JP2018103177A - 共役ジオレフィン製造用触媒の製造方法 - Google Patents

共役ジオレフィン製造用触媒の製造方法 Download PDF

Info

Publication number
JP2018103177A
JP2018103177A JP2017247949A JP2017247949A JP2018103177A JP 2018103177 A JP2018103177 A JP 2018103177A JP 2017247949 A JP2017247949 A JP 2017247949A JP 2017247949 A JP2017247949 A JP 2017247949A JP 2018103177 A JP2018103177 A JP 2018103177A
Authority
JP
Japan
Prior art keywords
mass
value
catalyst
parts
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017247949A
Other languages
English (en)
Other versions
JP6994807B2 (ja
JP2018103177A5 (ja
Inventor
成喜 奥村
Shigeki Okumura
成喜 奥村
佑太 中澤
Yuta Nakazawa
佑太 中澤
文吾 西沢
Bungo NISHIZAWA
文吾 西沢
友洋 小畑
Tomohiro Obata
友洋 小畑
大樹 元村
Daiki Motomura
大樹 元村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JP2018103177A publication Critical patent/JP2018103177A/ja
Publication of JP2018103177A5 publication Critical patent/JP2018103177A5/ja
Application granted granted Critical
Publication of JP6994807B2 publication Critical patent/JP6994807B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】共役ジオレフィンを製造するプロセスにおいて、特定の反応条件下にて高活性かつ高収率である触媒の製造方法を提供することを目的とする。【解決手段】以下の工程によって得られた触媒を特定の反応条件下において使用することで、高収率に共役ジオレフィンを製造することができることを見出し、本発明を完成させるに至った。工程(A1):複合金属酸化物の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件下で調製し、該混合溶液またはスラリーのpHを0.3以上8.0以下に制御するようアルカリ溶液を添加し、スプレー乾燥して乾燥粉体を得る工程、工程(A2):工程(A1)で得られた乾燥粉体を予備焼成し、予備焼成粉体を得る工程、工程(A3):工程(A2)で得られた予備焼成粉体を成形し、成形品を得る工程、工程(A4):工程(A3)で得られた成形品を本焼成する工程。【選択図】なし

