時間前〜お出かけモード解除日時)においてお出かけモード解除日時に近づくにつれて複数の空調空間21それぞれの目標温度を複数の空調空間21それぞれのユーザ希望温度(例えば、26℃)に対して複数段階で近づける。調整期間は、上述の規定時間よりも長い期間である。制御装置30は、暖房運転のときにお出かけモードが開始された場合、帰宅予定日時の24時間前〜帰宅予定日時の2時間前までの間、目標温度をユーザ希望温度−2℃に維持し、帰宅予定日時の2時間前〜帰宅予定日時までの間(最終立ち上げ期間)、目標温度を最終目標温度(ユーザ希望温度+1℃)に維持する。制御装置30は、冷房運転のときにお出かけモードが開始された場合、帰宅予定日時の24時間前〜帰宅予定日時の2時間前までの間、目標温度をユーザ希望温度+1℃に維持し、帰宅予定日時の2時間前〜帰宅予定日時までの間(最終立ち上げ期間)、目標温度を最終目標温度(ユーザ希望温度−1℃)に維持する。制御装置30において、最終立ち上げ期間は、省エネルギー運転モードから通常運転モードに復帰させるための準備期間である。
制御装置30は、省エネルギー運転モードにおいて、第1条件又は第2条件を満たしたときに複数の空調空間21それぞれの目標温度をユーザ希望温度に変更する。第1条件は、帰宅予定日時に達した場合である。第2条件は、帰宅予定時間よりも前に複数の空調空間21それぞれの現在温度が複数の空調空間21それぞれのユーザ希望温度に達した場合である。目標温度は、ユーザ希望温度及び運転モードに応じて設定される温度であり、ユーザ希望温度と同じの場合、異なる場合のいずれの場合もある。
以上説明したお出かけモードのときの現在日時から帰宅予定日時までの時間と空調空間21についての目標温度との関係は、下記表7のようになる。
空調システム10では、例えば、暖房運転のときにお出かけモードが開始された場合について、調整期間をT0、ユーザ希望温度をt0、複数段階の目標温度のうち最初の段階の目標温度(初期目標温度)をte1、最後の段階の目標温度(最終目標温度)をte2(>te1)、目標温度te1の維持時間をT1(例えば、22時間)、目標温度te2の維持時間(例えば、2時間)をT2、とすると、空調空間21の温度は、例えば、図5及び6に実線で示すように変化する。ここにおいて、複数段階の目標温度とは、目標温度と一定のユーザ希望温度との差の絶対値を段階的に小さくすることを意味しており、最終目標温度とユーザ希望温度との差の絶対値は、初期目標温度とユーザ希望温度との差の絶対値よりも小さい。最終目標温度は、空調空間21の目標温度をその空調空間21のユーザ希望温度(空調システム10が暖房運転のときは例えば26℃)とする場合よりもその空調空間21の空調負荷を相対的に大きくする値に設定されている(暖房運転のときは例えば26℃+1℃)。制御装置30は、お出かけモードでは、複数段階の目標温度のうち最初の段階の目標温度te1の維持時間T1が最後の段階の目標温度te2の維持時間T2よりも長い。
比較例の空調システムは、空調システム10と基本構成が同じであり、制御装置30のお出かけモードのとき目標温度を暖房停止指示温度からユーザ希望温度に直接変更する点が相違する。比較例の空調システムでは、例えば、暖房運転のときにお出かけモードが開始された場合について、調整期間をT10、ユーザ希望温度をt0、調整期間において空調空間21の温度がユーザ希望温度に達するまでの時間をT11(例えば、8時間)、調整期間において空調空間21の温度をユーザ希望温度に維持する時間をT12(例えば、16時間)とすると、空調空間21の温度は、例えば、図7及び8に実線で示すように変化する。比較例の空調システムでは、建物20の外気の温度を計測する外気温センサがない場合、帰宅予定日時までに空調空間21の温度をユーザ希望温度t0に到達させるために、最悪のケースを想定して熱源機11の冷房又は暖房の再開日時から帰宅予定日時までの時間を比較的長く設定しておく必要があり、場合によっては無駄な空調時間が長くなってしまう。また、比較例の空調システムでは、お出かけモードにおいて空調空間21の温度をユーザ希望温度へ立ち上げる場合に、空調空間21の温度がユーザ希望温度よりも高温側へオーバーシュートするのを抑制するために、現在温度がユーザ希望温度に近づくにつれて空調空間21へ供給する熱量を少なくするように熱源機11及び分配装置102を制御する。図8中のT22は、空調空間21の温度(現在温度)が本実施形態の空調システム10における最初の段階の目標温度te1を超えてからユーザ希望温度t0に達するまでに要する時間を示している(ただし、図8では、ユーザ希望温度t0に達していない)。比較例の空調システムでは、T22は、例えば26時間である。
