JP2018104779A - Method for manufacturing gold-loaded platinum powder - Google Patents

Method for manufacturing gold-loaded platinum powder Download PDF

Info

Publication number
JP2018104779A
JP2018104779A JP2016253837A JP2016253837A JP2018104779A JP 2018104779 A JP2018104779 A JP 2018104779A JP 2016253837 A JP2016253837 A JP 2016253837A JP 2016253837 A JP2016253837 A JP 2016253837A JP 2018104779 A JP2018104779 A JP 2018104779A
Authority
JP
Japan
Prior art keywords
gold
platinum
platinum powder
powder
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016253837A
Other languages
Japanese (ja)
Other versions
JP6795841B2 (en
Inventor
哲郎 川畑
Tetsuo Kawabata
哲郎 川畑
良介 冨岡
Ryosuke Tomioka
良介 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2016253837A priority Critical patent/JP6795841B2/en
Publication of JP2018104779A publication Critical patent/JP2018104779A/en
Application granted granted Critical
Publication of JP6795841B2 publication Critical patent/JP6795841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing platinum powder making it possible to highly disperse gold on platinum particle surfaces.SOLUTION: A method for manufacturing high-disperse gold-loaded platinum powder includes: carrying out evaporation to dryness of solvent while stirring platinum powder and a gold compound solution under reduced pressure so that the metal compound is high-disperse loaded on particle surfaces of the platinum powder; and heat-treating the platinum powder having the gold compound loaded thereon at 560-650°C so that gold is high-disperse loaded on platinum particle surfaces.SELECTED DRAWING: None

Description

本発明は、白金粉末の製造方法に関し、より詳細には、白金粒子上に金が分散担持した粉末を得る製造方法に関する。   The present invention relates to a method for producing platinum powder, and more particularly to a method for obtaining a powder in which gold is dispersed and supported on platinum particles.

白金金粉末の用途として、ペースト化して各種電子部品の導電膜・発熱体回路・電極等を製造する用途がある。ペーストの一般的な成分構成は、白金金粉末と、基板との結合剤を担う金属酸化物やガラス系フリット等の無機酸化物と、有機ビヒクルとを含む。ペーストは、セラミックス等の絶縁基板や素子等へのスクリーン印刷等の手段でコーティング処理された後、コーティング層が焼成されて、導電膜、発熱体回路、電極等が形成される。   As an application of platinum gold powder, there is an application for producing a conductive film, a heating element circuit, an electrode and the like of various electronic parts by making a paste. A general component structure of the paste includes platinum gold powder, an inorganic oxide such as a metal oxide or glass frit that serves as a binder for the substrate, and an organic vehicle. The paste is coated by means such as screen printing on an insulating substrate such as ceramics or an element, and then the coating layer is baked to form a conductive film, a heating element circuit, an electrode, and the like.

従来、白金金粉末は、白金化合物溶液と金化合物溶液を混合して、湿式で還元させることにより製造することが開示されている(特許文献1)。特許文献1には、PtイオンおよびAuイオンを、液相の反応系中で、還元剤の作用によって還元して、Pt−Au合金からなる合金微粒子として析出させる合金微粒子の製造方法が開示されている。   Conventionally, it has been disclosed that a platinum gold powder is produced by mixing a platinum compound solution and a gold compound solution and reducing them in a wet manner (Patent Document 1). Patent Document 1 discloses a method for producing alloy fine particles in which Pt ions and Au ions are reduced by the action of a reducing agent in a liquid phase reaction system and precipitated as alloy fine particles made of a Pt—Au alloy. Yes.

特許5251227号公報Japanese Patent No. 5251227

従来技術では、白金と金とを合金化させているが、用途によっては、白金粒子表面に金が高分散している状態が好ましい場合がある。白金金粉末を含むコーティング層が焼成されて、電極等が形成される際、白金金粉末において金偏析が生じている場合、融点が低い金が昇華する可能性がある。     In the prior art, platinum and gold are alloyed, but depending on the application, a state where gold is highly dispersed on the surface of platinum particles may be preferable. When a coating layer containing platinum gold powder is baked to form an electrode or the like, if gold segregation occurs in the platinum gold powder, gold having a low melting point may sublimate.

