JP2018104208A - Evaporation restraining member, single crystal pulling apparatus and method for manufacturing silicon single crystal - Google Patents

Evaporation restraining member, single crystal pulling apparatus and method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2018104208A
JP2018104208A JP2016249503A JP2016249503A JP2018104208A JP 2018104208 A JP2018104208 A JP 2018104208A JP 2016249503 A JP2016249503 A JP 2016249503A JP 2016249503 A JP2016249503 A JP 2016249503A JP 2018104208 A JP2018104208 A JP 2018104208A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
silicon single
dopant
heat shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016249503A
Other languages
Japanese (ja)
Other versions
JP6610529B2 (en
Inventor
福生 小川
Fukuo Ogawa
福生 小川
康人 鳴嶋
Yasuto Narushima
康人 鳴嶋
浩一 前川
Koichi Maekawa
浩一 前川
泰史 川上
Yasushi Kawakami
泰史 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016249503A priority Critical patent/JP6610529B2/en
Publication of JP2018104208A publication Critical patent/JP2018104208A/en
Application granted granted Critical
Publication of JP6610529B2 publication Critical patent/JP6610529B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon single crystal, capable of manufacturing the silicon single crystal while reducing the evaporation of dopant.SOLUTION: A method for manufacturing a silicon single crystal comprises: arranging an evaporation suppressing member 29 including a ring plate-shaped body part 29A surrounding a silicon single crystal SM below a heat shield body 28 and an extension part 29B extended on the outside obliquely upward from the outer edge of the body part 29A; forming a flow passage R between the upper surface of the body part 29A and the heat shield body 28 during the growth of the silicon single crystal SM; introducing an inert gas G from above into a space between the silicon single crystal SM and the heat shield body 28 while maintaining the state of contacting the lower surface of the body part 29A to a dopant addition melt surface MD; and introducing the inert gas G in a direction separating from the silicon single crystal SM along the flow passage R to send it obliquely upward along the extension part 29B.SELECTED DRAWING: Figure 2

Description

本発明は、蒸発抑制部材、単結晶引き上げ装置、および、シリコン単結晶の製造方法に関する。   The present invention relates to an evaporation suppression member, a single crystal pulling apparatus, and a method for manufacturing a silicon single crystal.

従来、チョクラルスキー(CZ)法を利用したシリコン単結晶の製造方法として、特許文献1の方法が知られている。
特許文献1には、単結晶引き上げ装置において、シリコン融液の表面を覆い、かつ外縁および内縁に垂直方向に延びた立設壁を有する石英リング(蒸発抑制部材)を熱遮蔽体の外周下に設けることが記載されている。そして、この石英リングを設けたことによって、シリコン融液からの酸素の蒸発が低減され、所定の酸素濃度に制御されたシリコン単結晶を製造できることが記載されている。
Conventionally, the method of Patent Document 1 is known as a method for producing a silicon single crystal using the Czochralski (CZ) method.
In Patent Document 1, in a single crystal pulling apparatus, a quartz ring (evaporation suppression member) that covers a surface of a silicon melt and has standing walls extending in a direction perpendicular to an outer edge and an inner edge is provided under the outer periphery of a heat shield. It is described that it is provided. It is described that by providing this quartz ring, evaporation of oxygen from the silicon melt can be reduced, and a silicon single crystal controlled to a predetermined oxygen concentration can be produced.

特開昭64−61382号公報JP-A-64-61382

ところで、電気抵抗率の低いシリコン単結晶を製造する場合、シリコン融液に、砒素、赤燐、アンチモンなどの揮発性ドーパントが添加されたドーパント添加融液が用いられている。このとき、CZ法によってシリコン単結晶を引き上げると、チャンバ内部において、不活性ガスが流されているために、揮発性ドーパントは不活性ガスに乗ってドーパント添加融液表面から蒸発しやすい。揮発性ドーパントがドーパント添加融液表面から蒸発すると、シリコン単結晶中のドーパントの含有量が不足し、シリコン単結晶の電気抵抗率が増加する。   By the way, when manufacturing a silicon single crystal having a low electrical resistivity, a dopant-added melt obtained by adding a volatile dopant such as arsenic, red phosphorus, and antimony to a silicon melt is used. At this time, when the silicon single crystal is pulled up by the CZ method, an inert gas flows in the chamber, so that the volatile dopant is easily evaporated from the surface of the dopant-added melt on the inert gas. When the volatile dopant evaporates from the surface of the dopant-added melt, the content of the dopant in the silicon single crystal becomes insufficient, and the electrical resistivity of the silicon single crystal increases.

特許文献1に記載の単結晶引き上げ装置によってドーパント添加融液からシリコン単結晶を製造すると、以下のような問題が生じる。
特許文献1の単結晶引き上げ装置によって、揮発性ドーパントの蒸発を少なくしようとした場合、蒸発抑制部材のリング幅を大きくし、坩堝内壁近辺までシリコン融液の表面を覆うように蒸発抑制部材の底面の面積を大きくすることが考えられる。しかしながら、このように蒸発抑制部材の底面の面積を大きくする場合、シリコン単結晶の育成が進行し、ドーパント添加融液が減少すると、坩堝底部付近が丸底などの縮径した形状の場合は、坩堝内壁と蒸発抑制部材の外縁が接触するため、それ以上シリコン単結晶を引き上げることができないおそれがある。
When a silicon single crystal is produced from a dopant-added melt using the single crystal pulling apparatus described in Patent Document 1, the following problems occur.
When the evaporation of the volatile dopant is to be reduced by the single crystal pulling apparatus of Patent Document 1, the bottom surface of the evaporation suppressing member is formed so that the ring width of the evaporation suppressing member is increased and the surface of the silicon melt is covered to the vicinity of the inner wall of the crucible. It is conceivable to increase the area. However, when the area of the bottom surface of the evaporation suppression member is increased in this way, when the growth of the silicon single crystal proceeds and the dopant-added melt decreases, the crucible bottom portion has a reduced diameter shape such as a round bottom. Since the inner wall of the crucible and the outer edge of the evaporation suppression member are in contact with each other, the silicon single crystal may not be pulled any further.

本発明の目的は、ドーパントの蒸発を低減しつつ、シリコン単結晶を製造可能な、蒸発抑制部材、単結晶引き上げ装置、および、シリコン単結晶の製造方法を提供することにある。   An object of the present invention is to provide an evaporation suppressing member, a single crystal pulling apparatus, and a method for manufacturing a silicon single crystal, which can manufacture a silicon single crystal while reducing dopant evaporation.

