JP2018103213A - レーザ加工装置 - Google Patents

レーザ加工装置 Download PDF

Info

Publication number
JP2018103213A
JP2018103213A JP2016250825A JP2016250825A JP2018103213A JP 2018103213 A JP2018103213 A JP 2018103213A JP 2016250825 A JP2016250825 A JP 2016250825A JP 2016250825 A JP2016250825 A JP 2016250825A JP 2018103213 A JP2018103213 A JP 2018103213A
Authority
JP
Japan
Prior art keywords
processing
laser
protection
scanning
protection process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016250825A
Other languages
English (en)
Other versions
JP6760050B2 (ja
Inventor
恭生 西川
Yasuo Nishikawa
恭生 西川
遠藤 好則
Yoshinori Endo
好則 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2016250825A priority Critical patent/JP6760050B2/ja
Publication of JP2018103213A publication Critical patent/JP2018103213A/ja
Application granted granted Critical
Publication of JP6760050B2 publication Critical patent/JP6760050B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

【課題】被加工物の材料に応じて効率良く保護処理を行うことができるレーザ加工装置を提供すること。【解決手段】CPU71はステップS7において、保護処理を要しないと判断した場合、ステップS19のレーザ照射処理において、保護処理を行わない。また、ステップS7において、CPU71は材料毎の保護処理の要・不要の値を有する保護処理テーブル79に基づいて判断する。これにより、レーザ加工装置1は保護処理が不要の材料である場合には、レーザ照射処理において、保護処理を省略することができる。これにより、レーザ加工装置1は材料に応じて効率良く保護処理を施すことができる。【選択図】図3