Description

本発明は、高活性かつ高収率な新規な触媒の製造方法に関するものである。本発明は、炭素原子数4以上のモノオレフィン原料から酸化脱水素反応により共役ジオレフィンを、特にn−ブテン原料から酸化脱水素反応によりブタジエンを製造する際に、高活性かつ高収率な共役ジオレフィン製造用触媒の製造方法に関するものである。
従来、合成ゴム等の原料であるブタジエンは、工業的にはナフサ留分の熱分解および抽出により製造されているが、今後、ブタジエン市場への安定供給の悪化が懸念されることから、新たなブタジエンの製造方法が求められている。そこで、n−ブテンと分子状酸素を含む混合ガスから、触媒の存在下でn−ブテンを酸化脱水素する方法が注目されている。
工業プラントでの経済性の観点から、目的生成物であるブタジエンを高い収率および選択率で得られる点のみならず、通常(以下、通常とは一般的なビスマスモリブデート触媒を使用する酸化脱水素反応での反応浴温度を示す。)より低い反応浴温度においても高活性を維持し、運転することが求められる。すなわち、触媒が高収率および高選択率を示すことにより反応後に残存する原料n−ブテンをリサイクルするプロセスにおいても高い経済優位性を示すことができる。工業プラントにおける熱媒のランニングコストを抑制するため、低い反応浴温度でも高活性である触媒が求められている。
上記n−ブテン原料から酸化脱水素反応によるブタジエン製造プロセスにおいて、殊に高収率または高選択率を示す触媒の研究については既に数多くの報告がなされている。特許文献1は、特定の原子比におけるビスマスモリブデート複合金属酸化物触媒に関するものである。
特許文献2は、ルビジウムおよびケイ素の含有量を規定した複合金属酸化物触媒に関するものである。
特許文献3は、表面にゼオライトコーティング層を形成したビスマスモリブデート複合金属酸化物触媒に関するものである。
特許文献4は、調合順序や調合液のpH等を規定したビスマスモリブデート複合金属酸化物触媒に関するものである。
特許文献5にあるように、触媒の色をL表色系により明度や彩度に数値化して規定することで、工業的に優れた活性および選択率を示すビスマスモリブデート複合金属酸化物触媒を使用することは、プロピレンを部分酸化してアクロレインを製造するプロセスにおいて公知である。
以下に示すように、ビスマスモリブデート複合金属酸化物触媒において、その製造過程における調合液または調合したスラリーのpHを制御することで新規な触媒性能が得られる特許文献が公知である。特許文献6は、特定の結晶相を形成させるために調合液のpHを調節し水熱合成することにより得られるビスマスモリブデート複合金属酸化物触媒に関するものである。
特許文献7は、調合液のpHを調節し濃縮することにより得られるビスマスモリブデート複合金属酸化物流動層触媒に関するものである。
特許文献8は、調合液のpHを調節し共沈、乾燥、含浸、焼成させることにより得られるビスマスモリブデート複合金属酸化物触媒に関するものである。
特許文献9は、調合液のpHを調節し蒸発乾固することにより得られるビスマスモリブデート金属酸化物触媒に関するものである。
特許文献10は、調合液の滴下方法を規定し、さらにpHを調節することにより得られるビスマスモリブデート複合金属酸化物触媒に関するものである。
特許文献11は、調合液のpHを調節し、水熱合成、乾燥することにより得られる特定の金属組成比で規定されたビスマスモリブデート複合金属酸化物触媒に関するものである。
特許文献6〜11では、調合液のpHが高すぎるために、あるいは水熱合成法により調合液における各複合金属間の反応を促進しているために、調合液が共沈または一部沈殿を生じており、その後の工程がろ過工程および/または蒸発乾固工程および/または粉砕工程を必要とし、これら工程がバッチ処理となるために、工業触媒の製造プロセスとしては製造効率及び生産性が悪く、したがって触媒の製造コスト自体も増加してしまう点が課題であった。
国際公開第2014/086641号 特開2016−135470号公報 国際公開第2015/072820号 特許第5483114号公報 特許第5582708号公報 特許第5046214号公報 特許第4159759号公報 中国特許出願公開第104549338号明細書 特開昭53−10388号公報 国際公開第2015/190754号 米国特許出願公開第2010/0099936号明細書
本発明は、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するプロセスに使用する、高活性かつ高収率な共役ジオレフィン製造用触媒の製造方法を提供することを目的とする。
本発明者らは、前記課題を解決すべく鋭意研究の結果、以下の工程を含むことを特徴とする製造方法によって得られた触媒を、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するプロセスにおいて使用することで、高収率に共役ジオレフィンを製造することができることを見出し、本発明を完成させるに至った。
本発明は以下の(1)から(15)の特徴を単独または組み合わせて有するものである。即ち、本発明は、
(1)炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒の製造方法であって、下記工程を含むことを特徴とする方法、
工程(A1):複合金属酸化物の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件下で調製し、該混合溶液またはスラリーのpHを0.3以上8.0以下に制御するようアルカリ溶液を添加し、スプレー乾燥して乾燥粉体を得る工程、
工程(A2):工程(A1)で得られた乾燥粉体を予備焼成し、予備焼成粉体を得る工程、
工程(A3):工程(A2)で得られた予備焼成粉体を成形し、成形品を得る工程、
工程(A4):工程(A3)で得られた成形品を本焼成する工程、
(2)触媒活性成分として次の組成式(A)を満たす(1)に記載の触媒の製造方法、
Mo12BiFeCoNi・・・・(A)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウム、バナジウム、金、銀、銅、白金から選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.3<a<3.5、0.6<b<3.4、5<c<8、0<d<3、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)、
(3)L表色系におけるL値、a値、b値による、下記式で表される彩度パラメーターF1の値が、0.00≦F1≦12.0であることを特徴とする(1)に記載の製造方法に用いられる乾燥粉体、
F1={(L−53.5)+(a−10.0)+(b−13.0)0.5
(4)L表色系におけるL値、a値、b値がそれぞれ41.0≦L≦60.0、0.0≦a≦60.0、0.0≦b≦20.0であることを特徴とする(1)に記載の製造方法に用いられる乾燥粉体、
(5)L表色系におけるL値、a値、b値がそれぞれ50.0≦L≦60.0、8.0≦a≦25.0、0.0≦b≦20.0であることを特徴とする(1)に記載の製造方法に用いられる乾燥粉体、
(6)(3)乃至(5)のいずれか一項に記載の乾燥粉体を用いる(1)または(2)に記載の触媒の製造方法、
(7)L表色系におけるL値、a値、b値による、下記式で表される彩度パラメーターF2の値が、0.00≦F2≦10.0である(1)に記載の製造方法に用いられる予備焼成粉体、
F2={(L−52.0)+(a−5.0)+(b−11.0)0.5
(8)L表色系におけるL値、a値、b値がそれぞれ40.0≦L≦58.0、0.0≦a≦35.0、0.0≦b≦20.0のいずれかの値であることを特徴とする(1)に記載の製造方法に用いられる予備焼成粉体、
(9)L表色系におけるL値、a値、b値がそれぞれ44.0≦L≦58.0、0.0≦a≦20.0、0.0≦b≦16.0であることを特徴とする(1)に記載の製造方法に用いられる予備焼成粉体、
(10)(7)乃至(9)のいずれか一項に記載の予備焼成粉体を用いる(1)に記載の触媒の製造方法、
(11)下記式(S)で表されるQが、1.6≦−logQ≦10.0を満たすことを特徴とする(1)の工程(A2)で得られた予備焼成粉体、
Q=10(―pH)×(e+f)/{12−(b+c+d+g)}・・・・(S)
(式中、pHは(1)に記載の工程(A1)における混合溶液またはスラリーのpHであり、b、c、d、e、f、gは(2)に記載の組成式(A)における各々モリブデン原子12に対する鉄、コバルト、ニッケル、X(リチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素)、Y(マグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素)、Z(ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウム、バナジウム、金、銀、銅、白金から選ばれる少なくとも1種の元素)の原子比を示し、「log」は10の対数を示す。)、
(12)工程(A1)において、前記混合溶液またはスラリーのpHを0.3以上5.0以下に制御するようアルカリ溶液を添加することを特徴とする(1)、(6)、(10)のいずれか一項に触媒の製造方法、
(13)
工程(A1)において、前記アルカリ溶液がアンモニア水または炭酸アンモニウム水溶液であることを特徴とする(1)、(6)、(10)のいずれか一項に記載の触媒の製造方法、
(14)工程(A2)の予備焼成の温度が200℃以上600℃以下であり、工程(A4)の本焼成温度が200℃以上600℃以下である(1)、(6)、(10)のいずれか一項に触媒の製造方法、
(15)さらに(1)記載の工程(A3)の予備焼成粉体をバインダーとともに担体にコーティングする成形工程を有する予備焼成粉体の担持率が20質量%以上80質量%以下であって、触媒の平均粒径が2.0mm以上10.0mm以下である(1)、(6)、(10)のいずれか一項に触媒の製造方法、
に関する。
本発明による触媒の製造方法によって得られた高活性かつ高収率な触媒を使用することにより、製造効率及び生産性が高く、さらに高収率にブタジエン等の共役ジオレフィンを生成することができる。
本発明は、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造する反応に使用できる触媒の製造方法であり、好ましくはn−ブテンと分子状酸素を含む混合ガスから接触酸化脱水素反応によりブタジエンを製造する反応に使用できる触媒の製造方法に関し、以下、その詳細について説明する。
本発明においてn−ブテンとは、1−ブテン、トランス−2−ブテン、シス−2−ブテン、イソブチレンのうち、単一成分のガス、もしくは少なくとも2つの成分を含む混合ガスを意味するものとし、ブタジエンとは、より狭義には1,3−ブタジエンを意味するものとする。