本発明の蒸発抑制部材は、坩堝と、前記坩堝を昇降および回転させる坩堝駆動部と、前記坩堝を加熱してシリコン融液にドーパントが添加されたドーパント添加融液を生成する加熱部と、種子結晶を前記ドーパント添加融液に接触させた後に引き上げることで、シリコン単結晶を育成する引き上げ部と、前記坩堝の上方において前記シリコン単結晶を囲むように設けられた筒状の熱遮蔽体と、前記坩堝、前記加熱部および前記熱遮蔽体を収容するチャンバと、前記チャンバの上部に設けられ、前記チャンバ内部に不活性ガスを導入する導入部とを備える単結晶引き上げ装置に取り付けられる蒸発抑制部材であって、前記熱遮蔽体の下方において前記シリコン単結晶を囲む円環板状に形成され、上面が前記熱遮蔽体との間に流路を形成するとともに、下面が前記ドーパント添加融液表面に接触する本体部と、前記本体部の外縁から斜め上方外側に延出する延出部とを備えることを特徴とする。   The evaporation suppression member of the present invention includes a crucible, a crucible driving unit that moves the crucible up and down, a heating unit that heats the crucible and generates a dopant-added melt in which a dopant is added to a silicon melt, and seeds By pulling up the crystal after bringing it into contact with the dopant-added melt, a pulling portion for growing the silicon single crystal, a cylindrical heat shield provided so as to surround the silicon single crystal above the crucible, An evaporation suppression member attached to a single crystal pulling apparatus provided with a chamber containing the crucible, the heating unit, and the heat shield, and an introduction unit provided at an upper portion of the chamber for introducing an inert gas into the chamber. And being formed in an annular plate shape surrounding the silicon single crystal below the heat shield, and forming a flow path between the upper surface and the heat shield. The lower surface is characterized by comprising a main body portion in contact with the dopant-added melt surface and a extended portion extending obliquely upward outwardly from an outer edge of the main body portion.

本発明によれば、蒸発抑制部材の本体部を、ドーパント添加融液表面に接触させることにより、本体部で物理的にドーパント添加融液表面を覆うことができる。そのため、ドーパント添加融液表面からのドーパントの蒸発を低減できる。
また、斜め上方外側に延出する延出部を本体部に設けたことにより、熱遮蔽体と本体部との間の流路を通過した不活性ガスを斜め上方に向けて、ドーパント添加融液表面近傍から遠ざけて、ドーパント添加融液表面を流れる不活性ガスを低減することができる。その結果、ドーパント添加融液表面を覆う本体部の面積を減少させても、本体部の外側におけるドーパント添加融液表面からのドーパントの蒸発を低減できる。
また、蒸発抑制部材全体としてみた場合、蒸発抑制部材の外側が斜め上方に屈曲しているので、シリコン単結晶の育成が進行してドーパント添加融液が減少しても、蒸発抑制部材の外側の延出部が、丸底など、底部に向かって縮径した底形状の坩堝の内壁に接触することなく引き上げを続行することができる。したがって、ドーパントの蒸発を低減しつつ、シリコン単結晶を製造可能な蒸発抑制部材を提供できる。
According to the present invention, the dopant-added melt surface can be physically covered with the main-body portion by bringing the main-body portion of the evaporation suppression member into contact with the dopant-added melt surface. Therefore, evaporation of the dopant from the dopant-added melt surface can be reduced.
Further, by providing the main body with an extending portion that extends obliquely upward and outward, the inert gas that has passed through the flow path between the heat shield and the main body is directed obliquely upward, and the dopant-added melt Inert gas flowing on the surface of the dopant-added melt away from the vicinity of the surface can be reduced. As a result, even if the area of the main body part covering the dopant-added melt surface is reduced, the evaporation of the dopant from the dopant-added melt surface outside the main body part can be reduced.
Further, when viewed as the entire evaporation suppression member, the outer side of the evaporation suppression member is bent obliquely upward, so even if the growth of the silicon single crystal progresses and the dopant addition melt decreases, the outer side of the evaporation suppression member decreases. The extension can be continued without contacting the inner wall of the bottom-shaped crucible whose diameter is reduced toward the bottom, such as a round bottom. Therefore, it is possible to provide an evaporation suppressing member capable of manufacturing a silicon single crystal while reducing dopant evaporation.

本発明の蒸発抑制部材は、前記本体部が石英製であり、前記延出部が黒鉛製であることが好ましい。   In the evaporation suppressing member of the present invention, it is preferable that the main body portion is made of quartz and the extending portion is made of graphite.

本発明によれば、本体部のドーパント添加融液と接触する本体部が石英製であるため、ドーパント添加融液と反応しにくい。そのため、シリコン単結晶の品質に対する影響が小さくなる。また、延出部が黒鉛製であるため、延出部の遮熱性を向上させることができる。そのため、ドーパント添加融液、坩堝および加熱部のうち少なくとも1つからの輻射熱を、延出部により遮熱し、育成中のシリコン単結晶の引き上げ方向の温度勾配を大きくすることができる。   According to this invention, since the main-body part which contacts the dopant addition melt of a main-body part is a product made from quartz, it is hard to react with a dopant addition melt. Therefore, the influence on the quality of the silicon single crystal is reduced. Moreover, since the extension part is made of graphite, the heat shielding property of the extension part can be improved. Therefore, radiant heat from at least one of the dopant-added melt, the crucible and the heating part can be shielded by the extension part, and the temperature gradient in the pulling direction of the growing silicon single crystal can be increased.

本発明の蒸発抑制部材は、前記延出部の内部に断熱材が設けられていることが好ましい。   In the evaporation suppressing member of the present invention, it is preferable that a heat insulating material is provided inside the extending portion.

本発明によれば、延出部の内部に断熱材が設けられていることにより、ドーパント添加融液、坩堝および加熱部のうち少なくとも1つからの輻射熱がシリコン単結晶に到達することを効果的に抑制することができる。   According to the present invention, since the heat insulating material is provided in the extension part, it is effective that the radiant heat from at least one of the dopant-added melt, the crucible, and the heating part reaches the silicon single crystal. Can be suppressed.

