JP2018107313A - Gas supply device, plasma processing device, and manufacturing method of gas supply device - Google Patents

Gas supply device, plasma processing device, and manufacturing method of gas supply device Download PDF

Info

Publication number
JP2018107313A
JP2018107313A JP2016253152A JP2016253152A JP2018107313A JP 2018107313 A JP2018107313 A JP 2018107313A JP 2016253152 A JP2016253152 A JP 2016253152A JP 2016253152 A JP2016253152 A JP 2016253152A JP 2018107313 A JP2018107313 A JP 2018107313A
Authority
JP
Japan
Prior art keywords
discharge port
gas discharge
gas
gas flow
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016253152A
Other languages
Japanese (ja)
Other versions
JP6984126B2 (en
Inventor
芳彦 佐々木
Yoshihiko Sasaki
芳彦 佐々木
雅人 南
Masahito Minami
雅人 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2016253152A priority Critical patent/JP6984126B2/en
Priority to TW106143654A priority patent/TWI763755B/en
Priority to KR1020170177202A priority patent/KR102085409B1/en
Priority to CN201711417582.3A priority patent/CN108242381B/en
Publication of JP2018107313A publication Critical patent/JP2018107313A/en
Application granted granted Critical
Publication of JP6984126B2 publication Critical patent/JP6984126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for achieving uniformity of the film thickness of a sprayed film to be formed on a gas discharge port in a gas supply device for plasma processing having an electrode member provided with a plurality of gas discharge ports.SOLUTION: A gas supply device having an electrode plate 32B used for plasma processing and having a plurality of gas flow paths 41 formed therein bends a corner portion outward so as to form the corner portion at a boundary portion Pa between a gas flow passage 41 and a gas discharge port 40 and forms a curved surface extending from the inner peripheral surface located on the outer side of the corner portion to a lower surface 300. Therefore, a spraying direction of a thermal spray material 50 when the thermal spray material 50 is blown onto the gas discharge port 40 and the inner peripheral surface of the gas discharge port 40 are increased, and thinning near the boundary on the upstream side of the gas discharge port 40 can be prevented.SELECTED DRAWING: Figure 6

Description

本発明は、基板をプラズマ処理するときに用いられる電極部材を備えたガス供給装置の技術分野に関する   The present invention relates to a technical field of a gas supply device provided with an electrode member used when plasma processing a substrate.

半導体製造装置として、プラズマにより基板に対して成膜処理やエッチングなどを行うプラズマ処理装置があり、例えば上部電極を兼用するガスシャワーヘッドなどと呼ばれているガス供給部と、下部電極を兼用する基板の載置台との間に高周波電力を印加する平行平板型のプラズマ処理装置が知られている。
このようなプラズマ処理装置において、ガス供給部に用いられる上部電極には、複数のガス流路が形成され、ガス流路の下端部には、孔部が拡開するガス吐出口(ガス孔口元)が形成されている。このような上部電極においては、上部電極の表面に形成されたアルマイトがプラズマにより消耗することによるパーティクルの発生や、異常放電が問題となる。そのためガス吐出口の耐プラズマ性の向上の要請がある。
As a semiconductor manufacturing apparatus, there is a plasma processing apparatus for performing film formation processing or etching on a substrate by plasma. For example, a gas supply unit called a gas shower head that also serves as an upper electrode and a lower electrode are used. 2. Description of the Related Art A parallel plate type plasma processing apparatus that applies high-frequency power to a substrate mounting table is known.
In such a plasma processing apparatus, a plurality of gas flow paths are formed in the upper electrode used in the gas supply section, and a gas discharge port (a gas hole opening base) in which a hole is expanded at the lower end of the gas flow path. ) Is formed. In such an upper electrode, generation of particles or abnormal discharge due to the consumption of alumite formed on the surface of the upper electrode by plasma becomes a problem. Therefore, there is a demand for improving the plasma resistance of the gas discharge port.

上部電極の耐プラズマ性を向上させるために、例えば特許文献1、2に記載されているようにガス吐出口のアルマイト処理がされた表面に、セラミックス溶射を行い、保護膜を形成する技術が知られている。このようなガス吐出口の開口部付近に溶射膜を成膜するにあたって、例えば上部電極の一面(載置台と対向する面)に垂直な方向から溶射ガンにより溶射材料を吹き付け、溶射ガンを前記一面に沿って平行移動させて、各ガス吐出口に溶射膜を成膜している。   In order to improve the plasma resistance of the upper electrode, for example, as disclosed in Patent Documents 1 and 2, a technique for forming a protective film by performing ceramic spraying on the surface of the gas discharge port that has been anodized is known. It has been. In forming a thermal spray film near the opening of such a gas discharge port, for example, a thermal spray material is sprayed by a thermal spray gun from a direction perpendicular to one surface of the upper electrode (a surface facing the mounting table), and the thermal spray gun is applied to the one surface. The thermal spray film is formed on each gas discharge port by parallel movement.

しかしながら前記一面に垂直な方向から溶射ガンにより溶射材料を吹き付けたときに、ガス吐出口の内周面における上流側の部分は、内周面と溶射材料の吹き付け方向との角度が小さくなり、溶射材料が吹き付けにくい。そのためガス吐出口の上流寄りの部位において溶射膜が薄くなる傾向がある。溶射膜が局部的に薄くなると、薄くなった部位において溶射膜が削れて下層が露出しやすくなり、上部電極の使用寿命が短くなる問題がある。また溶射ガンの角度を調整して溶射材料の吹付角度を調整しながら溶射を行おうとすると、溶射工程が繁雑になる問題がある。   However, when spraying material is sprayed from a direction perpendicular to the one surface with a spray gun, the upstream portion of the inner peripheral surface of the gas discharge port has a smaller angle between the inner peripheral surface and the spraying direction of the spray material. The material is difficult to spray. For this reason, the sprayed coating tends to be thin at the upstream portion of the gas discharge port. When the sprayed film is locally thinned, there is a problem that the sprayed film is shaved in the thinned part and the lower layer is easily exposed, and the service life of the upper electrode is shortened. Further, if the spraying is performed while adjusting the spraying angle of the spraying material by adjusting the angle of the spraying gun, there is a problem that the spraying process becomes complicated.

特許第5782293号公報Japanese Patent No. 5882293 特許第5198611号公報Japanese Patent No. 5198611

本発明はこのような事情の下になされたものであり、その目的は、複数のガス吐出口が形成された電極部材を備えたプラズマ処理用のガス供給装置において、ガス吐出口に成膜する溶射膜の膜厚の均一化を図る技術を提供することにある。   The present invention has been made under such circumstances, and an object of the present invention is to form a film on a gas discharge port in a plasma processing gas supply apparatus including an electrode member on which a plurality of gas discharge ports are formed. The object is to provide a technique for making the film thickness of the sprayed film uniform.

本発明のガス供給装置は、プラズマを発生させるための電極部材と、
前記電極部材に当該電極部材の一面に向かって伸びるように形成された複数のガス流路と、
前記ガス流路の下流端に連続して形成され、孔径が前記一面に向かって拡大するガス吐出口と、
前記ガス吐出口の表面に溶射膜により形成された保護膜と、を備え、
前記ガス流路と前記ガス吐出口との境界にて内周面を外側に向けて折曲して角部を形成すると共に、前記角部よりも外側に位置する内周面の部位から前記電極部材の一面側の表面までを湾曲面として形成し、前記ガス流路の軸線に沿った断面で見たときに、前記角部から前記湾曲面の内端までの間は直線であることを特徴とする。
The gas supply device of the present invention includes an electrode member for generating plasma,
A plurality of gas flow paths formed on the electrode member so as to extend toward one surface of the electrode member;
A gas discharge port formed continuously at the downstream end of the gas flow path and having a hole diameter expanding toward the one surface;
A protective film formed of a sprayed film on the surface of the gas discharge port,
The inner peripheral surface is bent outward at the boundary between the gas flow path and the gas discharge port to form a corner portion, and the electrode is formed from a portion of the inner peripheral surface located outside the corner portion. A surface up to one surface side of the member is formed as a curved surface, and when viewed in a section along the axis of the gas flow path, a straight line extends from the corner to the inner end of the curved surface. And

また本発明のガス供給装置は、プラズマを発生させるための電極部材と、
前記電極部材に当該電極部材の一面に向かって伸びるように形成された複数のガス流路と、
前記ガス流路の下流端に連続して形成され、孔径が前記一面に向かって拡大するガス吐出口と、
前記ガス吐出口の表面に溶射膜により形成された保護膜と、を備え、
前記ガス流路と前記ガス吐出口との境界にて内周面を外側に向けて折曲して角部を形成すると共に、前記ガス流路の軸線に沿った断面で見たときに、前記角部から、前記ガス吐出口の外端に至るまでの内周面は直線であり、当該直線と前記ガス流路の軸線とがなす角度θ2は、45度から70度の範囲に設定されていることを特徴とする。
The gas supply device of the present invention includes an electrode member for generating plasma,
A plurality of gas flow paths formed on the electrode member so as to extend toward one surface of the electrode member;
A gas discharge port formed continuously at the downstream end of the gas flow path and having a hole diameter expanding toward the one surface;
A protective film formed of a sprayed film on the surface of the gas discharge port,
When the inner circumferential surface is bent outward at the boundary between the gas flow path and the gas discharge port to form a corner, and when viewed in a cross section along the axis of the gas flow path, The inner peripheral surface from the corner to the outer end of the gas discharge port is a straight line, and the angle θ2 formed by the straight line and the axis of the gas flow path is set in a range of 45 degrees to 70 degrees. It is characterized by being.