Description

本発明は、レーザ加工装置に関するものである。
特許文献1には、レーザ光を用いたマーキングの工程の後で、マーキングの工程で用いたレーザ光のエネルギーよりも低いエネルギーのレーザ光を被加工物に照射する清浄化の工程を行う方法が開示されている。特許文献1に開示の清浄化の工程は、被加工物の表面の汚れおよび凸凹などを清浄化することを目的としている。
ところで、被加工物の材料が例えばクロムを含有する鉄鋼のように特定元素を含有する金属である場合、レーザ光を用いたマーキングの工程の後で、マーキングの工程で用いたレーザ光のエネルギーよりも低いエネルギーのレーザ光を被加工物に照射することが、加工部分の保護膜形成のために有効であることが知られている。
特開平10−34359号公報
被加工物の材料が特定元素を含有する金属である場合には、上記のように、低いエネルギーのレーザ光を被加工物に照射することが、保護膜形成のため有効であるが、被加工物の材料が特定元素を含有する金属でない場合には、低いエネルギーのレーザ光を被加工物に照射することは必要とされない。そこで、加工材料に応じて効率良く保護処理を施すレーザ加工装置が要請されていた。
本願は、上記の課題に鑑み提案されたものであって、被加工物の材料に応じて効率良く保護処理を行うことができるレーザ加工装置を提供することを目的とする。
本明細書は、レーザ光を出射するレーザ光出射部と、レーザ光を走査する走査部と、走査部を制御する制御部と、を備え、制御部は、加工パターンに基づいて、加工対象物に第1エネルギー密度のレーザ光を用いたレーザ加工を行う加工処理と、加工処理の後、加工パターンに基づいて、加工対象物に第1エネルギー密度よりも小さい第2エネルギー密度のレーザ光を照射する保護処理と、保護処理の実行に先立ち、加工対象物の材料種別に応じて保護処理を要するか否かを判断する判断処理と、を実行し、判断処置において、保護処理を要しないと判断した場合、保護処理を実行しないことを特徴とするレーザ加工装置を開示する。このようにすれば、レーザ加工装置は保護処理を要しないと判断した場合、保護処理を実行しないので、加工対象物の材料種別に応じて効率良く保護処理を行うことができる。
本願によれば、被加工物の材料に応じて効率良く保護処理を行うことができるレーザ加工装置を提供することができる。
本実施形態に係るレーザ加工装置の概略構成である。 レーザ加工装置の電気的構成を示すブロック図である。 設定実行処理の処理内容を示すフローチャートである。 条件設定処理の処理内容を示すフローチャートである。 走査設定処理の処理内容を示すフローチャートである。 加工設定の表示画面を示す図である。 詳細設定の表示画面を示す図である。 走査設定の表示画面を示す図である。 保護処理テーブルを示す図である。 (a)加工パターンおよび(b)加工処理における走査方向に基づき、(c)保護処理における走査方向を決定する方法を説明する図である。 別例1における保護処理テーブルを示す図である。 別例1における走査速度に対する重なり率の相関関係を示すグラフである。 別例1における重なり率に対する係数の相関関係を示すグラフである。 別例2における保護処理テーブルを示す図である。
<レーザ加工装置の概略構成>
本実施形態に係るレーザ加工装置1の概略構成について図1を用いて説明する。本実施形態に係るレーザ加工装置1は、PC(Personal Computer)7、レーザ加工部2、レーザコントローラ5などを備える。また、レーザ加工部2は、レーザヘッド部3および電源ユニット6などを有する。レーザ加工部2は、レーザコントローラ5から送信される情報に基づいて、加工対象物Wの加工面WAに対してレーザ光Lを2次元走査して文字、記号、図形等をマーキングするレーザ加工を行う。以下の説明において、レーザ加工を印字と記載する場合がある。
PC7は、例えばノートPCなどで実現され、LCD(Liquid Crystal Display)77、キーボード76、およびマウス78などを備え、ユーザからの加工命令を受け付ける。レーザコントローラ5はコンピュータなどで実現され、レーザ加工部2およびPC7と双方向通信可能に接続されている。レーザコントローラ5はPC7から送信された印字情報、制御パラメータ、各種指示情報等に基づいてレーザ加工部2を制御する。以後の説明において、方向は図1に示す方向を用いる。
レーザヘッド部3は、本体ベース11、レーザ光Lを出射するレーザ光出射部12、光シャッター部13、光ダンパー(不図示)、ハーフミラー(不図示)、ガイド光部15、反射ミラー17、光センサ20、ガルバノスキャナ18、およびfθレンズ19などを有し、不図示の略直方体形状の筐体カバーで覆われている。
レーザ光出射部12は、レーザ発振器21、およびビームエキスパンダ22などを有する。レーザ光出射部12は本体ベース11に取り付けられており、励起用レーザ光出射部40(後述)から出射される励起用レーザ光が光ファイバFを介して入射される。レーザ発振器21は、不図示の例えばYAGレーザおよび受動Qスイッチなどを有する。レーザ発振器21は光ファイバFを介して入射される励起用レーザ光に応じて、加工対象物Wの加工面WAに加工を行うためのパルス状のレーザ光Lを出射する。ビームエキスパンダ22は、レーザ発振器21と同軸に設けられており、レーザ光Lのビーム径を調整する。尚、レーザ発振器21がレーザ光Lを出射する方向が前方向であり、レーザヘッド部3の上下方向及び前後方向に直交する方向が、レーザヘッド部3の左右方向である。
光シャッター部13は、シャッターモータ26および平板状のシャッター27を有する。シャッター27は、シャッターモータ26のモータ軸に取り付けられて同軸に回転する。シャッター27は、ビームエキスパンダ22から出射されたレーザ光Lの光路を遮る位置に回転された際には、レーザ光Lを光ダンパーへ反射する。光ダンパーはシャッター27で反射されたレーザ光Lを吸収する。一方、シャッター27がビームエキスパンダ22から出射されたレーザ光Lの光路を遮らない位置に回転された際には、ビームエキスパンダ22から出射されたレーザ光Lは、光シャッター部13の前側に配置されたハーフミラーに入射する。ハーフミラーは、後側から入射されるレーザ光Lのほぼ全部を透過し、一部を反射ミラー17へ反射する。ハーフミラーを透過したレーザ光Lはガルバノスキャナ18に入射される。反射ミラー17は入射されたレーザ光Lを光センサ20へ反射する。光センサ20は、入射されたレーザ光Lの発光強度に応じた信号をレーザコントローラ5へ出力する。
ガイド光部15は、ガイド光レーザ28(図2)およびレンズ群(不図示)などを有する。ガイド光レーザ28は例えば赤色の、可視レーザ光を出射する半導体レーザである。レンズ群(不図示)は可視レーザ光を平行光に収束する。ガイド光部15はハーフミラーの右側に配置されている。ハーフミラーはガイド光部15から出射された可視レーザ光であるガイド光をガルバノスキャナ18へ向けて反射する。ここで、ハーフミラーにより反射されたガイド光の光路と、ハーフミラーを透過したレーザ光Lの光路とは一致する。
ガルバノスキャナ18は、本体ベース11の前側端部に形成された貫通孔(不図示)の上側に取り付けられている。ガルバノスキャナ18は、ガルバノX軸モータ31、ガルバノY軸モータ32、本体部33などを有する。ガルバノX軸モータ31およびガルバノY軸モータ32の各々は、モータ軸およびモータ軸の先端部に取り付けられた走査ミラーを有する。ガルバノX軸モータ31およびガルバノY軸モータ32は、各々のモータ軸が互いに直交し、各々の走査ミラーが互いに対向するように、本体部33に取り付けられている。各モータ31,32が回転することにより、各走査ミラーが回転する。これにより、レーザ光Lおよびガイド光が2次元走査される。ここで、走査方向は、レーザヘッド部3の方向において、前から後へ向かうY方向と、左から右へ向かうX方向である。
fθレンズ19は、ガルバノスキャナ18によって2次元走査されたレーザ光Lとガイド光とを下方に配置された加工対象物Wの加工面WAに収束させる。
