JP6795841B2 - Method for producing gold-supported platinum powder - Google Patents

Method for producing gold-supported platinum powder Download PDF

Info

Publication number
JP6795841B2
JP6795841B2 JP2016253837A JP2016253837A JP6795841B2 JP 6795841 B2 JP6795841 B2 JP 6795841B2 JP 2016253837 A JP2016253837 A JP 2016253837A JP 2016253837 A JP2016253837 A JP 2016253837A JP 6795841 B2 JP6795841 B2 JP 6795841B2
Authority
JP
Japan
Prior art keywords
gold
platinum
powder
platinum powder
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016253837A
Other languages
Japanese (ja)
Other versions
JP2018104779A (en
Inventor
哲郎 川畑
哲郎 川畑
良介 冨岡
良介 冨岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2016253837A priority Critical patent/JP6795841B2/en
Publication of JP2018104779A publication Critical patent/JP2018104779A/en
Application granted granted Critical
Publication of JP6795841B2 publication Critical patent/JP6795841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、白金粉末の製造方法に関し、より詳細には、白金粒子上に金が分散担持した粉末を得る製造方法に関する。 The present invention relates to a method for producing platinum powder, and more particularly to a method for producing a powder in which gold is dispersed and supported on platinum particles.

白金金粉末の用途として、ペースト化して各種電子部品の導電膜・発熱体回路・電極等を製造する用途がある。ペーストの一般的な成分構成は、白金金粉末と、基板との結合剤を担う金属酸化物やガラス系フリット等の無機酸化物と、有機ビヒクルとを含む。ペーストは、セラミックス等の絶縁基板や素子等へのスクリーン印刷等の手段でコーティング処理された後、コーティング層が焼成されて、導電膜、発熱体回路、電極等が形成される。 Platinum gold powder is used as a paste to manufacture conductive films, heating element circuits, electrodes, etc. for various electronic components. The general composition of the paste includes platinum gold powder, an inorganic oxide such as a metal oxide or a glass-based frit that serves as a binder to the substrate, and an organic vehicle. The paste is coated by means such as screen printing on an insulating substrate such as ceramics or an element, and then the coating layer is fired to form a conductive film, a heating element circuit, electrodes, and the like.

従来、白金金粉末は、白金化合物溶液と金化合物溶液を混合して、湿式で還元させることにより製造することが開示されている(特許文献1)。特許文献1には、PtイオンおよびAuイオンを、液相の反応系中で、還元剤の作用によって還元して、Pt−Au合金からなる合金微粒子として析出させる合金微粒子の製造方法が開示されている。 Conventionally, it has been disclosed that platinum gold powder is produced by mixing a platinum compound solution and a gold compound solution and reducing them in a wet manner (Patent Document 1). Patent Document 1 discloses a method for producing alloy fine particles in which Pt ions and Au ions are reduced by the action of a reducing agent in a liquid phase reaction system to precipitate as alloy fine particles composed of a Pt-Au alloy. There is.

特許5251227号公報Japanese Patent No. 5251227

従来技術では、白金と金とを合金化させているが、用途によっては、白金粒子表面に金が高分散している状態が好ましい場合がある。白金金粉末を含むコーティング層が焼成されて、電極等が形成される際、白金金粉末において金偏析が生じている場合、融点が低い金が昇華する可能性がある。 In the prior art, platinum and gold are alloyed, but depending on the application, a state in which gold is highly dispersed on the surface of platinum particles may be preferable. When the coating layer containing the platinum gold powder is fired to form an electrode or the like, if gold segregation occurs in the platinum gold powder, gold having a low melting point may sublimate.

本発明は、上記事情に鑑みてなされたものであり、金化合物を分解して金属の金にすると同時に白金粒子表面と金との結合を強めることで白金粒子表面に金を高分散担持させることができる、金担持白金粉末の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and at the same time, gold is highly dispersed and supported on the surface of platinum particles by decomposing a gold compound into metallic gold and at the same time strengthening the bond between the surface of platinum particles and gold. It is an object of the present invention to provide a method for producing a gold-supported platinum powder.

本発明は上記目的を達成するため、白金粉末と金化合物溶液を減圧下で攪拌しながら溶媒を蒸発乾固させて、前記白金粉末の粒子表面に金化合物を高分散担持させる工程と、前記金化合物が担持された白金粉末を560〜650℃で熱処理して、白金粒子表面に金を高分散担持させる工程と、を備えることを特徴とする金高分散担持白金粉末の製造方法である。 In order to achieve the above object, the present invention comprises a step of evaporating and drying the solvent while stirring the platinum powder and the gold compound solution under reduced pressure to highly disperse and support the gold compound on the particle surface of the platinum powder. A method for producing a highly dispersed gold powder, which comprises a step of heat-treating a platinum powder carrying a compound at 560 to 650 ° C. to carry the gold on the surface of platinum particles in a highly dispersed manner.

