JP6652015B2 - Single crystal pulling apparatus and single crystal manufacturing method - Google Patents

Single crystal pulling apparatus and single crystal manufacturing method Download PDF

Info

Publication number
JP6652015B2
JP6652015B2 JP2016166587A JP2016166587A JP6652015B2 JP 6652015 B2 JP6652015 B2 JP 6652015B2 JP 2016166587 A JP2016166587 A JP 2016166587A JP 2016166587 A JP2016166587 A JP 2016166587A JP 6652015 B2 JP6652015 B2 JP 6652015B2
Authority
JP
Japan
Prior art keywords
single crystal
gas
crucible
cylindrical member
cooling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016166587A
Other languages
Japanese (ja)
Other versions
JP2018035003A (en
Inventor
崇浩 金原
崇浩 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016166587A priority Critical patent/JP6652015B2/en
Publication of JP2018035003A publication Critical patent/JP2018035003A/en
Application granted granted Critical
Publication of JP6652015B2 publication Critical patent/JP6652015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶引き上げ装置および単結晶の製造方法に関する。   The present invention relates to a single crystal pulling apparatus and a method for manufacturing a single crystal.

従来、図1に示すような単結晶引き上げ装置9が知られている。
単結晶引き上げ装置9は、チョクラルスキー法(CZ法)によりシリコン単結晶を製造する装置であって、引き上げ装置本体2と、図示しない制御部とを備えている。引き上げ装置本体2は、チャンバ21と、坩堝22と、加熱部23と、断熱筒24と、熱遮蔽体25と、冷却部としての水冷体26とを備えている。
Conventionally, a single crystal pulling apparatus 9 as shown in FIG. 1 has been known.
The single crystal pulling apparatus 9 is an apparatus for manufacturing a silicon single crystal by the Czochralski method (CZ method), and includes a pulling apparatus main body 2 and a control unit (not shown). The lifting device main body 2 includes a chamber 21, a crucible 22, a heating unit 23, a heat insulating cylinder 24, a heat shield 25, and a water cooling body 26 as a cooling unit.

チャンバ21は、坩堝22、加熱部23、断熱筒24、熱遮蔽体25および水冷体26を収容するメインチャンバ21Aと、このメインチャンバ21Aの上面部に連結され、シリコン単結晶が通過するプルチャンバ21Bとを備えている。プルチャンバ21Bには、Arガスなどの不活性ガスG1をメインチャンバ21A内に導入する図示しないガス導入口が設けられている。メインチャンバ21Aの下部には、図示しない真空ポンプの駆動により、不活性ガスG1をメインチャンバ21Aから排出するガス排気口21Cが設けられている。   The chamber 21 includes a main chamber 21A that houses the crucible 22, the heating unit 23, the heat insulating cylinder 24, the heat shield 25, and the water cooling body 26, and a pull chamber 21B that is connected to an upper surface of the main chamber 21A and through which a silicon single crystal passes. And The pull chamber 21B is provided with a gas inlet (not shown) for introducing an inert gas G1 such as Ar gas into the main chamber 21A. A gas exhaust port 21C for discharging the inert gas G1 from the main chamber 21A by driving a vacuum pump (not shown) is provided below the main chamber 21A.

坩堝22は、シリコン単結晶の原料である多結晶のシリコンSを溶融し、シリコン融液Mとするものである。
加熱部23は、坩堝22を囲むように設けられ、坩堝22を加熱して、坩堝22内のシリコンSを溶融する。
断熱筒24は、坩堝22および加熱部23の周囲を取り囲むように配置されている。
熱遮蔽体25は、坩堝22の上方においてシリコン単結晶を囲む筒状に形成され、加熱部23から上方に向かって放射される輻射熱を遮断する。
水冷体26は、熱遮蔽体25の内側においてシリコン単結晶を囲む筒状に形成され、内部を流通する冷却水などの冷媒によりシリコン単結晶を冷却する。
The crucible 22 melts polycrystalline silicon S, which is a raw material of silicon single crystal, to obtain a silicon melt M.
The heating unit 23 is provided so as to surround the crucible 22, and heats the crucible 22 to melt the silicon S in the crucible 22.
The heat insulating cylinder 24 is arranged so as to surround the crucible 22 and the heating unit 23.
The heat shield 25 is formed in a cylindrical shape surrounding the silicon single crystal above the crucible 22 and blocks radiant heat radiated upward from the heating unit 23.
The water cooling body 26 is formed in a cylindrical shape surrounding the silicon single crystal inside the heat shield 25, and cools the silicon single crystal by a coolant such as cooling water flowing through the inside.

このような単結晶引き上げ装置9を用いてシリコン単結晶を製造するに際し、まず、坩堝22内のシリコンSを溶融する溶融工程を行う。この溶融工程は、水冷体26に冷却水を流通させる工程と、メインチャンバ21A内の上方から下方に向けて不活性ガスG1を流通させる工程と、坩堝22を加熱する工程とを備えている。   When manufacturing a silicon single crystal using such a single crystal pulling apparatus 9, first, a melting step of melting silicon S in crucible 22 is performed. The melting step includes a step of flowing cooling water through the water cooling body 26, a step of flowing the inert gas G1 from above to below in the main chamber 21A, and a step of heating the crucible 22.

しかし、図1の単結晶引き上げ装置9で溶融工程を行うと、坩堝22内のシリコン融液Mからの熱H1および加熱部23からの熱H2が水冷体26に到達し、この水冷体26で吸熱されてしまうことで、シリコンSの溶融を完了させるまでの消費電力量が増加してしまう。なお、図1および以下に示す図2(A),(B)、図3、図4において、各図の左右のうち一方で生じる熱やガスの挙動について図示して説明する場合があるが、これらの挙動は周方向全体にわたって起きている。
そこで、特許文献1に記載のような板状の遮蔽体(以下、「蓋体」という)を用い、図2(A)に示すように、蓋体91を坩堝22の上方を覆うように配置してから坩堝22を加熱することで、シリコン融液Mおよび加熱部23からの熱H1,H2が水冷体26に到達することを抑制し、シリコン溶融時の消費電力量の削減を図ることが考えられる。
However, when the melting step is performed in the single crystal pulling apparatus 9 of FIG. 1, the heat H1 from the silicon melt M in the crucible 22 and the heat H2 from the heating unit 23 reach the water-cooled body 26. Due to the heat absorption, the amount of power consumed until the melting of the silicon S is completed increases. In FIG. 1 and FIGS. 2A, 2B, 3 and 4 shown below, the behavior of heat or gas generated on one of the left and right sides of each figure may be illustrated and described. These behaviors occur throughout the circumferential direction.
Therefore, a plate-shaped shield (hereinafter, referred to as a “lid”) as described in Patent Document 1 is used, and a lid 91 is disposed so as to cover the upper part of the crucible 22 as shown in FIG. By heating the crucible 22 after that, it is possible to suppress the heat H1 and H2 from the silicon melt M and the heating unit 23 from reaching the water-cooled body 26 and reduce the power consumption during silicon melting. Conceivable.

