JP2018096721A - 撮像装置、検査装置及び製造方法 - Google Patents

撮像装置、検査装置及び製造方法 Download PDF

Info

Publication number
JP2018096721A
JP2018096721A JP2016238868A JP2016238868A JP2018096721A JP 2018096721 A JP2018096721 A JP 2018096721A JP 2016238868 A JP2016238868 A JP 2016238868A JP 2016238868 A JP2016238868 A JP 2016238868A JP 2018096721 A JP2018096721 A JP 2018096721A
Authority
JP
Japan
Prior art keywords
camera
lens
imaging
angle
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016238868A
Other languages
English (en)
Inventor
芳彦 菅又
Yoshihiko Sugamata
芳彦 菅又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2016238868A priority Critical patent/JP2018096721A/ja
Publication of JP2018096721A publication Critical patent/JP2018096721A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】撮像素子と光学系のそれぞれの角度を変更し、撮像素子と光学系の相対角度を所定の条件に従って容易に変更することができる撮像装置を提供する。
【解決手段】被検物を撮像する撮像装置1であって、受光面を有する撮像素子2と、撮像素子を保持する第1保持部と、被検物からの光を受光面に結像させる光学系3と、光学系を保持する第2保持部と、を有し、第1保持部と第2保持部はそれぞれ、同一の回転軸41を中心に回転可能であり、回転軸の中心軸は第1保持部内の領域を通り、回転軸の回りの第1保持部の第1回転角度と回転軸の回りの第2保持部の第2回転角度とを互いに異ならせるように回転軸の回りに第1保持部及び第2保持部を回転させることによって、受光面と光学系の主面との相対角度が変更される。
【選択図】図2

Description

本発明は、撮像装置、検査装置及び製造方法に関する。
被検物の位置、形状又は姿勢などの測定のため又は被検物の検査のために、被検物を撮像する撮像装置が用いられている。撮像装置は、被検物へ光を照射する照明部と、被検物を撮像する撮像部と、被検物からの光を撮像部の受光面に結像させる光学系とを有する。撮像装置において、広範囲において被検物に焦点を合わせるために、シャインプルーフの条件を満たすように照明部と撮像部と光学系が配置される。
特許文献1に、物体面とカメラとがシャインプルーフの条件を満たす撮像装置が開示されている。シャインプルーフの条件を満たす従来の撮像装置を図12に示す。従来の撮像装置は、光源からの出射光を検出面Wに照射し、反射光が受光面82で結像されて撮像素子81で検出される。撮像素子81を受光面82に平行方向84にスライド可能に保持するとともに、検出面Wからの反射光の軸(受光レンズの光軸)、及び、受光面82のスライド方向84、に直交するピン83を中心に回転可能に保持している。撮像素子81をスライド方向84に移動、又は、回転方向85に回転させることにより、撮像素子81の位置や角度を調整することができる。
また、特許文献2には、撮像素子とレンズとの相対的な傾きを調整する撮像装置が開示されている。具体的には、撮像素子を固定する撮像素子フレーム上のネジ穴における固定ネジの位置を調整することにより撮像素子を水平に移動させ、回動可能に配置されたレンズ鏡筒を回転させる。
特開2008−145160号公報 特開2012−211842号公報
被検物の位置、形状又は姿勢などの測定のため又は被検物の検査のためには、被検物を互いに異なる角度、方位から撮像することが必要になる。しかし、特許文献1の撮像装置では、撮像素子のみ調整され、受光レンズ(光学系)の位置や角度は調整できないため、被検物を互いに異なる角度、方位から撮像することができない。
また、特許文献2の撮像装置では、レンズ(光学系)の角度を変更することはできるが、レンズ鏡筒の回転中心軸がレンズ鏡筒側にあり、レンズ鏡筒を回転させたときにレンズによる結像面が撮像素子の受光面からずれるおそれがある。そのため、撮像素子の位置調整する必要があり、しかも、シャインプルーフの条件を満たすようにレンズ鏡筒及び撮像素子を調整しなければならず、調整が煩雑である。
そこで、本発明は、撮像素子と光学系のそれぞれの角度を変更し、撮像素子と光学系の相対角度を所定の条件に従って容易に変更することができる撮像装置を提供することを目的とする。