本発明のガス供給部の製造方法は、上述のガス供給装置の製造方法であって、前記電極部材における前記ガス吐出口が形成された面に向けて溶射材料を吹き付ける溶射部を、前記ガス流路の伸びる方向に対して直交する方向に移動させて溶射膜を成膜することを特徴とする。   The method for manufacturing a gas supply unit according to the present invention is the above-described method for manufacturing a gas supply device, wherein the thermal spraying part that sprays a thermal spray material toward the surface of the electrode member on which the gas discharge port is formed, The thermal spray film is formed by moving in a direction orthogonal to the direction in which the road extends.

本発明のプラズマ処理装置は、内部にプラズマを発生させるための処理容器と、
前記処理容器内に設けられた基板を載置する載置台と、
前記処理容器内にプラズマ処理用の処理ガスを供給する上述のガス供給装置と、
前記載置台と電極部材との間に高周波電力を供給する高周波電源部と、
処理容器内を真空排気をするための排気機構と、を備えたことを特徴とする。
The plasma processing apparatus of the present invention includes a processing container for generating plasma inside,
A mounting table for mounting a substrate provided in the processing container;
The gas supply apparatus described above for supplying a processing gas for plasma processing into the processing vessel;
A high-frequency power supply for supplying high-frequency power between the mounting table and the electrode member;
And an exhaust mechanism for evacuating the inside of the processing container.

本発明は、プラズマ処理に用いられ複数のガス流路が形成された電極部材を有するガス供給装置において、ガス流路とガス吐出口との境界にて角部を形成するように外側に屈曲させ、角部の外側に位置する内周面から電極部材の一面側までを湾曲面として形成している。そのためガス吐出口に溶射材料を吹き付けたときに溶射材料の吹き付け方向とガス吐出口の内周面と、がなす角度が大きくなり、ガス吐出口の上流側の境界付近における薄膜化を防ぐことができる。
また他の発明では、ガス流路とガス吐出口との境界に内周面を第1の角部を形成するように外側に折曲させ、第1の角部の外側の内周面を更に外側に折曲して、第2の角部を形成して電極部材の一面側に連続させている。さらに第1の角部から第2の角部までの内壁に沿った直線とガス流路の軸線とのなす角度θ2を45°以上、70°以下となるようにしている。そのため溶射材料の吹き付け方向と、ガス吐出口の内周面と、がなす角度が大きくなるため同様にガス吐出口の溶射膜が均一な膜厚に形成されやすくなる。
The present invention relates to a gas supply apparatus having an electrode member used for plasma processing and having a plurality of gas flow paths, and is bent outward so as to form a corner at the boundary between the gas flow path and the gas discharge port. A curved surface is formed from the inner peripheral surface located outside the corner portion to one surface side of the electrode member. Therefore, when spraying material is sprayed on the gas discharge port, the angle formed by the spraying direction of the sprayed material and the inner peripheral surface of the gas discharge port becomes large, and it is possible to prevent thinning near the upstream boundary of the gas discharge port. it can.
In another aspect of the invention, the inner peripheral surface is bent outward so as to form a first corner at the boundary between the gas flow path and the gas discharge port, and the inner peripheral surface outside the first corner is further formed. It bend | folds outside and forms the 2nd corner | angular part and it is made to continue on the one surface side of the electrode member. Furthermore, the angle θ2 formed by the straight line along the inner wall from the first corner to the second corner and the axis of the gas flow path is set to 45 ° or more and 70 ° or less. Therefore, since the angle formed by the spraying direction of the thermal spray material and the inner peripheral surface of the gas discharge port becomes large, the sprayed film of the gas discharge port is easily formed in a uniform film thickness.

本発明のガス供給装置を適用したプラズマ処理装置の断面図である。It is sectional drawing of the plasma processing apparatus to which the gas supply apparatus of this invention is applied. シャワーヘッドの製造工程を説明する説明図である。It is explanatory drawing explaining the manufacturing process of a shower head. シャワーヘッドの溶射膜成膜工程を説明する説明図である。It is explanatory drawing explaining the sprayed-film formation process of a shower head. シャワーヘッドの溶射膜成膜工程を説明する説明図である。It is explanatory drawing explaining the sprayed-film formation process of a shower head. 従来のシャワーヘッドの溶射膜成膜工程を説明する説明図である。It is explanatory drawing explaining the sprayed-film formation process of the conventional shower head. ガス吐出口を示す断面図である。It is sectional drawing which shows a gas discharge port. プラズマ処理時におけるガス吐出口を示す説明図である。It is explanatory drawing which shows the gas discharge port at the time of a plasma processing. 第2の実施の形態に係るガス供給部のガス吐出口を示す断面図である。It is sectional drawing which shows the gas discharge port of the gas supply part which concerns on 2nd Embodiment. 比較例に係るシャワーヘッドのガス吐出口を示す断面図である。It is sectional drawing which shows the gas discharge port of the shower head which concerns on a comparative example. 実施例における膜厚の測定地点を説明する説明図である。It is explanatory drawing explaining the measurement point of the film thickness in an Example.

[第1の実施の形態]
第1の実施の形態に係るガス供給装置を用いたプラズマ処理装置について説明する。図1に示すようにプラズマ処理装置は、接地された例えばアルミニウムまたはステンレス製の真空容器である処理容器10を備えている。処理容器10の側面には、プラズマ処理される基板である例えば矩形のガラス基板Gを受け渡すための搬入出口11が設けられており、搬入出口11には、搬入出口11を開閉するゲートバルブ12が設けられている。
[First Embodiment]
A plasma processing apparatus using the gas supply apparatus according to the first embodiment will be described. As shown in FIG. 1, the plasma processing apparatus includes a processing container 10 that is a grounded vacuum container made of, for example, aluminum or stainless steel. A loading / unloading port 11 for delivering, for example, a rectangular glass substrate G, which is a substrate to be plasma-treated, is provided on the side surface of the processing vessel 10. A gate valve 12 that opens and closes the loading / unloading port 11 is provided at the loading / unloading port 11. Is provided.

処理容器10の底面における中央部には、ガラス基板Gを載置する、平面形状が矩形であって、上面から下面に至るまでの側周面が平坦な角柱状のサセプタ2が設けられている。サセプタ2は、例えば表面にアルマイト処理がされたアルミニウムやステンレスからなる下部電極21を備え、下部電極21は、絶縁部材22を介して処理容器10の底部に支持されている。下部電極21の上面は、セラミックス溶射で覆われた基板載置面21Aとなっている。また基板載置面21Aの周囲を囲むようにリング状のシールド部材28が設けられ、下部電極21の側面には、全周に亘ってサイドリング状のシールド部材29が設けられている。   At the center of the bottom surface of the processing vessel 10 is provided a prismatic susceptor 2 on which the glass substrate G is placed, the planar shape is rectangular, and the side peripheral surface from the upper surface to the lower surface is flat. . The susceptor 2 includes a lower electrode 21 made of, for example, aluminum or stainless steel whose surface is anodized, and the lower electrode 21 is supported on the bottom of the processing container 10 via an insulating member 22. The upper surface of the lower electrode 21 is a substrate mounting surface 21A covered with ceramic spraying. Further, a ring-shaped shield member 28 is provided so as to surround the substrate mounting surface 21A, and a side ring-shaped shield member 29 is provided on the side surface of the lower electrode 21 over the entire circumference.