特開平3−193694号公報JP-A-3-193694

しかしながら、図2(A)に示す特許文献1に記載の蓋体91を用いた方法では、シリコン融液Mからの蒸発ガスEGがシリコンSやシリコン融液Mと蓋体91との間で滞留し、この蒸発ガスEG中の粒子がシリコン融液Mに取り込まれ、単結晶化が阻害されるおそれがある。
また、蓋体91を用いない場合でも、不活性ガスG1は、図2(B)に示すように、坩堝22の外側に導かれ、そのほとんどが坩堝22の側面と加熱部23との隙間を介してガス排気口21Cから排出されるが、一部が加熱部23に衝突して坩堝22の内側に向かう逆流ガスG2となる。そして、チャンバ21内のパーティクルが逆流ガスG2によりシリコン融液Mに運ばれ、単結晶化が阻害されるおそれがある。
However, in the method using the lid 91 described in Patent Document 1 shown in FIG. 2A, the evaporated gas EG from the silicon melt M stays between the silicon S or the silicon melt M and the lid 91. However, particles in the evaporative gas EG may be taken into the silicon melt M, which may hinder single crystallization.
In addition, even when the lid 91 is not used, the inert gas G1 is guided to the outside of the crucible 22, as shown in FIG. Although the gas is exhausted from the gas exhaust port 21C through the gas outlet, a part thereof collides with the heating unit 23 and becomes a backflow gas G2 flowing toward the inside of the crucible 22. Then, particles in the chamber 21 are carried to the silicon melt M by the backflow gas G2, and there is a possibility that single crystallization may be hindered.

本発明の目的は、原料溶融時の消費電力量の削減を図りつつ、単結晶化の阻害を抑制可能な単結晶引き上げ装置および単結晶の製造方法を提供することにある。   An object of the present invention is to provide a single crystal pulling apparatus and a single crystal manufacturing method capable of suppressing the inhibition of single crystallization while reducing the power consumption during melting of the raw material.

本発明の単結晶引き上げ装置は、原料を収納する坩堝と、前記坩堝を囲むように設けられ、当該坩堝を加熱して前記原料を溶融する加熱部と、前記坩堝の上方において単結晶を囲むように配置され、前記加熱部からの熱を遮蔽する筒状の熱遮蔽体と、前記熱遮蔽体の内側において前記単結晶を囲むように配置され、前記単結晶を冷却する筒状の冷却部と、前記坩堝、前記加熱部、前記熱遮蔽体および前記冷却部を収容するメインチャンバ、並びに、前記単結晶および不活性ガスが通過するプルチャンバを有し、当該プルチャンバから供給される不活性ガスを前記メインチャンバの下方から排出可能に構成されたチャンバとを備え、チョクラルスキー法により単結晶を製造する単結晶引き上げ装置であって、前記冷却部の内側には、前記単結晶を囲む筒状部材が設けられ、前記筒状部材は、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを抑制するとともに、当該筒状部材の上端で前記不活性ガスを当該筒状部材の内側を通る内側流通ガスと外側を通る外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、その上端が前記プルチャンバ内に位置し、かつ、前記プルチャンバの内周面との間に前記外側流通ガスが通る第1外側ガス流路が形成されるように設けられていることを特徴とする。
また、本発明の単結晶引き上げ装置は、原料を収納する坩堝と、前記坩堝を囲むように設けられ、当該坩堝を加熱して前記原料を溶融する加熱部と、前記坩堝の上方において単結晶を囲むように配置され、前記加熱部からの熱を遮蔽する筒状の熱遮蔽体と、前記熱遮蔽体の内側において前記単結晶を囲むように配置され、前記単結晶を冷却する筒状の冷却部と、前記坩堝、前記加熱部、前記熱遮蔽体および前記冷却部を収容するメインチャンバ、並びに、前記単結晶および不活性ガスが通過するプルチャンバを有し、当該プルチャンバから供給される不活性ガスを前記メインチャンバの下方から排出可能に構成されたチャンバとを備え、チョクラルスキー法により単結晶を製造する単結晶引き上げ装置であって、前記冷却部の内側には、前記単結晶を囲む筒状部材が設けられ、前記筒状部材は、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを抑制するとともに、当該筒状部材の上端で前記不活性ガスを当該筒状部材の内側を通る内側流通ガスと外側を通る外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、前記冷却部の上方には、前記単結晶を冷却する筒状の上側冷却部が前記単結晶を囲むように設けられ、前記上側冷却部は、前記メインチャンバの上面部または前記プルチャンバに連結され、前記筒状部材は、その上端が前記上側冷却部内に位置し、かつ、前記上側冷却部の内周面との間に前記外側流通ガスが通る第1外側ガス流路が形成されるように設けられていることを特徴とする。
The single crystal pulling apparatus of the present invention is provided so as to surround a crucible that stores a raw material, the crucible, and a heating unit that heats the crucible to melt the raw material, and surrounds the single crystal above the crucible. A cylindrical heat shield that shields heat from the heating unit, and a cylindrical cooling unit that is arranged to surround the single crystal inside the heat shield and cools the single crystal. A main chamber that houses the crucible, the heating unit, the heat shield and the cooling unit, and a pull chamber through which the single crystal and the inert gas pass, and the inert gas supplied from the pull chamber is A single crystal pulling apparatus for producing a single crystal by the Czochralski method, comprising a chamber configured to be able to be discharged from below the main chamber, wherein the single crystal is provided inside the cooling unit. A surrounding tubular member is provided, and the tubular member suppresses the melt in the crucible and the heat from the heating portion from being absorbed by the cooling portion, and the upper end of the tubular member suppresses the heat absorption. the active gas is separated into an outer flow gas through the inner flowing gas and the outside through the inside of the tubular member-out guide to the lower of the thermal shield, its upper end is positioned within the pull chamber and the pull chamber A first outer gas passage through which the outer circulation gas passes is formed between the first outer gas passage and the inner peripheral surface of the first outer gas passage .
Further, the single crystal pulling apparatus of the present invention is provided with a crucible for storing a raw material, a heating unit provided to surround the crucible, and heating the crucible to melt the raw material, and a single crystal above the crucible. A tubular heat shield that is arranged to surround and shields heat from the heating unit; and a tubular cooling that is arranged to surround the single crystal inside the heat shield and cools the single crystal. Unit, a main chamber containing the crucible, the heating unit, the heat shield and the cooling unit, and a pull chamber through which the single crystal and the inert gas pass, and an inert gas supplied from the pull chamber. A chamber configured to be able to be discharged from below the main chamber, and a single crystal pulling apparatus for manufacturing a single crystal by the Czochralski method, wherein the cooling unit includes A cylindrical member surrounding the crystal is provided, and the cylindrical member suppresses heat from the melt in the crucible and the heating unit from being absorbed by the cooling unit, and at the upper end of the cylindrical member. The inert gas is separated into an inner flowing gas passing through the inside of the cylindrical member and an outer flowing gas passing outside, and is led to below the heat shield, and above the cooling unit, the single crystal is cooled. A cylindrical upper cooling portion that surrounds the single crystal, the upper cooling portion is connected to an upper surface portion of the main chamber or the pull chamber, and the cylindrical member has an upper end in the upper cooling portion. And a first outer gas passage through which the outer circulation gas passes is formed between the first outer gas passage and the inner peripheral surface of the upper cooling unit.

本発明によれば、冷却部の内側に設けられた筒状部材により、融液および加熱部からの熱が冷却部で吸熱されることを抑制でき、原料溶融時の消費電力量を削減できる。また、筒状部材により生成された内側流通ガスを、融液からの蒸発ガスとともに坩堝と加熱部との隙間を介してメインチャンバの下方から排出し、当該内側流通ガスのうち坩堝の内側に向かおうとする逆流ガスを、外側流通ガスで押し戻して前記隙間を介してメインチャンバの下方から排出することで、蒸発ガス中の粒子やチャンバ内のパーティクルが融液に入ることを抑制し、単結晶化が阻害されることを抑制できる。   According to the present invention, the tubular member provided inside the cooling unit can suppress the heat from the melt and the heating unit from being absorbed by the cooling unit, and can reduce the power consumption at the time of melting the raw material. Further, the inner flowing gas generated by the cylindrical member is discharged from below the main chamber through the gap between the crucible and the heating section together with the evaporating gas from the melt, and the inner flowing gas is directed toward the inside of the crucible. The backflow gas to be covered is pushed back by the outside flowing gas and discharged from below the main chamber through the gap, thereby suppressing particles in the evaporative gas and particles in the chamber from entering the melt, and thus the single crystal. Can be suppressed from being inhibited.