上記課題を解決する本発明の一側面としての撮像装置は、被検物を撮像する撮像装置であって、受光面を有する撮像素子と、前記撮像素子を保持する第1保持部と、被検物からの光を前記受光面に結像させる光学系と、前記光学系を保持する第2保持部と、を有し、前記第1保持部と前記第2保持部はそれぞれ、同一の回転軸を中心に回転可能であり、前記回転軸の回りの前記第1保持部の第1回転角度と前記回転軸の回りの前記第2保持部の第2回転角度とを互いに異ならせるように前記回転軸の回りに前記第1保持部及び前記第2保持部を回転させることによって、前記受光面と前記光学系の主面との相対角度が変更される、ことを特徴とする撮像装置。
本発明によれば、撮像素子と光学系のそれぞれの角度を変更し、撮像素子と光学系の相対角度を所定の条件に従って容易に変更することができる。
シャインプルーフの条件を示す概略図である。 第1実施形態の撮像装置を示した概略図である。 カメラ傾き角度調整機構の概略図である。 チルト角度θからdθだけ傾けたときのカメラ調整機構を示す概略図である。 レンズ傾き角度調整機構の概略図である。 チルト角度θからdθだけ傾けたときのレンズ調整機構を示す概略図である。 実施例1の、カメラ・レンズ調整角度を示した図である。 第3実施形態の撮像装置を示した図である。 第3実施形態の角度調整機構及び操作機構を示した概略図である。 第4実施形態の検査装置を示した図である。 第4実施形態の撮像装置を示した図である。 シャインプルーフの条件を満たす従来の撮像装置を示した概略図である。
以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。
[実施形態1]
本実施形態の撮像装置はシャインプルーフの条件を満たし、被検物の位置、形状又は姿勢などの測定のため又は被検物の検査のために用いられる。シャインプルーフの条件に従えば、被検物が配置される撮像対象面の撮影において、被検物の手前側部分と奥側部分など広い範囲で同時に焦点を合せることができ、高コントラストな画像を取得することができる。
シャインプルーフの条件を満たす撮像装置について説明する。図1に、シャインプルーフの条件を示す概略図である。図1において、被検物が配置される撮像対象面(物体面)をWとする。撮像装置は、カメラ2(撮像部)とレンズ鏡筒3を有する。カメラ2は、その内部に撮像センサ(撮像素子)22を備える。撮像センサ22の表面(受光面)を通る直線を中心軸Cとする。例えば、中心軸Cは、Y軸に平行な方向であり、撮像センサ22の表面の一辺の中点を通る。ただし、配置はこれに限らず、中心軸Cは撮像センサ22の近傍にあればよい。レンズ鏡筒3は、レンズ32(光学系)を保持する。レンズ32は、被検物からの光を受光面に結像させる光学系である。通常、レンズ32は複数のレンズを有するが、図1においては代表的な1つのレンズを示している。また、レンズ32は、1つのレンズで代表したときの主点を含む主面を有する。4は、カメラ2及びレンズ鏡筒3を支持する支持構造体であるフレームである。
まず、カメラ2とレンズ鏡筒3をZ軸上に沿って配置した状態を想定する。次に、その状態から、フレーム4に対してチルト角度θだけ撮像装置を傾ける。ここで、撮像対象面Wがカメラ2の視野内となり、シャインプルーフの条件に従うように撮像装置を配置したものが、カメラ2’、レンズ鏡筒3’である。22’はカメラ2’の撮像センサであり、32’はレンズ鏡筒3’によって保持されるレンズを示す。レンズ32’の光軸AX1とZ軸との成す角度がθとなる。また、撮像対象面Wを含む面(XY平面)と、レンズ32’の主面を含む面と、撮像センサ22’の受光面を含む面と、が点O(同一直線)で交差する。図中のθ’は、撮像対象面Wと撮像センサ22’の受光面とがシャインプルーフの原理により共役となるように配置するために、中心軸Cを回転中心として、レンズ鏡筒3に対して相対的にカメラ2’を傾けた角度である。このθ’をシャインプルーフ角度とする。レンズ32’の光軸AX1と、撮像センサ22’の受光面に対して垂直な線AX2との角度がθ’になる。図1において、撮像対象面WとZ軸との交点WOからレンズ32’の主面までの距離を物体距離a、レンズ32’の主面から撮像センサ22’までの距離を像距離bとするとき、以下の関係式が成り立つ。
Figure 2018096721
θ’=tan−1(B tanθ)(∵B=b/a) (数式2)
ここで、Bは光学倍率である。従って、シャインプルーフの条件に従うように撮像装置の各部を配置するとき、調整すべきカメラ及びレンズ鏡筒の傾き角度(回転角度)は、中心軸Cを回転中心としてレンズ鏡筒の角度θ、カメラの角度(θ+θ’)となる。
図2は、本実施形態の撮像装置1の概略図である。図2(a)は正面図、図2(b)は側面図である。2は撮像対象物(被検物)を撮影するカメラ(撮像部)である。カメラ2は、内部に撮像センサ22(撮像素子)を内部に備え、撮像センサの表面(受光面)を通る直線を中心軸Cとする。3は内部にレンズ(光学系)を備え、撮像対象物を拡大等して撮像に使用するレンズ鏡筒である。4はカメラ2及びレンズ鏡筒3を支持する支持構造体であるフレームである。41は揺動中心軸(回転軸、シャフト)である。揺動中心軸41は軸心とし配置され、軸受42を介してフレーム4に揺動(回転)可能に固定されている。揺動中心軸41を回転中心軸とし、カメラ2及びレンズ鏡筒3が揺動(回転)する。