本発明は、上記事情に鑑みてなされたものであり、金化合物を分解して金属の金にすると同時に白金粒子表面と金との結合を強めることで白金粒子表面に金を高分散担持させることができる、金担持白金粉末の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and decomposes a gold compound into metal gold, and at the same time strengthens the bond between the surface of the platinum particle and gold so that gold is highly dispersed and supported on the surface of the platinum particle. An object of the present invention is to provide a method for producing gold-supported platinum powder.

本発明は上記目的を達成するため、白金粉末と金化合物溶液を減圧下で攪拌しながら溶媒を蒸発乾固させて、前記白金粉末の粒子表面に金化合物を高分散担持させる工程と、前記金化合物が担持された白金粉末を560〜650℃で熱処理して、白金粒子表面に金を高分散担持させる工程と、を備えることを特徴とする金高分散担持白金粉末の製造方法である。   In order to achieve the above object, the present invention evaporates and evaporates the solvent while stirring the platinum powder and the gold compound solution under reduced pressure so that the gold compound is highly dispersed and supported on the surface of the platinum powder particles. And a step of heat-treating a platinum powder carrying a compound at 560 to 650 ° C. to carry gold in a highly dispersed manner on the surface of platinum particles.

本発明の構成によれば、金化合物を分解して金属の金にすると同時に白金粒子表面と金との結合を強めることで白金粒子表面に金を高分散担持させることができる、金担持白金粉末の製造方法を提供することができる。   According to the configuration of the present invention, a gold-supported platinum powder that can disperse and support gold on the surface of the platinum particles by decomposing the gold compound into metal gold and at the same time strengthening the bond between the surface of the platinum particles and gold. The manufacturing method of can be provided.

実施例1の粒子表面の金の面分析結果を示す。The surface analysis result of the gold | metal | money of the particle | grain surface of Example 1 is shown. 実施例2の粒子表面の金の面分析結果を示す。The surface analysis result of the gold | metal | money of the particle | grain surface of Example 2 is shown. 実施例3の粒子表面の金の面分析結果を示す。The surface analysis result of the gold | metal | money of the particle | grain surface of Example 3 is shown. 比較例1の粒子表面の金の面分析結果を示す。The surface analysis result of the gold | metal | money of the particle | grain surface of the comparative example 1 is shown. 比較例2の粒子表面の金の面分析結果を示す。The surface analysis result of the gold | metal | money of the particle | grain surface of the comparative example 2 is shown. 比較例3の粒子表面の金の面分析結果を示す。The surface analysis result of the gold | metal | money of the particle | grain surface of the comparative example 3 is shown.

本発明の実施形態は、白金粉末と金化合物溶液を減圧下で攪拌しながら溶媒を蒸発乾固させて、白金粉末の粒子表面に金化合物を高分散担持させる工程と、その金化合物が担持された白金粉末を560〜650℃で熱処理して、白金粒子表面に金を高分散担持させる工程と、 を備えることを特徴とする金高分散担持白金粉末の製造方法である。   An embodiment of the present invention includes a step of evaporating and drying a solvent while stirring a platinum powder and a gold compound solution under reduced pressure so that the gold compound is highly dispersed and supported on the particle surface of the platinum powder, and the gold compound is supported. And a step of heat-treating the platinum powder at 560 to 650 ° C. so that the gold particles are highly dispersed and supported on the surface of the platinum particles.