本発明によれば、筒状部材を、その上端がプルチャンバ内または上側冷却部内に位置し、かつ、第1外側ガス流路が形成されるように配置するだけの簡単な方法で、原料溶融時の消費電力量の削減と単結晶化の阻害抑制とを図ることができる。   According to the present invention, when the raw material is melted by a simple method in which the cylindrical member is disposed such that the upper end thereof is located in the pull chamber or the upper cooling section and the first outer gas flow path is formed. And the inhibition of single crystallization can be reduced.

本発明の単結晶引き上げ装置において、前記熱遮蔽体の下端には、当該熱遮蔽体の内側に鍔状に突出する突出部が設けられ、前記筒状部材は、その下端が前記突出部の上端と下端との間に位置し、かつ、前記突出部の先端との間に前記外側流通ガスが通る第2外側ガス流路が形成されるように設けられていることが好ましい。   In the single crystal pulling apparatus of the present invention, a lower end of the heat shield is provided with a protrusion that protrudes in a flange shape inside the heat shield, and the lower end of the cylindrical member has an upper end of the protrusion. It is preferable that a second outer gas passage through which the outer flowing gas passes is formed between the lower end and the lower end, and between the lower end and the tip of the protrusion.

本発明によれば、第2外側ガス流路が、突出部の上側と筒状部材との間の流路よりも狭くなるので、この第2外側ガス流路を外側流通ガスが通過するときに、その流速を速くすることができる。したがって、逆流ガスを押し戻す力を大きくすることができる。   According to the present invention, since the second outer gas flow path is narrower than the flow path between the upper side of the protruding portion and the cylindrical member, when the outer flowing gas passes through the second outer gas flow path. , Its flow rate can be increased. Therefore, the force for pushing back the backflow gas can be increased.

本発明の単結晶引き上げ装置において、前記筒状部材は、前記メインチャンバの外部に搬出可能に構成されていることが好ましい。   In the single crystal pulling apparatus of the present invention, it is preferable that the cylindrical member is configured to be able to be carried out of the main chamber.

本発明によれば、原料を溶融する工程時に筒状部材をメインチャンバ内に位置させ、単結晶の育成時には筒状部材をメインチャンバ外に搬出することで、単結晶の育成を従来と同じ条件で行うことができる。   According to the present invention, during the step of melting the raw material, the cylindrical member is positioned in the main chamber, and when growing the single crystal, the cylindrical member is carried out of the main chamber, so that the single crystal can be grown under the same conditions as the conventional one. Can be done with

本発明の単結晶の製造方法は、上述の単結晶引き上げ装置を用いたチョクラルスキー法による単結晶の製造方法であって、前記坩堝内の前記原料を溶融する工程は、前記冷却部を冷却するとともに、前記メインチャンバ内の上方から下方に向けて不活性ガスを流通させ、前記坩堝を加熱することで、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを前記筒状部材で抑制するとともに、前記筒状部材で前記不活性ガスを前記内側流通ガスと前記外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、前記内側流通ガスを前記坩堝と前記加熱部との隙間を介して前記メインチャンバの下方から排出し、当該内側流通ガスのうち前記坩堝の内側に逆流しようとするガスを前記外側流通ガスで押し戻して前記隙間を介して前記メインチャンバの下方から排出することを特徴とする。   The method for producing a single crystal of the present invention is a method for producing a single crystal by the Czochralski method using the above-described single crystal pulling apparatus, wherein the step of melting the raw material in the crucible includes cooling the cooling unit. At the same time, by flowing an inert gas downward from above in the main chamber and heating the crucible, heat from the melt in the crucible and the heating unit is absorbed by the cooling unit. While suppressing that with the tubular member, the inert gas is separated into the inner flowing gas and the outer flowing gas by the tubular member and guided to below the heat shield, and the inner flowing gas is Discharged from below the main chamber through a gap between the crucible and the heating unit, and among the inner flowing gas, the gas that is going to flow back inside the crucible is pushed back by the outer flowing gas, and the gas is discharged through the gap. Characterized by discharging from below of the main chamber.

本発明の単結晶の製造方法は、上述の単結晶引き上げ装置を用いたチョクラルスキー法による単結晶の製造方法であって、前記坩堝内の前記原料を溶融する工程は、前記冷却部および前記上側冷却部を冷却するとともに、前記メインチャンバ内の上方から下方に向けて不活性ガスを流通させ、前記坩堝を加熱することで、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを前記筒状部材で抑制するとともに、前記筒状部材で前記不活性ガスを前記内側流通ガスと前記外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、前記内側流通ガスを前記坩堝と前記加熱部との隙間を介して前記メインチャンバの下方から排出し、当該内側流通ガスのうち前記坩堝の内側に逆流しようとするガスを前記外側流通ガスで押し戻して前記隙間を介して前記メインチャンバの下方から排出することを特徴とする。   The method for producing a single crystal of the present invention is a method for producing a single crystal by the Czochralski method using the above-mentioned single crystal pulling apparatus, wherein the step of melting the raw material in the crucible comprises the cooling unit and the While cooling the upper cooling unit, an inert gas is circulated downward from above in the main chamber, and by heating the crucible, the melt in the crucible and the heat from the heating unit are cooled. Along with suppressing the heat absorption by the tubular member with the tubular member, the tubular member separates the inert gas into the inner flowing gas and the outer flowing gas and guides the inert gas to below the heat shield, An inner flowing gas is discharged from below the main chamber through a gap between the crucible and the heating unit, and a gas that is going to flow back inside the crucible among the inner flowing gas is pushed by the outer flowing gas. To characterized in that it discharged from the lower side of the main chamber through the gap.

従来の単結晶引き上げ装置の断面図。Sectional drawing of the conventional single crystal pulling apparatus. 本発明の課題の説明図であり、(A)は蓋体を用いた場合の課題、(B)は蓋体を用いない場合の課題を示す。It is explanatory drawing of the subject of this invention, (A) shows the subject in the case of using a lid, (B) shows the subject in the case of not using a lid. 本発明の第1実施形態に係る単結晶引き上げ装置の断面図。FIG. 2 is a cross-sectional view of the single crystal pulling apparatus according to the first embodiment of the present invention. 本発明の第2実施形態に係る単結晶引き上げ装置の断面図。Sectional drawing of the single crystal pulling apparatus which concerns on 2nd Embodiment of this invention.

[第1実施形態]
以下、本発明の第1実施形態について図面を参照して説明する。
なお、図1に示す単結晶引き上げ装置9と同じ構成については、説明を簡略にする。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
The description of the same configuration as the single crystal pulling apparatus 9 shown in FIG. 1 will be simplified.