本発明の単結晶引き上げ装置は、坩堝と、前記坩堝を昇降および回転させる坩堝駆動部と、前記坩堝を加熱してシリコン融液にドーパントが添加されたドーパント添加融液を生成する加熱部と、種子結晶を前記ドーパント添加融液に接触させた後に引き上げることで、シリコン単結晶を育成する引き上げ部と、前記坩堝の上方において前記シリコン単結晶を囲むように設けられた筒状の熱遮蔽体と、前記坩堝、前記加熱部および前記熱遮蔽体を収容するチャンバと、前記チャンバの上部に設けられ、前記チャンバ内部に不活性ガスを導入する導入部と、前記熱遮蔽体の下方に設けられた上述の蒸発抑制部材とを備えることを特徴とする。   The single crystal pulling apparatus of the present invention includes a crucible, a crucible driving unit that raises and lowers and rotates the crucible, a heating unit that heats the crucible and generates a dopant-added melt in which a dopant is added to a silicon melt, A pulling part for growing a silicon single crystal by pulling the seed crystal after bringing it into contact with the dopant-added melt, and a cylindrical heat shield provided so as to surround the silicon single crystal above the crucible The crucible, the heating unit and the chamber for housing the thermal shield, the upper part of the chamber, an introduction part for introducing an inert gas into the chamber, and the thermal shield are provided below the thermal shield The above-mentioned evaporation suppression member is provided.

本発明のシリコン単結晶の製造方法は、坩堝と、前記坩堝を昇降および回転させる坩堝駆動部と、前記坩堝を加熱してシリコン融液にドーパントが添加されたドーパント添加融液を生成する加熱部と、種子結晶を前記ドーパント添加融液に接触させた後に引き上げることで、シリコン単結晶を育成する引き上げ部と、前記坩堝の上方において前記シリコン単結晶を囲むように設けられた筒状の熱遮蔽体と、前記坩堝、前記加熱部および前記熱遮蔽体を収容するチャンバと、前記チャンバの上部に設けられ、前記チャンバ内部に不活性ガスを導入する導入部とを備える単結晶引き上げ装置を用いたシリコン単結晶の製造方法であって、前記熱遮蔽体の下方において前記シリコン単結晶を囲む円環板状の本体部と、前記本体部の外縁から斜め上方外側に延出する延出部とを備えた蒸発抑制部材を配置し、前記シリコン単結晶の育成中に、前記本体部上面と熱遮蔽体との間に流路を形成し、前記本体部の下面を前記ドーパント添加融液表面に接触させた状態を維持しつつ、前記シリコン単結晶と前記熱遮蔽体との間に上方から不活性ガスを導入し、この不活性ガスを前記流路に沿ってシリコン単結晶から離れる方向に導き、前記延出部に沿って斜め上方に流すことを特徴とする。   The method for producing a silicon single crystal of the present invention includes a crucible, a crucible driving unit that moves the crucible up and down, and a heating unit that heats the crucible and generates a dopant-added melt in which a dopant is added to a silicon melt. A pulling part for growing the silicon single crystal by pulling the seed crystal after contacting the dopant-added melt, and a cylindrical heat shield provided so as to surround the silicon single crystal above the crucible A single crystal pulling apparatus including a body, a chamber for housing the crucible, the heating unit, and the heat shield, and an introduction unit provided at an upper portion of the chamber for introducing an inert gas into the chamber. A method for producing a silicon single crystal, comprising: an annular plate-shaped main body surrounding the silicon single crystal below the thermal shield; and an obliquely upward from an outer edge of the main body An evaporation suppressing member having an extending portion extending to the side, and during the growth of the silicon single crystal, a flow path is formed between the upper surface of the main body and the heat shield, While maintaining the state where the lower surface is in contact with the dopant-added melt surface, an inert gas is introduced from above between the silicon single crystal and the heat shield, and the inert gas is introduced along the flow path. Then, it is guided in a direction away from the silicon single crystal, and flows obliquely upward along the extending portion.

本発明の一実施形態に係る単結晶引き上げ装置の断面図。Sectional drawing of the single crystal pulling apparatus which concerns on one Embodiment of this invention. 前記単結晶引き上げ装置の蒸発抑制部材の拡大断面図。The expanded sectional view of the evaporation suppression member of the said single crystal pulling apparatus. ドーパント添加融液減少時の坩堝底部における蒸発抑制部材付近の拡大断面図。The expanded sectional view of the evaporation suppression member vicinity in the crucible bottom part at the time of dopant addition melt reduction. 本発明の変形例に係る単結晶引き上げ装置の蒸発抑制部材の拡大断面図。The expanded sectional view of the evaporation suppression member of the single crystal pulling device concerning the modification of the present invention. 本発明の実施例における蒸発抑制部材の有無と、各エリアのドーパント蒸発量との関係を示すグラフ。The graph which shows the relationship between the presence or absence of the evaporation suppression member in the Example of this invention, and the dopant evaporation amount of each area.

以下、本発明の一実施形態として、CZ法によるシリコン単結晶SMの製造方法について図1から3を参照して説明する。
まず、シリコン単結晶SMの製造方法に用いる単結晶引き上げ装置1の構成について説明する。
図1に示すように、単結晶引き上げ装置1は、チャンバ21と、このチャンバ21内部に配置された坩堝22と、坩堝駆動部23と、加熱部24と、断熱筒25と、引き上げ部26と、整流筒27と、熱遮蔽体28と、蒸発抑制部材29とを備えている。
Hereinafter, as an embodiment of the present invention, a method for producing a silicon single crystal SM by the CZ method will be described with reference to FIGS.
First, the structure of the single crystal pulling apparatus 1 used for the manufacturing method of the silicon single crystal SM will be described.
As shown in FIG. 1, the single crystal pulling apparatus 1 includes a chamber 21, a crucible 22 disposed inside the chamber 21, a crucible driving unit 23, a heating unit 24, a heat insulating cylinder 25, a pulling unit 26, The rectifying cylinder 27, the heat shield 28, and the evaporation suppression member 29 are provided.