図2(b)において、70はカメラ・レンズ傾き角度調整機構で、カメラ2とレンズ鏡筒3の角度を調整する。71はカメラ2の角度を調整するカメラ傾き角度調整機構である。72はレンズ鏡筒3の角度を調整するレンズ傾き角度調整機構である。73はカメラ傾き角度調整機構71とレンズ傾き角度調整機構72に接続され、カメラ傾き角度調整機構71とレンズ傾き角度調整機構72とを同時に操作する操作機構(操作部材)である。カメラ・レンズ傾き角度調整機構70は、カメラ傾き角度調整機構71とレンズ傾き角度調整機構72と操作機構73とで構成される。
先ず、操作機構73について説明する。図2において、5は操作プレートである。操作プレート5は、カメラ・レンズ傾き角度調整機構70の操作部であり、回転可能に支持されている。51は操作プレート5の回転軸(シャフト)である。回転軸51の一端には操作プレート5が固定される。52はハンドルであり、ハンドル52を操作し、回転軸51回りに操作プレート5を揺動する。53は固定ねじである。不図示の固定ねじの雌ねじはフレーム4に形成されている。54は操作プレート溝である。操作プレート溝54は、回転軸51の軸心を中心として、操作プレート5が揺動するときに固定ねじ53のねじ部が干渉しないような円弧状切り欠きとして操作プレート5に形成されたものである。ハンドル52を操作して、カメラ・レンズ角度調整機構70を所望の任意の角度に調整した状態で、固定ねじ53で操作プレート5を固定することにより角度調整が完了する。
次に、レンズ傾き角度調整機構72について、図3を用いて説明する。図3は、図2におけるレンズ傾き角度調整機構72に関係する構成を示した概略図である。尚、図2と同じ構成については、同一の符号を付けている。図3において、31はレンズ揺動プレート(第1保持部)である。レンズ揺動プレート31は、中心軸を軸心として配置された揺動中心軸41を回転中心として不図示の軸受を介して、レンズを含むレンズ鏡筒3を回転可能に保持する回転部材でもある(第2回転部材)。
レンズ揺動プレート31の端部には、レンズ揺動ピン311を備える。34はレンズ調整リンク(並進部材)である。レンズ調整リンク34はZ軸方向を長手方向としたリンクである。レンズ調整リンク34の上端側であるレンズ揺動プレート31側には、レンズ揺動ピンと係合する長穴であるレンズ調整リンク溝341を備える。他端には、リンクピン344を備える。45はリンクガイドである。リンクガイド45は、レンズ調整リンク34がZ軸方向にのみ摺動可能で、X,Y方向には並進不可能な矩形の貫通穴もしくは溝が形成されている。
35はレンズ調整カム(第1回転部材)である。レンズ調整カム35の回転中心は、操作機構73の回転軸51に固定されている。回転軸51は、操作プレート5の回転中心と、レンズ傾き角度調整機構72のレンズ調整カム35の回転中心とを貫通する軸心として配置される。回転軸51には、レンズ調整カム35が固定される。レンズ調整カム35は、ハンドル52を操作し、回転軸51を回転中心軸として揺動する。レンズ調整カム35には、レンズ調整カム溝351が形成されており、レンズ調整リンク34のリンクピン344と係合する。レンズ調整リンク34はレンズ調整カム35の角度変位を並進変位に変換する。また、レンズ揺動プレート31はレンズ調整リンク34の並進変位を角度変位に変換する。
次に、レンズ傾き角度調整機構72を用いてレンズを含むレンズ鏡筒3をチルト角度θから更にdθだけ傾けた場合について説明する。図4(a)にレンズを含むレンズ鏡筒3をチルト角度θだけ傾けた場合の図を示す。図4(b)にレンズを含むレンズ鏡筒3をチルト角度θから更にdθだけ傾けた場合の図を示す。尚、図2と同じ構成については、同一の符号を付けている。
先ず、レンズ傾き角度調整機構72の動作の概略を説明する。レンズ調整リンク溝341の概略、構成、それからレンズ調整カム溝351の概略、構成の順に説明する。ここでは、レンズ傾き角度調整機構の動作について操作とは逆となるが、チルト角度dθ、レンズ鏡筒3の傾き、リンクガイド変位、レンズ調整カムの角度変位、の順に説明する。