本発明の構成によれば、金化合物を分解して金属の金にすると同時に白金粒子表面と金との結合を強めることで白金粒子表面に金を高分散担持させることができる、金担持白金粉末の製造方法を提供することができる。 According to the configuration of the present invention, gold-supported platinum powder can be highly dispersed and supported on the surface of platinum particles by decomposing a gold compound into metallic gold and at the same time strengthening the bond between the surface of platinum particles and gold. Manufacturing method can be provided.

実施例1の粒子表面の金の面分析結果を示す。The gold surface analysis result of the particle surface of Example 1 is shown. 実施例2の粒子表面の金の面分析結果を示す。The result of surface analysis of gold on the particle surface of Example 2 is shown. 実施例3の粒子表面の金の面分析結果を示す。The result of surface analysis of gold on the particle surface of Example 3 is shown. 比較例1の粒子表面の金の面分析結果を示す。The result of surface analysis of gold on the particle surface of Comparative Example 1 is shown. 比較例2の粒子表面の金の面分析結果を示す。The result of surface analysis of gold on the particle surface of Comparative Example 2 is shown. 比較例3の粒子表面の金の面分析結果を示す。The result of surface analysis of gold on the particle surface of Comparative Example 3 is shown.

本発明の実施形態は、白金粉末と金化合物溶液を減圧下で攪拌しながら溶媒を蒸発乾固させて、白金粉末の粒子表面に金化合物を高分散担持させる工程と、その金化合物が担持された白金粉末を560〜650℃で熱処理して、白金粒子表面に金を高分散担持させる工程と、 を備えることを特徴とする金高分散担持白金粉末の製造方法である。 In the embodiment of the present invention, a step of evaporating and drying the solvent while stirring the platinum powder and the gold compound solution under reduced pressure to highly disperse and support the gold compound on the particle surface of the platinum powder, and the gold compound are supported. A method for producing gold highly dispersed and supported platinum powder, which comprises a step of heat-treating the platinum powder at 560 to 650 ° C. to carry the gold on the surface of the platinum particles in a highly dispersed manner.

白金粉末の粒子表面に金化合物を高分散担持させる工程では、白金粉末と塩化金酸溶液を減圧下で70℃以下の条件で攪拌しながら溶媒を除去し、白金粒子表面に金化合物をコーティングする。この工程により、金化合物を白金粉末表面に高分散担持する。 In the step of highly dispersing and supporting the gold compound on the particle surface of the platinum powder, the solvent is removed while stirring the platinum powder and the chloroauric acid solution under reduced pressure at 70 ° C. or lower, and the gold compound is coated on the surface of the platinum particles. .. By this step, the gold compound is highly dispersed and supported on the surface of the platinum powder.

熱処理する工程では、白金粒子表面に金化合物がコーティングされた粉末を、大気中、560〜650℃の温度で熱処理する。金化合物の分解温度は約360℃であるが、その分解温度近傍の温度印加では、析出した金同士が凝集して、金の偏析が生じる。約360℃より200℃以上高い560〜650℃で熱処理すると、金化合物を分解して金属の金になると同時に白金粒子表面と金との結合を強めることで白金粒子表面に金を高分散担持させることができる。なお、650℃を超えた温度で熱処理すると白金粒子同士の凝集が進行し、粗大粒子が生成する。金の偏析が生じている場合、融点が低い金が昇華する可能性がある。 In the heat treatment step, the powder coated with the gold compound on the surface of the platinum particles is heat-treated in the air at a temperature of 560 to 650 ° C. The decomposition temperature of the gold compound is about 360 ° C., but when a temperature near the decomposition temperature is applied, the precipitated gold aggregates and segregation of gold occurs. When heat-treated at 560 to 650 ° C, which is 200 ° C or more higher than about 360 ° C, the gold compound is decomposed into metallic gold, and at the same time, the bond between the platinum particle surface and gold is strengthened so that gold is highly dispersed and supported on the platinum particle surface. be able to. When the heat treatment is performed at a temperature exceeding 650 ° C., the platinum particles aggregate with each other and coarse particles are generated. If gold segregation occurs, gold with a low melting point may sublimate.

本発明によれば、白金原料として平均粒径0.6〜10μm程度の白金粉末を、金化合物として塩化金(III)酸、亜硫酸金(I)ナトリウムなどを溶解させた水溶液を用いることができる。また、後述する実施例では、白金粉末中の金の重量比を1wt%としたが、白金粉末と金化合物の配合比を調整することで、白金粉末中の金の重量比を変更することができる。特にナトリウムやカリウム等の不純物が残留しない、低温にて熱分解する、などの観点からは塩化金(III)酸溶液を用いることが好ましい。 According to the present invention, an aqueous solution prepared by dissolving platinum powder having an average particle size of about 0.6 to 10 μm as a platinum raw material and gold (III) chloride acid, gold (I) sodium sulfite, etc. as a gold compound can be used. .. Further, in the examples described later, the weight ratio of gold in the platinum powder was set to 1 wt%, but the weight ratio of gold in the platinum powder can be changed by adjusting the blending ratio of the platinum powder and the gold compound. it can. In particular, it is preferable to use a gold (III) chloride solution from the viewpoints that impurities such as sodium and potassium do not remain and that it is thermally decomposed at a low temperature.