下部電極21の基板載置面21Aには、直流電源27に接続されるチャック用の静電電極板23が埋設されている。静電電極板23に正の直流電圧が印加されると、基板載置面21Aに載置されたガラス基板Gの表面に負電荷が吸着する。この静電電極板23及びガラス基板Gの間に電位差が生じ、この電位差に起因するクーロン力によりガラス基板Gが基板載置面21Aに吸着保持される。下部電極21の内部には、図示しない環状のチラー流路が設けられ、チラー流路には、所定温度の熱伝導媒体、例えばガルデン(登録商標)が循環供給され、熱伝導媒体の温度によって基板載置面21Aに載置されたガラス基板Gの処理温度を制御できる。   A chuck electrostatic electrode plate 23 connected to a DC power supply 27 is embedded in the substrate mounting surface 21 </ b> A of the lower electrode 21. When a positive DC voltage is applied to the electrostatic electrode plate 23, negative charges are adsorbed on the surface of the glass substrate G placed on the substrate placement surface 21A. A potential difference is generated between the electrostatic electrode plate 23 and the glass substrate G, and the glass substrate G is attracted and held on the substrate mounting surface 21A by Coulomb force resulting from the potential difference. An annular chiller flow path (not shown) is provided inside the lower electrode 21, and a heat conduction medium having a predetermined temperature, for example, Galden (registered trademark), is circulated and supplied to the chiller flow path. The processing temperature of the glass substrate G placed on the placement surface 21A can be controlled.

またサセプタ2には、外部の搬送アームとの間でガラス基板Gを受け渡すための昇降ピン24が、下部電極21、絶縁部材22及び処理容器10の底面を垂直方向に貫通し、下部電極21の表面から突没するように設けられている。
また基板載置面21Aの表面には、図示しない複数の伝熱ガス吐出孔が開口しており、伝熱ガス吐出孔から基板載置面21Aとガラス基板Gとの間に伝熱ガス例えばヘリウム(He)ガスを供給するように構成されている。このHeガスによりガラス基板Gと、サセプタ2との間の熱が効果的に伝達される。
Also, the susceptor 2 is provided with lifting pins 24 for transferring the glass substrate G to and from an external transfer arm, and penetrates the lower electrode 21, the insulating member 22, and the bottom surface of the processing container 10 in the vertical direction. It is provided so that it may protrude from the surface.
A plurality of heat transfer gas discharge holes (not shown) are opened on the surface of the substrate placement surface 21A, and a heat transfer gas such as helium is provided between the substrate placement surface 21A and the glass substrate G through the heat transfer gas discharge holes. (He) is configured to supply gas. The heat between the glass substrate G and the susceptor 2 is effectively transferred by the He gas.

下部電極21には、処理容器10内にプラズマ生成用の電界を形成するための高周波電源部25が整合器26を介して接続されている。この高周波電源部25は例えば比較的高い周波数例えば13.56MHzの高周波を出力できるように構成されている。また処理容器10の底面には、その縁部に全周に亘って、等間隔に複数の排気口13が開口しており、各排気口13は、排気管14を介して真空排気部15に接続されている。排気口13、排気管14及び真空排気部15は排気機構に相当する。   A high frequency power supply unit 25 for forming an electric field for generating plasma in the processing container 10 is connected to the lower electrode 21 via a matching unit 26. The high frequency power supply unit 25 is configured to output a relatively high frequency, for example, a high frequency of 13.56 MHz. Further, a plurality of exhaust ports 13 are opened at equal intervals over the entire periphery of the bottom surface of the processing vessel 10, and each exhaust port 13 is connected to the vacuum exhaust unit 15 via the exhaust pipe 14. It is connected. The exhaust port 13, the exhaust pipe 14, and the vacuum exhaust unit 15 correspond to an exhaust mechanism.

処理容器10の上面にはガラス基板Gに向けて例えばCFなどのプラズマ処理用のガスを供給するためのガス供給装置であるガス供給部30がサセプタ2の上面と対向するように設けられている。ガス供給部30は、一般には「シャワーヘッド」と呼ばれており、以下シャワーヘッド30として説明を進めると、シャワーヘッド30は、例えばアルミニウムを母材とする下面に扁平な凹部が形成された上部材32Aと上部材32Aの下面を塞ぐ電極部材である電極板32Bとを備えている。上部材32Aと電極板32Bとの間の隙間は、処理ガスを拡散するための拡散空間31を形成している。電極板32Bには、電極板32Bを厚さ方向に貫通し、各々拡散空間31に連通された複数のガス流路41が形成される。またシャワーヘッド30の上面には、拡散空間31に接続される処理ガス供給管33が設けられ、処理ガス供給管33には、上流側から例えばCFなどの処理ガス供給源34、流量調整部35、及びバルブ36がこの順に設けられ、シャワーヘッド30に処理ガスを供給するように構成されている。 A gas supply unit 30, which is a gas supply device for supplying a plasma processing gas such as CF 4 toward the glass substrate G, is provided on the upper surface of the processing container 10 so as to face the upper surface of the susceptor 2. Yes. The gas supply unit 30 is generally referred to as a “shower head”, and will be described below as the shower head 30. The shower head 30 has a flat concave portion formed on a lower surface made of, for example, aluminum. A member 32A and an electrode plate 32B that is an electrode member that covers the lower surface of the upper member 32A are provided. A gap between the upper member 32A and the electrode plate 32B forms a diffusion space 31 for diffusing the processing gas. The electrode plate 32B is formed with a plurality of gas flow paths 41 that penetrate the electrode plate 32B in the thickness direction and communicate with the diffusion space 31, respectively. Further, a processing gas supply pipe 33 connected to the diffusion space 31 is provided on the upper surface of the shower head 30, and the processing gas supply pipe 33 includes a processing gas supply source 34 such as CF 4 and a flow rate adjusting unit from the upstream side. 35 and a valve 36 are provided in this order, and are configured to supply a processing gas to the shower head 30.

図2に示すようにシャワーヘッド30の電極板32Bには、拡散空間31からサセプタ2と対向する一面側(プラズマを励起する処理空間側)にガスを流すガス流路41が穿設される。ガス流路41は、拡散空間31側を上流、処理空間側を下流とすると、上流側が大径の流路41a、下流側が小径の流路41bとして形成され、さらに下流側端部には、プラズマを励起する処理空間側に開口するガス吐出口40が形成されている。ガス流路41における大径の流路41aの内径は例えば2mmに設定されている。また小径の流路41bは、例えば内径0.5〜1.0mmに構成され、処理空間側で励起されたプラズマがガス流路41の上流側に入り込むことを防いでいる。   As shown in FIG. 2, the electrode plate 32B of the shower head 30 is provided with a gas flow path 41 through which gas flows from one side of the diffusion space 31 to the surface facing the susceptor 2 (the processing space side for exciting plasma). The gas channel 41 is formed as a large-diameter channel 41a on the upstream side and a small-diameter channel 41b on the downstream side when the diffusion space 31 side is upstream and the processing space side is downstream. A gas discharge port 40 that is open to the processing space side that excites is formed. The inner diameter of the large diameter channel 41a in the gas channel 41 is set to 2 mm, for example. The small-diameter channel 41 b is configured to have an inner diameter of 0.5 to 1.0 mm, for example, and prevents plasma excited on the processing space side from entering the upstream side of the gas channel 41.

ガス吐出口40は、内周側が全周に亘って面取りされ、上流から下流に向かって孔径が広がっている。各ガス吐出口40の斜面部分は、ガス流路41の軸線Lを含む断面で見たときに、上流側の端部から下流側に向かってガス流路41の軸線Lに対して角度θ1、ここでは、45°傾斜した直線部分42と、直線部分42下流側端部から外側に向かい、サセプタ2と対向する下面(対向面)300に連続する曲線部分43と、で構成されている。この曲線部分43の曲率半径は、1mmの寸法の曲線となるように構成されている。即ちガス吐出口40は、ガス吐出口40とガス流路41との境界にて内周面に境界部Paの角部が形成されるように外側に向けて折曲し、ガス吐出口40の境界部Paの角部よりも下流側に寄った位置から電極板32Bの下面300まで湾曲面として形成されている。なお下面300は、ガス吐出口40における湾曲面の終端の境界部Pbよりも外側の平面部を示す。   The gas discharge port 40 is chamfered on the inner circumference side over the entire circumference, and the hole diameter increases from upstream to downstream. The slope portion of each gas discharge port 40 has an angle θ1 with respect to the axis L of the gas channel 41 from the upstream end toward the downstream when viewed in a cross section including the axis L of the gas channel 41, Here, it is configured by a linear portion 42 inclined by 45 ° and a curved portion 43 that continues outward from the downstream end portion of the linear portion 42 and continues to a lower surface (opposing surface) 300 that faces the susceptor 2. The curvature radius of the curved portion 43 is configured to be a curved line having a dimension of 1 mm. That is, the gas discharge port 40 is bent outward so that a corner portion of the boundary portion Pa is formed on the inner peripheral surface at the boundary between the gas discharge port 40 and the gas flow path 41. A curved surface is formed from a position closer to the downstream side than the corner portion of the boundary portion Pa to the lower surface 300 of the electrode plate 32B. Note that the lower surface 300 indicates a flat portion outside the boundary portion Pb at the end of the curved surface in the gas discharge port 40.