〔単結晶引き上げ装置の構成〕
図3に示すように、単結晶引き上げ装置1の引き上げ装置本体2は、チャンバ21と、坩堝22と、加熱部23と、断熱筒24と、熱遮蔽体25と、水冷体26と、筒状部材27とを備えている。
坩堝22は、所定の速度で昇降するとともに、その下端に接続された支持軸22Aを中心にして回転する。
熱遮蔽体25は、円筒状の本体部25Aと、当該本体部25Aの下端から内側に鍔状に突出する突出部25Bとを備えている。突出部25Bは、加熱部23の上端よりも低い位置に設けられている。突出部25Bは、水冷体26の下面とシリコン融液Mとの間に位置するように設けられ、シリコン融液Mからの熱が水冷体26の下面に到達することを抑制する。
[Structure of single crystal pulling device]
As shown in FIG. 3, the pulling apparatus main body 2 of the single crystal pulling apparatus 1 includes a chamber 21, a crucible 22, a heating unit 23, a heat insulating cylinder 24, a heat shield 25, a water cooling body 26, And a member 27.
The crucible 22 moves up and down at a predetermined speed, and rotates around a support shaft 22A connected to a lower end thereof.
The heat shield 25 includes a cylindrical main body 25A and a protrusion 25B that protrudes inward from the lower end of the main body 25A in a flange shape. The protrusion 25B is provided at a position lower than the upper end of the heating unit 23. The protrusion 25B is provided so as to be located between the lower surface of the water cooling body 26 and the silicon melt M, and suppresses the heat from the silicon melt M from reaching the lower surface of the water cooling body 26.

筒状部材27は、水冷体26の内側においてシリコン単結晶を囲むように設けられ、その上端で不活性ガスG1を当該筒状部材27の内側を通る内側流通ガスG11と外側を通る外側流通ガスG12とに分離する。筒状部材27は、黒鉛材またはSiCコートが施された黒鉛材で形成されることが好ましい。なお、筒状部材27は、黒鉛材の間に断熱材を設けた三層構造であってもよいし、二層または四層以上の構造であってもよい。
筒状部材27は、その外径がプルチャンバ21Bの内径の0.5倍以上0.95倍以下の円筒状に形成されていることが好ましい。0.5倍以上にすることで、筒状部材27の外周と熱遮蔽体25の突出部25Bとの間のガス流速が速くなり、上部へのガスの逆流を防ぐことができる。また、0.95倍以下にすることで、筒状部材27がプルチャンバ21B内部を容易に通過することができる。
筒状部材27は、その上端がプルチャンバ21B内(メインチャンバ21A上面の開口部の下端25Dよりも上側)に位置し、プルチャンバ21Bの内周面との間に外側流通ガスG12が通る第1外側ガス流路21Eが形成されるように設けられている。筒状部材27は、その下端が突出部25Bの上端25Cと下端25Dとの間に位置し、かつ、突出部25Bの先端との間に外側流通ガスG12が通る第2外側ガス流路21Fが形成されるように設けられている。
筒状部材27は、種子結晶を昇降させる図示しない引き上げケーブルにより、メインチャンバ21Aの外部に搬出される。
The cylindrical member 27 is provided so as to surround the silicon single crystal inside the water-cooled body 26, and at the upper end thereof, the inert gas G <b> 1 flows through the inside flowing gas G <b> 11 passing through the inside of the cylindrical member 27 and the outside flowing gas G <b> 11 passing through the outside. G12. The tubular member 27 is preferably formed of a graphite material or a graphite material coated with SiC. The tubular member 27 may have a three-layer structure in which a heat insulating material is provided between graphite materials, or may have a two-layer structure or a structure having four or more layers.
The cylindrical member 27 is preferably formed in a cylindrical shape whose outer diameter is 0.5 times or more and 0.95 times or less the inner diameter of the pull chamber 21B. By making it 0.5 times or more, the gas flow velocity between the outer periphery of the cylindrical member 27 and the protruding portion 25B of the heat shield 25 becomes faster, and the backflow of gas to the upper part can be prevented. Further, by setting the ratio to 0.95 times or less, the cylindrical member 27 can easily pass through the inside of the pull chamber 21B.
The upper end of the cylindrical member 27 is located inside the pull chamber 21B (upper than the lower end 25D of the opening on the upper surface of the main chamber 21A), and the first outer side through which the outer circulation gas G12 passes between the inner peripheral surface of the pull chamber 21B. The gas passage 21E is provided so as to be formed. The cylindrical member 27 has a lower end located between an upper end 25C and a lower end 25D of the protruding portion 25B, and a second outer gas passage 21F through which the outer flowing gas G12 passes between the lower end and the tip of the protruding portion 25B. It is provided to be formed.
The cylindrical member 27 is carried out of the main chamber 21A by an unillustrated lifting cable for raising and lowering the seed crystal.

〔シリコン単結晶の製造方法〕
次に、単結晶引き上げ装置1を用いたシリコン単結晶の製造方法について説明する。
シリコン単結晶を製造するに際し、坩堝22内のシリコンSの溶融工程を行う。この工程では、引き上げケーブルを用いて筒状部材27をメインチャンバ21A内に搬入し、図3に示すように、シリコンSが収容された坩堝22上に位置させる。その後、水冷体26を冷却するとともに、メインチャンバ21Aの上方から下方に向けて不活性ガスG1を流通させ、加熱部23で坩堝22を加熱する。不活性ガスG1の流量は、100L/min以上600L/min以下であることが好ましい。以上の処理により、減圧された不活性雰囲気でのシリコンSの溶融が開始される。
[Production method of silicon single crystal]
Next, a method for manufacturing a silicon single crystal using the single crystal pulling apparatus 1 will be described.
In producing a silicon single crystal, a melting step of silicon S in crucible 22 is performed. In this step, the tubular member 27 is carried into the main chamber 21A using a pull-up cable, and is positioned on the crucible 22 containing the silicon S, as shown in FIG. Thereafter, while cooling the water-cooled body 26, the inert gas G1 is passed downward from above the main chamber 21A, and the crucible 22 is heated by the heating unit 23. It is preferable that the flow rate of the inert gas G1 is 100 L / min or more and 600 L / min or less. Through the above processing, melting of the silicon S in the reduced-pressure inert atmosphere is started.

このとき、シリコン融液M、加熱部23から熱H1,H2が放射されるが、この熱H1,H2が水冷体26で吸熱されることを筒状部材27が抑制する。
また、筒状部材27を設けない場合、図3に二点鎖線で示すように、シリコン融液Mからの熱H3がメインチャンバ21Aの上面部と水冷体26との間を通過してメインチャンバ21Aの内壁上端側に到達する。この内壁上端側には断熱筒24が設けられていないため熱H3が吸熱されてしまうが、この吸熱を筒状部材27が抑制する。
At this time, heat H1 and H2 are radiated from the silicon melt M and the heating unit 23, and the tubular member 27 suppresses the heat H1 and H2 being absorbed by the water-cooled body 26.
When the cylindrical member 27 is not provided, the heat H3 from the silicon melt M passes between the upper surface of the main chamber 21A and the water-cooled body 26 as shown by a two-dot chain line in FIG. It reaches the upper end side of the inner wall of 21A. Since the heat insulating tube 24 is not provided at the upper end side of the inner wall, the heat H3 is absorbed, but the tubular member 27 suppresses the heat absorption.