レンズ調整リンク溝341の概略を説明する。図4(a)において、レンズ鏡筒3がフレーム4に対して揺動中心軸41を回転中心(中心軸)とし、Z軸に対してチルト角度θだけ揺動している。図4(b)のように、レンズ鏡筒3がチルト角度θから更にdθ揺動するとき、レンズ揺動ピン311は揺動中心軸41の中心軸回りに位置p3(図4(a)参照)から位置p4(図4(b)参照)へ揺動する。レンズ揺動ピン311は、揺動中心軸41を回転中心に、回転半径をレンズ揺動ピン311と揺動中心軸41との中心間距離として、レンズ鏡筒3のチルト角度に応じ連続的に揺動する。ここで、レンズ調整リンク溝341を介してレンズ揺動ピン311と係合するレンズ調整リンク溝341を備えたレンズ調整リンク34は、リンクガイド45によりZ軸方向に摺動(移動)可能に支持されるので、Z方向にのみ変位する。従って、レンズ鏡筒3がチルト角度dθだけ揺動するときにレンズ揺動ピン311が揺動運動するときのレンズ揺動ピン311のZ方向変位によって、レンズ調整リンク34がZ方向に変位する。図4(a)、(b)に示すように、レンズ揺動ピン311がdθだけ円弧状に移動するときのレンズ揺動ピン311のZ方向変位はdZ2’となる。レンズ調整リンク溝341は、レンズ揺動ピン311がdθだけ円弧状の移動する時のZ方向変位dZ2’を考慮して形成される。レンズ揺動ピン311の移動とレンズ調整リンク溝341の形状により、レンズ揺動ピン311のZ方向変位がdZ2’のとき、レンズ調整リンク34のZ方向変位はdZ2となる。
次に、レンズ調整リンク溝341の構成を説明する。図4(a)に示す位置にレンズ鏡筒3がチルト角度θで配置されるとき、レンズ調整リンク34がZ方向において上端側配置となり、レンズ揺動ピン311が位置p3となり、レンズ調整リンク溝の一端342に位置する。レンズ揺動ピン311は、揺動中心軸41を回転中心に、回転半径をレンズ揺動ピン311と揺動中心軸41との中心間距離として、レンズ鏡筒3のチルト角度に応じ連続的に揺動する。図4(b)のように、レンズ鏡筒3が更にdθだけチルトされチルト角度が(θ+dθ)のとき、レンズ調整リンク34がdZ2だけ並進(移動)してZ方向において下端側配置となる。このとき、レンズ揺動ピン311が位置p4となってレンズ調整リンク溝の他端343に位置する。このとき、チルト角度をdθだけ変位させるのに必要なレンズ調整リンク34の並進変位dZ2に基づいて、レンズ調整リンク溝341を直線溝として形成する。そのため、レンズ鏡筒3のチルト角度dθによるレンズ揺動ピン311の揺動とレンズ調整リンク34のZ変位との相対変位の軌跡に基づき、レンズ調整リンク溝341を直線状の溝として形成する。
次に、レンズ調整カム溝351の概略を説明する。レンズ調整カム溝351を介して、レンズ調整リンク34のリンクピン344がレンズ調整カム溝351と係合している。図4(a)に示す位置にレンズ鏡筒3がチルト角度θで配置されるとき、レンズ調整リンク34がZ方向において上端側配置となり、リンクピン344がレンズ調整カム溝351の一端352に位置する。図4(b)のように、レンズ鏡筒3が更にdθだけ角度調整されチルト角度が(θ+dθ)のとき、レンズ調整リンク34がZ方向にdZ2だけ並進してZ方向において下端側配置となり、リンクピン344がレンズ調整カム溝351の他端353に位置する。
レンズ調整カム35について説明する。図4(b)のように、レンズ鏡筒3をチルト角度dθだけ揺動させるときの操作プレート5の角度変位をφとする。これは、操作プレート5のハンドル52を図4(a)のFhの方向(時計回り)に角度φだけ操作(回転)し、操作プレート5が回転軸51を回転中心として角度φだけ揺動することを表す。レンズ調整カム35は回転軸51を回転中心として回転軸51に固定されているので、ハンドル52を角度φだけ操作することにより、レンズ調整カム35が角度φだけ回転軸51回りに揺動する。レンズ調整カム35のレンズ調整カム溝351には、レンズ調整リンク34のリンクピン344が係合されている。従って、操作プレート5を角度φだけ操作するとき、レンズ調整カム溝351がリンクピン344をZ方向に並進変位dZ2だけ案内することとなる。レンズ調整カム溝351の形状は、チルト角度dθに対するレンズ調整カム35の回転角度φだけ操作する時のリンクピン344のZ方向における変位dZ2を考慮して形成される。つまり、レンズ鏡筒3のチルト角度θによるレンズ調整リンク34のZ変位とレンズ調整カム35の揺動回転φとの相対変位の軌跡に基づき、レンズ調整カム溝351を曲線状の溝として形成する。
次に、カメラ傾き角度調整機構71について、図5を用いて説明する。図5は、図1におけるカメラ傾き角度調整機構71に関係する構成を示した概略図である。尚、図2と同じ構成については、同一の符号を付けている。図5において、21はカメラ揺動プレート(第2保持部)である。カメラ揺動プレート21は、中心軸を軸心として配置された揺動中心軸41を回転中心として不図示の軸受を介してカメラ2を揺動可能に保持する回転部材(第2回転部材)でもある。カメラ揺動プレート21とレンズ揺動プレート31はそれぞれ、同一の回転軸(シャフト)を中心に回転可能である。