チャンバ21の上部には、チャンバ21内部にArガスなどの不活性ガスを導入する導入部21Aが備えられている。チャンバ21の下部には、図示しない真空ポンプの駆動により、チャンバ21内部の気体を排出する排気口21Bが設けられている。
チャンバ21内部には、導入部21Aから不活性ガスが所定のガス量で導入される。そして、導入された不活性ガスが、チャンバ21下部の排気口21Bから排出されることで、不活性ガスがチャンバ21内部の上方から下方に向かって流れる構成となっている。
坩堝22は、シリコン単結晶SMの原料である多結晶のシリコンを融解し、シリコン融液Mとするものである。
坩堝駆動部23は、坩堝22を所定の速度で昇降させるとともに、坩堝22の下端に接続された支持軸23Aを中心にして所定の速度で回転させる。
加熱部24は、坩堝22の外側に配置されており、坩堝22を加熱して、シリコン融液Mにドーパントが添加されたドーパント添加融液MDを生成する。
断熱筒25は、坩堝22および加熱部24の周囲を取り囲むように配置されている。
In the upper part of the chamber 21, an introduction part 21 </ b> A for introducing an inert gas such as Ar gas into the chamber 21 is provided. An exhaust port 21 </ b> B that exhausts gas inside the chamber 21 by driving a vacuum pump (not shown) is provided at the lower portion of the chamber 21.
An inert gas is introduced into the chamber 21 from the introduction portion 21A in a predetermined gas amount. The introduced inert gas is discharged from the exhaust port 21 </ b> B at the lower part of the chamber 21, so that the inert gas flows downward from the inside of the chamber 21.
The crucible 22 melts polycrystalline silicon, which is a raw material of the silicon single crystal SM, to form a silicon melt M.
The crucible drive unit 23 moves the crucible 22 up and down at a predetermined speed, and rotates the crucible 22 at a predetermined speed around a support shaft 23 </ b> A connected to the lower end of the crucible 22.
The heating unit 24 is disposed outside the crucible 22, and heats the crucible 22 to generate a dopant-added melt MD in which a dopant is added to the silicon melt M.
The heat insulating cylinder 25 is disposed so as to surround the crucible 22 and the heating unit 24.

引き上げ部26は、引き上げ駆動部26Aと、一端が引き上げ駆動部26Aに接続された引き上げケーブル26Bとを備えている。引き上げ駆動部26Aは、引き上げケーブル26Bを所定の速度で昇降および回転させる。引き上げケーブル26Bの他端には、種子結晶を保持するシードホルダ26C、または、図示しないドーピング装置が取り付けられる。ドーピング装置は、ドーパントを坩堝22内のシリコン融液Mにドープさせてドーパント添加融液MDを生成するためのものである。
整流筒27は、シリコン単結晶SMを囲む円筒状に設けられ、上方から流れる不活性ガスを下方に導く。
熱遮蔽体28は、坩堝22の上方において整流筒27の下部およびシリコン単結晶SMを囲む円錐台筒状に形成され、その下端が整流筒27の下端に連結されている。熱遮蔽体28は、加熱部24から上方に向かって放射される輻射熱を遮断する。
The pulling unit 26 includes a pulling drive unit 26A and a pulling cable 26B having one end connected to the pulling drive unit 26A. The pulling drive unit 26A moves the pulling cable 26B up and down and rotates at a predetermined speed. At the other end of the pulling cable 26B, a seed holder 26C for holding a seed crystal or a doping device (not shown) is attached. The doping apparatus is for doping the silicon melt M in the crucible 22 with the dopant to generate the dopant-added melt MD.
The rectifying cylinder 27 is provided in a cylindrical shape surrounding the silicon single crystal SM, and guides an inert gas flowing from above to below.
The heat shield 28 is formed in the shape of a truncated cone surrounding the lower part of the rectifying cylinder 27 and the silicon single crystal SM above the crucible 22, and the lower end thereof is connected to the lower end of the rectifying cylinder 27. The heat shield 28 blocks radiant heat radiated upward from the heating unit 24.

蒸発抑制部材29は、円環板状に形成された石英製の本体部29Aと、本体部29Aの外縁から斜め上方外側に延出する黒鉛製の延出部29Bとを備えている。本体部29Aは、内縁から上方に突き出た突起部29Cを備えている。本体部29Aと、延出部29Bとは、これらのうち、一方に設けられた図示しない係合部に、他方に設けられた図示しない被係合部が係合することにより一体化されている。
蒸発抑制部材29は、周方向に等間隔に2箇所〜4箇所設けられた棒状の支持材30を介して、熱遮蔽体28の下方に離間し、かつ、シリコン単結晶SMを囲むように配置されている。支持材30の一端は、熱遮蔽体28の外周側面28Bに係合され、他端は延出部29Bに係合している。
蒸発抑制部材29と熱遮蔽体28とがこれらの中心と一致するように配置されている。また、蒸発抑制部材29の本体部29Aの上面、延出部29Bの上面が、それぞれ、熱遮蔽体28の底面28A、熱遮蔽体28の外周側面28Bと平行となるように配置されることで、これらの間に流路Rが形成されている。また、本体部29Aの下面は、ドーパント添加融液MD表面に接し、不活性ガスGが本体部29Aの下を流通しないようになっている。さらに、蒸発抑制部材29は、延出部29Bの上端が熱遮蔽体28の底面28Aよりも上側に位置するように配置されている。
The evaporation suppression member 29 includes a quartz main body portion 29A formed in an annular plate shape, and a graphite extension portion 29B extending obliquely upward and outward from the outer edge of the main body portion 29A. The main body 29A includes a protrusion 29C protruding upward from the inner edge. The main body portion 29A and the extending portion 29B are integrated by engaging an engaging portion (not shown) provided on one side with an engaged portion (not shown) provided on the other side. .
The evaporation suppression member 29 is arranged so as to be separated below the thermal shield 28 and surround the silicon single crystal SM via rod-like support members 30 provided at two to four positions at equal intervals in the circumferential direction. Has been. One end of the support member 30 is engaged with the outer peripheral side surface 28B of the heat shield 28, and the other end is engaged with the extending portion 29B.
The evaporation suppression member 29 and the heat shield 28 are arranged so as to coincide with these centers. Further, the upper surface of the main body portion 29A and the upper surface of the extension portion 29B of the evaporation suppression member 29 are arranged so as to be parallel to the bottom surface 28A of the heat shield 28 and the outer peripheral side surface 28B of the heat shield 28, respectively. A flow path R is formed between them. The lower surface of the main body 29A is in contact with the surface of the dopant-added melt MD so that the inert gas G does not flow under the main body 29A. Further, the evaporation suppression member 29 is arranged so that the upper end of the extending portion 29 </ b> B is located above the bottom surface 28 </ b> A of the heat shield 28.