電源ユニット6は、励起用レーザ光出射部40、励起用レーザドライバ51、電源部52などを有する。電源部52は不図示の電源コードを介して商用電源に接続される。電源部52は給電される交流電力を直流電力に変換し、レーザ加工部2の各部へ給電する。励起用レーザドライバ51は、レーザコントローラ5からの命令に応じて、励起用レーザ光出射部40を駆動する。励起用レーザ光出射部40は光ファイバFを介してレーザ発振器21と光学的に接続されている。励起用レーザ光出射部40は半導体レーザを有し、励起用レーザドライバ51から供給される駆動電流の電流値に応じたパワーの励起用レーザ光を光ファイバF内に出射する。レーザ発振器21は内部のエネルギーが所定値以上となると1つのパルスを出射する。従って、レーザ光Lのパルス周波数は、励起用レーザドライバ51から供給される駆動電流の電流値により制御される。
<レーザ加工装置の電気的構成>
次に、レーザ加工装置1の電気的構成について、図2を用いて説明する。PC7は、図1で示した構成の他に、制御部70、制御回路74などを有する。制御部70は、CPU71、RAM72、ROM73、およびHDD(Hard Disk Drive)75等を有する。CPU71はROM73に記憶されている各種のプログラムを実行することによって、制御回路74等を制御する。RAM72はCPU71が各種の処理を実行するための主記憶装置として用いられる。ROM73には制御プログラム、文字パラメータ情報、および反射率情報などが記憶されている。文字パラメータ情報とは、フォント毎のパラメータ情報であり、例えばストロークフォントの場合には、文字の中心の点の座標と、各点を結ぶ線を表す式のパラメータなどの情報である。また、アウトラインフォントの場合には、文字の輪郭線を構成する点の座標と、各点を結ぶ線を表す式のパラメータなどの情報である。HDD75は、後述する設定実行処理のプログラム、各種アプリケーションソフトウェアのプログラム、各種データファイル、および保護処理テーブル79(図9)などを記憶している。CPU71、RAM72、およびROM73は、不図示のバス線により相互に接続されている。また、CPU71とHDD75は、不図示の入出力インターフェースを介して接続されている。
制御回路74は、LCD77、キーボード76、マウス78などと電気的に接続されており、キーボード76およびマウス78が受け付けた操作を信号に変換して、CPU71へ出力する。また、CPU71からの命令に応じた表示画面をLCD77に表示させる。
レーザコントローラ5は、例えばコンピュータなどで実現され、CPU41、RAM42、ROM43等を有する。CPU41はROM43に記憶されている各種のプログラムを実行することによって、後述のガルバノコントローラ56、ガイド光レーザドライバ58、および励起用レーザドライバ51などを制御する。RAM42はCPU41が各種の処理を実行するための主記憶装置として用いられる。尚、CPU41、RAM42、ROM43は、不図示のバス線により相互に接続されている。
レーザヘッド部3は、図1で示した構成の他に、ガルバノコントローラ56、ガルバノドライバ36、およびガイド光レーザドライバ58などを有する。ガルバノコントローラ56は、レーザコントローラ5から入力された、後述するXY座標データおよびガルバノ走査速度情報などに基づいて、ガルバノX軸モータ31とガルバノY軸モータ32の駆動角度、回転速度等を算出して、駆動角度、回転速度を表すモータ駆動情報をガルバノドライバ36へ出力する。ガルバノドライバ36は、ガルバノコントローラ56から入力されたモータ駆動情報に基づいて、ガルバノX軸モータ31およびガルバノY軸モータ32を駆動する。
<レーザ照射処理>
次に、CPU71が実行するレーザ照射処理について図3〜9を用いて説明する。レーザ加工装置1の電源がONされ、PC7にてレーザ照射処理のためのアプリケーションが起動されると、PC7は受付画面をLCD77に表示する。ユーザは受付画面にて、加工したい文字、記号、図形などの情報である印字情報を入力する。ここで、ユーザが入力する、加工したい文字、記号、図形などのパターンを加工パターンと称する。例えば、「ABC」の文字を加工したい場合、ユーザは印字情報として、「ABC」の文字列、「ABC」の加工領域における位置、文字の大きさ、フォントなどを入力する。
ここで、ガルバノスキャナ18が行う走査の走査手順について説明する。走査手順は加工パターンの種類により予め決められている。加工パターンが塗り潰しのないパターンの場合には、ガルバノスキャナ18はパターンのアウトラインをベクター走査する。加工パターンが塗り潰しのあるパターンの場合には、まず、ガルバノスキャナ18はパターンのアウトラインをベクター走査し、次に、アウトラインで囲まれた領域を、走査方向に従って1行毎に走査する。尚、加工処理(後述)における走査方向の規定方向はX方向である。塗り潰しのある加工パターンの例は塗りつぶしのあるアウトラインフォントの文字、塗り潰しのある図形であり、塗り潰しのない加工パターンの例はストロークフォント、単線図形である。
CPU71は印字情報が入力されると、印字情報に基づいて印字データを作成する。ここで、印字データとは、印字するための情報であるXY座標データおよびガルバノ走査速度情報である。例えば、加工パターンが文字もしくは記号である場合には、ROM73に記憶されている文字パラメータ情報から、印字情報に含まれるフォントの種別に対応する情報を抽出し、印字情報に含まれる、大きさおよび位置に基づき、XY座標データを作成し、RAM72に記憶する。XY座標データとは、加工パターンの全ての線を線分に分解して、線分に対して始点座標、終点座標を指定したデータである。また、印字情報に基づいて、ガルバノスキャナ18の走査速度を表すガルバノ走査速度情報を作成する。
また、CPU71は印字情報に基づいて、ユーザが加工対象物Wの位置合わせをするために用いるガイド表示のためのガイドデータを作成する。ここで、ガイドデータとはXY座標のデータである。尚、ガイドデータに基づいて、可視レーザ光がガルバノスキャナ18により走査されて、加工面WAに描かれるガイドパターンは、加工パターンを簡略化したものである。次に、ガイドデータをレーザコントローラ5へ出力する。CPU41は、ガイドデータが入力されると、ガイドデータに基づいて、ガルバノコントローラ56およびガイド光レーザドライバ58を制御する。これにより、レーザ加工装置1によりガイドデータに基づいたガイド表示がされる。ユーザはガイド表示を用いて加工対象物Wの位置合わせを行う。
ユーザは位置合わせが終了すると、マウス78などを操作して、受付画面に表示される、加工に関する設定を受付ける加工設定ボタン(不図示)を選択する。加工設定ボタンが選択されると、CPU71は図3に示す設定実行処理を開始する。
まず、CPU71は図6に示す加工設定画面80をLCD77に表示させ、加工材料が変更されたか否かを判断する(S5)。ここで、加工材料の規定値は保護処理を要しない非鉄金属である。ユーザは、非鉄金属以外の加工材料を設定したい場合、加工材料を受付ける加工材料プルダウンメニュー83(図6)に表示される加工材料の中から所望の加工材料を選択する。加工材料プルダウンメニュー83の選択肢には、非鉄金属、鉄鋼、および樹脂がある。CPU71は加工材料プルダウンメニュー83にて選択されている加工材料が、規定値の非鉄金属から変更されている場合に加工材料が変更されたと判断し、規定値の非鉄金属から変更されていない場合に、加工材料が変更されていないと判断する。
CPU71は加工材料が変更されたと判断すると(S5:YES)、HDD75に記憶している保護処理テーブル79(図9)を参照し、保護処理を要する材料であるか否かを判断する(S7)。図9に示すように、保護処理テーブル79は、「材料種別」、「保護処理」、「エネルギー密度」、「パワー」、および「走査速度」の項目が1組とされたテーブルである。「材料種別」の値には非鉄金属、鉄鋼、樹脂がある。「保護処理」の値には要、不要がある。「エネルギー密度」、「パワー」、および「走査速度」は実験などにより予め決められた値が入力されている。尚、「エネルギー密度」、「パワー」、および「走査速度」の単位は、それぞれ、[J/m]、[W]、[mm/s]である。CPU71は保護処理テーブル79にて、加工材料プルダウンメニュー83にて選択されている加工材料を検索し、当該加工材料の「保護処理」の値が「要」である場合、保護処理を要する材料であると判断し、「不要」である場合、保護処理を要する材料でないと判断する。