上部材32A及びガス流路41及びガス吐出口40の内周面を含む電極板32Bの表面全体は、例えば陽極酸化処理が行われ、シャワーヘッド30の表面全体が硬質アルマイト30Aにより覆われている。そして電極板32Bのガス吐出口40が開口している一面側にイットリア(Y)、フッ化イットリウム(YF)あるいはアルミナ(Al)などの保護膜となる溶射膜を成膜する処理が行われる。溶射装置は、図3に示すように溶射材料50を吹き付ける例えばプラズマ溶射ガンなどの溶射部5を備えている。溶射膜6を成膜するにあたって、溶射材料50の吐出方向と、電極板32Bにおける下面300と、が垂直になるように固定される。 The entire surface of the electrode plate 32B including the inner surfaces of the upper member 32A, the gas flow path 41, and the gas discharge port 40 is subjected to, for example, anodizing treatment, and the entire surface of the shower head 30 is covered with the hard anodized 30A. . A sprayed film serving as a protective film such as yttria (Y 2 O 3 ), yttrium fluoride (YF 3 ), or alumina (Al 2 O 3 ) is formed on one side of the electrode plate 32B where the gas discharge ports 40 are open. A filming process is performed. As shown in FIG. 3, the thermal spraying apparatus includes a thermal spraying unit 5 such as a plasma spray gun that sprays a thermal spray material 50. In forming the sprayed film 6, the discharge direction of the sprayed material 50 and the lower surface 300 of the electrode plate 32B are fixed so as to be vertical.

そして図3に示すように溶射部5から電極板32Bの下面300へ溶射材料50を吹き付け、溶射部5をガス流路41の伸びる方向と直交する方向に平行移動させて、各々のガス吐出口40に溶射膜6を成膜する。既述のようにガス吐出口40は、既述の断面で見たときに内壁に沿った直線部分42と、軸線Lと、のなす角度が、例えば45°に設定されている。さらにガス吐出口40は、ガス吐出口40とガス流路41との境界部Paにて内周面に角部が形成されるように外側に向けて折曲し、ガス吐出口40の直線部分42の下流側は、電極板32Bの下面300まで湾曲面により繋がるように構成されている。   Then, as shown in FIG. 3, the sprayed material 50 is sprayed from the sprayed portion 5 to the lower surface 300 of the electrode plate 32B, and the sprayed portion 5 is translated in a direction perpendicular to the direction in which the gas flow path 41 extends, thereby each gas discharge port. The thermal spray film 6 is formed on 40. As described above, the angle formed between the straight line portion 42 along the inner wall and the axis L when the gas discharge port 40 is viewed in the above-described cross section is set to 45 °, for example. Further, the gas discharge port 40 is bent outward so that a corner is formed on the inner peripheral surface at the boundary portion Pa between the gas discharge port 40 and the gas flow path 41, and the straight portion of the gas discharge port 40 The downstream side of 42 is configured to be connected to the lower surface 300 of the electrode plate 32B by a curved surface.

このようなガス吐出口40に向けてガス流路41の軸線Lと平行に溶射材料50吹き付けたときに、図4に示すように溶射材料50の吹付角度と、ガス吐出口40の内面との間の角度αは、45°になる。
これに対して、図5に示すようにガス吐出口40の側周面を湾曲させ、ガス吐出口40とガス流路41との境界部位(ガス吐出口40の上流側端部)から電極板32Bの下面300までを湾曲面として形成した場合には、ガス吐出口40の上流端の近傍において、溶射材料50の吹付角度と、ガス吐出口40の内面との間の角度αが45°よりも小さくなる。
When the thermal spray material 50 is sprayed toward the gas discharge port 40 in parallel with the axis L of the gas flow path 41, the spray angle of the thermal spray material 50 and the inner surface of the gas discharge port 40 are as shown in FIG. The angle α between them is 45 °.
On the other hand, as shown in FIG. 5, the side peripheral surface of the gas discharge port 40 is curved, and an electrode plate is formed from the boundary portion (upstream end portion of the gas discharge port 40) between the gas discharge port 40 and the gas flow path 41. When the bottom surface 300 of 32B is formed as a curved surface, in the vicinity of the upstream end of the gas discharge port 40, the angle α between the spray angle of the thermal spray material 50 and the inner surface of the gas discharge port 40 is more than 45 °. Becomes smaller.

そのため電極板32Bの処理空間側の面に対して図3に示すようにガス流路41の軸線Lと平行に溶射材料50を吹き付けたときに、後述の実施例に示すように図5に示すガス吐出口40においては、ガス吐出口40の上流側の領域において、溶射材料50がガス吐出口40の内周面に対して吹き付けられる角度αが小さくなる。そのためガス吐出口40の上流側において、溶射膜6の膜厚が薄くなる。   Therefore, when the thermal spray material 50 is sprayed on the surface of the electrode plate 32B on the processing space side in parallel with the axis L of the gas flow path 41 as shown in FIG. 3, it is shown in FIG. In the gas discharge port 40, the angle α at which the sprayed material 50 is sprayed on the inner peripheral surface of the gas discharge port 40 becomes small in the upstream region of the gas discharge port 40. Therefore, the film thickness of the sprayed film 6 is reduced on the upstream side of the gas discharge port 40.

これに対して図4に示すガス吐出口40においては、ガス吐出口40の内周面に対して、溶射材料50が45°の角度で吹き付けられる。そのためガス吐出口40の上流側端部においても、下面300に成膜される溶射膜6と同等の膜厚で成膜される。そのため図6に示すようにガス吐出口40の内面に溶射膜6が均一に形成される。なおガス吐出口40とガス流路41との境界部Paの角部からガス吐出口40と電極板32Bの下面300との境界部Pbまでの水平距離S1は1mm以下に形成されている。
なお境界部Pbと境界部Paとの間の水平距離S1は、0.5〜1mmに設定することが好ましい。従って下流側端部と電極板32Bの下面300とを湾曲面で繋ぐ場合において、ガス吐出口40の内壁と軸線Lとがなす角度θ1は45〜50°に設定することが好ましい。
On the other hand, in the gas discharge port 40 shown in FIG. 4, the thermal spray material 50 is sprayed at an angle of 45 ° with respect to the inner peripheral surface of the gas discharge port 40. For this reason, the upstream end portion of the gas discharge port 40 is also formed with a film thickness equivalent to that of the sprayed film 6 formed on the lower surface 300. Therefore, the sprayed film 6 is uniformly formed on the inner surface of the gas discharge port 40 as shown in FIG. The horizontal distance S1 from the corner portion of the boundary portion Pa between the gas discharge port 40 and the gas flow path 41 to the boundary portion Pb between the gas discharge port 40 and the lower surface 300 of the electrode plate 32B is formed to be 1 mm or less.
The horizontal distance S1 between the boundary portion Pb and the boundary portion Pa is preferably set to 0.5 to 1 mm. Therefore, when the downstream end and the lower surface 300 of the electrode plate 32B are connected by a curved surface, the angle θ1 formed by the inner wall of the gas discharge port 40 and the axis L is preferably set to 45 to 50 °.

このように溶射膜6が成膜された電極板32Bは、上部材32Aに接合された後、既述の処理ガス供給管33が接続され処理容器10に設置され、接地電位に接続される。これによりシャワーヘッド30の電極板32Bは、下部電極21と共に一対の平行平板電極を構成する。   The electrode plate 32B on which the sprayed film 6 is formed in this manner is joined to the upper member 32A, and then the processing gas supply pipe 33 described above is connected to the processing container 10 and connected to the ground potential. Thereby, the electrode plate 32B of the shower head 30 constitutes a pair of parallel plate electrodes together with the lower electrode 21.

続いてプラズマ処理装置の作用について例えばエッチング処理を例に説明する。プラズマ処理装置が稼働すると、被処理基板であるガラス基板Gが、外部の搬送アームと昇降ピン24との協働作用により、基板載置面21Aに載置される。次いでゲートバルブ12を閉じた後、基板載置面21Aとガラス基板Gとの間に伝熱ガスを供給すると共に静電電極板23に直流電圧を印加して、ガラス基板Gを吸着保持する。   Next, the operation of the plasma processing apparatus will be described by taking an etching process as an example. When the plasma processing apparatus is operated, the glass substrate G, which is a substrate to be processed, is placed on the substrate placement surface 21 </ b> A by the cooperative action of the external transfer arm and the lifting pins 24. Next, after the gate valve 12 is closed, a heat transfer gas is supplied between the substrate mounting surface 21 </ b> A and the glass substrate G, and a DC voltage is applied to the electrostatic electrode plate 23 to attract and hold the glass substrate G.

