JP2018107221A - Multilayer circuit board - Google Patents

Multilayer circuit board Download PDF

Info

Publication number
JP2018107221A
JP2018107221A JP2016250310A JP2016250310A JP2018107221A JP 2018107221 A JP2018107221 A JP 2018107221A JP 2016250310 A JP2016250310 A JP 2016250310A JP 2016250310 A JP2016250310 A JP 2016250310A JP 2018107221 A JP2018107221 A JP 2018107221A
Authority
JP
Japan
Prior art keywords
wiring
circuit board
land
multilayer circuit
connection wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016250310A
Other languages
Japanese (ja)
Inventor
リュウ ネルソン
Liew Nelson
リュウ ネルソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2016250310A priority Critical patent/JP2018107221A/en
Publication of JP2018107221A publication Critical patent/JP2018107221A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve a suppression effect of electromagnetic interference (EMI) noise in a multilayer circuit board.SOLUTION: A load 21 and a bypass capacitor 31 are mounted on a first layer 11 of a multilayer circuit board 1. The bypass capacitor 31 is electrically connected to a first land 41 and a second land 42. A first connection wiring 51 and a second connection wiring 52 electrically connect the load 21 and the bypass capacitor 31. A first through wiring 61 is connected to the first land 41 via a power supply side electrode terminal 71 of the first connection wiring 51 in a state of penetrating into the multilayer circuit board 1. A second through wiring 62 is connected to the second land 42 via a ground side electrode terminal 72 of the second connection wiring 52 in a state of penetrating into the multilayer circuit board 1 in the vicinity of the first through wiring 61.SELECTED DRAWING: Figure 1

Description

本発明は、LSI(large scale integrated circuit:大規模集積回路)等の集積回路を備えた多層回路基板において、特に、EMI(electro-magnetic interference:電磁波妨害)の低減を図るものに関する。   The present invention relates to a multilayer circuit board provided with an integrated circuit such as an LSI (Large Scale Integrated Circuit), in particular, to reduce EMI (electro-magnetic interference).

近年、電子機器の処理能力の向上等に伴う信号伝送速度の高速化により、EMIノイズ問題が顕在化している。EMIノイズは、集積回路内部の電源電圧変動である電源ノイズが集積回路を搭載する基板の電源配線に伝播し、基板の電源配線のアンテナとしての動きにより、電源ノイズが電磁波として空間に放射される現象を意味する。今後、さらなる集積回路の高速化、多ピン化、大電流化に伴い、電源ノイズはますます大きくなる傾向にあると推測されることから、EMIノイズの問題が重要視されている。EMIの一般的な対策として、基板においてバイパスコンデンサが配置される(例えば、特許文献1)。   In recent years, an EMI noise problem has become apparent due to an increase in signal transmission speed accompanying an improvement in processing capability of electronic devices. The EMI noise is a power supply noise that is a fluctuation in the power supply voltage inside the integrated circuit, propagates to the power supply wiring of the substrate on which the integrated circuit is mounted, and the power supply noise is radiated to the space as an electromagnetic wave by the movement of the power supply wiring of the substrate as an antenna. Means a phenomenon. In the future, it is presumed that the power supply noise tends to become larger as the integrated circuit is further increased in speed, increased in pin count, and increased in current. Therefore, the problem of EMI noise is regarded as important. As a general measure against EMI, a bypass capacitor is arranged on a substrate (for example, Patent Document 1).

特開2001−144205号公報JP 2001-144205 A

バイパスコンデンサを単に電源ラインとGND(接地)に繋ぐだけでは、EMIを低減できるとは限らない。電源ラインは周波数に依存するインピーダンス成分が含まれるため、高周波数帯域ではインピーダンス成分の影響を受けにくいバイパスコンデンサの配置が必要となる(特許文献1等)。   Simply connecting the bypass capacitor to the power supply line and GND (ground) does not necessarily reduce EMI. Since the power supply line includes an impedance component depending on the frequency, it is necessary to dispose a bypass capacitor that is not easily affected by the impedance component in a high frequency band (Patent Document 1, etc.).

しかしながら、周波数帯域によってバイパスコンデンサの配置を変更するだけではEMIの低減効果は限定的となる。   However, the effect of reducing EMI is limited only by changing the placement of the bypass capacitor depending on the frequency band.