白金粉末の粒子表面に金化合物を高分散担持させる工程では、白金粉末と塩化金酸溶液を減圧下で70℃以下の条件で攪拌しながら溶媒を除去し、白金粒子表面に金化合物をコーティングする。この工程により、金化合物を白金粉末表面に高分散担持する。   In the step of highly dispersing and supporting the gold compound on the surface of the platinum powder particle, the solvent is removed while stirring the platinum powder and chloroauric acid solution at 70 ° C. or less under reduced pressure, and the gold compound is coated on the surface of the platinum particle. . Through this step, the gold compound is supported in a highly dispersed manner on the surface of the platinum powder.

熱処理する工程では、白金粒子表面に金化合物がコーティングされた粉末を、大気中、560〜650℃の温度で熱処理する。金化合物の分解温度は約360℃であるが、その分解温度近傍の温度印加では、析出した金同士が凝集して、金の偏析が生じる。約360℃より200℃以上高い560〜650℃で熱処理すると、金化合物を分解して金属の金になると同時に白金粒子表面と金との結合を強めることで白金粒子表面に金を高分散担持させることができる。なお、650℃を超えた温度で熱処理すると白金粒子同士の凝集が進行し、粗大粒子が生成する。金の偏析が生じている場合、融点が低い金が昇華する可能性がある。   In the heat treatment step, the powder in which the gold compound is coated on the surface of the platinum particles is heat treated in the atmosphere at a temperature of 560 to 650 ° C. The decomposition temperature of the gold compound is about 360 ° C. However, when a temperature near the decomposition temperature is applied, the precipitated gold aggregates and segregation of gold occurs. When heat treatment is performed at 560 to 650 ° C., which is higher than about 360 ° C. by 200 ° C. or more, the gold compound is decomposed to become metal gold, and at the same time, the bond between the platinum particle surface and gold is strengthened so be able to. In addition, when it heat-processes at the temperature over 650 degreeC, aggregation of platinum particles will progress and a coarse particle will produce | generate. When gold segregation occurs, gold having a low melting point may sublime.

本発明によれば、白金原料として平均粒径0.6〜10μm程度の白金粉末を、金化合物として塩化金(III)酸、亜硫酸金(I)ナトリウムなどを溶解させた水溶液を用いることができる。また、後述する実施例では、白金粉末中の金の重量比を1wt%としたが、白金粉末と金化合物の配合比を調整することで、白金粉末中の金の重量比を変更することができる。特にナトリウムやカリウム等の不純物が残留しない、低温にて熱分解する、などの観点からは塩化金(III)酸溶液を用いることが好ましい。   According to the present invention, an aqueous solution in which platinum powder having an average particle size of about 0.6 to 10 μm as a platinum raw material and gold chloride (III) acid, gold (I) sodium sulfite, or the like dissolved therein can be used as a gold compound. . Moreover, in the Example mentioned later, although the weight ratio of the gold in platinum powder was 1 wt%, the weight ratio of the gold in platinum powder can be changed by adjusting the compounding ratio of platinum powder and a gold compound. it can. In particular, it is preferable to use a chloroauric (III) acid solution from the viewpoints that impurities such as sodium and potassium do not remain, and thermal decomposition occurs at a low temperature.

(実施例1)
平均粒径9μmの白金粉末19.8gに、塩化金酸溶液(1.06wt%)18.9gを添加してナス型フラスコに仕込み、減圧、モーターによる回転を開始、ナス型フラスコを50℃の温浴に浸した。圧力:4×103Pa、回転数:40〜150rpmの条件で、溶媒を除去した。さらに、ナスフラスコ内で、溶媒が除去された白金粉末と塩化金酸の混合物を乾燥させ、白金粒子表面に塩化金酸を高分散担持させた。乾燥条件は、120℃、12時間、大気中乾燥とした。
Example 1
To 19.8 g of platinum powder with an average particle size of 9 μm, 18.9 g of chloroauric acid solution (1.06 wt%) was added and charged into an eggplant-shaped flask, and decompression and rotation by a motor were started. Soaked in a warm bath. The solvent was removed under the conditions of pressure: 4 × 103 Pa and rotation speed: 40 to 150 rpm. Further, in the eggplant flask, the mixture of the platinum powder and the chloroauric acid from which the solvent was removed was dried, and the chloroauric acid was highly dispersed and supported on the surface of the platinum particles. The drying conditions were 120 ° C. and 12 hours in the air.