本発明において高活性とは、通常より低い反応浴温度において、後述するn−ブテン転化率が一定以上の値を示すことを意味し、本発明において転化率とは後述するn−ブテン転化率と同義、また収率は後述するブタジエン収率と同義、さらに選択率とは後述するブタジエン選択率と同義である。
本発明の製造方法に使用する調合液とは、後述する触媒の製造工程(A1)または(B1)において調製される触媒活性成分である複合金属酸化物の原料のうち、少なくとも一成分を含む混合溶液またはスラリーを意味するものとする。
本発明の触媒の製造方法は、触媒活性成分の原料の混合溶液またはスラリーを調合し、次いで該混合溶液またはスラリーを乾燥することで得られた乾燥粉体を予備焼成し、成形、本焼成を有する。すなわち、本発明の触媒の製造方法は、調合、乾燥、予備焼成、成形、本焼成に係るそれぞれの工程につき、下記の特徴を有する。なお、含浸、乾燥、本焼成を有する触媒の製造方法であっても構わない。
工程(A1):触媒活性成分の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件下で調製し、該混合溶液またはスラリーのpHを0.3以上8.0以下、好ましくは0.3以上5.0以下、さらに好ましくは0.3以上4.0以下に制御するようアルカリ溶液を添加し、スプレー乾燥して乾燥粉体を得る工程。
上記工程(A1)において調合液のpHは、複合金属酸化物の各金属を含有する化合物を含む混合溶液またはスラリーをスプレー乾燥する直前のpHが好ましい。このpHが高すぎると後述する乾燥噴霧(スプレー乾燥)法においては、触媒活性成分原料が共沈または一部沈殿するために流路での目詰まり等が発生し均一な乾燥粉体が得られない、またはスプレー乾燥設備(スプレードライヤー)が安定して実施できない点が課題として生じうる。調合液のpHが高すぎることによる触媒活性成分原料の共沈または一部沈殿を避ける目的で、公知である分散剤を必要に応じて必要量投入する方法も本発明に包括される。
硝酸イオン濃度が低い場合、調合中の原料の成分である金属イオンの一部または全部が沈殿または共沈を生じ、スプレー乾燥に好ましくない。また、硝酸イオン濃度が高い場合には、得られる触媒に硝酸分が残留することで触媒の性能が低下することがある。
本発明の触媒の製造方法としては、その詳細は後述するが、さらに下記工程を含むことを特徴とする:
工程(A2):工程(A1)で得られた乾燥粉体を予備焼成し、予備焼成粉体を得る工程、
工程(A3):工程(A2)で得られた予備焼成粉体を成形し、成形品を得る工程、
工程(A4):工程(A3)で得られた成形品を本焼成する工程。
本発明の触媒の製造方法において、調製法は特に制限はないが、好ましいのは触媒の活性成分を粉末として得た後、有機助剤を添加または使用することなく成形する方法であり、以下に詳細を記載する。なお、以下では各工程の順を好ましい例として記載しているが、最終的な触媒製品を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。
工程(A1)調合と乾燥
触媒活性成分の原料の混合溶液またはスラリーを調製し、沈殿法、ゲル化法、共沈法、水熱合成法等の工程を経た後、乾燥噴霧法、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて、本発明の乾燥粉体を得る。この混合溶液またはスラリーは、溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、また適宜混合溶液またはスラリーにpH調整をする目的でアルカリ溶液を添加することが可能であり、触媒の活性成分の原料濃度も制限はなく、さらに、この混合溶液またはスラリーの液温、雰囲気等の調合条件および乾燥条件については、20℃から90℃の条件下で触媒の活性成分の原料の混合溶液またはスラリーを形成させ、適宜アルカリ溶液によりpHを調整し、これを噴霧乾燥器(スプレー乾燥器)に導入して乾燥器出口温度が70℃から150℃、得られる乾燥粉体の平均粒径が10μmから700μmとなるよう熱風入口温度、噴霧乾燥器内部の圧力、およびスラリーの流量を調節する方法である。上記スプレー乾燥により、前記蒸発乾固法やフリーズドライ法など公知のバッチ式乾燥法と比較すると生産の安定性、生産効率、および生産性を飛躍的に向上させることができ、工業触媒として触媒コストを低く抑制できる。また、本工程の混合溶液またはスラリーの調製から前記乾燥までにおいて、後述する無機助剤および/または有機助剤を任意の量で添加することも本発明の触媒の製造方法に属するものとする。さらに、上記アルカリ溶液の種類に関しても公知な塩基性溶液であればその濃度や成分および溶媒に制限はないが、好ましくはアンモニア水や炭酸アンモニウム水溶液である。
工程(A2)予備焼成
こうして得られた乾燥粉体を200℃以上600℃以下で予備焼成し、平均粒径が10μmから100μmである予備焼成粉体を得ることができる。この予備焼成の条件に関しても、焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において300℃以上600℃以下の範囲で1時間から12時間、空気雰囲気下による方法である。また、本工程の予備焼成前または予備焼成後において、後述する無機助剤および/または有機助剤を任意の量で添加することも本発明の触媒の製造方法に属するものとする。
工程(A3)成形
こうして得られた予備焼成粉体をそのまま触媒として使用することもできるが、成形して使用することもできる。成形品の形状は球状、円柱状、リング状など特に制限されないが、一連の調製で最終的に得られる触媒における機械的強度、反応器、調製の生産効率等を考慮して選択するべきである。成形方法についても特に制限はないが、以下に示す担体や有機助剤、無機助剤、バインダー等を予備焼成粉体に添加して円柱状、リング状に成形する際には打錠成形機や押出成形機などを用い、球状に成形する際には造粒機などを用いて成形品を得る。
担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒の性能、成形性や生産効率等を考慮して適切な範囲に選択されるべきである。担体と予備焼成粉体の混合の割合は、各原料の仕込み質量により、下記式より担持率として算出される。
担持率(質量%)=(成形に使用した予備焼成粉体の質量)/{(成形に使用した予備焼成粉体の質量)+(成形に使用した担体の質量)}×100
無機助剤の添加量は、予備焼成粉体の質量に対して0.1質量%から25質量%であることが好ましく、0.3質量%から10質量%がより好ましく、0.5質量%から5質量%が最も好ましい。また無機助剤の材質および成分組成にも特に制限はないが、たとえばEガラスのような無アルカリガラスや、シラン処理等各種化学的な不活性化処理を行ったガラスが、触媒反応に対する副生成物の生成などの悪影響を与えない点でより好ましい。また、無機助剤は、成形の前に粉砕工程を実施しても良く、粉砕の方法としては特に制限はないがたとえばボールミル、ロッドミル、SAGミル、ジェットミル、自主粉砕ミル、ハンマーミル、ペレットミル、ディスクミル、ローラーミル、高圧粉砕ロール、VSIミルなどを単独または組み合わせて実施され、この粉砕の対象は無機助剤単独でもよいが、予備焼成粉体その他成形工程に添加される触媒原料を混合したものでもよい。
本発明の触媒の製造方法に使用する無機助剤とは、主に600℃の熱処理においても焼失しない任意の無機物による任意の形状の助剤であり、後述する本焼成工程によりそのすべてが焼失しないものとする。無機助剤は、後述する本焼成工程においても残留するため、予備焼成粉体同士を結びつける役割があり、破損にかかる負荷が触媒に生じた際にも破損を抑制する効果が生じる。本発明において無機助剤の材質としてモース硬度は特に限定されないが、たとえば任意の硫化鉱物、酸化鉱物、ハロゲン化鉱物、無機酸塩鉱物、有機鉱物等を単独または組み合わせたものをガラス転移温度以上で熱処理したもののうちモース硬度が2以上のもの(本発明のガラス)が好ましく、これら材質の原料としては無機酸塩鉱物がさらに好ましい。また無機助剤に対して、酸処理、アルカリ処理、およびシラン処理等を各々単独または組み合わせて実施することで、触媒反応に不活性となる点で好適となる。
本発明において有機助剤とは、主に200℃以上600℃以下の熱処理により焼失する有機物よりなる任意の粉状、顆粒状、繊維状、鱗片状の助剤とし、後述する本焼成工程によりその一部またはすべてが焼失するものとし、たとえばポリエチレングリコールや各種エステルなどの重合物またはポリマービーズ、高吸水性樹脂の乾燥体または任意の吸水率による吸水物、各種界面活性剤、小麦粉または精製デンプン等の各種デンプン類、および結晶性またはアモルファス状のセルロースおよびその誘導体、が挙げられる。
ここで、本発明におけるバインダーとは、その分子直径が予備焼成粉体の平均粒径に対して0.001以下の範囲である化合物群からなる単独または組み合わせにより構成される液体とし、例えば次のようなものが挙げられる。すなわち、液状の有機溶剤、有機物の分散体、水溶性有機溶剤、およびそれらと水の任意の割合での混合物であり、特に制限はないが、グリセリン等の多価アルコールの水溶液またはイオン交換水が好ましく、さらにイオン交換水が成形性の観点から最も好ましい。バインダーは水または有機物を含むため、後述する本焼成工程にてその一部またはすべてが焼失するが、一般にバインダーに使用される有機物の分子直径は予備焼成粉体の平均粒径と比較すると十分に小さい。また、このバインダーに前記触媒原料の溶液を使用することで、工程(A1)とは異なる態様で触媒の最表面に元素を導入することも可能である。
コーティングによる担持成形の方法としてバインダーの使用量は、予備焼成粉体100質量部に対して2質量部から60質量部であり、10質量部から50質量部がより好ましい。本発明の反応は酸化的脱水素であり発熱反応であるため、触媒内部の放熱のため、さらには生成した共役ジオレフィンの効率的な拡散による、コーク状物質の生成および/または滞留の抑制のため、担持成形が最も好ましい成形方法である。
工程(A4)本焼成
このようにして得られた予備焼成粉体または成形品は、反応に使用する前に200℃以上600℃以下で再度焼成(本焼成)することが好ましい。本焼成に関しても、焼成時間や焼成時の雰囲気について特に制限はなく、焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において300℃以上600℃以下の温度範囲で1時間から12時間、空気雰囲気下による方法である。
本発明の触媒の製造方法において全製造工程とは、触媒原料から本発明の触媒を得るまでの、工程(A1)から工程(A4)の単独または組み合わせによる全ての工程である。本発明において、成形工程とは、工程(A3)のうちその一部またはその全部である。
以上の調製により得られた触媒は、その形状やサイズに特に制限はないが、反応管への充填の作業性と充填後の反応管内の圧力損失等を勘案すると、形状は球形状、平均粒径は2.0mmから10.0mm、好ましくは3.0mmから8.0mm、より好ましくは3.5mmから6.5mmであり、また触媒活性成分の担持率は20質量%から90質量%、より好ましくは25質量%から80質量%、さらに好ましくは30質量%から75質量%となる。