本発明は、上記の事情に鑑み、多層回路基板におけるEMIノイズの抑制効果の向上を図ることを課題とする。   In view of the above circumstances, an object of the present invention is to improve the effect of suppressing EMI noise in a multilayer circuit board.

そこで、本発明の多層回路基板の一態様は、負荷及びバイパスコンデンサを実装する。前記バイパスコンデンサは第一ランド及び第二ランドに電気的に接続配置される。前記多層回路基板は、第一接続配線、第二接続配線、第一貫通配線及び第二貫通配線をさらに備える。第一接続配線及び第二接続配線は、前記負荷と前記バイパスコンデンサとを電気的に接続する。前記第一貫通配線は、前記多層回路基板を貫通した状態で前記第一接続配線の電源側電極端子を介して前記第一ランドに接続される。前記第二貫通配線は、前記第一貫通配線の近傍にて前記多層回路基板を貫通した状態で前記第二接続配線の接地側電極端子を介して前記第二ランドに接続される。   Therefore, in one aspect of the multilayer circuit board of the present invention, a load and a bypass capacitor are mounted. The bypass capacitor is electrically connected to the first land and the second land. The multilayer circuit board further includes a first connection wiring, a second connection wiring, a first through wiring, and a second through wiring. The first connection wiring and the second connection wiring electrically connect the load and the bypass capacitor. The first through wiring is connected to the first land through a power supply side electrode terminal of the first connection wiring in a state of penetrating the multilayer circuit board. The second through wiring is connected to the second land through a ground-side electrode terminal of the second connection wiring in a state of penetrating the multilayer circuit board in the vicinity of the first through wiring.

前記多層回路基板の一態様は、前記第一ランドと前記第二ランドとの間隔は、前記第一接続配線と前記第二接続配線の間隔よりも狭い。   In one aspect of the multilayer circuit board, an interval between the first land and the second land is narrower than an interval between the first connection wiring and the second connection wiring.

前記多層回路基板の一態様は、前記第一接続配線の幅は前記電源側電極端子と前記第一ランドとの接続部分の幅よりも狭い。   In one aspect of the multilayer circuit board, the width of the first connection wiring is narrower than the width of the connection portion between the power supply side electrode terminal and the first land.

前記多層回路基板の一態様は、前記第二接続配線の幅は前記接地側電極端子と前記第二ランドとの接続部分の幅よりも狭い。   In one aspect of the multilayer circuit board, the width of the second connection wiring is narrower than the width of the connection portion between the ground-side electrode terminal and the second land.

前記多層回路基板の一態様は、前記第一貫通配線及び前記第二貫通配線は、導電材により埋め込み処理されている。   In one aspect of the multilayer circuit board, the first through wiring and the second through wiring are embedded with a conductive material.

以上の本発明によれば、多層回路基板におけるEMIノイズの抑制効果の向上を図ることができる。   According to the present invention described above, the effect of suppressing EMI noise in the multilayer circuit board can be improved.

本発明の一実施形態である多層回路基板の平面図。The top view of the multilayer circuit board which is one Embodiment of this invention. 前記多層回路基板の斜視図。The perspective view of the said multilayer circuit board.

以下に図面を参照しながら本発明の実施形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に示された本実施形態の多層回路基板1は、例えば、印加電圧が5V以下である仕様の多層回路基板の態様となっている。多層回路基板1には、負荷21,バイパスコンデンサ31が実装されている。   The multilayer circuit board 1 of the present embodiment shown in FIG. 1 is an aspect of a multilayer circuit board having a specification in which an applied voltage is 5 V or less, for example. A load 21 and a bypass capacitor 31 are mounted on the multilayer circuit board 1.

負荷21としては、SOP(Small Outline Package),QFP(Quad Flat Package)等に例示される周知の表面実装型の集積回路が挙げられる。負荷21は、例えば、多層回路基板1の第一層11に実装される。   Examples of the load 21 include well-known surface-mounted integrated circuits exemplified by SOP (Small Outline Package), QFP (Quad Flat Package), and the like. The load 21 is mounted on the first layer 11 of the multilayer circuit board 1, for example.

バイパスコンデンサ31としては、例えば、1005サイズ(1mm×0.5mm)の周知のバイパスコンデンサが挙げられる。バイパスコンデンサ31は、例えば、多層回路基板1の第一層11に実装される。   As the bypass capacitor 31, for example, a known bypass capacitor of 1005 size (1 mm × 0.5 mm) can be mentioned. The bypass capacitor 31 is mounted on the first layer 11 of the multilayer circuit board 1, for example.