(実施例1)
平均粒径9μmの白金粉末19.8gに、塩化金酸溶液(1.06wt%)18.9gを添加してナス型フラスコに仕込み、減圧、モーターによる回転を開始、ナス型フラスコを50℃の温浴に浸した。圧力:4×103Pa、回転数:40〜150rpmの条件で、溶媒を除去した。さらに、ナスフラスコ内で、溶媒が除去された白金粉末と塩化金酸の混合物を乾燥させ、白金粒子表面に塩化金酸を高分散担持させた。乾燥条件は、120℃、12時間、大気中乾燥とした。
(Example 1)
18.9 g of a chloroauric acid solution (1.06 wt%) was added to 19.8 g of platinum powder having an average particle size of 9 μm and charged into an eggplant-shaped flask. Decompression and rotation by a motor were started. Soaked in a warm bath. The solvent was removed under the conditions of pressure: 4 × 103 Pa and rotation speed: 40 to 150 rpm. Further, in the eggplant flask, the mixture of the platinum powder from which the solvent had been removed and the chloroauric acid was dried, and the chloroauric acid was highly dispersed and supported on the surface of the platinum particles. The drying conditions were 120 ° C., 12 hours, and air drying.

次に、混合物をアルミボートに乗せ、大気中、560℃3時間加熱して、塩化金酸を分解、白金に金を高分散担持した。 Next, the mixture was placed on an aluminum boat and heated in the air at 560 ° C. for 3 hours to decompose chloroauric acid and highly dispersed and supported gold on platinum.

粉砕機による粉砕、目開き53μmのふるいにて分級し、金が高分散担持された球状の白金粉末を得た。 The powder was pulverized by a pulverizer and classified by a sieve having a mesh size of 53 μm to obtain a spherical platinum powder in which gold was highly dispersed and supported.

(実施例2、3)
熱処理する工程の加熱温度を以下とした以外は実施例1と同じ条件にて実施例2、3のサンプルを製作した。
実施例2:600℃3時間
実施例3:650℃3時間
(Examples 2 and 3)
Samples of Examples 2 and 3 were produced under the same conditions as in Example 1 except that the heating temperature in the heat treatment step was set to the following.
Example 2: 600 ° C. for 3 hours Example 3: 650 ° C. for 3 hours

(比較例1、2)
熱処理する工程の加熱温度を以下とした以外は実施例1と同じ条件にて比較例1、2のサンプルを製作した。
比較例1:520℃3時間
比較例2:700℃3時間
(Comparative Examples 1 and 2)
Samples of Comparative Examples 1 and 2 were produced under the same conditions as in Example 1 except that the heating temperature in the heat treatment step was set to the following.
Comparative Example 1: 520 ° C. for 3 hours Comparative Example 2: 700 ° C. for 3 hours

(比較例3)
平均粒径9μmの白金粉末19.8gを純水に懸濁させ、塩化金酸溶液(1.06wt%)18.9gを投入し、還元剤(アスコルビン酸)にて金を還元させ、白金粉末の粒子表面に金を析出させた。
(Comparative Example 3)
19.8 g of platinum powder having an average particle size of 9 μm is suspended in pure water, 18.9 g of a gold chloride solution (1.06 wt%) is added, and gold is reduced with a reducing agent (ascorbic acid) to obtain platinum powder. Gold was deposited on the surface of the particles of.

得られた粉末の組成はプラズマ発光分光分析法で測定した。得られた粉末の粒径は、レーザ回折散乱式粒度分布測定法で測定し、粒度分布の積算値が50%に相当する粒径(D50)を求めて平均粒径とした。 The composition of the obtained powder was measured by plasma emission spectroscopy. The particle size of the obtained powder was measured by a laser diffraction / scattering type particle size distribution measuring method, and the particle size (D50) corresponding to the integrated value of the particle size distribution of 50% was obtained and used as the average particle size.

得られた粉末の粒子上の金の分布状態はEPMA(エレクトロンプローブマイクロアナライザー)による面分析により調べた。面分析写真にて幅1.0μm以上の金の集合体が認められる場合、分布状態が悪い(凝集有り)と、そのような集合体が認められない場合、分布状態が良い(高分散状態である。凝集無し。)と評価した。 The distribution of gold on the particles of the obtained powder was examined by surface analysis using EPMA (Electron Probe Microanalyzer). If an aggregate of gold with a width of 1.0 μm or more is observed in the surface analysis photograph, the distribution state is poor (with aggregation), and if such an aggregate is not observed, the distribution state is good (in a highly dispersed state). Yes. No aggregation.)