本発明の触媒の製造方法によって得られた触媒は、式(A)で表される組成の触媒活性成分を含有することが好ましい。
Mo12BiFeCoNi・・・・(A)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウム、バナジウム、金、銀、銅、白金から選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.3<a<3.5、0.6<b<3.4、5<c<8、0<d<3、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)
本発明の触媒の製造方法によって得られる触媒の各金属元素の原料としては特に制限はないが、各金属元素を少なくとも一種含む硝酸塩、亜硝酸塩、硫酸塩、アンモニウム塩、有機酸塩、酢酸塩、炭酸塩、次炭酸塩、塩化物、無機酸、無機酸の塩、ヘテロポリ酸、ヘテロポリ酸の塩、水酸化物、酸化物、金属、合金等、またはこれらの混合物を用いることができる。このうち好ましいのは硝酸塩、最も好ましくは硝酸セシウムである。硝酸塩を原料として用いることにより、本発明のように調合液にアルカリ溶液を添加した場合でも、調合液は共沈または沈殿を生じず、適度な粘度のスラリーとなり、スプレー乾燥による乾燥が可能となり、高い生産性で触媒の製造が可能となり、製造コストを低く抑えることが可能となる。すなわち、本発明では、原料として硝酸塩原料またはそれに準ずる酸成分を適度に含んだ原料を使用することにより、上記の通り製造コストを低く抑えることが可能となる。各金属元素の酸成分の含有率としては、各金属元素単独での原料の飽和水溶液のpHで規定でき、−5.0以上10.0以下が好ましく、−3.0以上7.0以下がさらに好ましく、−1.0以上5.0以下が最も好ましい。
上記各金属元素の原料として硝酸塩を一部または全部使用した場合、各々の金属元素における原料中の硝酸イオン分としての質量含有率の好ましい範囲は以下となる。すなわち、ビスマス、鉄、コバルト、ニッケル原料ではいずれも1質量%以上90質量%以下、好ましくは15質量%以上70質量%以下、より好ましくは30質量%以上50質量%以下である。式(A)中、Xで表現される元素の原料では1質量%以上95質量%以下、好ましくは20質量%以上90質量%以下、より好ましくは30質量%以上90質量%以下であり、式(A)中、Y、Zで表現される元素の原料ではいずれも1質量%以上95質量%以下、好ましくは10質量%以上90質量%以下、より好ましくは20質量%以上80質量%以下、最も好ましくは30質量%以上70質量%以下である。
さらに、乾燥を行う直前の調合液における硝酸イオン濃度として、8.0質量%以上50質量%以下、好ましくは9.0質量%以上45質量%以下、さらに好ましくは10.0質量%以上40質量%以下、最も好ましくは11.0質量%以上30質量%以下となり、同様に乾燥を行う直前の調合液におけるアンモニウムイオン濃度としては、1.0質量%以上10質量%以下、好ましくは1.2質量%以上8質量%以下、さらに好ましくは1.5質量%以上6質量%以下、最も好ましくは1.7質量%以上4質量%以下となる。
[調合液のpHの測定]
pHの測定方法に関しては、公知である方法を適用すればその制限はないが、例えば次の方法が挙げられる。HANNA製pHep5を、pH4.01および7.01のpH標準液により2点校正し、測定対象に10秒以上浸漬させ浸漬中にそのpHを確認する。この作業を1セットとし、測定箇所を変えて2セット以上確認したpHを平均化し、その触媒の調合液のpHとする。校正は、必要に応じてpH10.01のpH標準液を加えて3点校正とし、また校正から測定作業までの時間間隔が3時間以上経過した場合には再校正することとする。
本発明の好ましい触媒の製造方法で得られる触媒は、上記工程において以下の条件を満たすことが好ましい。すなわち、
上記工程(A1)で得られる乾燥粉体において、L表色系で示したL値、a値、b値による、下記式で表されるパラメーターF1の値が、0.00≦F1≦12.0、好ましくは0.20≦F1≦10.0、最も好ましくは0.40≦F1≦8.0を満たす乾燥粉体を用いることで得られる触媒である。
F1={(L−53.5)+(a−10.0)+(b−13.0)0.5
本発明の好ましい触媒の製造方法で得られる触媒は、上記工程(A1)で得られる乾燥粉体において、L表色系で示したL値が41.0≦L≦60.0、好ましくは45.0≦L≦60.0、最も好ましくは50.0≦L≦60.0を満たし、かつ上記L値の範囲内においてのa値とb値が、それぞれ0.0≦a≦60.0、0.0≦b≦20.0、好ましくは2.0≦a≦45.0、0.0≦b≦20.0、更に好ましくは4.0≦a≦35.0、0.0≦b≦20.0、また更に好ましくは6.0≦a≦35.0、0.0≦b≦20.0、最も好ましくは、8.0≦a≦25.0、0.0≦b≦20.0のいずれかの値となる乾燥粉体を用いることで得られる触媒である。
本発明の好ましい触媒の製造方法で得られる触媒は、上記工程において以下の条件を満たすことが好ましい。すなわち、
上記工程(A2)で得られる予備焼成粉体において、L表色系で示したL値、a値、b値による、下記式で表されるパラメーターF2の値が、通常は0.00≦F2≦10.0、好ましくは0.20≦F2≦10.0、更に好ましくは0.40≦F2≦10.0、最も好ましくは0.60≦F2≦10.0を満たす予備焼成粉体を用いることで得られる触媒である。
F2={(L−52.0)+(a−5.0)+(b−11.0)0.5
本発明の好ましい触媒の製造方法によって得られる触媒は、上記工程(A2)で得られる予備焼成粉体において、L表色系で示したL値が通常は40.0≦L≦58.0、好ましくは42.0≦L≦58.0、更に好ましくは44.0≦L≦58.0、また更に好ましくは46.0≦L≦58.0、最も好ましくは48.0≦L≦58.0を満たし、かつ上記L値の範囲内においてのa値とb値が、それぞれ0.0≦a≦35.0、0.0≦b≦20.0、好ましくは0.0≦a≦25.0、0.0≦b≦17.5、更に好ましくは0.0≦a≦20.0、2.0≦b≦15.0、最も好ましくは、0.2≦a≦15.0、4.0≦b≦12.5のいずれかの値となる予備焼成粉体を用いることで得られる触媒である。
ここで、L表色系とは、JISZ8729で規定される三次元の近似的な均等色空間における色座標a、b及び明度Lのことである。aは、プラス側で値が大きいほど赤味が強く、マイナス側で値が大きいほど緑色味が強いことを表し、bはプラス側で値が大きいほど黄色味が強く、マイナス側で値が大きいほど青味が強いことを表す。また、明度Lは、0に近づくほど黒色味が強く100に近づくほど白味が強いことを表し、F1およびF2は、値が大きいほど明るく、かつ色鮮やかであることを表す。上述の通り、本発明においては乾燥粉体および予備焼成粉体がそれぞれ特定のL値、a値、b値に近ければより好ましいということは、それぞれ特定の明度および彩度を取る乾燥粉体および予備焼成粉体を使用して製造された触媒が、炭素原子数4以上のモノオレフィンから共役ジオレフィンを製造する反応において高活性かつ高収率を示すことを意味する。
また、原因は不明であるが、焼成後、一部の触媒表面に色むらが生じる場合がある。そのような場合であっても、色むらの生じた触媒の表面を削りとった粉粒物を乳鉢などにより均一化し、その均一化した粉粒物を固形化させたもののL値、a値、b値が前記範囲内であれば本発明に包括される。また、本質的に本発明に規定された色の範囲内にある触媒も包括されるものとする。すなわち前記L表色系以外の表色系は、混色系および顕色系を問わず、たとえばXZ表色系、マンセル表色系やNCS表色系などが挙げられる。
本発明の触媒の製造方法によって得られる触媒は、式(S)で表現される触媒活性成分の組成および製造パラメーターであるQが、通常は1.60≦−logQ≦10.00、好ましくは1.60≦−logQ≦6.50、さらに好ましくは1.60≦−logQ≦5.00、最も好ましくは1.60≦−logQ≦4.00、を満たすことが好ましい。
Q=10(―pH)×(e+f)/{12−(b+c+d+g)}・・・・(S)
(式中、pHは前記工程(A1)における混合溶液またはスラリーのpHであり、b、c、d、eは各々モリブデン原子12に対する鉄、コバルト、ニッケル、X(リチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素)、Y(マグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素)、Z(ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウム、バナジウム、金、銀、銅、白金から選ばれる少なくとも1種の元素)の原子比を示し、「log」は10の対数を示す。)
本発明の触媒の製造方法によって得られた触媒を使用して炭素原子数4以上のモノオレフィンから共役ジオレフィンを製造する反応の条件は、原料ガス組成として1容量%から20容量%のモノオレフィン、5容量%から20容量%の分子状酸素、0容量%から60容量%の水蒸気及び0容量%から94容量%の不活性ガス、例えば窒素、炭酸ガスを含む混合ガスを用い、反応浴温度としては200℃から500℃の範囲であり、反応圧力としては常圧から10気圧の圧力下、本発明の触媒成形体に対する原料ガスの空間速度(GHSV)は350hr−1から7000hr−1の範囲、より好ましくは500hr−1から4000hr−1の範囲となる。反応の形態として固定床、移動床、および流動床の中で制約はないが、固定床が好ましい。さらにn−ブテンに含まれる1−ブテンのモル組成比は0以上90未満、好ましくは0以上30未満、より好ましくは0以上10未満であり、シス−2−ブテンのモル組成比は0以上90未満、好ましくは1以上60未満、より好ましくは1以上40未満であり、トランス−2−ブテンのモル組成比は0以上90未満、好ましくは1以上80未満、より好ましくは1以上70未満である。また、ブテン原料には調達元によりノルマル―ブタン(n−ブタン)が含まれることがあるが、n−ブタンは、前記反応浴温度領域にて、本発明の触媒のようなビスマスモリブデート複合金属酸化物触媒においては反応性がなく、前記不活性ガスと同様に扱うこととし、そのモノオレフィンにおけるモル組成比は0以上90未満、好ましくは0以上50未満、さらに好ましくは0以上10未満である。
以下、実施例により本発明をさらに詳細に説明するが、本発明はその趣旨を超えない限り、以下の実施例に限定されるものではない。なお、以下において、%は特に断りがない限りモル%を意味する。また、以下において、n−ブテン転化率、ブタジエン収率、TOSの定義は、以下の通りである。
n−ブテン転化率(モル%)
=(反応したn−ブテンのモル数/供給したn−ブテンのモル数)×100
ブタジエン収率(モル%)
=(生成したブタジエンのモル数/供給したn−ブテンのモル数)×100
TOS=混合ガス流通時間(時間)