次いで処理容器10内に例えばCFなどのエッチングガスを含む処理ガスをガス供給部3から供給すると共に、排気口13から真空排気を行い処理容器10内の圧力を所定の圧力に調整する。その後高周波電源部25から整合器26を介してプラズマ生成用の高周波電力を下部電極21本体に印加し、下部電極21と、シャワーヘッド30との間に高周波の電界を発生させる。処理容器10内に供給されている処理ガスは、下部電極21と、シャワーヘッド30との間に発生する高周波の電界により励起され、処理ガスのプラズマが生成される。またプラズマに含まれるイオンが下部電極21に引き寄せられ、ガラス基板Gの被処理膜に対してエッチング処理が行われる。その後エッチング処理が行われたガラス基板Gは、外部の搬送アームにより処理容器10から搬出される。 Next, a processing gas containing an etching gas such as CF 4 is supplied from the gas supply unit 3 into the processing container 10 and evacuated from the exhaust port 13 to adjust the pressure in the processing container 10 to a predetermined pressure. Thereafter, high frequency power for plasma generation is applied to the main body of the lower electrode 21 from the high frequency power supply unit 25 through the matching unit 26, and a high frequency electric field is generated between the lower electrode 21 and the shower head 30. The processing gas supplied into the processing container 10 is excited by a high-frequency electric field generated between the lower electrode 21 and the shower head 30, and processing gas plasma is generated. Further, ions contained in the plasma are attracted to the lower electrode 21, and an etching process is performed on the processing target film of the glass substrate G. Thereafter, the glass substrate G on which the etching process has been performed is carried out of the processing container 10 by an external transfer arm.

このようにプラズマ処理装置において処理容器10内にプラズマが励起されると、図7に示すようにシャワーヘッド30の処理空間側の面がプラズマPに接する。この時ガス吐出口40においては、ガス吐出口40の内面にプラズマが接するが、ガス流路41は下流側の流路41bの内径が狭くなっているためプラズマPがガス流路41側へ進入するおそれは小さい。そしてガス吐出口40は、溶射膜6により覆われているため、溶射膜6の下層側の硬質アルマイト30Aの層がプラズマPから保護される。   When the plasma is thus excited in the processing chamber 10 in the plasma processing apparatus, the surface of the shower head 30 on the processing space side comes into contact with the plasma P as shown in FIG. At this time, in the gas discharge port 40, the plasma contacts the inner surface of the gas discharge port 40, but the plasma P enters the gas flow channel 41 side in the gas flow channel 41 because the inner diameter of the downstream flow channel 41 b is narrow. The risk of doing so is small. Since the gas discharge port 40 is covered with the sprayed film 6, the layer of the hard alumite 30 </ b> A on the lower layer side of the sprayed film 6 is protected from the plasma P.

そしてプラズマ処理を繰り返し行うことにより、溶射膜6は消耗によりその膜厚が徐々に薄くなっていく。この時ガス吐出口40に成膜されている溶射膜6の膜厚が均一でない場合には、溶射膜6の膜厚が薄い部位において、下層側の硬質アルマイト30Aの層や電極板32Bの母材であるアルミニウムが局所的に露出してしまう。電極板32Bの母材であるアルミニウムが露出してしまうと、ガス吐出口40にて、異常放電が発生したり、アルミニウムを起源とするパーティクルの発生の要因となるため、ガス供給部3の交換やメンテナンスが必要になる。   By repeatedly performing the plasma treatment, the sprayed film 6 gradually decreases in thickness due to wear. At this time, if the film thickness of the sprayed film 6 formed on the gas discharge port 40 is not uniform, the layer of the hard anodized layer 30A on the lower layer side and the mother of the electrode plate 32B in the part where the film thickness of the sprayed film 6 is thin. Aluminum as a material is locally exposed. If the aluminum that is the base material of the electrode plate 32B is exposed, abnormal discharge occurs at the gas discharge port 40 or causes generation of particles originating from aluminum. And maintenance is required.

既述のようにシャワーヘッド30は、ガス吐出口40に成膜されている溶射膜6の膜厚の均一性が高いため、プラズマ処理を繰り返したときに溶射膜6の薄化による下層側のアルミニウムの局所的な露出が抑えられるため、シャワーヘッド30の使用寿命が長くなり、交換やメンテナンスの周期を長くすることができる。   As described above, the shower head 30 has a high uniformity of the film thickness of the sprayed film 6 formed at the gas discharge port 40. Therefore, when the plasma treatment is repeated, the shower head 30 is formed on the lower layer side by thinning of the sprayed film 6. Since local exposure of aluminum is suppressed, the service life of the shower head 30 is extended, and the replacement and maintenance cycle can be extended.

第1の実施の形態によれば、プラズマ処理に用いられ、複数のガス流路41が形成された電極板32Bを有するガス供給装置において、ガス流路41とガス吐出口40との境界部Paにて角部を形成するように外側に屈曲させ、角部の外側に位置する内周面から下面300までを湾曲面として形成している。そのためガス吐出口40に溶射材料50を吹き付けたときに溶射材料50を吹き付け方向と、ガス吐出口40の内周面と、のなす角度が大きくなり、ガス吐出口50の上流側の境界付近における薄膜化を防ぐことができる。
これによりガス供給部3に溶射膜6を成膜するにあたって、ガス流路41の伸びる方向から溶射材料50を吹き付けることでガス吐出口40に溶射膜6を均一に成膜することができ、溶射材料50を吹き付ける溶射部5をガス流路41の伸びる方向と直交する方向に移動させて、溶射材料50を吹き付ける位置を変えることで、各ガス吐出口40に均一な溶射膜6を成膜することができる。
従って溶射膜成膜処理が簡単になり、例えば溶射部5の溶射材料50の吹付角度を調整して、溶射膜6の薄い部分に改めて溶射材料50を吹き付けるなどの複雑な工程を行う必要がない。
更に基板に成膜処理を行うプラズマ処理装置に適用してもよく、ガラス基板Gをプラズマ処理するプラズマ処理装置に限らず、円板状の例えば直径300mmウエハをプラズマ処理するプラズマ処理装置であってもよい。
According to the first embodiment, in a gas supply apparatus that is used for plasma processing and has an electrode plate 32B in which a plurality of gas flow paths 41 are formed, a boundary portion Pa between the gas flow path 41 and the gas discharge port 40 is used. Are bent outward so as to form a corner, and a curved surface is formed from the inner peripheral surface located on the outer side of the corner to the lower surface 300. Therefore, when spraying material 50 is sprayed to gas discharge port 40, the angle formed by the spraying direction of spraying material 50 and the inner peripheral surface of gas discharge port 40 becomes large, and in the vicinity of the upstream boundary of gas discharge port 50. Thinning can be prevented.
Thus, when the sprayed film 6 is formed on the gas supply unit 3, the sprayed material 50 can be sprayed from the direction in which the gas flow path 41 extends to uniformly form the sprayed film 6 on the gas discharge port 40. The sprayed part 5 for spraying the material 50 is moved in a direction orthogonal to the direction in which the gas flow path 41 extends to change the position for spraying the sprayed material 50, thereby forming a uniform sprayed film 6 on each gas discharge port 40. be able to.
Therefore, the thermal spray film forming process is simplified, and it is not necessary to perform a complicated process such as, for example, adjusting the spray angle of the thermal spray material 50 in the thermal spray portion 5 and spraying the thermal spray material 50 again on a thin portion of the thermal spray film 6. .
Furthermore, the present invention may be applied to a plasma processing apparatus that performs film formation processing on a substrate, and is not limited to a plasma processing apparatus that performs plasma processing on a glass substrate G, and is a plasma processing apparatus that performs plasma processing on a disk-shaped wafer having a diameter of, for example, 300 mm. Also good.

[第2の実施の形態]
また第2の実施の形態に係るガス供給装置として、図8に示すように各ガス吐出口40は、軸線Lを含む断面で見たときに上流側端部から下流側端部まで直線部分42のみとなる斜面で構成され、ガス吐出口40の上流側端部とガス流路41との間の境界部Pa及びガス吐出口40の下流側端部と電極板32Bの下面300との境界部Pbとが夫々第1の角部及び第2の角部となるように構成されていてもよい。後述の実施例に示すように各ガス吐出口40の内面の角度θ2が軸線Lに対して45°以上であれば溶射部5から溶射材料50を吹きつけたときにガス吐出口40の溶射膜6に均一に成膜されるため同様の効果がある。
[Second Embodiment]
Further, as shown in FIG. 8, as the gas supply device according to the second embodiment, each gas discharge port 40 has a straight portion 42 from the upstream end to the downstream end when viewed in a cross section including the axis L. The boundary portion Pa between the upstream end portion of the gas discharge port 40 and the gas flow path 41, and the boundary portion between the downstream end portion of the gas discharge port 40 and the lower surface 300 of the electrode plate 32B. Pb may be configured to be a first corner and a second corner, respectively. As shown in the examples described later, when the angle θ2 of the inner surface of each gas discharge port 40 is 45 ° or more with respect to the axis L, the sprayed film of the gas discharge port 40 when the sprayed material 50 is sprayed from the sprayed portion 5. 6 has a similar effect because the film is uniformly formed.