揺動中心軸41はカメラ揺動プレート21内(第1保持部内)の領域を通る。例えば、揺動中心軸41の中心軸は、撮像センサ22上(撮像素子上)にあり、特に、撮像センサ22の受光面上にあり、その受光面の1辺の中点に配置されうる。カメラ揺動プレート21の端部には、カメラ揺動ピン211を備える。24はカメラ調整リンク(並進部材)である。カメラ調整リンク24はZ軸方向を長手方向としたリンクである。カメラ調整リンク24の上端側であるカメラ揺動プレート21側には、カメラ揺動ピン211と係合する長穴であるカメラ調整リンク溝241を備える。他端には、カメラ調整リンク24のリンクピン244を備える。45はリンクガイドである。リンクガイド45は内部にカメラ調整リンクがZ軸方向にのみ摺動可能で、かつX,Y方向には並進不可能な矩形の貫通穴もしくは溝が形成されている。25はカメラ調整カム(第1回転部材)である。カメラ調整カム25の回転中心は、操作機構73の回転軸51に固定されている。回転軸51は、操作プレート5の回転中心と、カメラ傾き角度調整機構71のカメラ調整カム25の回転中心と、レンズ傾き角度調整機構72のレンズ調整カム35の回転中心とを貫通する軸心として配置される。回転軸51には、カメラ調整カム25とレンズ調整カム35とが固定される。カメラ調整カム25は、ハンドル52を操作し、回転軸51を回転中心として揺動する。カメラ調整カム25には、カメラ調整カム溝251が形成されており、リンクピン244と係合する。カメラ調整リンク24はカメラ調整カム25の角度変位を並進変位に変換する。また、カメラ揺動プレート21はカメラ調整リンク24の並進変位を角度変位に変換する。
次に、レンズ傾き角度調整機構72を用いてレンズ鏡筒3をチルト角度θから更にdθだけ傾けた場合のカメラ傾き角度調整機構71について説明する。図6(a)にレンズ鏡筒3をチルト角度θだけ傾けた場合のレンズ傾き角度調整機構72の図を示す。図6(b)にレンズ鏡筒3をチルト角度θから更にdθだけ傾けた場合のレンズ傾き角度調整機構72の図を示す。尚、図2と同じ構成については、同一の符号を付けている。先ず、図6を用いて、カメラ傾き調整機構72の動作の概略を説明することで、カメラ調整リンク溝241の概略、構成、それからカメラ調整カム溝251の概略、構成の順に説明する。ここでは、レンズ傾き調整機構72の動作について操作とは逆となるが、チルト角度dθ、カメラ2の傾き、リンクガイド変位、カメラ調整カムの角度変位、の順に説明する。
カメラ調整リンク溝241の概略を説明する。図6(a)において、レンズ鏡筒3がフレーム4に対して揺動中心軸41を回転中心としチルト角度θだけ回転させたとき、それに応じて、シャインプルーフの条件を満たすようにカメラ2を角度(θ+θ’)だけ回転させる。図6(b)において、レンズ鏡筒3がフレーム4に対して揺動中心軸41を回転中心としチルト角度θから更にdθ揺動する。そのとき、それに応じてシャインプルーフの条件を満たすように、カメラ2を角度(θ+θ’)から更に角度(dθ+dθ’)だけ回転させ、角度調整している。ここで、θ’、dθ’は、シャインプルーフの原理により数式2で算出される角度である。このとき、カメラ揺動ピン211は揺動中心軸41の中心回りに位置p1(図6(a)参照)から位置p2(図6(b)参照)へ揺動する。カメラ揺動ピン211は、揺動中心軸41を回転中心に、回転半径をカメラ揺動ピン211と揺動中心軸41との中心間距離として、カメラ2のチルト角度に応じ連続的に揺動する。ここで、カメラ揺動ピン211と係合するカメラ調整リンク溝241を備えたカメラ調整リンク24は、リンクガイド45によりZ軸方向に摺動可能に支持されるので、Z方向にのみ変位する。従って、レンズ鏡筒3がチルト角度dθだけ揺動し、カメラ2が角度(dθ+dθ’)だけ変位するときに、カメラ揺動ピン211が揺動運動するときのカメラ揺動ピン211のZ方向変位によって、カメラ調整リンク24がZ方向に変位する。図6(a)、(b)に示すように、カメラ揺動ピン211が(dθ+dθ’)だけ円弧状に移動するときのカメラ揺動ピン211のZ方向変位はdZ1’となる。カメラ調整リンク溝241は、カメラ揺動ピン211が(dθ+dθ’)だけ円弧状に移動するときのZ方向変位dZ1’を考慮して形成される。カメラ揺動ピン211の移動とカメラ調整リンク溝241の形状により、カメラ揺動ピン211のZ方向変位がdZ1’のとき、カメラ調整リンク24のZ方向変位はdZ1となる。
次に、カメラ調整カム溝251の構成を説明する。レンズ鏡筒3がチルト角度θで配置され、カメラ2が角度(θ+θ’)で配置されるとき、カメラ調整リンク24がZ方向において上端側配置となり、カメラ揺動ピン211が位置p1となり、カメラ調整リンク溝241の一端242に位置する。カメラ揺動ピン211が、揺動中心軸41を回転中心に、回転半径をカメラ揺動ピン211と揺動中心軸41との中心間距離として、カメラ2のチルト角度に応じ連続的に揺動する。図6(b)のように、レンズ鏡筒3が更に角度dθだけチルトされ、シャインプルーフの条件により、カメラ2が角度(θ+θ’+dθ+dθ’)だけ調整されたとき、カメラ調整リンク24がZ方向にdZ1だけ並進してZ方向において下端側配置となる。このとき、カメラ揺動ピン211が位置p2となって、カメラ調整リンク溝241の他端243に位置する。このとき、カメラ2を角度(dθ+dθ’)だけ回転させるのに必要なカメラ調整リンク24の並進変位dZ1に基づいて、カメラ調整リンク溝241を直線溝として形成する。そのため、カメラ2の回転角度(θ+θ’+dθ+dθ’)よるカメラ揺動ピン211の揺動とカメラ調整リンク24のZ変位との相対変位の軌跡に基づき、カメラ調整リンク溝241を直線状の溝として形成する。