また、不活性ガスG1は、筒状部材27の上端により内側流通ガスG11と外側流通ガスG12とに分離される。内側流通ガスG11は、筒状部材27の内側を通ってシリコンSやシリコン融液Mの表面に到達し、この表面に沿って坩堝22の外側に導かれ、そのほとんどがシリコン融液Mからの蒸発ガスとともに、坩堝22の側面と加熱部23との隙間を介してガス排気口21Cから排出される。このとき、内側流通ガスG11の一部が加熱部23に衝突し、二点鎖線で示すように、坩堝22の内側に向かう逆流ガスG2となる可能性がある。しかし、第2外側ガス流路21Fを通った外側流通ガスG12が内側流通ガスG11により坩堝22の外側に導かれ、この外側流通ガスG12が逆流ガスG2を押し戻して坩堝22と加熱部23との隙間を介してガス排気口21Cから排出する。
また、第2外側ガス流路21Fが、その上側の流路よりも狭くなっているため、外側流通ガスG12が第2外側ガス流路21Fを通過するときに流速が速くなり、第2外側ガス流路21Fが狭くなっていない場合と比べて逆流ガスG2を押し戻す力が大きくなる。
Further, the inert gas G1 is separated by the upper end of the tubular member 27 into an inner flowing gas G11 and an outer flowing gas G12. The inner circulation gas G11 reaches the surface of the silicon S or the silicon melt M through the inside of the cylindrical member 27, is guided along the surface to the outside of the crucible 22, and most of the gas flows from the silicon melt M. The gas is discharged from the gas exhaust port 21C through the gap between the side surface of the crucible 22 and the heating unit 23 together with the evaporated gas. At this time, a part of the inside circulation gas G11 may collide with the heating unit 23 and become a backflow gas G2 toward the inside of the crucible 22, as indicated by a two-dot chain line. However, the outer circulation gas G12 that has passed through the second outer gas flow path 21F is guided to the outside of the crucible 22 by the inner circulation gas G11, and the outer circulation gas G12 pushes back the backflow gas G2 to cause the crucible 22 and the heating unit 23 to communicate with each other. The gas is discharged from the gas exhaust port 21C through the gap.
Further, since the second outer gas flow path 21F is narrower than the upper flow path, the flow rate of the outer circulating gas G12 increases when the outer circulating gas G12 passes through the second outer gas flow path 21F. The force for pushing back the backflow gas G2 is greater than when the flow path 21F is not narrow.

溶融工程が終了すると、引き上げケーブルを用いて筒状部材27を上昇させ、その全体をプルチャンバ21B内に収容することで、メインチャンバ21Aの外部に搬出する。
その後、必要に応じて、シリコン単結晶の抵抗率調整のためにシリコン融液Mにドーパントを添加した後、引き上げケーブルを下降させることで種子結晶をシリコン融液Mに接触させ、引き上げケーブルを適宜回転させながら引き上げるとともに、坩堝22を適宜回転させながら上昇させることで、シリコン単結晶を引き上げる(育成工程)。
When the melting step is completed, the cylindrical member 27 is raised by using the pull-up cable, and the entirety is housed in the pull chamber 21B, so that the cylindrical member 27 is carried out of the main chamber 21A.
Thereafter, if necessary, a dopant is added to the silicon melt M for adjusting the resistivity of the silicon single crystal, and then the seed crystal is brought into contact with the silicon melt M by lowering the pulling cable, and the pulling cable is appropriately adjusted. By pulling up while rotating, and raising the crucible 22 while rotating appropriately, the silicon single crystal is pulled up (growing step).

〔第1実施形態の作用効果〕
上述したような第1実施形態では、水冷体26の内側に筒状部材27を設けることで、シリコン融液M、加熱部23からの熱H1,H2が水冷体26で吸熱されることを抑制することができ、シリコン溶融時の消費電力量を削減できる。また、筒状部材27で生成した内側流通ガスG11をシリコン融液Mからの蒸発ガスとともに、ガス排気口21Cから排出するとともに、内側流通ガスG11の一部である逆流ガスG2を外側流通ガスG12で押し戻してガス排気口21Cから排出するため、蒸発ガス中の粒子やチャンバ内のパーティクルがシリコン融液Mに入ることを抑制でき、シリコン単結晶の単結晶化が阻害されることを抑制できる。
[Operation and Effect of First Embodiment]
In the first embodiment as described above, by providing the tubular member 27 inside the water cooling body 26, the heat H1, H2 from the silicon melt M and the heating unit 23 is suppressed from being absorbed by the water cooling body 26. Power consumption during melting of silicon can be reduced. In addition, the inside circulation gas G11 generated by the cylindrical member 27 is discharged from the gas exhaust port 21C together with the evaporation gas from the silicon melt M, and the backflow gas G2, which is a part of the inside circulation gas G11, is changed to the outside circulation gas G12. And the gas is exhausted from the gas exhaust port 21C, so that particles in the evaporative gas and particles in the chamber can be prevented from entering the silicon melt M, and the inhibition of single crystallization of the silicon single crystal can be suppressed.

特に、シリコン融液Mからの熱H3がメインチャンバ21Aの内壁上端側で吸熱されることも筒状部材27で抑制することができ、シリコン溶融時の消費電力量をさらに削減できる。
また、第2外側ガス流路21Fで外側流通ガスG12の流速を速くすることで、逆流ガスG2を押し戻す力を大きくすることができ、蒸発ガス中の粒子やパーティクルがシリコン融液Mに入る可能性をより低減できる。
さらに、筒状部材27をメインチャンバ21A外部に搬出することができ、シリコン単結晶の育成を従来と同じ条件で行うことができる。
In particular, the heat absorption from the silicon melt M at the upper end side of the inner wall of the main chamber 21A can also be suppressed by the cylindrical member 27, and the power consumption during silicon melting can be further reduced.
In addition, by increasing the flow rate of the outer circulation gas G12 in the second outer gas passage 21F, the force for pushing back the backflow gas G2 can be increased, and particles and particles in the evaporative gas can enter the silicon melt M. Performance can be further reduced.
Further, the cylindrical member 27 can be carried out of the main chamber 21A, and the silicon single crystal can be grown under the same conditions as the conventional one.

[第2実施形態]
次に、本発明の第2実施形態について図面を参照して説明する。
図4に示すように、第1実施形態の単結晶引き上げ装置1と第2実施形態の単結晶引き上げ装置1Aとの相違点は、チャンバ21に上側冷却部としてのドローチューブ28が設けられたことと、このドローチューブ28の設置に伴い筒状部材27の形状を変えたことである。
[Second embodiment]
Next, a second embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 4, the difference between the single crystal pulling apparatus 1 of the first embodiment and the single crystal pulling apparatus 1A of the second embodiment is that a draw tube 28 as an upper cooling unit is provided in the chamber 21. That is, the shape of the tubular member 27 is changed with the installation of the draw tube 28.

ドローチューブ28は、メインチャンバ21A内における水冷体26の上方に設けられている。ドローチューブ28は、シリコン単結晶を囲む筒状に形成され、水冷体26と同様に、内部を流通する冷却水などの冷媒によりシリコン単結晶の冷却を促進するとともに、プルチャンバ21B内の不活性ガスG1を整流してメインチャンバ21A内に導く。ドローチューブ28は、プルチャンバ21Bに連結されているが、メインチャンバ21Aの上面部に連結されてもよい。   The draw tube 28 is provided above the water cooling body 26 in the main chamber 21A. The draw tube 28 is formed in a cylindrical shape surrounding the silicon single crystal, and promotes the cooling of the silicon single crystal by a coolant such as cooling water flowing through the inside thereof, like the water-cooled body 26, and furthermore, the inert gas in the pull chamber 21 </ b> B. G1 is rectified and guided into the main chamber 21A. Although the draw tube 28 is connected to the pull chamber 21B, it may be connected to the upper surface of the main chamber 21A.