本実施形態の空調システム10では、空調空間21の目標温度を調整期間T0において段階的に変化させるので、図5と図7とから分かるように、比較例の空調システムと比べて、図5のドットで示した部分に相当する消費エネルギーを低減可能となる。また、本実施形態の空調システム10では、最終立ち上げ期間において複数の空調空間21それぞれの目標温度を複数の空調空間21それぞれのユーザ希望温度とする場合よりも空調負荷を相対的に大きくする値に設定し、第1条件又は第2条件を満たしたときに複数の空調空間21それぞれの目標温度をユーザ希望温度に変更するように構成されている。したがって、空調システム10では、最終立ち上げ期間において空調空間21の温度が、空調空間21の目標温度がユーザ希望温度の場合よりも空調負荷の大きくなる温度側へ変動するのを抑制しつつ空調空間21の温度がユーザ希望温度に到達するまでの時間の短縮を図れる。ここにおいて、「空調空間21の温度が、空調空間21の目標温度がユーザ希望温度の場合よりも空調負荷の大きくなる温度側へ変動する」とは、暖房運転のときにはユーザ希望温度よりも高温側へオーバーシュートすることを意味し、空調システム10が冷房運転のときにはユーザ希望温度よりも低温側へアンダーシュートすることを意味する。また、本実施形態の空調システム10では、比較例の空調システムと比べて、図6、8のハッチングを付した部分に相当する消費エネルギーを相対的に小さくすることが可能となる。
制御装置30は、動作モードがお出かけモードであっても、例えば、ユーザが帰宅予定日時よりも早く帰宅した場合等に、ユーザの操作表示装置40の操作によりお出かけモードの解除を指示されたときには、動作モードをお出かけモードから通常運転モードに変更する。要するに、制御装置30は、動作モードが省エネルギー運転モードであっても、ユーザの操作表示装置40の操作により省エネルギー運転モードの解除を指示されたときには、動作モードを省エネルギー運転モードから通常運転モードに変更する。
上述した制御装置30は、例えば、プログラムを実行するプロセッサを備えるデバイスを主なハードウェア構成として実現される。プロセッサを備えるデバイスは、半導体メモリを別に設けるMPU(Micro Processing Unit)のほか、半導体メモリと合わせて単一のパッケージに収納したマイクロコントローラ(Micro-Controller)でもよい。制御装置30は、メモリとして、少なくともRAM(Random Access Memory)を備え、他にROM(Read-Only Memory)とEEPROM(Electrically Erasable Programmable Read-Only Memory)との少なくとも一方を備えることが望ましい。
プログラムは、ROMに書き込まれた状態で提供されるほか、光学記録ディスクのような記録媒体あるいはフラッシュメモリを備える記録媒体であって、コンピュータ読取可能な記録媒体によって提供されてもよい。また、プログラムは、インターネット、移動体通信網等の電気通信回線を通して提供されてもよい。記録媒体あるいは電気通信回線により提供されるプログラムは、書換可能な不揮発性メモリ(例えば、EEPROM)に格納されることが望ましい。
建物20は、戸建て住宅に限らず、集合住宅、店舗等の他の建物であってもよい。空調システム10として、ヒートポンプ式の熱源機11を備える構成を例示したが、空調システム10は、温水あるいは冷水を複数のファンコイルユニットに通す構成等であってもよい。また、暖房のみを行う場合、空調システム10は、スチームあるいは温水をラジエータに通す構成であってもよい。また、上述した空調システム10では、エアフィルタ12としてHEPAフィルタを採用しているが、HEPAフィルタに限らず、例えば、ULPAフィルタ(ULPA:Ultra Low Penetration Air)等でもよい。上述した搬送ファン13の台数、ダンパ14及び吹出口15の個数、温度センサ18の個数等は一例であり、適宜に変更される。