ここで、保護処理について説明する。保護処理とは、加工のためのレーザ照射の後に、加工のためのレーザ出力よりも低出力でレーザを加工対象物Wに照射する処理である。例えば、加工対象物Wの材料がステンレスの場合、加工のためのレーザが照射され、照射された加工部分がクロム酸化膜である不動態被膜より深く削られた場合、内部の合金が剥き出しの状態となってしまう。保護処理を行わない場合、内部の合金が剥き出しの状態であるため、錆が発生してしまう。ここで、保護処理を行うと、発生した錆が除去され、内部の合金の表面に再度、保護膜となる不動態被膜が形成される。これにより、加工を行った後も加工対象物Wの耐食性などを維持することができる。尚、保護処理が有効な材料はステンレスに限らない。その他の鉄鋼においても、保護処理により、同様に、表面に緻密な酸化膜が形成されるものがある。以下の説明において、保護処理と区別するため、加工のためにレーザを照射する処理を加工処理と称する。このように、材料が非鉄金属および樹脂の場合には保護処理は要しない。そこで、CPU71は、予め保護処理の要・不要が入力されている保護処理テーブル79に基づき、保護処理を要する材料であるか否かに応じて、以後のステップを実行する。
上記したように、保護処理テーブル79の「保護処理」の値(要・不要)は、保護処理が有効である材料であるか否かが反映されたものである。従って、保護処理テーブル79において、保護処理が有効ではない非鉄金属および樹脂については、値が不要となっている。ここで、鉄鋼に分類される材料には種々の材料があり、例示したステンレスのように、保護処理が有効な材料もあれば、保護処理が有効ではない材料もある。保護処理が有効ではない材料の例は、炭素鋼である。そこで、後述するように、保護処理チェックボックス81(図6)にて、保護処理を実行するか否かが選択可能となっている。これにより、加工対象物Wの材料が鉄鋼に分類される材料であるものの、保護処理が有効ではない材料の場合には、ユーザは保護処理を実行させないようにすることもできる。
CPU71は保護処理を要する材料であると判断すると(S7:YES)、保護処理チェックボックス81(図6)にチェックがあるか否かを判断する(S9)。保護処理テーブル79の「保護処理」の値が要である材料の場合にも、ユーザは保護処理を実行させるか否かを選択することができる。保護処理を実行させたい場合、ユーザは保護処理チェックボックス81にチェックを入れる。保護処理チェックボックス81にチェックがあると判断すると(S9:YES)、詳細設定ボタン82(図6)を選択不可状態から選択可能状態へ変更する(S11)。詳細設定ボタン82は保護処理におけるパワーと走査速度の設定を受け付けるためのボタンである。ユーザは、保護処理におけるパワーと走査速度の確認もしくは変更を行いたい場合、詳細設定ボタン82を選択する。次に、詳細設定ボタン82が選択されたか否かを判断する(S13)。詳細設定ボタン82が選択されたと判断すると(S13:YES)、条件設定処理を実行する(S15)。
図4を用いて、条件設定処理について説明する。CPU71は条件設定処理を開始すると、図7に示す詳細設定画面90をLCD77に表示させる(S21)。ここでは、パワーの値を受付けるパワーテキストボックス91および走査速度の値を受付ける走査速度テキストボックス92には規定値が入力された状態で表示される。規定値は保護処理テーブル79に入力されている値である。ユーザが、例えば実験などにより、パワーおよび走査速度の最適値を求めている場合などには、当該最適値をパワーテキストボックス91および走査速度テキストボックス92に入力することもできる。次に、走査設定ボタン93が選択されたか否かを判断する(S23)。走査設定ボタン93が選択されたと判断すると(S23:YES)、走査設定処理を実行する(S25)。
図5を用いて、走査設定処理について説明する。尚、CPU71は走査設定処理を開始すると、印字情報に基づいて加工パターンの長手方向を検出する(S41)。例えば、CPU71は加工パターンの外側で、加工パターンと接する矩形である外接矩形を算出し、算出した外接矩形の長辺方向を長手方向とする。次に、加工パターンは塗り潰しがあるか否かを判断する(S43)。加工パターンは塗り潰しがあると判断すると(S43:YES)、塗り潰し方向とステップS41で検出した長手方向との平均方向を求め、平均方向を保護処理における走査方向に決定し(S45)、ステップS49へ進む。一方、加工パターンは塗り潰しがないと判断すると(S43:NO)、保護処理における走査方向をステップS41で検出した長手方向に決定し(S47)、ステップS49へ進む。
ステップS41〜S47について図10を用いて説明する。ここでは、加工パターン200が、図10(a)に示す、塗り潰しのある、一部を欠く楕円形である場合を例に説明する。長手方向および走査方向はX方向を基準線として、基準線となす角の角度により規定される。ステップS41において検出される加工パターン200の長手方向と基準線となす角の角度(以下、長手方向角度と称する)d1は30度である。また、加工処理における走査方向と、基準線となす角の角度(以下、走査方向角度と称する)d2は0度であるものとする(図9(b))。この場合、保護処理における走査方向角度d3は、長手方向角度d1と加工処理における走査方向角度d2との平均であるので、CPU71は15((30+0)/2)度と算出する(図9(c))。
加工処理における走査方向と長手方向とが異なる場合、保護処理の走査方向を加工パターンの長手方向とすると、加工処理における走査方向とする場合と比較し、走査する行が少なくなるため、レーザ加工装置1は走査にかかる時間を短くすることができる。一方、保護処理の走査方向を加工処理における走査方向とすると、加工処理により加工部分に形成された走査方向に沿った溝に形成された錆をきれいに飛ばすことができる。これにより、錆に遮られることなく、レーザ光Lを加工面WAに照射することができる。そこで、加工パターンに塗り潰しがある場合(S43:YES)には、長手方向と加工処理における走査方向との平均の方向を保護処理における走査方向とすることで、走査にかかる時間を加工処理よりも短くしつつ、錆をきれいに除去することができる。一方、加工パターンに塗り潰しがない場合(S43:NO)には、加工部分に形成される走査方向に沿った溝の数は少ないため、走査を短時間とすることを優先し、保護処理における走査方向を長手方向とする。
図5に戻り、ステップS49では、CPU71は図8に示す走査設定画面100をLCD77に表示させる。走査設定画面100には、チェックボックス101、印字走査方向テキストボックス102、長手方向テキストボックス103、保護走査方向テキストボックス104、走査方式ラジオボタン105、OKボタン106、およびcancelボタン107などが表示される。走査方式ラジオボタン105の規定値は片方向である。ここで、ステップS43の判断結果により、走査設定画面100の表示態様は異なる。尚、図8は、ステップS43においてYESと判断された場合の表示態様を示している。
CPU71はステップS43で、加工パターンは塗り潰しがあると判断した場合(S43:YES)には、チェックボックス101にチェックマークを入れ、印字走査方向テキストボックス102および長手方向テキストボックス103に値を入れて表示させる。尚、長手方向テキストボックス103は加工パターンによって一意に決定される値であるため、グレーアウト表示される。ここで、印字走査方向テキストボックス102は、加工処理における走査方向の入力を受け付けるテキストボックスであり、規定値である0が入力されて表示される。長手方向テキストボックス103は、ステップS41で検出した長手方向角度d1を表示するテキストボックスである。また、加工パターンは塗り潰しがあると判断された場合(S43:YES)には、保護走査方向テキストボックス104には、ステップS45で決定された値が入力されて表示される。尚、ユーザは加工処理の走査方向を規定値から変更して加工処理を実行させることもできる。加工処理の走査方向を変更したい場合、ユーザは印字走査方向テキストボックス102に所望の値を入力する。CPU71は印字走査方向テキストボックス102の値が変更されたと判断すると、ステップS45と同様に、保護処理における走査方向を決定し、決定した値を、保護走査方向テキストボックス104の入力値とする。また、ユーザは、加工処理における走査方向および長手方向によらず、所望の保護処理における走査方向にて保護処理を実行させることもできる。所望の走査方向にて保護処理を実行させたい場合、ユーザはチェックボックス101のチェックを外し、保護走査方向テキストボックス104に所望の値を入力する。