負荷21とバイパスコンデンサ31とは、第一接続配線51と第二接続配線52とにより電気的に接続される。第一接続配線51と第二接続配線52は略同じ長さとなっている。   The load 21 and the bypass capacitor 31 are electrically connected by the first connection wiring 51 and the second connection wiring 52. The first connection wiring 51 and the second connection wiring 52 have substantially the same length.

第一接続配線51はその一端が負荷21に接続される一方でその他端は第一ランド41に接続される。第一接続配線51は、この第一接続配線51の幅が電源側電極端子71と第一ランド41との接続部分の幅よりも狭くなるように構成される。尚、電源側電極端子71と第一ランド41との接続部分の幅は、第一ランド41の幅と同等でもよい。   One end of the first connection wiring 51 is connected to the load 21 while the other end is connected to the first land 41. The first connection wiring 51 is configured such that the width of the first connection wiring 51 is narrower than the width of the connection portion between the power supply side electrode terminal 71 and the first land 41. The width of the connection portion between the power supply side electrode terminal 71 and the first land 41 may be equal to the width of the first land 41.

第二接続配線52はその一端が負荷21に接続される一方でその他端は第二ランド42に接続される。第二接続配線52は、この第二接続配線52の幅が接地側電極端子72と第二ランド42との接続部分の幅よりも狭くなるように構成される。尚、接地側電極端子72と第二ランド42との接続部分の幅は、第二ランド42の幅と同等でもよい。   One end of the second connection wiring 52 is connected to the load 21, while the other end is connected to the second land 42. The second connection wiring 52 is configured such that the width of the second connection wiring 52 is narrower than the width of the connection portion between the ground-side electrode terminal 72 and the second land 42. The width of the connection portion between the ground-side electrode terminal 72 and the second land 42 may be equal to the width of the second land 42.

第一ランド41及び第二ランド42には、バイパスコンデンサ31が電気的に接続配置される。第一ランド41は電源側電極端子71を介して第一貫通配線61に接続される。一方、第二ランド42は接地側電極端子72を介して第二貫通配線62に接続される。   A bypass capacitor 31 is electrically connected to the first land 41 and the second land 42. The first land 41 is connected to the first through wiring 61 through the power supply side electrode terminal 71. On the other hand, the second land 42 is connected to the second through wiring 62 via the ground-side electrode terminal 72.

第一ランド41,第二ランド42は、第一ランド41と第二ランド42との間隔L1が第一接続配線51と第二接続配線52の間隔L2よりも狭くなるように、配置される。例えば、間隔L1は、第一ランド41と第二ランド42との間の容量結合を強くするために、0.1mm〜0.2mmに設定される。   The first land 41 and the second land 42 are arranged so that the distance L1 between the first land 41 and the second land 42 is narrower than the distance L2 between the first connection wiring 51 and the second connection wiring 52. For example, the interval L1 is set to 0.1 mm to 0.2 mm in order to strengthen the capacitive coupling between the first land 41 and the second land 42.

第一貫通配線61は、図2に例示したように多層回路基板1を貫通して第一貫通配線61の一端が第一層11のスルーホール111から露出した状態で、第一接続配線51の電源側電極端子71を介して第一ランド41に接続されている。一方、第一貫通配線61の他端は、第一貫通配線61が多層回路基板1の電源層(第一層11から第N層1Nのいずれか)に電気的に接続された状態で、第N層1Nに接続されている(但し、Nは2以上の自然数)。   As illustrated in FIG. 2, the first through wiring 61 penetrates the multilayer circuit board 1, and one end of the first through wiring 61 is exposed from the through hole 111 of the first layer 11. It is connected to the first land 41 via the power supply side electrode terminal 71. On the other hand, the other end of the first through wiring 61 is in a state in which the first through wiring 61 is electrically connected to the power supply layer (any one of the first layer 11 to the Nth layer 1N) of the multilayer circuit board 1. It is connected to the N layer 1N (where N is a natural number of 2 or more).