上述した空調システム10において、取得部310は、温度センサ18との間で有線通信を行っているが、これに限らず、例えば、無線通信を行ってもよい。取得部310と温度センサ18との間の通信規約にはとくに制限はない。また、上述した空調システム10では、取得部310が複数の温度センサ18それぞれに現在温度を問い合わせる構成であるが、複数の温度センサ18が適宜のタイミングで現在温度を取得部310に送信する構成でもよい。
また、上述の帰宅予定日時を示す情報は、帰宅予定日時に限らず、例えば、帰宅予定日時までの時間でもよい。
省エネルギー運転モードは、お出かけモードに限らず、例えば、通常運転モードよりも空調システム10の省エネルギー運転が可能なモードであればよく、例えば、ユーザが睡眠する前に設定するお休みモード等でもよい。制御装置30は、お休みモードが開始されたときに、冷房運転の場合には目標温度をユーザ希望温度よりも高い値とし、暖房運転の場合には目標温度をユーザ希望温度よりも低い値とする。また、制御装置30は、お休みモードから通常運転モードに復帰させるための準備期間(例えば、予め設定された起床予定時刻よりも前の最終立ち上げ期間)に、複数の空調空間21それぞれのユーザ希望温度の変更に応じて複数の空調空間21それぞれの目標温度を変更する。
また、制御装置30は、省エネルギー運転モードの場合、調整期間において省エネルギー運転モード解除日時に近づくにつれて複数の空調空間21それぞれの目標温度を複数の空調空間21それぞれのユーザ希望温度に対して2段階で近づけているが、複数段階であればよく、例えば、3段階でもよい。
また、制御装置30は、上述の調整期間T0、目標温度te1の維持時間T1及び目標温度te2の維持時間T2と、建物20の建てられている地域と、の関係を規定したテーブルを有していてもよく、このテーブルを参照してお出かけモードでの調整期間T0及び各維持時間T1、T2を変更してもよい。例えば、制御装置30は、建物20が建てられている地域が東北地方のような寒冷地の場合、調整期間T0を24時間、維持時間T1を22時間、維持時間T2を2時間とする。これに対して、制御装置30は、建物20が建てられている地域が例えば関西地方のような標準的な地域の場合、調整期間T0を12時間、維持時間T1を10時間、維持時間T2を2時間とする。また、制御装置30は、建物の建てられている地域ごとに調整期間T0及び各維持時間T1、T2を変更する以外に、地域ごとに表7の目標温度(目標温度te1、te2)を変えてもよい。
また、空調システム10では、制御装置30が、省エネルギー運転モードでの動作モードに限らず、複数の空調空間21それぞれのユーザ希望温度の変更に応じて複数の空調空間21それぞれの目標温度を変更するときに、複数の空調空間21それぞれの目標温度を複数の空調空間21それぞれのユーザ希望温度とする場合よりも空調負荷を相対的に大きくする値に設定し、複数の空調空間21それぞれの現在温度が複数の空調空間21それぞれのユーザ希望温度に達した場合に、複数の空調空間21それぞれの目標温度をユーザ希望温度に変更するように構成されていればよい。例えば、空調システム10では、ユーザによる操作部(操作表示装置40)の操作により、制御装置30に対して、複数の空調空間21それぞれのユーザ希望温度の変更の指示が可能であり、制御装置30が、ユーザ希望温度の変更の指示を受け付けると、複数の空調空間21それぞれの目標温度を変更するように構成されていてもよい。ここにおいて、空調システム10では、ユーザは、例えば、操作表示装置40の画面P1(図3参照)のボタンB5を操作することにより、複数の空調空間21に共通のユーザ希望温度の変更の指示が可能である。また、操作表示装置40は、別の画面(図示せず)において、複数の空調空間21それぞれのユーザ希望温度の変更の指示が可能である。