また図8に示すようにガス吐出口40において、各ガス吐出口40の内面と軸線Lとのなす角度θ2が大きくなると、ガス吐出口40の下流側端部の内径を大きくするか、ガス吐出口40の上流側端部から下流側端部までの高さ寸法を低くする必要がある。ガス吐出口40の下流側端部の内径が大きくなると、ガス供給部3の処理空間側の面に設けられるガス吐出口40の配列レイアウトや配列数の自由度が制限される。またガス吐出口40の上流側端部から下流側端部までの高さ寸法が低い場合には、吐出されるガスの流速が速くなり、ガス流路41が詰まりやすくなる。そのため各ガス吐出口40の内壁と軸線Lとのなす角度θ2は、70°以下であることが好ましく、ガス吐出口40の下流側の境界部Pbと、上流側の境界部Paとの間の水平距離S2は、1〜3mmであることが好ましい。   As shown in FIG. 8, in the gas discharge port 40, when the angle θ2 formed between the inner surface of each gas discharge port 40 and the axis L is increased, the inner diameter of the downstream end of the gas discharge port 40 is increased or the gas discharge port 40 is increased. It is necessary to reduce the height dimension of the outlet 40 from the upstream end to the downstream end. When the inner diameter of the downstream end portion of the gas discharge port 40 is increased, the degree of freedom in the arrangement layout and the number of arrangements of the gas discharge ports 40 provided on the processing space side surface of the gas supply unit 3 is limited. Further, when the height dimension from the upstream end portion to the downstream end portion of the gas discharge port 40 is low, the flow rate of the discharged gas is increased and the gas flow path 41 is easily clogged. Therefore, the angle θ2 formed between the inner wall of each gas discharge port 40 and the axis L is preferably 70 ° or less, and between the downstream boundary portion Pb of the gas discharge port 40 and the upstream boundary portion Pa. The horizontal distance S2 is preferably 1 to 3 mm.

また後述の実施例に示すようにガス吐出口40の下流側端部と電極板32Bの下面300との境界部Pbを角部とした場合でも溶射膜6の膜厚は高い均一性を示すが、下流側端部と電極板32Bの処理空間側の面とを湾曲面で繋ぐことでガス吐出口40下流側端部においても溶射膜6の膜厚をより均一にすることができる。
また角部になると、局所的に電界が集中するために異常放電が発生したり、異常放電の影響で角部が削れてパーティクルの要因になるため、ガス吐出口40の下流側端部を湾曲させることにより異常放電やパーティクルの発生を抑制することができる。
In addition, as shown in the examples described later, the sprayed film 6 has high uniformity even when the boundary part Pb between the downstream end of the gas discharge port 40 and the lower surface 300 of the electrode plate 32B is a corner. The film thickness of the sprayed film 6 can be made more uniform at the downstream end portion of the gas discharge port 40 by connecting the downstream end portion and the surface of the electrode plate 32B on the processing space side with a curved surface.
Also, at the corner, abnormal electric discharge occurs due to local concentration of electric field, or the corner is scraped due to the influence of abnormal electric discharge and causes particles, so the downstream end of the gas discharge port 40 is curved. Thus, abnormal discharge and generation of particles can be suppressed.

本発明の実施の形態の効果を検証するために以下の実施例1〜3及び比較例に係るガス供給部3に実施の形態に示す方法により、溶射膜6を成膜したときのガス吐出口40における溶射膜6の膜厚分布について調べた。   In order to verify the effect of the embodiment of the present invention, the gas discharge port when the sprayed film 6 is formed on the gas supply unit 3 according to the following Examples 1 to 3 and Comparative Example by the method shown in the embodiment The film thickness distribution of the sprayed film 6 at 40 was examined.

[実施例1]
図2に示すようにガス吐出口40を下流側ほど内径が広がるすり鉢状の斜面とし、ガス吐出口40とガス流路41との境界にて内周面に角部が形成されるように外側に向けて折曲し、ガス吐出口40の下流側端部は電極板32Bの下面300に湾曲面により繋がるように構成した。またガス吐出口40の内壁に沿った直線とガス流路41の軸線Lとのなす角度θ1を45°に設定した。さらに溶射材料50としてイットリアを用い実施の形態に示した溶射膜成膜方法によって溶射膜6を成膜した例を実施例1とした。
[実施例2]
ガス吐出口40を軸線Lを含む断面で見たときに上流側端部から下流側端部まで直線部分42のみとなる斜面で構成され、ガス吐出口40の上流側端部のガス流路41との間の境界部Pa及びガス吐出口40の下流側端部と電極板32Bの処理空間側の面との境界部Pbとが夫々第1の角部及び第2の角部となるように構成した。またガス吐出口40の内壁と、軸線Lとのなす角度θ2が45°になるように設定したことを除いて実施例1と同様に構成した例を実施例2とした。
[実施例3]
図8に示すようにガス吐出口40の内壁と、軸線Lとのなす角度θ2が70°になるように形成されたことを除いて実施例2と同様に構成した例を実施例3とした。
[比較例]
図9に示すようにガス吐出口40をガス流路41の軸線Lを含む断面で見たときに、上流側端部から下流側端部まで曲率半径1mmの寸法の曲線部分43となるように構成したことを除いて実施例1と同様に構成した例を比較例とした。
[Example 1]
As shown in FIG. 2, the gas discharge port 40 is formed as a mortar-shaped slope whose inner diameter increases toward the downstream side, and the outer side is formed such that a corner is formed on the inner peripheral surface at the boundary between the gas discharge port 40 and the gas flow path 41. The downstream end of the gas discharge port 40 is configured to be connected to the lower surface 300 of the electrode plate 32B by a curved surface. Further, an angle θ1 formed by a straight line along the inner wall of the gas discharge port 40 and the axis L of the gas flow path 41 was set to 45 °. Further, Example 1 was used in which the thermal spray film 6 was formed by the thermal spray film formation method described in the embodiment using yttria as the thermal spray material 50.
[Example 2]
When the gas discharge port 40 is viewed in a cross-section including the axis L, the gas flow channel 41 is formed by an inclined surface having only a straight portion 42 from the upstream end to the downstream end, and is located at the upstream end of the gas discharge port 40. And the boundary portion Pb between the downstream end portion of the gas discharge port 40 and the surface on the processing space side of the electrode plate 32B become the first corner portion and the second corner portion, respectively. Configured. In addition, Example 2 was configured as Example 2 except that the angle θ2 formed by the inner wall of the gas discharge port 40 and the axis L was set to 45 °.
[Example 3]
An example configured as in Example 2 except that the angle θ2 formed by the inner wall of the gas discharge port 40 and the axis L is 70 ° as shown in FIG. .
[Comparative example]
As shown in FIG. 9, when the gas discharge port 40 is viewed in a cross section including the axis L of the gas flow path 41, a curved portion 43 having a radius of curvature of 1 mm is formed from the upstream end to the downstream end. An example configured in the same manner as in Example 1 except for the configuration was used as a comparative example.

実施例1〜3及び比較例の各々のガス供給部3に形成したガス吐出口40において、溶射膜6の膜厚を測定した。
各例のガス吐出口40における溶射膜6の膜厚の測定地点について説明する。図10に示すように、まずガス吐出口40を軸線Lを通過する断面で見て、ガス吐出口40の上流側端部の境界部PAから軸線Lに垂直な方向に伸びる線と、ガス吐出口40の下流側端部の境界部Pbから軸線Lに平行な方向に伸びる線との交点を定めた。そしてその交点と溶射膜6の表面とを結ぶ直線と軸線Lに垂直な線とのなす角度が夫々90、75、60、45、30、15及び0°となる地点を夫々地点P1〜P7とした。実施例1〜実施例3及び比較例の各々のサンプルの断面をSEM(走査型電子顕微鏡)により撮影し、当該写真より各地点の膜厚を測定した。
The film thickness of the sprayed film 6 was measured at the gas discharge ports 40 formed in the gas supply portions 3 of Examples 1 to 3 and the comparative example.
The measurement point of the film thickness of the sprayed film 6 in the gas discharge port 40 of each example will be described. As shown in FIG. 10, first, when the gas discharge port 40 is viewed in a cross section passing through the axis L, a line extending in a direction perpendicular to the axis L from the boundary PA at the upstream end of the gas discharge port 40, An intersection with a line extending in a direction parallel to the axis L from the boundary Pb at the downstream end of the outlet 40 was determined. Then, points P1 to P7 are points where angles formed by a straight line connecting the intersection and the surface of the sprayed film 6 and a line perpendicular to the axis L are 90, 75, 60, 45, 30, 15 and 0 °, respectively. did. The cross sections of the samples of Examples 1 to 3 and the comparative example were taken with an SEM (scanning electron microscope), and the film thickness at each point was measured from the photograph.