筒状部材27Aは、その外径がドローチューブ28の内径の0.5倍以上0.95倍以下の円筒状に形成され、その上端で不活性ガスG1を内側流通ガスG11と外側流通ガスG12とに分離する。
筒状部材27Aは、その上端がドローチューブ28内に位置し、かつ、ドローチューブ28の内周面との間に第1外側ガス流路21Eが形成されるように設けられている。また、筒状部材27Aは、その下端が突出部25Bの上端25Cと下端25Dとの間に位置し、第2外側ガス流路21Fが形成されるように設けられている。さらに、筒状部材27Aは、引き上げケーブルにより、メインチャンバ21Aの外部に搬出可能に設けられている。
The cylindrical member 27A is formed in a cylindrical shape whose outer diameter is 0.5 times or more and 0.95 times or less the inner diameter of the draw tube 28, and at the upper end thereof, the inert gas G1 is supplied with the inner flowing gas G11 and the outer flowing gas G12. And separated into
The cylindrical member 27A is provided such that its upper end is located inside the draw tube 28, and the first outer gas passage 21E is formed between the cylindrical member 27A and the inner peripheral surface of the draw tube 28. Further, the cylindrical member 27A is provided such that its lower end is located between the upper end 25C and the lower end 25D of the protruding portion 25B, and the second outer gas passage 21F is formed. Furthermore, the cylindrical member 27A is provided so as to be able to be carried out of the main chamber 21A by a lifting cable.

このような単結晶引き上げ装置1Aにおいても、第1実施形態の単結晶引き上げ装置1と同様に、熱H1,H2,H3の水冷体26やメインチャンバ21Aの内壁上端側での吸熱が抑制され、シリコン溶融時の消費電力量を削減できるとともに、蒸発ガス中の粒子やチャンバ内のパーティクルがシリコン融液Mに入ることを抑制でき、シリコン単結晶の単結晶化が阻害されることを抑制できる。   In such a single crystal pulling apparatus 1A, similarly to the single crystal pulling apparatus 1 of the first embodiment, the heat absorption of the heat H1, H2, and H3 at the water cooling body 26 and the upper end side of the inner wall of the main chamber 21A is suppressed. The power consumption during the melting of silicon can be reduced, and particles in the evaporative gas and particles in the chamber can be prevented from entering the silicon melt M, so that inhibition of single crystallization of the silicon single crystal can be suppressed.

[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
例えば、熱H1,H2が水冷体26で吸熱されることを抑制でき、かつ、不活性ガスG1を内側流通ガスG11と外側流通ガスG12とに分離可能できれば、筒状部材27,27Aの上端をプルチャンバ21B、ドローチューブ28の下端よりも下側に位置させてもよい。
熱H1,H2が水冷体26で吸熱されることを抑制できれば、筒状部材27,27Aの下端を突出部25Bの上端25Cよりも上側に位置させてもよい。
不活性ガスG1を内側流通ガスG11と外側流通ガスG12とに分離できれば、筒状部材27,27Aの外径をプルチャンバ21B、ドローチューブ28の内径より大きくし、育成工程時にもメインチャンバ21A内に位置させてもよい。
内側流通ガスG11と外側流通ガスG12とを熱遮蔽体25の熱遮蔽体25の下方まで導ければ、筒状部材27,27Aをメインチャンバ21Aやプルチャンバ21Bに固定してもよい。
筒状部材27,27Aは、円筒状に限らず、円錐台筒状、角筒状であってもよい。
本発明をSiC、GaAS、サファイアなどの単結晶を製造する装置に適用してもよい。
[Modification]
It should be noted that the present invention is not limited only to the above embodiment, and various improvements and design changes can be made without departing from the spirit of the present invention.
For example, if the heat H1 and H2 can be suppressed from being absorbed by the water-cooled body 26 and the inert gas G1 can be separated into the inner flowing gas G11 and the outer flowing gas G12, the upper ends of the tubular members 27 and 27A can be removed. The pull chamber 21 </ b> B and the draw tube 28 may be positioned below the lower ends.
If the heat H1 and H2 can be prevented from being absorbed by the water cooling body 26, the lower ends of the tubular members 27 and 27A may be positioned above the upper ends 25C of the protruding portions 25B.
If the inert gas G1 can be separated into the inner flowing gas G11 and the outer flowing gas G12, the outer diameters of the cylindrical members 27 and 27A are made larger than the inner diameters of the pull chamber 21B and the draw tube 28, and are kept in the main chamber 21A even during the growing process. It may be located.
If the inside circulation gas G11 and the outside circulation gas G12 are guided to below the heat shield 25 of the heat shield 25, the cylindrical members 27, 27A may be fixed to the main chamber 21A or the pull chamber 21B.
The cylindrical members 27 and 27A are not limited to a cylindrical shape, and may be a truncated cone tube or a square tube.
The present invention may be applied to an apparatus for manufacturing a single crystal such as SiC, GaAs, and sapphire.

次に、本発明を実施例および比較例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。   Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

〔実施例〕
まず、図4に示すような単結晶引き上げ装置1Aを準備した。坩堝22の上端開口部の直径は810mm、熱遮蔽体25下端の開口径(突出部25Bの先端で囲まれる円形領域(以下、「熱遮蔽体25下端の開口部」という)の直径)は400mm、筒状部材27Aの内径、外径はそれぞれ310mm、324mm、ドローチューブ28の内径は400mmであった。また、筒状部材27Aの上端をドローチューブ28内に位置させ、下端を突出部25Bの上端25Cと下端25Dとの間に位置させた。
そして、筒状部材27Aを用いたシリコンSの溶融工程、筒状部材27Aをチャンバ21外部に搬出する工程、直胴部の直径および長さがそれぞれ310mm、2000mmのシリコン単結晶の育成工程を行い、融解工程時の加熱部23の消費電力量((融解工程時の加熱部23の平均電力)×(加熱開始からシリコンSの融解が完了するまでの時間)と、シリコン単結晶の有転位化の発生状況とを調べた。なお、不活性ガスG1の流量は、200L/minとした。
〔Example〕
First, a single crystal pulling apparatus 1A as shown in FIG. 4 was prepared. The diameter of the upper end opening of the crucible 22 is 810 mm, and the opening diameter of the lower end of the heat shield 25 (the diameter of a circular region surrounded by the tip of the protruding portion 25B (hereinafter, referred to as the “opening of the lower end of the heat shield 25”)) is 400 mm. The inner and outer diameters of the cylindrical member 27A were 310 mm and 324 mm, respectively, and the inner diameter of the draw tube 28 was 400 mm. The upper end of the cylindrical member 27A was located in the draw tube 28, and the lower end was located between the upper end 25C and the lower end 25D of the protruding portion 25B.
Then, a melting step of silicon S using the cylindrical member 27A, a step of carrying out the cylindrical member 27A to the outside of the chamber 21, and a step of growing a silicon single crystal having a diameter and a length of 310 mm and 2000 mm of the straight body are performed. The amount of power consumed by the heating unit 23 during the melting step ((average power of the heating unit 23 during the melting step) x (time from the start of heating to the completion of melting of silicon S)) and dislocation of the silicon single crystal The flow rate of the inert gas G1 was 200 L / min.

〔比較例〕
図2(A)に示すような、下面の直径が310mmの蓋体を準備し、この蓋体を筒状部材27Aの代わりに熱遮蔽体25下端の開口部内中央に位置させた溶融工程、蓋体をチャンバ21外部に搬出する工程、実施例と同じ育成工程を行い、融解工程時の消費電力量と、シリコン単結晶の有転位化の発生状況とを調べた。
(Comparative example)
As shown in FIG. 2 (A), a lid having a lower surface with a diameter of 310 mm was prepared, and this lid was positioned at the center of the opening inside the lower end of the heat shield 25 instead of the cylindrical member 27A. The step of unloading the body out of the chamber 21 and the same growth step as in the example were performed, and the power consumption during the melting step and the occurrence of dislocations in the silicon single crystal were examined.

〔参考例〕
単結晶引き上げ装置1Aに、筒状部材27Aおよび蓋体のいずれも配置しないで、溶融工程、育成工程を行い、融解工程時の消費電力量を調べた。なお、参考例のシリコン単結晶の製造条件は、一般的に行われている条件である。
(Reference example)
The melting step and the growing step were performed without disposing any of the cylindrical member 27A and the lid in the single crystal pulling apparatus 1A, and the power consumption during the melting step was examined. Note that the production conditions for the silicon single crystal of the reference example are conditions generally performed.