次に、シリコン単結晶SMの製造方法について説明する。
なお、本実施形態では、直胴部の設定直径が200mmのシリコン単結晶SMを製造する場合を例示するが、150mm、300mm、450mmなど、他の設定直径のシリコン単結晶SMを製造してもよい。
電気抵抗率は、ドーパントが砒素の場合、1.2mΩ・cm以上5.0mΩ・cm以下にすることが好ましく、赤燐の場合、0.5mΩ・cm以上2.0mΩ・cm以下にすることが好ましく、アンチモンの場合、10mΩ・cm以上30mΩ・cm以下にすることが好ましい。また、図2に示すように、シリコン単結晶SMの外周面から本体部29Aの内縁までをエリアA、本体部29Aの内縁から外縁までをエリアB、本体部29Aの外縁から坩堝22の内壁までをエリアCという。
Next, a method for manufacturing the silicon single crystal SM will be described.
In the present embodiment, the case where a silicon single crystal SM having a set diameter of the straight body portion of 200 mm is illustrated, but silicon single crystals SM having other set diameters such as 150 mm, 300 mm, and 450 mm may be manufactured. Good.
The electrical resistivity is preferably 1.2 mΩ · cm to 5.0 mΩ · cm when the dopant is arsenic, and 0.5 mΩ · cm to 2.0 mΩ · cm when red phosphorus is used. In the case of antimony, it is preferably 10 mΩ · cm or more and 30 mΩ · cm or less. Further, as shown in FIG. 2, from the outer peripheral surface of the silicon single crystal SM to the inner edge of the main body portion 29A, the area A, from the inner edge to the outer edge of the main body portion 29A, the area B, and from the outer edge of the main body portion 29A to the inner wall of the crucible 22 Is called area C.

まず、単結晶引き上げ装置1において、シリコン単結晶SMの製造条件、例えば電気抵抗率、酸素濃度、不活性ガスの流量、チャンバ21内部の圧力、坩堝22やシリコン単結晶SMの回転数、加熱部24の加熱条件などを設定する。
次に、設定値に基づき加熱部24を制御し、坩堝22を加熱することで、当該坩堝22内の多結晶のシリコン(シリコン原料)およびドーパントを融解させ、ドーパント添加融液MDを生成する。その後、導入部21Aからチャンバ21内部に不活性ガスを所定の流量で導入するとともに、チャンバ21内部を減圧下の不活性ガス雰囲気に維持する。
次に引き上げケーブル26Bを下降させることで種子結晶をドーパント添加融液MDに浸漬して、坩堝22および引き上げケーブル26Bを所定の方向に回転させながら、シリコン単結晶SMを引き上げて育成する。
First, in the single crystal pulling apparatus 1, the manufacturing conditions of the silicon single crystal SM, for example, the electrical resistivity, the oxygen concentration, the flow rate of the inert gas, the pressure inside the chamber 21, the rotational speed of the crucible 22 and the silicon single crystal SM, the heating unit 24 heating conditions etc. are set.
Next, the heating unit 24 is controlled based on the set value, and the crucible 22 is heated, so that polycrystalline silicon (silicon raw material) and the dopant in the crucible 22 are melted to generate a dopant-added melt MD. Thereafter, an inert gas is introduced into the chamber 21 from the introducing portion 21A at a predetermined flow rate, and the inside of the chamber 21 is maintained in an inert gas atmosphere under reduced pressure.
Next, the pulling cable 26B is lowered to immerse the seed crystal in the dopant-added melt MD, and the silicon single crystal SM is pulled and grown while rotating the crucible 22 and the pulling cable 26B in a predetermined direction.

シリコン単結晶SMの育成中、図2に示すように、下方に向けて流れる不活性ガスGは、本体部29Aによって、エリアA上方から流路Rに沿ってシリコン単結晶SMから離れる方向に導かれる。
このとき、本体部29Aは、ドーパント添加融液MDのエリアB表面を覆っているので、エリアB表面からのドーパントの蒸発を防止することができる。そして、本体部29Aを通過した不活性ガスGは、延出部29Bによってさらに斜め上方外側へと導かれ、エリアCのドーパント添加融液MD表面には流れにくくなる。このため、エリアCからのドーパントの蒸発も低減することができる。以上のように、ドーパントの蒸発を抑制することにより、所望の電気抵抗率のシリコン単結晶SMを製造できる。
During the growth of the silicon single crystal SM, as shown in FIG. 2, the inert gas G flowing downward is guided by the main body 29A in the direction away from the silicon single crystal SM along the flow path R from above the area A. It is burned.
At this time, since the main body portion 29A covers the area B surface of the dopant-added melt MD, evaporation of the dopant from the area B surface can be prevented. And the inert gas G which passed the main-body part 29A is further guide | induced to diagonally upward outer side by the extension part 29B, and becomes difficult to flow to the dopant addition melt MD surface of the area C. For this reason, evaporation of the dopant from the area C can also be reduced. As described above, a silicon single crystal SM having a desired electrical resistivity can be manufactured by suppressing the evaporation of the dopant.

また、蒸発抑制部材29全体としてみた場合、その外側は上方に屈曲しているので、図3に示すように、シリコン単結晶SMの育成が進行してドーパント添加融液MDが減少しても、蒸発抑制部材29の外側の延出部29Bが、丸底など、底部に向かって縮径した底形状の坩堝22の内面に接触することなく引き上げを続行することができる。   Further, when viewed as the whole evaporation suppression member 29, the outer side is bent upward, so that as shown in FIG. 3, even if the growth of the silicon single crystal SM proceeds and the dopant-added melt MD decreases, The extending portion 29B outside the evaporation suppression member 29 can continue to be pulled up without contacting the inner surface of the bottom-shaped crucible 22 whose diameter is reduced toward the bottom, such as a round bottom.

さらに、延出部29Bの上端が熱遮蔽体28の底面28Aよりも上側に位置しているため、ドーパント添加融液MD、坩堝22および加熱部24のうち少なくとも1つからの輻射熱が、流路Rを介してシリコン単結晶SMに到達することを、延出部29Bにより抑制でき、シリコン単結晶SMの引き上げ方向の温度勾配を大きくすることができる。特に、延出部29Bが黒鉛製であるため、より効果的に、輻射熱を遮熱でき、シリコン単結晶SMの引き上げ方向の温度勾配を大きくすることができる。   Furthermore, since the upper end of the extension part 29B is located above the bottom face 28A of the heat shield 28, the radiant heat from at least one of the dopant-added melt MD, the crucible 22 and the heating part 24 flows into the flow path. Reaching the silicon single crystal SM via R can be suppressed by the extending portion 29B, and the temperature gradient in the pulling direction of the silicon single crystal SM can be increased. In particular, since the extending portion 29B is made of graphite, the radiant heat can be shielded more effectively, and the temperature gradient in the pulling direction of the silicon single crystal SM can be increased.