第二貫通配線62は、第一貫通配線61の近傍にて第一貫通配線61と並列に多層回路基板1を貫通した状態で第二貫通配線62の一端が第二接続配線52の接地側電極端子72を介して第二ランド42に接続されている。一方、第二貫通配線62の他端は、第N層1Nのスルーホール1N1から露出してGNDに電気的に接続されている。   The second through-wiring 62 has one end of the second through-wiring 62 passing through the multilayer circuit board 1 in parallel with the first through-wiring 61 in the vicinity of the first through-wiring 61 and the ground-side electrode of the second connection wiring 52 The terminal 72 is connected to the second land 42. On the other hand, the other end of the second through wiring 62 is exposed from the through hole 1N1 of the Nth layer 1N and is electrically connected to GND.

第一貫通配線61と第二貫通配線62は、多層回路基板1の積層方向に平行に配置される。第一貫通配線61,第二貫通配線62は、多層回路基板1を構成する層(第一層11から第N層1N)の少なくとも2つ以上の層を電気的に接続させる。第一貫通配線61,第二貫通配線62の間隔は、例えば0.10mm〜0.50mmに設定される。   The first through wiring 61 and the second through wiring 62 are arranged in parallel to the stacking direction of the multilayer circuit board 1. The first through wiring 61 and the second through wiring 62 electrically connect at least two or more layers of the layers (the first layer 11 to the Nth layer 1N) constituting the multilayer circuit board 1. The interval between the first through wiring 61 and the second through wiring 62 is set to, for example, 0.10 mm to 0.50 mm.

第一貫通配線61及び第二貫通配線62は、導電材により多層回路基板1に埋め込み処理される。例えば、周知の導電材を用いた電解メッキ、無電解メッキ、フィリングメッキのいずれかまたは組合せにより第一貫通配線61及び第二貫通配線62が埋め込み処理される。   The first through wiring 61 and the second through wiring 62 are embedded in the multilayer circuit board 1 with a conductive material. For example, the first through wiring 61 and the second through wiring 62 are embedded by any one or combination of electrolytic plating, electroless plating, and filling plating using a known conductive material.

図1及び図2を参照しながら多層回路基板1の作用について説明する。図1において、黒実線矢印は“電荷の供給経路”を示す。黒破線矢印は“GNDへのデカップリング経路”を示す。白実線矢印は、“負荷からのノイズ伝播経路”を示す。白破線矢印は“外部へのノイズデカップリング経路”を示す。   The operation of the multilayer circuit board 1 will be described with reference to FIGS. In FIG. 1, a solid black arrow indicates a “charge supply path”. A black broken line arrow indicates a “decoupling route to GND”. A white solid arrow indicates a “noise propagation path from the load”. A white broken line arrow indicates a “noise decoupling path to the outside”.

多層回路基板1において、バイパスコンデンサ31は第一貫通配線61,第二貫通配線62を介して電源とGNDとに接続され、さらに、第一貫通配線61と第二貫通配線62は互いに近傍の位置にて多層回路基板1の積層方向に平行に配置されている。本態様によれば、第一貫通配線61と第二貫通配線62と間の逆磁束の相殺効果が発生するので、低インピーダンスの電源供給が可能となる。また、第一貫通配線61と第二貫通配線62との間において、電源ループの面積が小さくなることから、インダクタンスを低下させることができる。そして、過渡的な電荷の動作を阻止するインダクタンスの低下により、電荷(図1の黒実践矢印)の供給量及び供給速度が向上する。よって、バイパスコンデンサ31の高周波領域におけるデカップリング効果(同図の白破線矢印)の向上が図れる。   In the multilayer circuit board 1, the bypass capacitor 31 is connected to the power source and the GND via the first through wiring 61 and the second through wiring 62, and the first through wiring 61 and the second through wiring 62 are located at positions close to each other. Are arranged in parallel to the stacking direction of the multilayer circuit board 1. According to this aspect, since the reverse magnetic flux canceling effect between the first through wiring 61 and the second through wiring 62 is generated, it is possible to supply power with low impedance. Further, since the area of the power supply loop is reduced between the first through wiring 61 and the second through wiring 62, the inductance can be reduced. And the supply amount and supply speed of electric charge (black practice arrow of FIG. 1) improve by the fall of the inductance which prevents operation | movement of a transient electric charge. Therefore, the decoupling effect in the high frequency region of the bypass capacitor 31 (white broken line arrow in the figure) can be improved.