一方、加工パターンは塗り潰しがないと判断した場合(S43:NO)には、CPU71はチェックボックス101にチェックマークを入れず、保護走査方向テキストボックス104に、ステップS47で決定した値を入力して走査設定画面100を表示させる。
ユーザは、走査方式ラジオボタン105にて、走査方式を片方向もしくは双方向の何れか一方を指定することができる。片方向とは、走査方向を1方向のみとする走査方式であり、1行目の始点から終点までの走査を終えると、2行目の始点を1行目の始点の近傍として走査する方式である。一方、双方向とは、1行目の始点から終点までの走査を終えると、2行目の始点を1行目の終点の近傍として走査する方式である。ユーザは、保護処理の走査方向および走査方式の設定を終了すると、OKボタン106もしくはcancelボタン107を選択する。CPU71はOKボタン106が選択されたか否かを判断し(S51)、OKボタン106が選択されたと判断すると(S51:YES)、走査設定画面100の入力値をRAM72に記憶し(S53)、処理を終了する。一方、OKボタン106が選択されていないと判断すると(S51:NO)、cancelボタン107が選択されたか否かを判断し(S55)、cancelボタン107が選択されたと判断すると(S55:YES)、ステップS53をスキップし、処理を終了する。この場合、CPU71は保護処理における走査方向はステップS45,S47で決定した方向とし、走査方式は規定の方式とする。一方、cancelボタン107が選択されていないと判断すると(S53:NO)、ステップS51に戻り、OKボタン106もしくはcancelボタン107が選択されるまでステップS51,S55を繰り返し実行する。
図4に戻り、ステップS25の実行後、CPU71はOKボタン94(図7)が選択されたか否かを判断し(S27)、OKボタン94が選択されたと判断すると(S27:YES)、詳細設定画面90の入力値をRAM72に記憶し(S29)、処理を終了する。一方、OKボタン94が選択されていないと判断すると(S27:NO)、cancelボタン95(図7)が選択されたか否かを判断し(S31)、cancelボタン95が選択されたと判断すると(S31:YES)、ステップS29をスキップし、処理を終了する。この場合、CPU71はパワーおよび走査速度の値を規定値とする。一方、cancelボタン95が選択されていないと判断すると(S31:NO)、ステップS23に戻る。
図3に戻り、ステップS15の実行後、CPU71は加工開始ボタン87(図6)が選択されたか否かを判断し(S17)、加工開始ボタン87が選択されていないと判断すると(S17:NO)、ステップS5に戻る。一方、加工開始ボタン87が選択されたと判断すると(S17:YES)、レーザ照射処理を実行し(S19)、処理を終了する。詳しくは、レーザ照射処理において、CPU71は印字データをレーザコントローラ5へ出力する。CPU41は、印字データが入力されると、印字データに基づいて、ガルバノコントローラ56および励起用レーザドライバ51を制御する。これにより、レーザ加工装置1により印字データに基づいた加工処理がされる。次に、CPU71は、ステップS9においてYESと判断した場合、印字データおよび設定実行処理において決定した各入力値をレーザコントローラ5へ出力する。CPU41は、印字データおよび各入力値が入力されると、印字データおよび各入力値に基づいて、ガルバノコントローラ56および励起用レーザドライバ51を制御する。これにより、レーザ加工装置1は印字データおよび各入力値に基づいた保護処理を実行する。尚、各入力値とは、パワー、走査速度、保護処理における走査方向および走査方式のことである。詳しくは、加工パターンに塗り潰しがある場合、ガルバノスキャナ18は加工パターンのアウトラインをベクター走査し、次に、アウトラインで囲まれた領域を、ステップS45で決定した走査方向、もしくは、走査設定画面100の入力値に従って1行毎に走査する。また、加工パターンに塗り潰しがない場合、ガルバノスキャナ18は加工パターンを、ステップS45で決定した走査方向、もしくは、走査設定画面100の入力値に従って1行毎に走査する。これにより、レーザ加工装置1はステップS9においてYESと判断した場合、レーザ加工装置1は加工対象物Wの材料に応じたパワーおよび走査速度で、加工パターンに応じた走査方向で保護処理を実行することができる。
一方、ステップS5においてNOと判断した場合、ステップS7においてNOと判断した場合、ステップS9においてNOと判断した場合、CPU71は保護処理を省略する。ユーザは、加工対象物Wの材料を加工設定画面80にて選択することで、保護処理を要しない材料の場合には、保護処理を省略することができる。また、保護処理を要する材料の場合、保護処理テーブル79が保護処理におけるエネルギー密度の値を有しているため、ユーザはエネルギー密度の値を入力しなくても、手軽に保護処理を実行させることができる。
ここで、レーザ加工装置1はレーザ加工装置の一例であり、励起用レーザドライバ51、励起用レーザ光出射部40、およびレーザ光出射部12はレーザ光出射部の一例であり、ガルバノスキャナ18は走査部の一例であり、制御部70およびレーザコントローラ5は制御部の一例であり、ステップS7は判断処理の一例であり、ステップS9は受付処理の一例であり、保護処理テーブル79は対応データの一例であり、HDD75は記憶部の一例であり、ステップS25は決定処理の一例である。
以上、説明した実施形態によれば、以下の効果を奏する。
CPU71はステップS7において、保護処理を要しないと判断した場合、ステップS19のレーザ照射処理において、保護処理を行わない。また、ステップS7において、CPU71は材料毎の保護処理の要・不要の値を有する保護処理テーブル79に基づいて判断する。これにより、レーザ加工装置1は保護処理が不要の材料である場合には、レーザ照射処理において、保護処理を省略することができる。一方、レーザ加工装置1は保護処理を要する材料である場合であって、保護処理チェックボックス81に保護処理を行うことを示すチェックがあると判断した場合(S9:YES)には、レーザ照射処理において、保護処理を実行する。これにより、レーザ加工装置1は材料に応じて効率良く保護処理を施すことができる。
また、CPU71は保護処理を要する材料であると判断した場合(S7:YES)、ステップS9において、保護処理チェックボックス81に保護処理を行うことを示すチェックがあるか否かを判断する(S9)。これにより、材料が保護処理を要する場合においても、ユーザはレーザ加工装置1に保護処理を実行させるか否かを選択することができる。
また、CPU71は条件設定処理(S15)において、cancelボタン95が選択された場合、保護処理テーブル79が有するエネルギー密度を実現するパワーおよび走査速度を保護処理におけるパワーおよび走査速度とする。このように、CPU71は保護処理テーブル79に基づいて保護処理におけるエネルギー密度を決定することができる。
また、CPU71は走査設定処理(S25)において、加工パターンの長手方向および塗り潰しの有無に応じて、保護処理における走査方向を決定する。加工パターンに塗り潰しが有る場合には、長手方向と加工処理における走査方向との平均の方向を保護処理における走査方向に決定する。これにより、レーザ加工装置1は走査にかかる時間を加工処理よりも短くしつつ、錆をきれいに除去することができる。また、加工パターンに塗り潰しが無い場合には、長手方向を保護処理における走査方向に決定する。これにより、レーザ加工装置1は走査にかかる時間を短時間とすることができる。
<条件設定処理の別例1>