〔評価〕
実施例、比較例、参考例の融解工程時の消費電力量と、参考例以外のシリコン単結晶の有転位化の発生状況とを表1に示す。
消費電力量については、比較例とほぼ同水準であり、参考例と比べて融解工程時の消費電力量を削減できることがわかった。このことから、筒状部材27Aは、シリコン融液M、加熱部23からの熱H1,H2が水冷体26で吸熱されることを抑制できると考えられる。
また、比較例ではシリコン単結晶に有転位化が発生したが、実施例では発生しなかった。このことから、筒状部材27Aが不活性ガスG1を内側流通ガスG11と外側流通ガスG12とに分離することにより、蒸発ガス中の粒子やチャンバ21内のパーティクルがシリコン融液Mに入ることを抑制し、その結果、シリコン単結晶の有転位化を抑制できると考えられる。
[Evaluation]
Table 1 shows the power consumption during the melting step of the examples, comparative examples, and reference examples, and the occurrence of dislocations in silicon single crystals other than the reference examples.
The power consumption was almost the same level as the comparative example, and it was found that the power consumption in the melting step could be reduced as compared with the reference example. From this, it is considered that the tubular member 27A can suppress the heat H1, H2 from the silicon melt M and the heating unit 23 from being absorbed by the water-cooled body 26.
In the comparative example, dislocations occurred in the silicon single crystal, but not in the examples. From this, the cylindrical member 27A separates the inert gas G1 into the inner flowing gas G11 and the outer flowing gas G12, so that particles in the evaporation gas and particles in the chamber 21 enter the silicon melt M. It is considered that, as a result, dislocation of the silicon single crystal can be suppressed.

Figure 0006652015
Figure 0006652015

1,1A…単結晶引き上げ装置、21…チャンバ、21A…メインチャンバ、21B…プルチャンバ、21E…第1外側ガス流路、21F…第2外側ガス流路、22…坩堝、23…加熱部、25…熱遮蔽体、25B…突出部、25C…上端、25D…下端、26…水冷体(冷却部)、27,27A…筒状部材、28…ドローチューブ(上側冷却部)、G1…不活性ガス、G11…内側流通ガス、G12…外側流通ガス、M…シリコン融液(融液)、S…シリコン(原料)。   1, 1A single crystal pulling apparatus, 21 chamber, 21A main chamber, 21B pull chamber, 21E first outer gas passage, 21F second outer gas passage, 22 crucible, 23 heating unit, 25 ... Heat shield, 25B ... Projecting part, 25C ... Top, 25D ... Bottom, 26 ... Water-cooled body (cooling part), 27, 27A ... Cylindrical member, 28 ... Draw tube (upper cooling part), G1 ... Inert gas , G11: inner flowing gas, G12: outer flowing gas, M: silicon melt (melt), S: silicon (raw material).

Claims (6)