[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能であり、その他、本発明の実施の際の具体的な手順、および構造などは本発明の目的を達成できる範囲で他の構造などとしてもよい。
すなわち、図1から3に示した蒸発抑制部材29に代えて、図4に示すように、内部に断熱材31Bを設けた延出部31Aを有する蒸発抑制部材31を採用してもよい。延出部31Aの内部に断熱材31Bを設けることにより、ドーパント添加融液MD、坩堝22および加熱部24のうち少なくとも1つからの輻射熱がシリコン単結晶に到達することを抑制することができる。その結果、シリコン単結晶SMの引き上げ方向の温度勾配を大きくすることができる。断熱材31Bとして例えばカーボンフェルト材が使用できる。また、延出部31Aとして例えば、黒鉛、石英が使用できる。
また、例えば、整流筒27は設けなくとも、蒸発抑制部材29が斜め上方外側に延出する延出部29Bを備えれば、上記実施形態と同様に、縮径した底形状の坩堝22の内面に接触することなくドーパントの蒸発を低減してシリコン単結晶SMを製造できる。
また、本体部29Aは、ドーパント添加融液MDと反応しにくく、シリコン単結晶SMの品質に影響しなければ、石英製でなくともよいし、延出部29Bは黒鉛製でなくともよい。本体部29Aと延出部29Bは、同じ石英などの素材により一体成型していてもよい。
さらに、延出部29Bは、本体部29Aや、延出部29Bが、熱遮蔽体28の底面28A、熱遮蔽体28の外周側面28Bと平行となるように設けなくてもよいし、延出部29Bの上端が熱遮蔽体28の下端と同じ高さ、あるいは熱遮蔽体28の下端より低い高さとしてもよい。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiment, and various improvements and design changes can be made without departing from the scope of the present invention. The general procedure, structure, and the like may be other structures as long as the object of the present invention can be achieved.
That is, instead of the evaporation suppression member 29 shown in FIGS. 1 to 3, as shown in FIG. 4, an evaporation suppression member 31 having an extending portion 31A provided with a heat insulating material 31B inside may be employed. By providing the heat insulating material 31B inside the extending part 31A, it is possible to suppress the radiant heat from at least one of the dopant-added melt MD, the crucible 22 and the heating part 24 from reaching the silicon single crystal. As a result, the temperature gradient in the pulling direction of the silicon single crystal SM can be increased. For example, a carbon felt material can be used as the heat insulating material 31B. For example, graphite or quartz can be used as the extending portion 31A.
Further, for example, if the evaporation suppression member 29 includes an extending portion 29B that extends obliquely upward and outward without providing the rectifying cylinder 27, the inner surface of the bottom-shaped crucible 22 having a reduced diameter, as in the above embodiment. The silicon single crystal SM can be manufactured by reducing the evaporation of the dopant without contacting the substrate.
Further, the main body portion 29A does not need to react with the dopant-added melt MD and does not affect the quality of the silicon single crystal SM, and may not be made of quartz, and the extending portion 29B may not be made of graphite. The main body portion 29A and the extending portion 29B may be integrally formed of the same material such as quartz.
Further, the extending portion 29B may not be provided so that the main body portion 29A or the extending portion 29B is parallel to the bottom surface 28A of the heat shield 28 and the outer peripheral side surface 28B of the heat shield 28. The upper end of the part 29 </ b> B may be the same height as the lower end of the heat shield 28 or may be lower than the lower end of the heat shield 28.

次に、実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。   Next, although an Example demonstrates further in detail, this invention is not limited at all by these examples.

[実験:蒸発抑制部材の有無と、各エリアのドーパント蒸発量との関係調査]
〔実験例1〕
図1に示すような延出部29Bを備えた蒸発抑制部材29を設けた単結晶引き上げ装置1を準備した。この単結晶引き上げ装置1の構成を以下のように設定した。
<単結晶引き上げ装置の構成>
エリアAの幅:22.5mm
エリアBの幅:30mm
エリアCの幅:10mm以上65mm以下
流路Rの高さ:10mm
そして、チャンバ21内部を不活性ガス雰囲気として、以下の製造条件で、以下の特性を有するシリコン単結晶SMを製造し、このときのエリアA〜Cにおけるドーパントの蒸発量を測定した。
なお、ドーパントの蒸発量の測定は、以下のように行った。このときのシリコン単結晶SMの電気抵抗率に基づきシリコン単結晶SMに取り込まれたドーパント濃度を算出し、この取り込まれたドーパント濃度に基づきドーパント添加融液MDからの蒸発量を算出した。このように算出された蒸発量は、シリコン単結晶SMの電気抵抗率が所望の値に対して高くなるほど多くなる。
<製造条件>
不活性ガスの流量:200L/min
<シリコン単結晶の特性>
ドーパント:赤燐
電気抵抗率:0.7mΩ・cm
直胴部の直径:205mm
直胴部の長さ:300mmを超え2000mm以下
[Experiment: Investigation of the relationship between the presence or absence of evaporation suppression members and the amount of dopant evaporation in each area]
[Experimental Example 1]
A single crystal pulling apparatus 1 provided with an evaporation suppressing member 29 having an extending portion 29B as shown in FIG. 1 was prepared. The configuration of the single crystal pulling apparatus 1 was set as follows.
<Configuration of single crystal pulling device>
Area A width: 22.5mm
Area B width: 30mm
Area C width: 10 mm to 65 mm Channel R height: 10 mm
Then, a silicon single crystal SM having the following characteristics was manufactured under the following manufacturing conditions with the inside of the chamber 21 being an inert gas atmosphere, and the amount of dopant evaporated in the areas A to C at this time was measured.
In addition, the measurement of the evaporation amount of the dopant was performed as follows. Based on the electrical resistivity of the silicon single crystal SM at this time, the dopant concentration taken into the silicon single crystal SM was calculated, and the amount of evaporation from the dopant-added melt MD was calculated based on the taken-in dopant concentration. The amount of evaporation calculated in this way increases as the electrical resistivity of the silicon single crystal SM increases with respect to a desired value.
<Production conditions>
Flow rate of inert gas: 200L / min
<Characteristics of silicon single crystal>
Dopant: Red phosphorus Electrical resistivity: 0.7 mΩ · cm
Straight body diameter: 205mm
Length of straight body: Over 300mm and 2000mm or less

〔実験例2〕
実験例1で用いた単結晶引き上げ装置1とは、蒸発抑制部材29を設けない点のみが異なる単結晶引き上げ装置を準備した。そして、以下の点を除き、実験例1と同じ製造条件で、実験例1と同じ特性を有するシリコン単結晶SMを製造し、シリコン単結晶SMからの距離が実験例1と同じ距離の領域をそれぞれ、エリアA、エリアB、エリアCとして、このときのドーパントの蒸発量を測定した。
<製造条件>
熱遮蔽体28の下端とドーパント添加融液MD表面との距離(製造時一定):10mm
[Experimental example 2]
A single crystal pulling apparatus different from the single crystal pulling apparatus 1 used in Experimental Example 1 only in that the evaporation suppression member 29 is not provided was prepared. Then, a silicon single crystal SM having the same characteristics as Experimental Example 1 is manufactured under the same manufacturing conditions as in Experimental Example 1 except for the following points, and an area where the distance from the silicon single crystal SM is the same distance as in Experimental Example 1 is obtained. As the area A, the area B, and the area C, the evaporation amount of the dopant at this time was measured.
<Production conditions>
Distance between the lower end of the heat shield 28 and the surface of the dopant-added melt MD (constant during manufacture): 10 mm