次に、条件設定処理の別例1について説明する。上記では、保護処理テーブル79は保護処理を要する材料の行に、エネルギー密度の値と、当該エネルギー密度を実現するパワーおよび走査速度の値を有していると説明したが、エネルギー密度に替えて、加工処理におけるエネルギー密度と保護処理におけるエネルギー密度との比率を項目としたテーブルを記憶する構成としても良い。具体的には、図11に示すように、保護処理テーブル300の保護処理におけるエネルギー密度の値は比率で表記される。ここで比率とは、保護処理におけるエネルギー密度を加工処理におけるエネルギー密度で除した値である。この構成によれば、加工処理におけるエネルギー密度が規定値から変更された場合に、加工処理におけるエネルギー密度の変更に応じて、保護処理におけるエネルギー密度を変更することができる。尚、保護処理におけるエネルギー密度は、レーザ光Lのパルス周波数およびガルバノスキャナ18の走査速度を調整することによって実現される。次に、所望のエネルギー密度とするために、走査速度およびパルス周波数を求める方法について説明する。
図12は、走査速度に対する重なり率のグラフであり、図13は重なり率に対する加工対象物Wが受けるエネルギー密度に関する係数のグラフである。重なり率とは、スポットのオーバーラップ量を数値化したものである。また、レーザ光Lのパルス1個当たりのエネルギー密度に係数を乗じた値が、加工対象物Wが受けるエネルギー密度となる。図12に示す様に、パルス周波数が小さいほど、走査速度が大きいほど、重なり率は小さくなる。図13に示す様に、重なり率が小さいほど、係数は小さくなる。つまり、加工対象物Wが受けるエネルギー密度を小さくしたい場合には、パルス周波数を小さくし、走査速度を大きくすれば良い。図12,13は例えば実験式、理論式などにより予め取得することができる。条件設定処理の別例1では、図12,13に示される関数をHDD75に予め記憶しているものとする。ここでは、保護処理におけるパルス1個当たりのエネルギーおよびスポット径は一定であるものとする。
ここでは、加工処理における平均パワーが5W、パルス周波数が30kHz、スポット径が50μm、走査速度が100mm/sである場合を例に説明する。エネルギー密度の比率が0.1、つまり保護処理におけるエネルギー密度を、加工処理におけるエネルギー密度の0.1倍としたい場合には、保護処理における係数を加工処理における係数の1/10とすれば良い。
ここでは、パルス周波数fを加工処理におけるパルス周波数fの3/5、即ち18(30×3/5)kHzとすることにする。尚、保護処理におけるパルス周波数fの値は、例えば、加工処理におけるパルス周波数fの値の3/5とするなど、固定値としても良く、加工処理におけるパルス周波数fの何割にするかを、エネルギー密度の比率に応じた関数としても良い。ここでは、固定値をHDD75に記憶しているものとする。次に、係数を決定するために、まず、加工処理における係数を求める。図12により、走査速度が100mm/s、パルス周波数fが30kHzである場合の重なり率は93%である。図13により、重なり率が93%における係数は10である。従って、保護処理にける係数は10の1/10の1にすればよい。ここで、係数が1とは重なり率が0%のことである。図12から、パルス周波数18kHz、重なり係数0%の時の走査速度は900mm/sである。従って、900mm/sより大きくすれば良い。尚、熱影響を考慮して、保護処理における走査速度は900mm/sにマージン値を加えた1000mm/sとすると良い。
条件設定処理の別例1では、レーザ加工装置1は上記の所望のエネルギー密度とするために、走査速度およびパルス周波数を求める方法の手順を示すプログラムをHDD75に記憶している。CPU71は、プログラムに従って、保護処理におけるエネルギー密度、パルス周波数、および走査速度を決定する。
以上、説明した条件設定処理の別例1によれば、以下の効果を奏する。
保護処理におけるエネルギー密度を実現する走査速度およびパルス周波数の値を予め記憶していない場合であっても、CPU71は保護処理におけるエネルギー密度を、走査速度およびパルス周波数を変更することにより実現することができる。
<条件設定処の別例2>
次に、条件設定処理の別例2について説明する。上記では、材料種別とエネルギー密度の対応関係の情報を保護処理テーブル79として記憶していると説明したが、材料種別よりも細分化した材料名とエネルギー密度との関係を情報として記憶する構成としても良い。具体的には、HDD75は、図14に示す保護処理テーブル301を記憶している。保護処理テーブル301は、保護処理テーブル79の項目に加え、「材料名」を項目として有する。CPU71は加工設定処理において、例えば加工設定画面80(図6)にて、材料名の選択を受付ける材料名プルダウンメニューを追加して表示させる。材料名プルダウンメニューの選択肢は保護処理テーブル301が有する材料名の値とする。ユーザは、加工材料プルダウンメニュー83にて鉄鋼を選択した場合には、さらに、材料名を選択する。CPU71は条件設定処理(S15)のステップS31でYESと判断した場合、保護処理テーブル301の選択された材料名に対応するエネルギー密度の値を保護処理のエネルギー密度の値に決定する。尚、所望のエネルギー密度を実現するパワー、走査速度、周波数の値は、保護処理テーブル79と同様に予め保護処理テーブル301が有する構成として、保護処理テーブル301を参照して決定しても良く、条件設定処理の別例1と同様に決定しても良い。材料種別が鉄鋼の場合であっても、保護処理におけるエネルギー密度の最適値は、組成が異なるため、材料の種類によって、異なる場合がある。例えば、SUS304の保護処理におけるエネルギー密度の最適値aは、SUS410の保護処理におけるエネルギー密度の最適値bよりも小さい。
以上、説明した条件設定処理の別例2によれば、以下の効果を奏する。
CPU71は保護処理におけるエネルギー密度を、鉄鋼などの材料種別よりも細分化された材料名に応じた値に決定することができる。
尚、本発明は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
例えば、上記では、保護処理において、印字データに基づいて、即ち加工パターンと同じ領域に、レーザ光Lを照射すると説明したが、これに限定されない。保護処理におけるレーザ光Lの照射領域を、加工パターンよりも大きい領域としても良い。加工処理において、レーザ光Lの照射領域の近傍もレーザ光Lの影響を受け、保護膜がダメージを受けている場合がある。そこで、加工パターンよりも大きい領域に保護処理を行うことで、影響を受けている近傍の領域においても、保護膜の形成を行うことができる。
また、上記では、保護処理において、印字データに基づいて、即ち加工パターンに塗り潰しがある場合には、まずアウトラインをベクター走査すると説明したが、これに限定されない。加工パターンに塗り潰しがある場合、保護処理においては、アウトラインをベクター走査を省略する構成としても良い。これにより、保護処理にかかる時間を短縮することができる。
また、上記では、加工パターンに塗り潰しがない場合、保護処理において、ステップS45で決定した走査方向、もしくは、走査設定画面100の入力値に従って1行毎に走査すると説明したが、これに限定されない。加工パターンに塗り潰しが無い場合、保護処理をベクター走査により行う構成としても良い。
また、保護処理テーブル79、保護処理テーブル300、および保護処理テーブル301はHDD75に予め記憶されていると説明した。各テーブルは、ユーザにより更新可能に構成されても良い。これにより、ユーザは実験などにより求めた、材料に応じたエネルギー密度の最適値を各テーブルに入力しておけば、レーザ加工を行う場合には、エネルギー密度の入力を省略することができる。
また、ステップS41において、CPU71は加工パターンの外接矩形の長辺方向を長手方向とすると説明したが、これに限定されない。長手方向を以下のように求めても良い。まず、CPU71は加工パターンを矩形に簡略化し、簡略化した矩形の外接円の中心と簡略化した矩形の各辺との距離が一番長い辺を求める。次に、外接円の中心を通り、距離が一番長い辺と直交する線を求め、線に沿う方向を長手方向とする。
1 レーザ加工装置
2 レーザ加工部
3 レーザヘッド部
5 レーザコントローラ
7 PC
12 レーザ光出射部
18 ガルバノスキャナ
40 励起用レーザ光出射部
41,71 CPU
51 励起用レーザドライバ
70 制御部
75 HDD