次に、カメラ調整カム溝251の概略を説明する。カメラ調整カム溝251を介してリンクピン244がカメラ調整カム溝251と係合している。図6(a)に示すようにカメラ2が角度(θ+θ’)で配置されるとき、カメラ調整リンク24がZ方向において上端側配置となり、リンクピン244がカメラ調整カム溝251の一端252に位置する。レンズ鏡筒3が更にdθだけ角度調整されチルト角度が(θ+dθ)となってカメラ2が角度(θ+θ’+dθ+dθ’)に調整される。このとき、図6(b)のように、カメラ調整リンク24がZ方向にdZ1だけ並進してZ方向において下端側配置となり、リンクピン244がカメラ調整カム溝の他端253に位置する。
図6(b)のように、カメラ2を角度(θ+θ’+dθ+dθ’)だけ揺動させるときの操作プレート5の角度変位をφとする。これは、操作プレート5のハンドル52を図6(a)のFhの方向(時計回り)に角度φ操作し、操作プレート5を回転軸51を回転中心として角度φ揺動することを表す。カメラ調整カム25は回転軸51を回転中心として回転軸51に固定されているので、ハンドル52を角度φ操作することによりカメラ調整カム25は角度φだけ回転軸51回りに揺動する。カメラ調整カム25のカメラ調整カム溝251には、カメラ調整リンク24のリンクピン244が係合されている。従って、操作プレート5を角度φだけ操作するとき、カメラ調整カム溝251溝がリンクピン244をZ方向にdZ1だけ変位させることとなる。カメラ調整カム溝251の形状は、チルト角度dθに応じたカメラ2の角度(θ+θ’+dθ+dθ’)に対する、カメラ調整カム25の回転角度φ操作時のリンクピン244のZ方向変位dZ1を考慮して形成される。レンズ鏡筒3のチルト角度θによって調整したシャインプルーフの条件によるカメラ2の調整角度は(θ+θ’+dθ+dθ’)である。これに対するカメラ調整リンク24のZ変位とカメラ調整カム25の揺動回転φとの相対変位の軌跡に基づき、カメラ調整カム溝251を曲線状の溝として形成する。
以上のように、レンズ傾き角度調整機構72は、操作機構73による入力操作量としての回転角度φに対し、レンズ調整カム35によってレンズ調整リンク34をdZ2変位させる。更にレンズ揺動プレート31をdZ2’変位させ、回転角度dθに角度変換し、レンズ鏡筒3を角度dθチルトさせる。一方、カメラ傾き角度調整機構71は、操作機構73による回転角度φに対し、カメラ調整カム25によってカメラ調整リンク24をdZ1変位させる。更にカメラ揺動プレート21をdZ1’変位させ、回転角度(dθ+dθ’)に角度変換し、カメラ2を角度(dθ+dθ’)だけ回転させる。このように、操作機構73の一つの入力角度φに対し、同一の回転軸である揺動中心軸41回りにカメラ揺動プレート21(カメラ2)とレンズ揺動プレート31(光学系)とを一体的に回転させる。このとき、揺動中心軸41回りのカメラ揺動プレート21の第1回転角度とレンズ揺動プレート31の第2回転角度とが互いに異なるように角度調整を同時に実施する。これにより、撮像素子の受光面と光学系の主面との相対角度が変更される。また、相対角度の調整の際に、光学系の像面と撮像素子の受光面とのずれが低減される。
続いて、カメラ・レンズ傾き角度調整機構70の動作を説明する。先ず、操作ハンドル52を操作すると、操作ハンドル52の揺動角度φに応じて操作プレート5が揺動すると同時に、カメラ調整カム25とレンズ調整カム35とが回転軸51回りに同じ角度φだけ揺動する。カメラ調整カム25の揺動により、カメラ調整カム溝251に係合するリンクピン244がカメラ調整カム溝251に案内され、カメラ調整リンク24がZ軸方向に並進する。更に、カメラ調整リンク24のZ軸方向並進により、カメラ調整リンク溝241に係合するカメラ揺動ピン211がカメラ調整リンク溝241に案内され、カメラ揺動プレート21が揺動中心軸41回りに角度(dθ+dθ’)だけ回転する。カメラ揺動プレート21はカメラ2を固定して保持しており、上記操作により、カメラ2がシャインプルーフの条件を満たすように角度(dθ+dθ’)だけ角度調整され、カメラ2が角度(θ+dθ+θ’+dθ’)に調整される。カメラ2の調整と同時に、レンズ鏡筒3も角度調整される。前述のように、操作ハンドル52の角度φ操作に応じて、回転軸51回りにレンズ調整カム35も角度φだけ揺動する。レンズ調整カム35の揺動により、レンズ調整カム溝351に係合するリンクピン344がレンズ調整カム溝351に案内され、レンズ調整リンク34がZ軸方向に並進する。更に、レンズ調整リンク34のZ軸方向並進により、レンズ調整リンク溝341に係合するレンズ揺動ピン311がレンズ調整リンク溝341に案内され、レンズ揺動プレート31が揺動中心軸41回りに角度dθだけ回転する。レンズ揺動プレート31はレンズ鏡筒3を固定して保持しており、上記操作により、レンズ鏡筒3が角度dθだけ調整され、レンズ鏡筒3が角度(θ+dθ)に調整される。