次に、混合物をアルミボートに乗せ、大気中、560℃3時間加熱して、塩化金酸を分解、白金に金を高分散担持した。   Next, the mixture was placed on an aluminum boat and heated in the atmosphere at 560 ° C. for 3 hours to decompose chloroauric acid and to carry highly dispersed gold on platinum.

粉砕機による粉砕、目開き53μmのふるいにて分級し、金が高分散担持された球状の白金粉末を得た。   The mixture was pulverized by a pulverizer and classified with a sieve having an aperture of 53 μm to obtain spherical platinum powder on which gold was highly dispersed and supported.

(実施例2、3)
熱処理する工程の加熱温度を以下とした以外は実施例1と同じ条件にて実施例2、3のサンプルを製作した。
実施例2:600℃3時間
実施例3:650℃3時間
(Examples 2 and 3)
Samples of Examples 2 and 3 were manufactured under the same conditions as in Example 1 except that the heating temperature in the heat treatment step was as follows.
Example 2: 600 ° C. for 3 hours Example 3: 650 ° C. for 3 hours

(比較例1、2)
熱処理する工程の加熱温度を以下とした以外は実施例1と同じ条件にて比較例1、2のサンプルを製作した。
比較例1:520℃3時間
比較例2:700℃3時間
(Comparative Examples 1 and 2)
Samples of Comparative Examples 1 and 2 were produced under the same conditions as in Example 1 except that the heating temperature in the heat treatment step was as follows.
Comparative Example 1: 520 ° C. for 3 hours Comparative Example 2: 700 ° C. for 3 hours

(比較例3)
平均粒径9μmの白金粉末19.8gを純水に懸濁させ、塩化金酸溶液(1.06wt%)18.9gを投入し、還元剤(アスコルビン酸)にて金を還元させ、白金粉末の粒子表面に金を析出させた。
(Comparative Example 3)
19.8 g of platinum powder with an average particle size of 9 μm is suspended in pure water, 18.9 g of chloroauric acid solution (1.06 wt%) is added, gold is reduced with a reducing agent (ascorbic acid), and platinum powder Gold was deposited on the surface of the particles.

得られた粉末の組成はプラズマ発光分光分析法で測定した。得られた粉末の粒径は、レーザ回折散乱式粒度分布測定法で測定し、粒度分布の積算値が50%に相当する粒径(D50)を求めて平均粒径とした。   The composition of the obtained powder was measured by plasma emission spectroscopy. The particle size of the obtained powder was measured by a laser diffraction / scattering particle size distribution measuring method, and the particle size (D50) corresponding to an integrated value of the particle size distribution of 50% was determined as the average particle size.

得られた粉末の粒子上の金の分布状態はEPMA(エレクトロンプローブマイクロアナライザー)による面分析により調べた。面分析写真にて幅1.0μm以上の金の集合体が認められる場合、分布状態が悪い(凝集有り)と、そのような集合体が認められない場合、分布状態が良い(高分散状態である。凝集無し。)と評価した。   The distribution state of gold on the obtained powder particles was examined by surface analysis using EPMA (Electron Probe Microanalyzer). When a gold aggregate with a width of 1.0 μm or more is recognized in the surface analysis photograph, the distribution state is poor (with aggregation), and when such an aggregate is not recognized, the distribution state is good (in a highly dispersed state). Yes, no aggregation.)

得られた粉末の特性を表1に示す。   The properties of the obtained powder are shown in Table 1.