Claims (7)

  1. レーザ光を出射するレーザ光出射部と、
    前記レーザ光を走査する走査部と、
    前記レーザ光出射部および前記走査部を制御する制御部と、を備え、
    前記制御部は、
    加工パターンに基づいて、加工対象物に第1エネルギー密度の前記レーザ光を用いたレーザ加工を行う加工処理と、
    前記加工処理の後、前記加工パターンに基づいて、前記加工対象物に前記第1エネルギー密度よりも小さい第2エネルギー密度の前記レーザ光を照射する保護処理と、
    前記保護処理の実行に先立ち、前記加工対象物の材料種別に応じて前記保護処理を要するか否かを判断する判断処理と、を実行し、
    前記判断処理において、前記保護処理を要しないと判断した場合、前記保護処理を実行しないことを特徴とするレーザ加工装置。
  2. 前記制御部は、
    前記判断処理において、前記保護処理を要すると判断した場合、前記保護処理を実行するか否かの選択を受け付ける受付処理を実行することを特徴とする請求項1に記載のレーザ加工装置。
  3. 前記材料種別と前記第2エネルギー密度とを対応付ける対応データを記憶する記憶部を備え、
    前記制御部は、前記対応データに基づいて、前記保護処理において前記加工対象物に照射する前記第2エネルギー密度を、決定することを特徴とする請求項1または請求項2に記載のレーザ加工装置。
  4. 前記制御部は、前記保護処理において、
    前記走査部の走査速度および前記レーザ光のパルス周波数の少なくとも何れか一方を変更することより前記第2エネルギー密度を調整することを特徴とする請求項1乃至請求項3の何れかに記載のレーザ加工装置。
  5. 前記制御部は、
    前記保護処理における前記走査部の走査方向を、前記加工パターンに基づいた方向に決定する決定処理を実行することを特徴とする請求項1乃至請求項4の何れかに記載のレーザ加工装置。
  6. 前記制御部は、前記決定処理において、
    前記加工パターンの外接矩形を算出し、前記外接矩形の長辺方向を前記走査部の走査方向として決定することを特徴とする請求項5に記載のレーザ加工装置。
  7. 前記制御部は、前記決定処理において、
    前記加工パターンの外接矩形を算出し、算出された前記外接矩形の長辺方向と、前記加工処理における走査方向とに基づいて、前記走査部の走査方向を決定することを特徴とする請求項5に記載のレーザ加工装置。
JP2016250825A 2016-12-26 2016-12-26 レーザ加工装置 Active JP6760050B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016250825A JP6760050B2 (ja) 2016-12-26 2016-12-26 レーザ加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016250825A JP6760050B2 (ja) 2016-12-26 2016-12-26 レーザ加工装置