特に、第一ランド41と第二ランド42との間隔L1が第一接続配線51と第二接続配線52の間隔L2よりも狭くなるような第一ランド41,第二ランド42の配置により、第一接続配線51と第二接続配線52のインダクタンス成分の低下が抑制される。そして、これにより、ノイズ(例えば、同図の白実践矢印で示した伝播経路のノイズ)の遮断性能(同図の黒破線矢印,白破線矢印)の低下を防止できる。   In particular, the first land 41 and the second land 42 are arranged so that the distance L1 between the first land 41 and the second land 42 is narrower than the distance L2 between the first connection wiring 51 and the second connection wiring 52. A decrease in the inductance component of the first connection wiring 51 and the second connection wiring 52 is suppressed. As a result, it is possible to prevent a reduction in the blocking performance (black broken line arrows and white broken line arrows in the figure) of noise (for example, propagation path noise indicated by white practice arrows in the figure).

また、図1に示された第一ランド41と第二ランド42との間隔L1が例えば0.1mm〜0.2mm程度に設定されることにより、第一ランド41,第二ランド42間の容量結合が強くなり、実装状態に起因する寄生インダクタンス成分を低減できる。   Further, the distance L1 between the first land 41 and the second land 42 shown in FIG. 1 is set to about 0.1 mm to 0.2 mm, for example, so that the capacity between the first land 41 and the second land 42 is increased. Coupling becomes strong and the parasitic inductance component resulting from the mounting state can be reduced.

さらに、第一接続配線51の幅が電源側電極端子71と第一ランド41との接続部分の幅よりも狭くなるように第一接続配線51が構成されると、インダクタンス成分の増加により負荷21に侵入する高周波ノイズ成分が遮断される(同図の黒破線矢印)。   Furthermore, when the first connection wiring 51 is configured such that the width of the first connection wiring 51 is narrower than the width of the connection portion between the power-side electrode terminal 71 and the first land 41, the load 21 is increased due to an increase in inductance component. The high-frequency noise component that enters is blocked (black broken arrow in the figure).

そして、第二接続配線52の幅が接地側電極端子72と第二ランド42との接続部分の幅よりも狭くなるように第二接続配線52が構成されると、同様に、前記高周波ノイズ成分が遮断される。   And if the 2nd connection wiring 52 is comprised so that the width | variety of the 2nd connection wiring 52 may become narrower than the width | variety of the connection part of the ground side electrode terminal 72 and the 2nd land 42, the said high frequency noise component similarly Is cut off.

また、第一貫通配線61及び第二貫通配線62が、導電材により多層回路基板1に埋め込み処理されることにより、第一貫通配線61,第二貫通配線62由来の寄生インダクタンス成分を低減できる。よって、多層回路基板1におけるバイパスコンデンサ31の高周波ノイズバイパス効果を増大させることができる。   Further, the first through wiring 61 and the second through wiring 62 are embedded in the multilayer circuit board 1 with a conductive material, so that parasitic inductance components derived from the first through wiring 61 and the second through wiring 62 can be reduced. Therefore, the high frequency noise bypass effect of the bypass capacitor 31 in the multilayer circuit board 1 can be increased.

以上のように多層回路基板1によれば、バイパスコンデンサ31と第一貫通配線61,第二貫通配線62の配置及び導電パターンの態様が最適化されることにより、多層回路基板1におけるEMIノイズの抑制効果の向上が図られる。   As described above, according to the multilayer circuit board 1, the arrangement of the bypass capacitor 31, the first through wiring 61, and the second through wiring 62 and the mode of the conductive pattern are optimized. The suppression effect is improved.

1…多層回路基板、11…第一層、1N…第N層、111,1N1…スルーホール
21…負荷
31…バイパスコンデンサ
41…第一ランド、42…第二ランド
51…第一接続配線、52…第二接続配線
61…第一貫通配線、62…第二貫通配線
71…電源側電極端子、72…接地側電極端子
DESCRIPTION OF SYMBOLS 1 ... Multilayer circuit board, 11 ... 1st layer, 1N ... N-th layer, 111, 1N1 ... Through hole 21 ... Load 31 ... Bypass capacitor 41 ... 1st land, 42 ... 2nd land 51 ... 1st connection wiring, 52 ... 2nd connection wiring 61 ... 1st penetration wiring, 62 ... 2nd penetration wiring 71 ... Power supply side electrode terminal, 72 ... Grounding side electrode terminal

Claims (5)