〔評価〕
エリアA〜Cについて、それぞれ、実験例2のドーパント蒸発量を100%とした場合における実験例1のドーパント蒸発量比率を図5に示す。
実験例1におけるエリアA,B,Cのドーパント蒸発量比率は、68.4%、0%、3.1%となり、蒸発抑制部材29を設けることですべてのエリアでドーパント蒸発量を減らせることがわかった。特に、エリアCにおいては、蒸発抑制部材29がドーパント添加融液MD表面を直接覆っていないにもかかわらず、蒸発量を大きく減らすことができた。
以上のことから、単結晶引き上げ装置1に延出部29Bを備えた蒸発抑制部材29を設けることにより、ドーパントの蒸発を低減できることがわかった。
[Evaluation]
FIG. 5 shows the dopant evaporation amount ratio of Experimental Example 1 when the dopant evaporation amount of Experimental Example 2 is set to 100% for the areas A to C, respectively.
The ratio of dopant evaporation in areas A, B, and C in Experimental Example 1 is 68.4%, 0%, and 3.1%. By providing the evaporation suppression member 29, the amount of dopant evaporation can be reduced in all areas. I understood. In particular, in area C, the evaporation amount could be greatly reduced even though the evaporation suppression member 29 did not directly cover the dopant-added melt MD surface.
From the above, it was found that the evaporation of the dopant can be reduced by providing the single crystal pulling apparatus 1 with the evaporation suppressing member 29 including the extending portion 29B.

1…単結晶引き上げ装置、21…チャンバ、22…坩堝、23…坩堝駆動部、24…加熱部、25…断熱筒、26…引き上げ部、27…整流筒、28…熱遮蔽体、29,31…蒸発抑制部材、31A…延出部、31B…断熱材、SM…シリコン単結晶。   DESCRIPTION OF SYMBOLS 1 ... Single crystal pulling apparatus, 21 ... Chamber, 22 ... Crucible, 23 ... Crucible drive part, 24 ... Heating part, 25 ... Heat insulation cylinder, 26 ... Pulling part, 27 ... Rectification cylinder, 28 ... Heat shield, 29, 31 ... Evaporation suppression member, 31A ... extension part, 31B ... insulating material, SM ... silicon single crystal.

Claims (5)

坩堝と、
前記坩堝を昇降および回転させる坩堝駆動部と、
前記坩堝を加熱してシリコン融液にドーパントが添加されたドーパント添加融液を生成する加熱部と、
種子結晶を前記ドーパント添加融液に接触させた後に引き上げることで、シリコン単結晶を育成する引き上げ部と、
前記坩堝の上方において前記シリコン単結晶を囲むように設けられた筒状の熱遮蔽体と、
前記坩堝、前記加熱部および前記熱遮蔽体を収容するチャンバと、
前記チャンバの上部に設けられ、前記チャンバ内部に不活性ガスを導入する導入部とを備える単結晶引き上げ装置に取り付けられる蒸発抑制部材であって、
前記熱遮蔽体の下方において前記シリコン単結晶を囲む円環板状に形成され、上面が前記熱遮蔽体との間に流路を形成するとともに、下面が前記ドーパント添加融液表面に接触する本体部と、
前記本体部の外縁から斜め上方外側に延出する延出部とを備えることを特徴とする蒸発抑制部材。
Crucible,
A crucible drive for moving the crucible up and down; and
A heating unit for heating the crucible to generate a dopant-added melt in which a dopant is added to a silicon melt;
A pulling part for growing a silicon single crystal by pulling the seed crystal after contacting the dopant-added melt,
A cylindrical heat shield provided so as to surround the silicon single crystal above the crucible;
A chamber for housing the crucible, the heating unit and the heat shield;
An evaporation suppression member provided in an upper portion of the chamber and attached to a single crystal pulling device including an introduction portion for introducing an inert gas into the chamber;
A main body that is formed in the shape of an annular plate surrounding the silicon single crystal below the thermal shield, and that the upper surface forms a channel between the thermal shield and the lower surface is in contact with the dopant-added melt surface. And
An evaporation suppression member comprising: an extension part extending obliquely upward and outward from an outer edge of the main body part.
請求項1に記載の蒸発抑制部材であって、
前記本体部が石英製であり、前記延出部が黒鉛製であることを特徴とする蒸発抑制部材。
The evaporation suppression member according to claim 1,
The evaporation suppressing member, wherein the main body is made of quartz, and the extension is made of graphite.
請求項1または請求項2に記載の蒸発抑制部材であって、
前記延出部の内部に断熱材が設けられていることを特徴とする蒸発抑制部材。
The evaporation suppression member according to claim 1 or 2,
An evaporation suppressing member, wherein a heat insulating material is provided inside the extending portion.
坩堝と、
前記坩堝を昇降および回転させる坩堝駆動部と、
前記坩堝を加熱してシリコン融液にドーパントが添加されたドーパント添加融液を生成する加熱部と、
種子結晶を前記ドーパント添加融液に接触させた後に引き上げることで、シリコン単結晶を育成する引き上げ部と、
前記坩堝の上方において前記シリコン単結晶を囲むように設けられた筒状の熱遮蔽体と、
前記坩堝、前記加熱部および前記熱遮蔽体を収容するチャンバと、
前記チャンバの上部に設けられ、前記チャンバ内部に不活性ガスを導入する導入部と、
前記熱遮蔽体の下方に設けられた請求項1から請求項3のいずれか1項に記載の蒸発抑制部材とを備えることを特徴とする単結晶引き上げ装置。
Crucible,
A crucible drive for moving the crucible up and down; and
A heating unit for heating the crucible to generate a dopant-added melt in which a dopant is added to a silicon melt;
A pulling part for growing a silicon single crystal by pulling the seed crystal after contacting the dopant-added melt,
A cylindrical heat shield provided so as to surround the silicon single crystal above the crucible;
A chamber for housing the crucible, the heating unit and the heat shield;
An introduction part provided at an upper part of the chamber, for introducing an inert gas into the chamber;
A single crystal pulling apparatus comprising: the evaporation suppression member according to claim 1 provided below the thermal shield.
坩堝と、
前記坩堝を昇降および回転させる坩堝駆動部と、
前記坩堝を加熱してシリコン融液にドーパントが添加されたドーパント添加融液を生成する加熱部と、
種子結晶を前記ドーパント添加融液に接触させた後に引き上げることで、シリコン単結晶を育成する引き上げ部と、
前記坩堝の上方において前記シリコン単結晶を囲むように設けられた筒状の熱遮蔽体と、
前記坩堝、前記加熱部および前記熱遮蔽体を収容するチャンバと、
前記チャンバの上部に設けられ、前記チャンバ内部に不活性ガスを導入する導入部とを備える単結晶引き上げ装置を用いたシリコン単結晶の製造方法であって、
前記熱遮蔽体の下方において前記シリコン単結晶を囲む円環板状の本体部と、前記本体部の外縁から斜め上方外側に延出する延出部とを備えた蒸発抑制部材を配置し、
前記シリコン単結晶の育成中に、前記本体部上面と熱遮蔽体との間に流路を形成し、前記本体部の下面を前記ドーパント添加融液表面に接触させた状態を維持しつつ、前記シリコン単結晶と前記熱遮蔽体との間に上方から不活性ガスを導入し、この不活性ガスを前記流路に沿ってシリコン単結晶から離れる方向に導き、前記延出部に沿って斜め上方に流すことを特徴とするシリコン単結晶の製造方法。
Crucible,
A crucible drive for moving the crucible up and down; and
A heating unit for heating the crucible to generate a dopant-added melt in which a dopant is added to a silicon melt;
A pulling part for growing a silicon single crystal by pulling the seed crystal after contacting the dopant-added melt,
A cylindrical heat shield provided so as to surround the silicon single crystal above the crucible;
A chamber for housing the crucible, the heating unit and the heat shield;
A method for producing a silicon single crystal using a single crystal pulling apparatus provided at an upper part of the chamber and having an introduction part for introducing an inert gas into the chamber,
An evaporation suppression member including an annular plate-shaped main body portion surrounding the silicon single crystal below the heat shield, and an extending portion extending obliquely upward and outward from an outer edge of the main body portion, is disposed,
During the growth of the silicon single crystal, a flow path is formed between the upper surface of the main body and the heat shield, while maintaining the state in which the lower surface of the main body is in contact with the dopant-added melt surface, An inert gas is introduced from above between the silicon single crystal and the heat shield, the inert gas is guided in a direction away from the silicon single crystal along the flow path, and obliquely upward along the extending portion. A method for producing a silicon single crystal, characterized by being caused to flow through.
JP2016249503A 2016-12-22 2016-12-22 Evaporation suppression member, single crystal pulling apparatus, and silicon single crystal manufacturing method Active JP6610529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249503A JP6610529B2 (en) 2016-12-22 2016-12-22 Evaporation suppression member, single crystal pulling apparatus, and silicon single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249503A JP6610529B2 (en) 2016-12-22 2016-12-22 Evaporation suppression member, single crystal pulling apparatus, and silicon single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2018104208A true JP2018104208A (en) 2018-07-05
JP6610529B2 JP6610529B2 (en) 2019-11-27