Publications (2)

Publication Number Publication Date
JP2018103213A true JP2018103213A (ja) 2018-07-05
JP6760050B2 JP6760050B2 (ja) 2020-09-23

Family

ID=62786238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016250825A Active JP6760050B2 (ja) 2016-12-26 2016-12-26 レーザ加工装置

Country Status (1)

Country Link
JP (1) JP6760050B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244704B1 (ja) 2022-07-11 2023-03-22 日鉄テックスエンジ株式会社 ステンレス鋼の耐食性向上処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034359A (ja) * 1996-07-24 1998-02-10 Miyachi Technos Corp スキャニング式レーザマーキング方法及び装置
JP2004114071A (ja) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd 加工方法、加工装置およびシリンダブロック
JP2010247206A (ja) * 2009-04-17 2010-11-04 Muneharu Kutsuna 複合材料のレーザ加工法
US20160368077A1 (en) * 2015-06-19 2016-12-22 Bharath Swaminathan Surface processing in additive manufacturing with laser and gas flow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034359A (ja) * 1996-07-24 1998-02-10 Miyachi Technos Corp スキャニング式レーザマーキング方法及び装置
US5965042A (en) * 1996-07-24 1999-10-12 Miyachi Technos Corporation Method and apparatus for laser marking with laser cleaning
JP2004114071A (ja) * 2002-09-25 2004-04-15 Nissan Motor Co Ltd 加工方法、加工装置およびシリンダブロック
JP2010247206A (ja) * 2009-04-17 2010-11-04 Muneharu Kutsuna 複合材料のレーザ加工法
US20160368077A1 (en) * 2015-06-19 2016-12-22 Bharath Swaminathan Surface processing in additive manufacturing with laser and gas flow
JP2018528872A (ja) * 2015-06-19 2018-10-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated レーザー及びガス流による付加製造の表面処理

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7244704B1 (ja) 2022-07-11 2023-03-22 日鉄テックスエンジ株式会社 ステンレス鋼の耐食性向上処理方法
JP2024009485A (ja) * 2022-07-11 2024-01-23 日鉄テックスエンジ株式会社 ステンレス鋼の耐食性向上処理方法

Also Published As

Publication number Publication date
JP6760050B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
US20170203390A1 (en) Laser machining device provided with laser emitter emitting laser beam and machining chamber
JPH1034359A (ja) スキャニング式レーザマーキング方法及び装置
US20180021886A1 (en) Laser machining apparatus with workpiece position adjusting capability relative to focal point of laser beam
JP2015196166A (ja) レーザ加工装置、レーザ加工方法及びプログラム
US10919110B2 (en) Data generating device setting machining condition suitable for foil placed on workpiece to be machined by irradiating laser beam thereon
US10576579B2 (en) Laser machining apparatus that machines surface of workpiece by irradiating laser beam thereon
JP6604078B2 (ja) レーザ加工装置
JP6760050B2 (ja) レーザ加工装置
JP2008221281A (ja) 自動溶接機の位置検出システム
JP6213501B2 (ja) レーザ加工装置、レーザ加工装置の制御プログラム及び制御方法
JP6794873B2 (ja) レーザ加工装置、プログラム、およびデータ記憶方法
US10350706B2 (en) Laser processing system and recording medium storing computer readable programs for controlling the same
JP6981442B2 (ja) レーザマーカ
JP7310498B2 (ja) レーザ加工システム及び制御プログラム
JP6287928B2 (ja) レーザ加工装置
JP6700614B2 (ja) レーザ加工装置
TW202234189A (zh) 用於教示雷射加工裝置之動作之教示裝置及教示方法
US10661385B2 (en) Laser machining apparatus projecting guide pattern onto workpiece by irradiating visible laser beam thereon
JP6269554B2 (ja) ビーム加工装置
JP6693410B2 (ja) レーザ加工装置
JP2019013971A (ja) レーザ加工装置、制御データ生成装置、およびレーザ加工装置の制御方法
JP6856045B2 (ja) レーザ加工装置および表示方法
JP6693449B2 (ja) レーザ加工装置、加工データ生成装置
JP2021137840A (ja) レーザ加工システム、制御装置、及び制御プログラム
JP6107779B2 (ja) レーザ加工装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150