表1はこの結果を示し、実施例1〜3及び比較例の各々における地点P1〜P7における溶射膜6の膜厚を各々の例におけるP1の膜厚を1として規格化した値で示している。   Table 1 shows this result, and shows the film thickness of the sprayed film 6 at the points P1 to P7 in each of Examples 1 to 3 and the comparative example as a value normalized with the film thickness of P1 in each example being 1. .

[表1]

Figure 2018107313
[Table 1]
Figure 2018107313

表1に示すように比較例においては、地点P1〜P4では、溶射膜6の膜厚は、0.8以上であったが、地点P5で0.7、地点P6、P7では夫々0.4、0.2と膜厚が薄くなっていた。
また実施例1〜3においては、各々地点P1〜P6において、溶射膜6の膜厚は0.7以上を示しており、略0.8以上の値であった。また実施例1と実施例2とを比較すると、地点P2及び地点P3において実施例1は、実施例2よりも膜厚が厚くなっていることがわかる。
As shown in Table 1, in the comparative example, the film thickness of the sprayed film 6 was 0.8 or more at the points P1 to P4, but 0.7 at the point P5 and 0.4 at the points P6 and P7, respectively. 0.2 and the film thickness was thin.
Moreover, in Examples 1-3, the film thickness of the sprayed film 6 has shown 0.7 or more in each point P1-P6, and was the value of about 0.8 or more. Moreover, when Example 1 and Example 2 are compared, it turns out that the film thickness of Example 1 is thicker than Example 2 in the point P2 and the point P3.

この結果によれば、比較例においては、ガス吐出口40の上流側において膜厚が薄くなりやすいが、実施例1〜3のガス供給部3は、ガス吐出口40に被覆された溶射膜の膜厚が均一になっていると言える。またガス吐出口40の内面と、ガス流路41の軸線Lとのなす角度をθ2を45°以上に構成することで溶射膜6の膜厚の均一性が高まると言える。さらにガス吐出口40の斜面を、ガス流路41の軸線を含む断面で見たときに、上流側端部から下流側に向かう直線部分42に加えて、ガス吐出口40の下流側と電極板32Bの一面側までを湾曲面として形成することで、よりガス吐出口40の下流側端部付近の溶射膜6の膜厚の均一性も良好になると言える。   According to this result, in the comparative example, the film thickness tends to be thin on the upstream side of the gas discharge port 40, but the gas supply unit 3 of Examples 1 to 3 is a sprayed coating coated on the gas discharge port 40. It can be said that the film thickness is uniform. Moreover, it can be said that the uniformity of the film thickness of the sprayed film 6 is enhanced by configuring the angle formed between the inner surface of the gas discharge port 40 and the axis L of the gas flow path 41 so that θ2 is 45 ° or more. Further, when the inclined surface of the gas discharge port 40 is viewed in a cross section including the axis of the gas flow path 41, in addition to the straight portion 42 directed from the upstream end to the downstream side, the downstream side of the gas discharge port 40 and the electrode plate By forming the curved surface up to one surface side of 32B, it can be said that the uniformity of the film thickness of the sprayed film 6 near the downstream end of the gas discharge port 40 becomes better.

2 サセプタ
5 溶射部
6 溶射膜
10 処理容器
21 下部電極
30 シャワーヘッド
32B 電極板
40 開口部
42 直線部分
43 曲線部分
50 溶射材料
G ガラス基板
2 Susceptor 5 Thermal spray part 6 Thermal spray film 10 Processing vessel 21 Lower electrode 30 Shower head 32B Electrode plate 40 Opening part 42 Straight line part 43 Curve part 50 Thermal spray material G Glass substrate

Claims (5)

プラズマを発生させるための電極部材と、
前記電極部材に当該電極部材の一面に向かって伸びるように形成された複数のガス流路と、
前記ガス流路の下流端に連続して形成され、孔径が前記一面に向かって拡大するガス吐出口と、
前記ガス吐出口の表面に溶射膜により形成された保護膜と、を備え、
前記ガス流路と前記ガス吐出口との境界にて内周面を外側に向けて折曲して角部を形成すると共に、前記角部よりも外側に位置する内周面の部位から前記電極部材の一面側の表面までを湾曲面として形成し、前記ガス流路の軸線に沿った断面で見たときに、前記角部から前記湾曲面の内端までの間は直線であることを特徴とするガス供給装置。
An electrode member for generating plasma;
A plurality of gas flow paths formed on the electrode member so as to extend toward one surface of the electrode member;
A gas discharge port formed continuously at the downstream end of the gas flow path and having a hole diameter expanding toward the one surface;
A protective film formed of a sprayed film on the surface of the gas discharge port,
The inner peripheral surface is bent outward at the boundary between the gas flow path and the gas discharge port to form a corner portion, and the electrode is formed from a portion of the inner peripheral surface located outside the corner portion. A surface up to one surface side of the member is formed as a curved surface, and when viewed in a section along the axis of the gas flow path, a straight line extends from the corner to the inner end of the curved surface. Gas supply device.
前記角部と前記湾曲面における内端とを結ぶ直線と、前記ガス流路の軸線と、がなす角度θ1は、45度から50度の範囲に設定されていることを特徴とする請求項1記載のガス供給装置。   The angle θ1 formed by a straight line connecting the corner and the inner end of the curved surface and the axis of the gas flow path is set in a range of 45 degrees to 50 degrees. The gas supply device described. プラズマを発生させるための電極部材と、
前記電極部材に当該電極部材の一面に向かって伸びるように形成された複数のガス流路と、
前記ガス流路の下流端に連続して形成され、孔径が前記一面に向かって拡大するガス吐出口と、
前記ガス吐出口の表面に溶射膜により形成された保護膜と、を備え、
前記ガス流路と前記ガス吐出口との境界にて内周面を外側に向けて折曲して角部を形成すると共に、前記ガス流路の軸線に沿った断面で見たときに、前記角部から、前記ガス吐出口の外端に至るまでの内周面は直線であり、当該直線と前記ガス流路の軸線とがなす角度θ2は、45度から70度の範囲に設定されていることを特徴とするガス供給装置。
An electrode member for generating plasma;
A plurality of gas flow paths formed on the electrode member so as to extend toward one surface of the electrode member;
A gas discharge port formed continuously at the downstream end of the gas flow path and having a hole diameter expanding toward the one surface;
A protective film formed of a sprayed film on the surface of the gas discharge port,
When the inner circumferential surface is bent outward at the boundary between the gas flow path and the gas discharge port to form a corner, and when viewed in a cross section along the axis of the gas flow path, The inner peripheral surface from the corner to the outer end of the gas discharge port is a straight line, and the angle θ2 formed by the straight line and the axis of the gas flow path is set in a range of 45 degrees to 70 degrees. A gas supply device characterized by comprising:
請求項1ないし3のいずれか一項に記載のガス供給装置の製造方法であって、前記電極部材における前記ガス吐出口が形成された面に向けて溶射材料を吹き付ける溶射部を、前記ガス流路の伸びる方向に対して直交する方向に移動させて溶射膜を成膜することを特徴とするガス供給装置の製造方法。   4. The method of manufacturing a gas supply device according to claim 1, wherein a thermal spray portion that sprays a thermal spray material toward a surface of the electrode member on which the gas discharge port is formed is provided with the gas flow. A method of manufacturing a gas supply apparatus, wherein a sprayed film is formed by moving in a direction orthogonal to a direction in which a path extends. 内部にプラズマを発生させるための処理容器と、
前記処理容器内に設けられた基板を載置する載置台と、
前記処理容器内にプラズマ処理用の処理ガスを供給する請求項1ないし3のいずれか一項に記載のガス供給装置と、
前記載置台と電極部材との間に高周波電力を供給する高周波電源部と、
処理容器内を真空排気をするための排気機構と、を備えたことを特徴とするプラズマ処理装置。
A processing vessel for generating plasma inside,
A mounting table for mounting a substrate provided in the processing container;
The gas supply device according to any one of claims 1 to 3, wherein a processing gas for plasma processing is supplied into the processing container.
A high-frequency power supply for supplying high-frequency power between the mounting table and the electrode member;
A plasma processing apparatus comprising: an exhaust mechanism for evacuating the inside of the processing container.
JP2016253152A 2016-12-27 2016-12-27 Manufacturing method of gas supply device, plasma processing device and gas supply device Active JP6984126B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016253152A JP6984126B2 (en) 2016-12-27 2016-12-27 Manufacturing method of gas supply device, plasma processing device and gas supply device
TW106143654A TWI763755B (en) 2016-12-27 2017-12-13 Gas supply device, plasma processing device, and manufacturing method of gas supply device
KR1020170177202A KR102085409B1 (en) 2016-12-27 2017-12-21 Gas supply apparatus, plasma processing apparatus, and method for manufacturing the gas supply apparatus
CN201711417582.3A CN108242381B (en) 2016-12-27 2017-12-25 Gas supply device, method for manufacturing the same, and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253152A JP6984126B2 (en) 2016-12-27 2016-12-27 Manufacturing method of gas supply device, plasma processing device and gas supply device