上述の実施形態から明らかなように、第1の態様に係る空調システム10は、熱源機11と、分配装置102と、複数の温度センサ18と、制御装置30と、を備える。熱源機11は、冷気又は暖気を熱エネルギーとして生成する。分配装置102は、熱源機11が生成した熱エネルギーを建物20における複数の空調空間21に分配する。複数の温度センサ18は、複数の空調空間21それぞれの温度を計測する。制御装置30は、複数の温度センサ18それぞれが計測した温度を複数の空調空間21それぞれの現在温度として取得して、現在温度と複数の空調空間21それぞれの目標温度との差を小さくするように熱源機11及び分配装置102を制御する。前記制御装置は、前記複数の空調空間それぞれのユーザ希望温度の変更に応じて前記複数の空調空間それぞれの目標温度を変更するときに、前記複数の空調空間それぞれの目標温度を前記複数の空調空間それぞれのユーザ希望温度とする場合よりも空調負荷を相対的に大きくする値に設定し、前記複数の空調空間それぞれの現在温度が前記複数の空調空間それぞれのユーザ希望温度に達した場合に、前記複数の空調空間それぞれの目標温度をユーザ希望温度に変更する。
上記構成によれば、空調システム10は、複数の空調空間21の温度をそれぞれのユーザ希望温度に素早く近づけることが可能となるので、複数の空調空間21それぞれの温度の制御性の向上を図ることが可能となる。空調システム10は、特に、全館空調システムとして使用する場合に特に有用である。これは、全館空調システムでは、建物20全体の空調を止めて建物20の壁等での蓄熱が少なくなった後の空調空間21のユーザ希望温度への立ち上げ時間が比較的長くなるからである。また、空調システム10は、建物20の外気の温度を計測する外気温センサを用いる必要がないので、制御装置30による熱源機11及び分配装置102の制御が複雑になるのを抑制することが可能となる。
第2の態様に係る空調システム10は、第1の態様において、ユーザが操作可能な操作部(操作表示装置40)を有する。空調システム10は、ユーザによる操作部の操作により、制御装置30に対して、複数の空調空間21それぞれのユーザ希望温度の変更の指示が可能である。制御装置30は、ユーザ希望温度の変更の指示を受け付けると、複数の空調空間21それぞれの目標温度を変更する。これにより、空調制御システム10では、ユーザによる操作部の操作により複数の空調空間21それぞれのユーザ希望温度の変更の指示があったときに、複数の空調空間21の温度をそれぞれのユーザ希望温度に素早く近づけることが可能となるので、複数の空調空間21それぞれの温度の制御性の向上を図ることが可能となる。
第3の態様に係る空調システム10では、第1又は第2の態様において、制御装置30は、動作モードとして、通常運転モードと、通常運転モードの場合よりも複数の空調空間21それぞれの空調負荷を相対的に小さくするように複数の空調空間21それぞれの目標温度を設定する省エネルギー運転モードと、を有する。制御装置30は、省エネルギー運転モードから通常運転モードに復帰させるための準備期間に、複数の空調空間21それぞれのユーザ希望温度の変更に応じて複数の空調空間21それぞれの目標温度を変更する。これにより、空調システム10では、制御装置30の動作モードを省エネルギー運転モードから通常運転モードに復帰させるための準備期間において、複数の空調空間21の温度をそれぞれのユーザ希望温度に素早く近づけることが可能となるので、複数の空調空間21それぞれの温度の制御性の向上を図ることが可能となる。
第4の態様に係る空調システム10では、第1乃至第3の態様のいずれか一つの態様において、分配装置102は、末端ダクト162と、複数のダンパ14と、搬送ファン13と、を備える。末端ダクト162は、熱源機11からの冷気又は暖気を複数の空調空間21それぞれに配分するように複数系統に分岐している。複数のダンパ14は、複数系統の末端ダクト162それぞれから複数の空調空間21に吹き出す空気の流量を調節する。搬送ファン13は、熱源機11からの空気を、複数のダンパ14のそれぞれに送る。これにより、空調システム10は、搬送ファン13により熱源機11からの冷気又は暖気を加速するから、熱源機11から離れた空調空間21でも熱量の調節が可能である。また、空調システム10では、搬送ファン13とダンパ14とによって、空調空間21に単位時間当たりに供給する熱量が調節されるから、空調空間21ごとに単位時間当たりに供給する熱量の精度を高めることが可能である。