表記上はL*値、a*値、b*値、F1値、F2値の実測値を小数点第2位にて四捨五入している。
実施例1
(触媒1の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに13質量%のアンモニア水165質量部を母液1に加え、pHを1.4に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ55.4、9.7、13.7、2.02)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ54.7、3.7,10.4、3.07)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒1を得た。
実施例2
(触媒2の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに13質量%のアンモニア水295質量部を母液1に加え、pHを2.3に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ51.5、10.0、11.6、2.42)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ54.5、4.8、10.4、2.57)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒2を得た。
実施例3
(触媒3の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液70質量部を母液1に加え、pHを0.4に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ53.9、10.0、14.2、1.21)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ50.9、4.6、9.8、1.72)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒3を得た。
実施例4
(触媒4の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液155質量部を母液1に加え、pHを0.8に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ55.7、9.8、15.6、3.41)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ52.6、4.6、10.7、0.80)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒4を得た。
実施例5
(触媒5の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液300質量部を母液1に加え、pHを1.4に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ56.2、9.5、14.3、2.98)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ54.6、5.0、10.7、2.64)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒5を得た。
実施例6
(触媒6の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液360質量部を母液1に加え、pHを1.7に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ51.7、9.8、11.8、2.15)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ53.4、4.6、10.3、1.63)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒6を得た。
実施例7
(触媒7の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液400質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ54.0、9.8、12.8、0.53)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ52.0、5.1、9.4、1.61)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒7を得た。
実施例8
(触媒8の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液460質量部を母液1に加え、pHを2.3に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ54.9、9.6、13.6,1.5)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ51.8、4.4、9.5、1.68)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒8を得た。
実施例9
(触媒9の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液720質量部を母液1に加え、pHを3.6に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。このスプレードライによる乾燥工程において、pHが高くなったことにより母液1は粘度が高く、スプレードライを実施した後の調合釜には若干のスラリー残留物が見られた。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒9を得た。
実施例10
(触媒10の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加えた。この母液1をスプレードライ法にて、以下の方法にて乾燥させた。スプレードライヤーの投入口の前段にて16質量%の炭酸アンモニウム水溶液1535質量部の分を、母液1および炭酸アンモニウム水溶液が各々一定の流量比になるようポンプで制御して配管内にて母液1と炭酸アンモニウム水溶液を混合してその混合液のpHが7.3となるよう制御し、混合からスプレードライヤー投入までの滞留時間を10秒とした。この混合液において、pHが高くなったことにより粘度が高く、スプレードライの運転が不安定であったものの、均一な乾燥粉体が得られた。この乾燥粉体(L値、a値、b値、F1がそれぞれ50.5、8.8、10.7、3.97)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ56.1、4.0、10.2、4.29)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒10を得た。
実施例11
(触媒14の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄419質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水742mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液400質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ55.1、10.2、16.8、4.11)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.8:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ48.7,3.5,9.2、4.03)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒14を得た。
実施例12
(触媒15の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト740質量部及び硝酸ニッケル220質量部を60℃に加温した純水711mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに16質量%の炭酸アンモニウム水溶液400質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ54.9,10.0、15.4、2.78)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.7:2.0:0.04、L値、a値、b値、F2がそれぞれ49.1,4.4、10.9、2.97)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒15を得た。
実施例13
(触媒16の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム1.5質量部および硝酸カリウム1.5質量部を純水66mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに13質量%のアンモニア水230質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ55.0、10.1、15.2、2.60)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs:K=12:0.9:2.5:6.9:2.0:0.02:0.04、L値、a値、b値、F2がそれぞれ52.8、4.4,11.2、0.99)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒16を得た。
実施例14
(触媒17の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)23質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに13質量%のアンモニア水230質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ54.2、10.2、15.1、2.23)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ54.3、4.8、11.3,2.33)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒17を得た。
実施例15