Publications (2)

Publication Number Publication Date
JP2018107313A true JP2018107313A (en) 2018-07-05
JP6984126B2 JP6984126B2 (en) 2021-12-17

Family

ID=62700520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253152A Active JP6984126B2 (en) 2016-12-27 2016-12-27 Manufacturing method of gas supply device, plasma processing device and gas supply device

Country Status (4)

Country Link
JP (1) JP6984126B2 (en)
KR (1) KR102085409B1 (en)
CN (1) CN108242381B (en)
TW (1) TWI763755B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129606A (en) * 2019-02-08 2020-08-27 キオクシア株式会社 Gas supply member, plasma processing apparatus, and coating film formation method
JP2022166811A (en) * 2021-04-21 2022-11-02 Toto株式会社 Member for semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus
US11749507B2 (en) 2021-04-21 2023-09-05 Toto Ltd. Semiconductor manufacturing apparatus member and semiconductor manufacturing apparatus
JP7409536B1 (en) 2023-02-22 2024-01-09 Toto株式会社 Electrostatic chuck and its manufacturing method
JP7409535B1 (en) 2023-02-22 2024-01-09 Toto株式会社 Electrostatic chuck and its manufacturing method
JP7480876B1 (en) 2023-02-22 2024-05-10 Toto株式会社 Electrostatic chuck and method of manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115410892B (en) * 2022-07-22 2023-04-14 合肥微睿光电科技有限公司 Upper electrode, gas diffuser and vacuum chamber

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030166343A1 (en) * 2002-03-01 2003-09-04 Muneo Furuse Plasma etching method
JP2012057251A (en) * 2010-08-13 2012-03-22 Toshiba Corp Protective film, method for forming the same, apparatus for manufacturing semiconductor, and plasma treatment apparatus
JP2012508467A (en) * 2008-11-10 2012-04-05 アプライド マテリアルズ インコーポレイテッド Plasma-resistant coating for plasma chamber parts
JP5198611B2 (en) * 2010-08-12 2013-05-15 株式会社東芝 Gas supply member, plasma processing apparatus, and method for forming yttria-containing film
JP2014157944A (en) * 2013-02-15 2014-08-28 Toshiba Corp Gas supply member and plasma processing apparatus
JP5782293B2 (en) * 2011-05-10 2015-09-24 東京エレクトロン株式会社 Plasma generating electrode and plasma processing apparatus
JP2016028379A (en) * 2014-07-10 2016-02-25 東京エレクトロン株式会社 Plasma processing device part, plasma processing device, and method for manufacturing part for plasma processing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540576B1 (en) * 1997-10-16 2003-04-01 Matsushita Electric Industrial Co., Ltd. Plasma display panel and method of manufacturing the same
US20090095221A1 (en) * 2007-10-16 2009-04-16 Alexander Tam Multi-gas concentric injection showerhead
US9082593B2 (en) * 2011-03-31 2015-07-14 Tokyo Electron Limited Electrode having gas discharge function and plasma processing apparatus
CN105428195B (en) * 2014-09-17 2018-07-17 东京毅力科创株式会社 The component of plasma processing apparatus and the manufacturing method of component
CN106340434B (en) * 2015-07-10 2018-12-14 东京毅力科创株式会社 Plasma processing apparatus and spray head

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030166343A1 (en) * 2002-03-01 2003-09-04 Muneo Furuse Plasma etching method
JP2012508467A (en) * 2008-11-10 2012-04-05 アプライド マテリアルズ インコーポレイテッド Plasma-resistant coating for plasma chamber parts
JP5198611B2 (en) * 2010-08-12 2013-05-15 株式会社東芝 Gas supply member, plasma processing apparatus, and method for forming yttria-containing film
JP2012057251A (en) * 2010-08-13 2012-03-22 Toshiba Corp Protective film, method for forming the same, apparatus for manufacturing semiconductor, and plasma treatment apparatus
JP5782293B2 (en) * 2011-05-10 2015-09-24 東京エレクトロン株式会社 Plasma generating electrode and plasma processing apparatus
JP2014157944A (en) * 2013-02-15 2014-08-28 Toshiba Corp Gas supply member and plasma processing apparatus
JP2016028379A (en) * 2014-07-10 2016-02-25 東京エレクトロン株式会社 Plasma processing device part, plasma processing device, and method for manufacturing part for plasma processing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129606A (en) * 2019-02-08 2020-08-27 キオクシア株式会社 Gas supply member, plasma processing apparatus, and coating film formation method
JP7159074B2 (en) 2019-02-08 2022-10-24 キオクシア株式会社 GAS SUPPLY MEMBER, PLASMA PROCESSING APPARATUS, AND COATING FILM FORMATION METHOD
JP2022166811A (en) * 2021-04-21 2022-11-02 Toto株式会社 Member for semiconductor manufacturing apparatus, and semiconductor manufacturing apparatus
JP7197036B2 (en) 2021-04-21 2022-12-27 Toto株式会社 Components for semiconductor manufacturing equipment and semiconductor manufacturing equipment
TWI804185B (en) * 2021-04-21 2023-06-01 日商Toto股份有限公司 Member for semiconductor manufacturing equipment and semiconductor manufacturing equipment
US11749507B2 (en) 2021-04-21 2023-09-05 Toto Ltd. Semiconductor manufacturing apparatus member and semiconductor manufacturing apparatus
JP7409536B1 (en) 2023-02-22 2024-01-09 Toto株式会社 Electrostatic chuck and its manufacturing method
JP7409535B1 (en) 2023-02-22 2024-01-09 Toto株式会社 Electrostatic chuck and its manufacturing method
JP7480876B1 (en) 2023-02-22 2024-05-10 Toto株式会社 Electrostatic chuck and method of manufacturing same

Also Published As

Publication number Publication date
TWI763755B (en) 2022-05-11
TW201836439A (en) 2018-10-01
KR20180076325A (en) 2018-07-05
KR102085409B1 (en) 2020-03-05
CN108242381B (en) 2020-01-03
JP6984126B2 (en) 2021-12-17
CN108242381A (en) 2018-07-03

Similar Documents

Publication Publication Date Title
JP6984126B2 (en) Manufacturing method of gas supply device, plasma processing device and gas supply device
KR101406524B1 (en) Electrode for generating plasma and plasma processing apparatus
US11430636B2 (en) Plasma processing apparatus and cleaning method
TWI752545B (en) Substrate processing chamber and method using ceramic coated quartz lid
US10515843B2 (en) Amalgamated cover ring
KR20170028849A (en) Focus ring and substrate processing apparatus
JP2016127090A (en) Mounting table and plasma processing apparatus
JP2019192701A (en) Plasma processing apparatus and plasma processing apparatus member
US20190214235A1 (en) Plasma processing apparatus
JP7126431B2 (en) shower head and gas treater
JP7133454B2 (en) Plasma processing equipment
JP5367000B2 (en) Plasma processing equipment
KR20200051505A (en) Placing table and substrate processing apparatus
TWI813699B (en) Jet head and plasma treatment device
JP2004079820A (en) Plasma processing apparatus
WO2023275958A1 (en) Method for regenerating inner wall member
TWI830599B (en) Manufacturing method for interior member of plasma processing chamber
US11929234B2 (en) Plasma processing apparatus and lower stage
TWI757852B (en) Manufacturing method of parts of plasma processing apparatus and inspection method of parts
JP2004047500A (en) Plasma processing apparatus and method of initializing the same
TW202217908A (en) Process kit with protective ceramic coatings for hydrogen and nh3 plasma application
JP2009043919A (en) Plasma processing device, semiconductor manufacturing device, and manufacturing method of plate type product

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210802

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210813

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6984126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150