図7は、レンズ鏡筒3の角度θと、シャインプルーフの条件の数式2により求めたカメラ2の角度(θ+θ’)との関係を表す図である。図8の横軸がレンズ鏡筒3のチルト角度である。図7において、物体距離aを264.03mm、像距離bを−27.615mmとすると、光学倍率Bは0.10459となる。この条件で、チルト角度θを0度から70度としたときのシャインプルーフ角度θ’を算出した。図7において、レンズ鏡筒3の角度θは、例えば角度θ=40度のときレンズ鏡筒角度θ=40度である。これに対し、カメラ2の角度は(θ+θ’)=(40+5.02)度=45.02度となる。図7に示すように、チルト角度が大きくなるにつれて、レンズ鏡筒3の角度とカメラ2の角度との差が大きくなる。そのため、レンズ鏡筒3の角度を大きくしていくと、レンズ鏡筒3の角度とカメラ2の角度との差が大きくなるように角度調整を行えばよい。
以上のように、本実施形態のカメラ・レンズ傾き角度調整機構によって、操作機構に対する一つの操作により、簡便に、レンズ鏡筒の角度調整と、シャインプルーフの条件を満たすカメラの角度調整とを同時に実施するという効果を得る。また、本実施形態のカメラ傾き角度調整機構のカメラ調整カム及びカメラ調整カム溝を、シャインプルーフの原理により数式2で算出したカメラ角度の計算値に基づいて形成している。これにより、シャインプルーフの原理による計算値に基づく軌跡通りにカメラ角度調整を実施するという効果を得る。なお、リンク機構としては、往復スライダクランクを使用しても良く、この場合、リンク溝が不要となり、平易な形状のリンクで構成することが可能となる。
[実施形態2]
次に、第2実施形態の撮像装置について説明する。本実施形態の撮像装置は、カメラ2の傾き調整角度であるシャインプルーフ角度θ’を、シャインプルーフの原理による数式2を元に近似した近似式により算出した角度とするものである。数式2より、次式を得る。
tanθ’=B tanθ (数式3)
tanθ’=B tanθ (数式4)
となる。ここで、数式3の左辺をθ’=θ’のまわりで、数式3の右辺をθ=θのまわりで各々二次項までテーラー展開する。左辺のδθ’項を無視すれば、次式を得る。
Figure 2018096721
ここで、数式4の両辺第一項を消去して整理すれば次式を得る。
Figure 2018096721
また、チルト角度θにおけるシャインプルーフ角度θ’について、数式2より、数式7を得る。
θ’=tan−1(B tanθ0) (数式7)
以上より、チルト角度θの近傍における微小角度変化δθに対するシャインプルーフ角度の近似値θ’について、θ’≒θ’+δθ’であることから、数式6、数式7より、次式を得る。
Figure 2018096721
数式8により、チルト角度(θ=θ)の近傍(θ+δθ)における近似値のシャインプルーフ角度(θ’+δθ’)を算出することが可能となる。近似値のシャインプルーフ角度(θ’+δθ’)を元にカメラ・レンズ傾き角度調整機構のリンク及びカムを構成することにより、近似式に基づいたカム溝形状を備えたカメラ傾き角度調整機構を得る。以上により、シャインプルーフの原理による数式から得る近似式に基づいた簡易なカメラ角度調整を構成できるという効果を得る。
[実施形態3]
図8に基づいて第3実施形態の撮像装置について説明する。図8は、カメラ傾き調整機構及びレンズ傾き調整機構が歯車とモータとを備え、操作機構としてモータ同期制御装置を備えた撮像装置の概略図である。尚、図2と同じ構成については、同一の符号を付けている。図8において、70’は歯車とモータ、及びモータ同期制御装置とを備えたカメラ・レンズ傾き角度調整機構である。71’はカメラ2の角度を調整するための歯車とモータとを備えたカメラ傾き角度調整機構である。72’はレンズ鏡筒3の角度を調整するための歯車とモータとを備えたレンズ傾き角度調整機構である。73’はカメラ傾き角度調整機構71’とレンズ傾き角度調整機構72’とを操作するモータ同期制御装置5’を備えた操作機構である。カメラ・レンズ傾き角度調整機構70’は、カメラ傾き角度調整機構71’とレンズ傾き角度調整機構72’と操作機構73’とで構成される。
図9は、カメラ傾き角度調整機構71’、レンズ傾き角度調整機構72’及び操作機構73’を示した概略図である。図9では、便宜上、カメラ傾き角度調整機構71’、レンズ傾き角度調整機構72’をずらして示している。尚、図2と同じ構成については、同一の符号を付けている。先ず、カメラ傾き角度調整機構71’について説明する。図9において、21’はカメラ揺動プレートである。カメラ揺動プレート21’は、揺動中心軸41を回転中心として軸受42を介してカメラ2を揺動可能に支持固定される。カメラ揺動プレート21’は、端部に歯車211’を備える。212’は歯車211’とかみあう歯車である。25’は回転モータ(第1駆動部)であり、回転モータ25’のモータ軸に歯車212’が固定されている。回転モータ25’は、カメラ揺動プレート21’を揺動中心軸41回りに回転駆動させる。回転モータ25’にカメラ角度調整の為の信号が入力されると、回転モータ25’及び歯車212’が回転する。また、歯車211’が歯車212’とかみ合って回転し、揺動中心軸41を回転中心としてカメラ揺動プレート21’及びカメラ2が回転することで、カメラ傾き角度を調整する。