原料を収納する坩堝と、
前記坩堝を囲むように設けられ、当該坩堝を加熱して前記原料を溶融する加熱部と、
前記坩堝の上方において単結晶を囲むように配置され、前記加熱部からの熱を遮蔽する筒状の熱遮蔽体と、
前記熱遮蔽体の内側において前記単結晶を囲むように配置され、前記単結晶を冷却する筒状の冷却部と、
前記坩堝、前記加熱部、前記熱遮蔽体および前記冷却部を収容するメインチャンバ、並びに、前記単結晶および不活性ガスが通過するプルチャンバを有し、当該プルチャンバから供給される不活性ガスを前記メインチャンバの下方から排出可能に構成されたチャンバとを備え、チョクラルスキー法により単結晶を製造する単結晶引き上げ装置であって、
前記冷却部の内側には、前記単結晶を囲む筒状部材が設けられ、
前記筒状部材は、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを抑制するとともに、当該筒状部材の上端で前記不活性ガスを当該筒状部材の内側を通る内側流通ガスと外側を通る外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、その上端が前記プルチャンバ内に位置し、かつ、前記プルチャンバの内周面との間に前記外側流通ガスが通る第1外側ガス流路が形成されるように設けられていることを特徴とする単結晶引き上げ装置。
A crucible for storing raw materials,
A heating unit provided to surround the crucible and heating the crucible to melt the raw material;
A cylindrical heat shield, which is arranged to surround the single crystal above the crucible and shields heat from the heating unit,
A tubular cooling unit arranged to surround the single crystal inside the heat shield and cooling the single crystal,
A main chamber that houses the crucible, the heating unit, the heat shield and the cooling unit, and a pull chamber through which the single crystal and the inert gas pass, and the inert gas supplied from the pull chamber is A single crystal pulling apparatus for producing a single crystal by a Czochralski method, comprising:
A cylindrical member surrounding the single crystal is provided inside the cooling unit,
The cylindrical member suppresses the heat from the melt and the heating unit in the crucible from being absorbed by the cooling unit, and the inert gas at the upper end of the cylindrical member is used as the inert gas for the cylindrical member. guide-out to the lower of the heat shield is separated into an outer flow gas through the inner flowing gas and the outside through the inner, upper end is positioned within the pull chamber, and between the inner peripheral surface of the pull chamber A single crystal pulling apparatus, wherein a first outer gas passage through which the outer flowing gas passes is formed .
原料を収納する坩堝と、
前記坩堝を囲むように設けられ、当該坩堝を加熱して前記原料を溶融する加熱部と、
前記坩堝の上方において単結晶を囲むように配置され、前記加熱部からの熱を遮蔽する筒状の熱遮蔽体と、
前記熱遮蔽体の内側において前記単結晶を囲むように配置され、前記単結晶を冷却する筒状の冷却部と、
前記坩堝、前記加熱部、前記熱遮蔽体および前記冷却部を収容するメインチャンバ、並びに、前記単結晶および不活性ガスが通過するプルチャンバを有し、当該プルチャンバから供給される不活性ガスを前記メインチャンバの下方から排出可能に構成されたチャンバとを備え、チョクラルスキー法により単結晶を製造する単結晶引き上げ装置であって、
前記冷却部の内側には、前記単結晶を囲む筒状部材が設けられ、
前記筒状部材は、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを抑制するとともに、当該筒状部材の上端で前記不活性ガスを当該筒状部材の内側を通る内側流通ガスと外側を通る外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、
前記冷却部の上方には、前記単結晶を冷却する筒状の上側冷却部が前記単結晶を囲むように設けられ、
前記上側冷却部は、前記メインチャンバの上面部または前記プルチャンバに連結され、
前記筒状部材は、その上端が前記上側冷却部内に位置し、かつ、前記上側冷却部の内周面との間に前記外側流通ガスが通る第1外側ガス流路が形成されるように設けられていることを特徴とする単結晶引き上げ装置。
A crucible for storing raw materials,
A heating unit provided to surround the crucible and heating the crucible to melt the raw material;
A cylindrical heat shield, which is arranged to surround the single crystal above the crucible and shields heat from the heating unit,
A tubular cooling unit arranged to surround the single crystal inside the heat shield and cooling the single crystal,
A main chamber that houses the crucible, the heating unit, the heat shield and the cooling unit, and a pull chamber through which the single crystal and the inert gas pass, and the inert gas supplied from the pull chamber is A single crystal pulling apparatus for producing a single crystal by a Czochralski method, comprising:
A cylindrical member surrounding the single crystal is provided inside the cooling unit,
The cylindrical member suppresses the heat from the melt and the heating unit in the crucible from being absorbed by the cooling unit, and the inert gas at the upper end of the cylindrical member is used as the inert gas for the cylindrical member. Separated into an inner flowing gas passing through the inside and an outer flowing gas passing through the outside, and guided to below the heat shield,
Above the cooling unit, a cylindrical upper cooling unit for cooling the single crystal is provided so as to surround the single crystal,
The upper cooling unit is connected to an upper surface of the main chamber or the pull chamber,
The tubular member is provided such that an upper end thereof is located in the upper cooling unit, and a first outer gas flow path through which the outer flowing gas passes is formed between the cylindrical member and an inner peripheral surface of the upper cooling unit. An apparatus for pulling a single crystal, comprising:
請求項1又は請求項に記載の単結晶引き上げ装置において、
前記熱遮蔽体の下端には、当該熱遮蔽体の内側に鍔状に突出する突出部が設けられ、
前記筒状部材は、その下端が前記突出部の上端と下端との間に位置し、かつ、前記突出部の先端との間に前記外側流通ガスが通る第2外側ガス流路が形成されるように設けられていることを特徴とする単結晶引き上げ装置。
The single crystal pulling apparatus according to claim 1 or 2 ,
At the lower end of the heat shield, a protrusion is provided which protrudes in a flange shape inside the heat shield,
The cylindrical member has a lower end located between an upper end and a lower end of the protruding portion, and a second outer gas flow path through which the outer flowing gas passes between the tip of the protruding portion. A single crystal pulling apparatus characterized by being provided as described above.
請求項1から請求項のいずれか一項に記載の単結晶引き上げ装置において、
前記筒状部材は、前記メインチャンバの外部に搬出可能に構成されていることを特徴とする単結晶引き上げ装置。
The single crystal pulling apparatus according to any one of claims 1 to 3 ,
The single crystal pulling apparatus, wherein the cylindrical member is configured to be able to be carried out of the main chamber.
請求項1に記載の単結晶引き上げ装置を用いたチョクラルスキー法による単結晶の製造方法であって、
前記坩堝内の前記原料を溶融する工程は、前記冷却部を冷却するとともに、前記メインチャンバ内の上方から下方に向けて不活性ガスを流通させ、前記坩堝を加熱することで、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを前記筒状部材で抑制するとともに、前記筒状部材で前記不活性ガスを前記内側流通ガスと前記外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、前記内側流通ガスを前記坩堝と前記加熱部との隙間を介して前記メインチャンバの下方から排出し、当該内側流通ガスのうち前記坩堝の内側に逆流しようとするガスを前記外側流通ガスで押し戻して前記隙間を介して
前記メインチャンバの下方から排出することを特徴とする単結晶の製造方法。
A method for producing a single crystal by the Czochralski method using the single crystal pulling apparatus according to claim 1 ,
In the step of melting the raw material in the crucible, while cooling the cooling unit, flowing an inert gas downward from above in the main chamber, and heating the crucible, thereby heating the crucible. The tubular member suppresses the heat from the melt and the heating unit from being absorbed by the cooling unit, and separates the inert gas into the inner flowing gas and the outer flowing gas at the cylindrical member. To the lower part of the heat shield, discharge the inner flowing gas from below the main chamber through a gap between the crucible and the heating unit, and return the inner flowing gas to the inside of the crucible among the inner flowing gas. A method of producing a single crystal, wherein the gas to be discharged is pushed back by the outside flowing gas and discharged from below the main chamber through the gap.
請求項に記載の単結晶引き上げ装置を用いたチョクラルスキー法による単結晶の製造方法であって、
前記坩堝内の前記原料を溶融する工程は、前記冷却部および前記上側冷却部を冷却するとともに、前記メインチャンバ内の上方から下方に向けて不活性ガスを流通させ、前記坩堝を加熱することで、前記坩堝内の融液および前記加熱部からの熱が前記冷却部で吸熱されることを前記筒状部材で抑制するとともに、前記筒状部材で前記不活性ガスを前記内側流通ガスと前記外側流通ガスとに分離して前記熱遮蔽体の下方まで導き、前記内側流通ガスを前記坩堝と前記加熱部との隙間を介して前記メインチャンバの下方から排出し、当該内側流通ガスのうち前記坩堝の内側に逆流しようとするガスを前記外側流通ガスで押し戻して前記隙間を介して前記メインチャンバの下方から排出することを特徴とする単結晶の製造方法。
A method for producing a single crystal by the Czochralski method using the single crystal pulling apparatus according to claim 2 ,
The step of melting the raw material in the crucible cools the cooling unit and the upper cooling unit, and allows an inert gas to flow downward from above in the main chamber to heat the crucible. And suppressing the heat from the melt and the heating unit in the crucible from being absorbed in the cooling unit by the cylindrical member, and the inert gas by the cylindrical member to the inert gas and the outside gas. It is separated into a circulation gas and guided to below the heat shield, and the inside circulation gas is discharged from below the main chamber through a gap between the crucible and the heating unit. A gas which is to flow back into the inside of the chamber is pushed back by the outside flowing gas and discharged from below the main chamber through the gap.
JP2016166587A 2016-08-29 2016-08-29 Single crystal pulling apparatus and single crystal manufacturing method Active JP6652015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166587A JP6652015B2 (en) 2016-08-29 2016-08-29 Single crystal pulling apparatus and single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166587A JP6652015B2 (en) 2016-08-29 2016-08-29 Single crystal pulling apparatus and single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2018035003A JP2018035003A (en) 2018-03-08
JP6652015B2 true JP6652015B2 (en) 2020-02-19

Family

ID=61566920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166587A Active JP6652015B2 (en) 2016-08-29 2016-08-29 Single crystal pulling apparatus and single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP6652015B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114635181B (en) * 2022-03-23 2023-01-31 双良硅材料(包头)有限公司 Water-cooling heat shield structure of single crystal furnace, single crystal furnace and growth method of monocrystalline silicon
CN114737247A (en) * 2022-05-18 2022-07-12 西安奕斯伟材料科技有限公司 Water-cooling jacket device and single crystal furnace

Also Published As

Publication number Publication date
JP2018035003A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US9217208B2 (en) Apparatus for producing single crystal
JP3944879B2 (en) Single crystal ingot production equipment
JP6101368B2 (en) Cooling rate control device and ingot growth device including the same
JP5618614B2 (en) Method and apparatus for growing a silicon single crystal from a melt
JP6202119B2 (en) Method for producing silicon single crystal
JP6760128B2 (en) Silicon single crystal manufacturing method, rectifying member, and single crystal pulling device
JP6652015B2 (en) Single crystal pulling apparatus and single crystal manufacturing method
JP5782323B2 (en) Single crystal pulling method
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
JP6257483B2 (en) Silicon single crystal manufacturing method
JP2009132552A (en) Method of manufacturing silicon single crystal
JP4862836B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP4253841B2 (en) Silicon single crystal growth equipment
JP2007186356A (en) Apparatus and method for producing single crystal
JP2011116600A (en) Apparatus for producing single crystal and method for producing single crystal
US20230015551A1 (en) Apparatus for manufacturing single crystal
JP2007254165A (en) Single crystal pulling device
JP2007261868A (en) Apparatus for and method of growing single crystal
KR101725603B1 (en) Ingot growth equipment
JP2006044962A (en) Silicon single crystal pulling apparatus
JP5391735B2 (en) Single crystal pulling device
JP2011026147A (en) Silicon single crystal pulling device
JP2007204305A (en) Single crystal pulling apparatus
KR20070064210A (en) Single crystal ingot grower
JP6702169B2 (en) Heat shield member, single crystal pulling apparatus, and method for manufacturing single crystal silicon ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200106

R150 Certificate of patent or registration of utility model

Ref document number: 6652015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250