得られた粉末の特性を表1に示す。 The characteristics of the obtained powder are shown in Table 1.

実施例粉末、比較例粉末について、金の面分析結果(写真)を図1〜図6にそれぞれ示す。面分析写真は、その写真全景に白金粒子全体が収まるようにその倍率を調整した。実施例1〜3では、幅1.0μm以上の金の集合体が認められず(金凝集無し)、金が高分散していることがわかる。一方、比較例1、3では、金の凝集が認められる。比較例2では、平均粒径が実施例1〜3の約1.5倍であり、白金粒子同士の凝集による粒子粗大化が認められる。

The gold surface analysis results (photographs) of the Example powder and the Comparative Example powder are shown in FIGS. 1 to 6, respectively. The magnification of the surface analysis photograph was adjusted so that the entire platinum particles would fit in the entire view of the photograph. In Examples 1 to 3, no aggregate of gold having a width of 1.0 μm or more was observed (no gold agglomeration), and it can be seen that the gold was highly dispersed. On the other hand, in Comparative Examples 1 and 3, agglutination of gold is observed. In Comparative Example 2, the average particle size is about 1.5 times that of Examples 1 to 3, and particle coarsening due to aggregation of platinum particles is observed.

Claims (1)

白金粉末と金化合物溶液を減圧下で攪拌しながら溶媒を蒸発乾固させて、前記白金粉末の粒子表面に金化合物を高分散担持させる工程と、
前記金化合物が担持された白金粉末を560〜650℃で熱処理して、白金粒子表面に金を高分散担持させる工程と、を備え
前記金化合物として塩化金(III)酸を用いることを特徴とする金高分散担持白金粉末の製造方法。
A step of evaporating and drying the solvent while stirring the platinum powder and the gold compound solution under reduced pressure to highly disperse and support the gold compound on the particle surface of the platinum powder.
A step of heat-treating the platinum powder on which the gold compound is supported at 560 to 650 ° C. to carry the gold on the surface of the platinum particles in a highly dispersed manner is provided .
A method for producing a highly dispersed gold-supported platinum powder, which comprises using gold (III) chloride as the gold compound .
JP2016253837A 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder Active JP6795841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016253837A JP6795841B2 (en) 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016253837A JP6795841B2 (en) 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder

Publications (2)

Publication Number Publication Date
JP2018104779A JP2018104779A (en) 2018-07-05
JP6795841B2 true JP6795841B2 (en) 2020-12-02

Family

ID=62786772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016253837A Active JP6795841B2 (en) 2016-12-27 2016-12-27 Method for producing gold-supported platinum powder

Country Status (1)

Country Link
JP (1) JP6795841B2 (en)

Also Published As

Publication number Publication date
JP2018104779A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP4963393B2 (en) Low temperature firing type silver paste
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
JP2020076155A (en) Silver-coated copper powder and method for producing the same
JP2006199982A (en) Method for producing metallic fine powder
TWI682007B (en) Fine silver particle dispersing solution
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
WO2012063659A1 (en) Silver particle-containing composition, dispersion liquid, paste, and production method for each
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP3766161B2 (en) Coated powder, silver-coated copper powder and method for producing the same, conductive paste and conductive film
Huang et al. Electroless silver plating on Pb-based glass frits by a one-step activation method without stannum and palladium
JP2005174824A (en) Metal paste, and film forming method using same
JP6795841B2 (en) Method for producing gold-supported platinum powder
JP4834848B2 (en) Copper powder for low-temperature firing or copper powder for conductive paste
JP5053902B2 (en) Method for producing silver ultrafine particles
JP2005019028A (en) Metal colloid liquid, and conductive ink using it
JP4248944B2 (en) Conductive paste, circuit pattern forming method, and bump electrode forming method
JP2007188845A (en) Conductive powder, conductive paste and electrical circuit
JP6740829B2 (en) Ruthenium dioxide powder, method for producing the same, thick film resistor paste, and thick film resistor
JP2017528871A (en) Copper-containing conductive paste and electrode made from copper-containing conductive paste
CN111050958B (en) Silver microparticle dispersion
JP2018119187A (en) Copper particle structure and copper ink
JP6225711B2 (en) Copper sulfide-coated copper powder, conductive paste, and methods for producing them
JP3727904B2 (en) Metal powder and method for producing the same
JP2007302498A (en) Ruthenium oxide powder and its production method
JP2016125117A (en) Composite copper particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201106

R150 Certificate of patent or registration of utility model

Ref document number: 6795841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250