実施例粉末、比較例粉末について、金の面分析結果(写真)を図1〜図6にそれぞれ示す。面分析写真は、その写真全景に白金粒子全体が収まるようにその倍率を調整した。実施例1〜3では、幅1.0μm以上の金の集合体が認められず(金凝集無し)、金が高分散していることがわかる。一方、比較例1、3では、金の凝集が認められる。比較例2では、平均粒径が実施例1〜3の約1.5倍であり、白金粒子同士の凝集による粒子粗大化が認められる。

The surface analysis results (photos) of gold for the example powder and the comparative example powder are shown in FIGS. The magnification of the surface analysis photograph was adjusted so that the entire platinum particle could be accommodated in the entire photograph. In Examples 1 to 3, no gold aggregate having a width of 1.0 μm or more was observed (no gold aggregation), indicating that gold was highly dispersed. On the other hand, in Comparative Examples 1 and 3, aggregation of gold is observed. In Comparative Example 2, the average particle diameter is about 1.5 times that of Examples 1 to 3, and particle coarsening due to aggregation of platinum particles is observed.

Claims (1)

白金粉末と金化合物溶液を減圧下で攪拌しながら溶媒を蒸発乾固させて、前記白金粉末の粒子表面に金化合物を高分散担持させる工程と、
前記金化合物が担持された白金粉末を560〜650℃で熱処理して、白金粒子表面に金を高分散担持させる工程と、
を備えることを特徴とする金高分散担持白金粉末の製造方法。
A step of evaporating and drying the solvent while stirring the platinum powder and the gold compound solution under reduced pressure, and supporting the gold compound on the particle surface of the platinum powder in a highly dispersed manner;
A step of heat-treating the platinum powder carrying the gold compound at 560 to 650 ° C. so that gold is highly dispersed and supported on the surface of the platinum particles;
A method for producing gold-dispersed platinum powder characterized by comprising:
JP2016253837A 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder Active JP6795841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016253837A JP6795841B2 (en) 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253837A JP6795841B2 (en) 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder

Publications (2)

Publication Number Publication Date
JP2018104779A true JP2018104779A (en) 2018-07-05
JP6795841B2 JP6795841B2 (en) 2020-12-02

Family

ID=62786772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253837A Active JP6795841B2 (en) 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder

Country Status (1)

Country Link
JP (1) JP6795841B2 (en)

Also Published As

Publication number Publication date
JP6795841B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
JP4963393B2 (en) Low temperature firing type silver paste
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
TWI803486B (en) Copper particle and its manufacturing method
JPWO2018190246A1 (en) Copper particle mixture and method for producing the same, copper particle mixture dispersion, copper particle mixture-containing ink, method for storing copper particle mixture, and method for sintering copper particle mixture
JP6679312B2 (en) Silver-coated copper powder and method for producing the same
TWI682007B (en) Fine silver particle dispersing solution
JP2014224296A (en) Metal paste for bonding
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
US20100108366A1 (en) Preparation method for an electroconductive patterned copper layer and a patterned copper layer formed by the method
Huang et al. Electroless silver plating on Pb-based glass frits by a one-step activation method without stannum and palladium
WO2012063659A1 (en) Silver particle-containing composition, dispersion liquid, paste, and production method for each
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6795841B2 (en) Method for producing gold-supported platinum powder
JP4834848B2 (en) Copper powder for low-temperature firing or copper powder for conductive paste
JP5053902B2 (en) Method for producing silver ultrafine particles
JP6408696B2 (en) Copper-containing conductive paste and electrode made from copper-containing conductive paste
JP2007188845A (en) Conductive powder, conductive paste and electrical circuit
JP6740829B2 (en) Ruthenium dioxide powder, method for producing the same, thick film resistor paste, and thick film resistor
JP2015160964A (en) Nickel powder and method for producing the same
Zhou et al. Low-temperature sintering behavior (≤ 400° C) of micro-sized silver particles decorated by silver nanoparticles through surface iodination
JP2009084634A (en) Metal-coated nickel powder, and method for producing the same
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
KR20200062181A (en) Silver particulate dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6795841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250