(触媒22の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄427質量部、硝酸コバルト762質量部及び硝酸ニッケル176質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス147質量部を60℃に加温した純水155mlに硝酸(60質量%)37質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに13質量%のアンモニア水230質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ58.9、10.1、18.9、7.96)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.8:2.8:6.9:1.6:0.04、L値、a値、b値、F2がそれぞれ56.6、8.2、15.1,6.96)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒22を得た。
実施例16
(触媒23の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄534質量部、硝酸コバルト762質量部及び硝酸ニッケル110質量部を60℃に加温した純水745mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに13質量%のアンモニア水230質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ59.3、9.8、18.2、7.83)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:3.5:6.9:1.0:0.04、L値、a値、b値、F2がそれぞれ56.9、10.8、14.6、8.37)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒23を得た。
実施例17
(触媒24の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス128質量部を60℃に加温した純水136mlに硝酸(60質量%)33質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに13質量%のアンモニア水230質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ59.2、2.4、18.7、11.09)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.7:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ57.8、11.1、15.3、9.49)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、本発明の触媒24を得た。
比較例1
(触媒11の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄297質量部、硝酸コバルト718質量部及び硝酸ニッケル264質量部を60℃に加温した純水678mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加え、pHが0.1であることを確認した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ57.5,9.9,14.6、4.30)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.0:6.5:2.4:0.04、L値、a値、b値、F2がそれぞれ56.6、5.7、12.8、4.96)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、520℃、5時間の条件で焼成し、比較用の触媒11を得た。
比較例2
(触媒12の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、pHが0.2であることを確認した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ57.3、6.4、15.3、5.70)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04、L値、a値、b値、F2がそれぞれ56.4、3.7、13.4、5.16)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、比較用の触媒12を得た。
比較例3
(触媒13の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム2.9質量部を純水33mlに溶解させて、母液1に加えた。次に、硝酸第二鉄381質量部、硝酸コバルト762質量部及び硝酸ニッケル220質量部を60℃に加温した純水722mlに溶解させ、母液1に加えた。続いて硝酸ビスマス170質量部を60℃に加温した純水181mlに硝酸(60質量%)43質量部を加えて調製した硝酸水溶液に溶解させ母液1に加え、さらに顆粒状の炭酸アンモニウム90質量部を母液1に加え、pHを2.0に調製した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:0.9:2.5:6.9:2.0:0.04)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、比較用の触媒13を得た。
比較例4
(触媒18の調製)
比較例1で得られた粒径4.4mmの球状成形品を、530℃、5時間の条件で焼成し、比較用の触媒18を得た。
比較例5
(触媒19の調製)
硝酸第二鉄380質量部、硝酸亜鉛140質量部を60℃に加温した純水300mlに溶解させ、撹拌させながら10質量%の水酸化ナトリウム水溶液340質量部を加え、pHを7.0として共沈物を得た。この共沈物を体積換算で10倍のイオン交換水で10回減圧濾過により洗浄した後、110℃で24時間乾燥させ、ボールミルで粉砕し、乾燥粉体(L値、a値、b値、F1がそれぞれ52.0,63.4,24.3,54.57)を得た。次いで得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はZn:Fe=1:2、L値、a値、b値、Eがそれぞれ51.2,36.4,21.3,33.04)を、転動造粒法にてバインダーとして33質量%グリセリン溶液を亜鉛フェライト粉末に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、500℃、5時間の条件で焼成し、比較用の触媒19を得た。
比較例6
(触媒20の調製)
撹拌モーターを備えた調合槽(A)に95℃の脱イオン水600部とタングステン酸アンモニウム16質量部を加え、撹拌する。次に、メタバナジン酸アンモニウム18質量部、モリブデン酸アンモニウム110質量部を溶解する。次に、三酸化アンチモン3.8質量部を加える。脱イオン水96質量部の入った調合槽(B)に硫酸銅16質量部と硝酸セシウム0.05質量部を溶解し、その溶液を調合槽(A)に加えpH3.0のスラリー溶液を得た。噴霧乾燥機の出口温度が約100℃になるように送液量を調整して上記で得られたスラリー溶液を乾燥した。このようにして得られた乾燥粉体(L値、a値、b値、F1がそれぞれ40.3、−2.0、−0.6,22.43)を、390℃で約5時間焼成(予備焼成)した。次いで予備焼成体をボールミルで粉砕し、予備焼成粉体(仕込み原料から計算される原子比はMo:V:W:Cu:Sb:Cs=12:3.0:1.2:1.2:0.5:0.01、L値、a値、b値、F2がそれぞれ39.7、−1.2、−0.5、17.96)を得た。転動造粒法にて不活性担体36質量部にグリセリンの20質量%水溶液2.4部を振りかけながら、上記で得られた12質量部の予備焼成粉体を担持率が25重量%となるよう球状に担持成形した。得られた成型品を390℃で5時間焼成し、比較用の触媒20を得た。
比較例7
(触媒21の調製)
ヘプタモリブデン酸アンモニウム800質量部を80℃に加温した純水3000質量部に完全溶解させた(母液1)。次に、硝酸セシウム11.0質量部を純水125mlに溶解させて、母液1に加えた。次に、硝酸第二鉄267質量部、硝酸コバルト791質量部及び硝酸ニッケル88質量部を60℃に加温した純水607mlに溶解させ、母液1に加えた。続いて硝酸ビスマス306質量部を60℃に加温した純水324mlに硝酸(60質量%)78質量部を加えて調製した硝酸水溶液に溶解させ、母液1に加え、pHが0.1であることを確認した。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体(L値、a値、b値、F1がそれぞれ60.5、7.9、15.4、7.73)を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体(仕込み原料から計算される原子比はMo:Bi:Fe:Co:Ni:Cs=12:1.7:1.8:7.2:0.8:0.15、L値、a値、b値、F2がそれぞれ59.6、4.5、13.5、7.98)に対して5質量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33質量%グリセリン溶液を予備焼成粉体に対して33質量%用い、不活性の担体に、担持率が50質量%となるように球状に担持成形した。こうして得られた粒径4.4mmの球状成形品を、520℃、5時間の条件で焼成し、比較用の触媒21を得た。
上記実施例および比較例で得られた触媒を、以下の方法により反応評価した。各触媒53mlをステンレス鋼反応管に充填し、ガス体積比率がn−ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV1200hr−1の条件で、反応浴温度330℃にてTOS20時間以上のエージング反応後、反応管出口で、コンデンサーにより液成分とガス成分を分離し、ガス成分中の各成分を各々水素炎イオン化検出器と熱伝導検出器が装着されたガスクロマトグラフで定量分析した。ガスクロマトグラフにより得られた各データは出口ガス組成を模した混合ガスによりファクター補正し、n−ブテン転化率、ブタジエン収率を算出した。なお、本反応で使用したn−ブテンのモル組成比は、1−ブテン:シス−2−ブテン:トランス−2−ブテン=0:32:68であった。
表1に実施例および比較例によるn−ブテン転化率、ブタジエン収率の結果を示す。表1より明らかなように、本発明により、高いGHSVかつn−ブテン濃度条件にもかかわらず、n−ブテン転化率およびブタジエン収率が共に高い触媒を得ることができ、その触媒性能に関わるパラメーターとしては調合液におけるpHの制御を特定の範囲内となるよう、アルカリ溶液により調製することが重要と分かる。
Figure 2018103177
(参考例1)
本発明の製造方法によって得られた触媒1のL値、a値、b値、特許文献5によるEは、それぞれ60.3、5.7、17.3、18.2であり、特許文献5の範囲外である。