Family

ID=62786459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249503A Active JP6610529B2 (en) 2016-12-22 2016-12-22 Evaporation suppression member, single crystal pulling apparatus, and silicon single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP6610529B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007122B4 (en) 2017-02-24 2022-05-25 Sumco Corporation Process for manufacturing silicon monocrystal, flow straightening element and monocrystal pulling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461382A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Apparatus for pulling up single crystal rod
JPH06305878A (en) * 1993-04-26 1994-11-01 Kawasaki Steel Corp Apparatus for producing silicon single crystal
JP2004123516A (en) * 2002-09-13 2004-04-22 Toshiba Ceramics Co Ltd Device for pulling up single crystal
JP2007191353A (en) * 2006-01-19 2007-08-02 Toshiba Ceramics Co Ltd Radiation shield and single crystal pulling apparatus equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461382A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Apparatus for pulling up single crystal rod
JPH06305878A (en) * 1993-04-26 1994-11-01 Kawasaki Steel Corp Apparatus for producing silicon single crystal
JP2004123516A (en) * 2002-09-13 2004-04-22 Toshiba Ceramics Co Ltd Device for pulling up single crystal
JP2007191353A (en) * 2006-01-19 2007-08-02 Toshiba Ceramics Co Ltd Radiation shield and single crystal pulling apparatus equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017007122B4 (en) 2017-02-24 2022-05-25 Sumco Corporation Process for manufacturing silicon monocrystal, flow straightening element and monocrystal pulling device

Also Published As

Publication number Publication date
JP6610529B2 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP5921498B2 (en) Method for producing silicon single crystal
US10026610B2 (en) Silicon carbide semiconductor device manufacturing method
JP4567192B2 (en) Electric resistance heater for crystal growth apparatus and method of using the same
JP5974978B2 (en) Silicon single crystal manufacturing method
WO2018154874A1 (en) Method for manufacturing silicon single crystal, flow straightening member, and single crystal pulling device
JP2021011424A (en) System for efficient manufacturing of a plurality of high-quality semiconductor single crystals, and method of manufacturing the same
JP6610529B2 (en) Evaporation suppression member, single crystal pulling apparatus, and silicon single crystal manufacturing method
JP6601057B2 (en) Method for producing n-type silicon single crystal ingot and method for producing n-type silicon wafer
JP6257483B2 (en) Silicon single crystal manufacturing method
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
JP2015040146A (en) Single crystal production device and single crystal production method using the same
JP2020093975A (en) Crystal growth apparatus and crucible
TW201800626A (en) Manufacturing method of single crystal silicon
JP6223290B2 (en) Single crystal manufacturing equipment
JP6231375B2 (en) Crucible, crystal manufacturing apparatus and crystal manufacturing method
JP2016117624A (en) crucible
JP6652015B2 (en) Single crystal pulling apparatus and single crystal manufacturing method
JP5831339B2 (en) Method for producing silicon carbide single crystal
KR101725603B1 (en) Ingot growth equipment
JP6958632B2 (en) Silicon single crystal and its manufacturing method and silicon wafer
US11453959B2 (en) Crystal growth apparatus including heater with multiple regions and crystal growth method therefor
JP2020015642A (en) Crystal growth apparatus
WO2022123957A1 (en) Monocrystal-manufacturing device
KR20070064210A (en) Single crystal ingot grower
JP7420046B2 (en) Manufacturing method of silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R150 Certificate of patent or registration of utility model

Ref document number: 6610529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250