多層回路基板に実装される負荷と、
前記多層回路基板に実装されるバイパスコンデンサと、
このバイパスコンデンサが電気的に接続配置される第一ランド及び第二ランドと、
前記負荷と前記バイパスコンデンサとを電気的に接続する第一接続配線及び第二接続配線と、
前記多層回路基板を貫通した状態で前記第一接続配線の電源側電極端子を介して前記第一ランドに接続される第一貫通配線と、
この第一貫通配線の近傍にて前記多層回路基板を貫通した状態で前記第二接続配線の接地側電極端子を介して前記第二ランドに接続される第二貫通配線と
を備えた多層回路基板。
A load mounted on a multilayer circuit board;
A bypass capacitor mounted on the multilayer circuit board;
A first land and a second land to which the bypass capacitor is electrically connected; and
A first connection wiring and a second connection wiring for electrically connecting the load and the bypass capacitor;
A first through wiring connected to the first land via a power supply side electrode terminal of the first connection wiring in a state of penetrating the multilayer circuit board;
A multilayer circuit board comprising: a second through wiring connected to the second land via a ground-side electrode terminal of the second connection wiring in a state of penetrating the multilayer circuit board in the vicinity of the first through wiring .
前記第一ランドと前記第二ランドとの間隔は、前記第一接続配線と前記第二接続配線の間隔よりも狭い請求項1に記載の多層回路基板。   2. The multilayer circuit board according to claim 1, wherein an interval between the first land and the second land is narrower than an interval between the first connection wiring and the second connection wiring. 前記第一接続配線の幅は、前記電源側電極端子と前記第一ランドとの接続部分の幅よりも狭い請求項1または2に記載の多層回路基板。   3. The multilayer circuit board according to claim 1, wherein a width of the first connection wiring is narrower than a width of a connection portion between the power-side electrode terminal and the first land. 前記第二接続配線の幅は、前記接地側電極端子と前記第二ランドとの接続部分の幅よりも狭い請求項1から3のいずれか1項に記載の多層回路基板。   4. The multilayer circuit board according to claim 1, wherein a width of the second connection wiring is narrower than a width of a connection portion between the ground-side electrode terminal and the second land. 前記第一貫通配線及び前記第二貫通配線は、導電材により埋め込み処理された請求項1から4のいずれか1項に記載の多層回路基板。   5. The multilayer circuit board according to claim 1, wherein the first through wiring and the second through wiring are embedded with a conductive material. 6.
JP2016250310A 2016-12-26 2016-12-26 Multilayer circuit board Pending JP2018107221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016250310A JP2018107221A (en) 2016-12-26 2016-12-26 Multilayer circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250310A JP2018107221A (en) 2016-12-26 2016-12-26 Multilayer circuit board

Publications (1)

Publication Number Publication Date
JP2018107221A true JP2018107221A (en) 2018-07-05

Family

ID=62787448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250310A Pending JP2018107221A (en) 2016-12-26 2016-12-26 Multilayer circuit board

Country Status (1)

Country Link
JP (1) JP2018107221A (en)

Similar Documents

Publication Publication Date Title
US7466560B2 (en) Multilayered printed circuit board
US7594105B2 (en) Multilayer print circuit board
KR101106434B1 (en) Printed circuit board
KR101385167B1 (en) Printed circuit board
JP5694251B2 (en) EBG structure and circuit board
US9468089B2 (en) EBG structure, semiconductor device, and circuit board
KR20140107128A (en) Electronic circuit and electronic device
JP6504960B2 (en) Printed board
US8964400B2 (en) Circuitry arrangement for reducing a tendency towards oscillations
CN107347228B (en) High-frequency noise-handling circuit board
JP2018107221A (en) Multilayer circuit board
WO2018229978A1 (en) Printed circuit board
JP2012038863A (en) Multilayer circuit board, circuit module mounting multilayer circuit board, and electronic device
JP6425632B2 (en) Printed board
JP6395638B2 (en) Wireless device
WO2012153835A1 (en) Printed wiring board
US9648739B2 (en) Electronic component mounting structure and printed wiring board
JP6343871B2 (en) Component mounting multilayer wiring board
JP2009130226A (en) Multilayer wiring board and electronic circuit module using the same
US20230047936A1 (en) Filter circuit
KR100594298B1 (en) Multi-path PCB having heterogeneous metal layers and power delivery system including the same
CN116744535A (en) Printed circuit board and electronic equipment
JP2011216522A (en) Semiconductor device
US20110133340A1 (en) Package substrate and semiconductor apparatus
JP2015111642A (en) Ground structure