Claims (15)

  1. 炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから接触酸化脱水素反応により共役ジオレフィンを製造するための触媒の製造方法であって、下記工程を含むことを特徴とする方法。
    工程(A1):複合金属酸化物の各金属を含有する化合物を含む混合溶液またはスラリーを20℃以上90℃以下の条件下で調製し、該混合溶液またはスラリーのpHを0.3以上8.0以下に制御するようアルカリ溶液を添加し、スプレー乾燥して乾燥粉体を得る工程。
    工程(A2):工程(A1)で得られた乾燥粉体を予備焼成し、予備焼成粉体を得る工程。
    工程(A3):工程(A2)で得られた予備焼成粉体を成形し、成形品を得る工程。
    工程(A4):工程(A3)で得られた成形品を本焼成する工程。
  2. 触媒活性成分として次の組成式(A)を満たす請求項1に記載の触媒の製造方法、
    Mo12BiFeCoNi・・・・(A)
    (式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウム、バナジウム、金、銀、銅、白金から選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.3<a<3.5、0.6<b<3.4、5<c<8、0<d<3、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
  3. 表色系におけるL値、a値、b値による、下記式で表される彩度パラメーターF1の値が、0.00≦F1≦12.0であることを特徴とする請求項1に記載の製造方法に用いられる乾燥粉体。
    F1={(L−53.5)+(a−10.0)+(b−13.0)0.5
  4. 表色系におけるL値、a値、b値がそれぞれ41.0≦L≦60.0、0.0≦a≦60.0、0.0≦b≦20.0であることを特徴とする請求項1に記載の製造方法に用いられる乾燥粉体。
  5. 表色系におけるL値、a値、b値がそれぞれ50.0≦L≦60.0、8.0≦a≦25.0、0.0≦b≦20.0であることを特徴とする請求項1に記載の製造方法に用いられる乾燥粉体。
  6. 請求項3乃至請求項5のいずれか一項に記載の乾燥粉体を用いる請求項1または請求項2のいずれか一項に記載の触媒の製造方法。
  7. 表色系におけるL値、a値、b値による、下記式で表される彩度パラメーターF2の値が、0.00≦F2≦10.0である請求項1に記載の製造方法に用いられる予備焼成粉体。
    F2={(L−52.0)+(a−5.0)+(b−11.0)0.5
  8. 表色系におけるL値、a値、b値がそれぞれ40.0≦L≦58.0、0.0≦a≦35.0、0.0≦b≦20.0のいずれかの値であることを特徴とする請求項1に記載の製造方法に用いられる予備焼成粉体。
  9. 表色系におけるL値、a値、b値がそれぞれ44.0≦L≦58.0、0.0≦a≦20.0、0.0≦b≦16.0であることを特徴とする請求項1に記載の製造方法に用いられる予備焼成粉体。
  10. 請求項7乃至請求項9のいずれか一項に記載の予備焼成粉体を用いる請求項1に記載の触媒の製造方法。
  11. 下記式(S)で表されるQが、1.6≦−logQ≦10.0を満たすことを特徴とする請求項1の工程(A2)で得られた予備焼成粉体。
    Q=10(―pH)×(e+f)/{12−(b+c+d+g)}・・・・(S)
    (式中、pHは請求項1に記載の工程(A1)における混合溶液またはスラリーのpHであり、b、c、d、e、f、gは請求項2に記載の組成式(A)における各々モリブデン原子12に対する鉄、コバルト、ニッケル、X(リチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素)、Y(マグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素)、Z(ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、タリウム、バナジウム、金、銀、銅、白金から選ばれる少なくとも1種の元素)の原子比を示し、「log」は10の対数を示す。)。
  12. 工程(A1)において、前記混合溶液またはスラリーのpHを0.3以上5.0以下に制御するようアルカリ溶液を添加することを特徴とする請求項1、請求項6、請求項10のいずれか一項に触媒の製造方法。
  13. 工程(A1)において、前記アルカリ溶液がアンモニア水または炭酸アンモニウム水溶液であることを特徴とする請求項1、請求項6、請求項10のいずれか一項に記載の触媒の製造方法。
  14. 工程(A2)の予備焼成の温度が200℃以上600℃以下であり、工程(A4)の本焼成温度が200℃以上600℃以下である請求項1、請求項6、請求項10のいずれか一項に触媒の製造方法。
  15. さらに請求項1記載の工程(A3)の予備焼成粉体をバインダーとともに担体にコーティングする成形工程を有する予備焼成粉体の担持率が20質量%以上80質量%以下であって、触媒の平均粒径が2.0mm以上10.0mm以下である請求項1、請求項6、請求項10のいずれか一項に触媒の製造方法。
JP2017247949A 2016-12-26 2017-12-25 共役ジオレフィン製造用触媒の製造方法 Active JP6994807B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016250911 2016-12-26
JP2016250911 2016-12-26

Publications (3)

Publication Number Publication Date
JP2018103177A true JP2018103177A (ja) 2018-07-05
JP2018103177A5 JP2018103177A5 (ja) 2020-11-12
JP6994807B2 JP6994807B2 (ja) 2022-02-21

Family

ID=62786213

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017247950A Pending JP2018103178A (ja) 2016-12-26 2017-12-25 共役ジオレフィン製造用触媒の製造方法
JP2017247949A Active JP6994807B2 (ja) 2016-12-26 2017-12-25 共役ジオレフィン製造用触媒の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017247950A Pending JP2018103178A (ja) 2016-12-26 2017-12-25 共役ジオレフィン製造用触媒の製造方法

Country Status (1)

Country Link
JP (2) JP2018103178A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171437A (en) * 1981-04-06 1982-10-22 Euteco Impianti Spa Unsaturated hydrocarbon inverting catalyst and its manufacture
WO2014051090A1 (ja) * 2012-09-28 2014-04-03 旭化成ケミカルズ株式会社 酸化物触媒及びその製造方法、並びに、不飽和アルデヒド、ジオレフィン及び不飽和ニトリルの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171437A (en) * 1981-04-06 1982-10-22 Euteco Impianti Spa Unsaturated hydrocarbon inverting catalyst and its manufacture
WO2014051090A1 (ja) * 2012-09-28 2014-04-03 旭化成ケミカルズ株式会社 酸化物触媒及びその製造方法、並びに、不飽和アルデヒド、ジオレフィン及び不飽和ニトリルの製造方法

Also Published As

Publication number Publication date
JP6994807B2 (ja) 2022-02-21
JP2018103178A (ja) 2018-07-05

Similar Documents

Publication Publication Date Title
KR100764758B1 (ko) 촉매
JP4280797B2 (ja) 複合酸化物触媒の製造方法
JP5973999B2 (ja) メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
JP5919870B2 (ja) アクリロニトリル製造用触媒の製造方法および該アクリロニトリル製造用触媒を用いたアクリロニトリルの製造方法
JP6674441B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
JP6668207B2 (ja) アクリル酸製造用触媒
JP2008212779A (ja) モリブデン、ビスマス、鉄、シリカ含有複合酸化物触媒の製造方法
WO2017069119A1 (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP7209578B2 (ja) 触媒およびその製造方法
JP7061422B2 (ja) 共役ジオレフィン製造用触媒およびその製造方法
JP7006477B2 (ja) メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法
JP6392488B1 (ja) 共役ジオレフィン製造用触媒及びその製造方法
JP6994807B2 (ja) 共役ジオレフィン製造用触媒の製造方法
JP4629886B2 (ja) メタクロレインおよび/またはメタクリル酸製造用触媒、その製造方法、および、メタクロレインおよび/またはメタクリル酸の製造方法
JP7191482B2 (ja) 触媒およびその製造方法
RU2806328C2 (ru) Способ производства катализатора для синтезирования ненасыщенной карбоновой кислоты
WO2018110126A1 (ja) α,β-不飽和カルボン酸製造用触媒前駆体の製造方法、α,β-不飽和カルボン酸製造用触媒の製造方法、α,β-不飽和カルボン酸の製造方法およびα,β-不飽和カルボン酸エステルの製造方法
JP4273565B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用の複合酸化物触媒の製造法
JP7105395B1 (ja) 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
WO2023100855A1 (ja) 触媒、及びそれを用いた化合物の製造方法
JP2013000734A (ja) メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法
JP6734178B2 (ja) 精製系阻害物質を選択的に低減させる触媒およびその製造方法
JP2004141823A (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
WO2020203789A1 (ja) 不飽和カルボン酸合成用触媒の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 6994807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150