次に、レンズ傾き角度調整機構72’について説明する。図9において、31’はレンズ揺動プレートである。レンズ揺動プレート31’は揺動中心軸41に固定され、揺動中心軸41を回転中心としてレンズ鏡筒3を揺動可能に支持固定する。レンズ揺動プレート31’は、端部に歯車311’を備える。312’は歯車311’とかみあう歯車である。35’は回転モータ(第2駆動部)であり、回転モータ35’のモータ軸に歯車312’が固定されている。回転モータ35’は、レンズ揺動プレート31’を揺動中心軸41回りに回転駆動させる。回転モータ35’にレンズ角度調整の為の所望の信号が入力されると、回転モータ35’及び歯車312’が回転する。歯車311’が歯車312’とかみ合って回転し、揺動中心軸41を回転中心としてレンズ揺動プレート31’及びレンズ鏡筒3が回転することで、レンズの傾き角度を調整する。
続いて、操作機構73’について説明する。5’はモータ同期制御装置である。モータ同期制御装置5’は、レンズ傾き角度調整機構72’の回転モータ35’とカメラ傾き角度調整機構71’の回転モータ25’とに同期して各々角度調整するための信号を送信する。モータ同期制御装置5’から回転モータ35’にレンズ鏡筒3をチルト角度θだけ揺動させるための信号SLを送信する。モータ同期制御装置5’は、信号SLと同期させ、回転モータ25’にカメラ2をシャインプルーフの条件を満たす角度θ+θ’だけ揺動させる信号SCを送信する。従って、モータ同期制御装置5’からの信号SLにより、レンズ傾き角度調整機構72’によってレンズ鏡筒3が角度θだけ揺動する。同時に、モータ同期制御装置5’からの信号SCにより、カメラ傾き角度調整機構71’によってカメラ2がシャインプルーフの条件を満たす角度θ+θ’だけ揺動する。また、レンズ鏡筒3をチルト角度θ+dθだけ回転させるとき、カメラ2をシャインプルーフの条件を満たす角度θ+dθ+θ’+dθ’だけ回転させる。
以上のように、カメラ・レンズ傾き角度調整機構によって、操作機構による同期信号発信の一つの操作により、簡便に、レンズ鏡筒の角度調整と、シャインプルーフの条件を満たすカメラの角度調整とを同時に実施することができるという効果を得る。
[実施形態4]
次に、撮像装置を用いた検査装置について説明する。図10は、外観検査システム100を示す概略図である。外観検査システム100は、例えば、平面である被検面11aを有するワーク11(被検物)の外観検査を行う検査装置10と、検査装置10が外観検査を行う位置にワーク11を搬送する搬送装置12(例えばコンベア)とを含みうる。ワーク11は、例えば、工業製品に利用される金属部品や樹脂部品などである。ワーク11の表面には、キズやムラ、凹凸などの欠陥が形成されている場合があり、検査装置10によってこれらの欠陥を検出し、検出結果に基づいてワーク11が良品または不良品に分類される。また、本実施形態では、搬送装置12としてコンベアを用いているが、ロボットやスライダ、手動などの別の手段によってワーク11を搬送してもよい。
検査装置10は、照明部101と、主撮像部102と、複数の副撮像部103と、制御部104とを含みうる。主撮像部102、副撮像部103としては、上述の実施形態の撮像装置が用いられる。主撮像部102および複数の副撮像部103はそれぞれ、例えばCCDイメージセンサやCMOSイメージセンサなど、画素が2次元状に配置されたイメージセンサを含み、ワーク11の被検面11aを撮像する。このようにエリアセンサカメラを用いることにより、ラインセンサカメラと比べて広い領域の画像を一括に取得することができるため、ワーク11の外観検査を高速に行うことが可能となる。また、制御部104は、例えばCPUやメモリなどを有するコンピュータによって構成され、検査装置10の各部を制御する。制御部104は、主撮像部102および複数の副撮像部103で得られた複数の画像に基づいて被検面11aの外観の検査に係る処理を行う処理部としての機能を有する。ただし、処理部を制御部104とは別に設けてもよい。
照明部101は、被検面11aを複数の方向から照明することができるように、互いに異なる方向から被検面11aに光を照射する複数の光源112を有する。照明部101は、被検面11aを囲うカバー部材113を含み、複数の光源112は、カバー部材113の被検面側においてカバー部材113によって支持されうる。被検面11aに光を照射する方向とは、光源112から射出された光の光軸に沿った方向であって、光源112から被検面11aに向かう方向のことである。また、カバー部材113には、主撮像部102によって被検面11aを撮像するための開口110と、副撮像部103aおよび103bによって被検面11aをそれぞれ撮像するための開口111aおよび111bとが形成されうる。
主撮像部102は、被検面11aを上方から撮像するように、即ち、被検面11aを撮像する方向と被検面11aとの成す角度(以下、撮像角度θcと称する)が90度になるように配置されうる。また、複数の副撮像部103の各々は、被検面11aを斜め上方から撮像するように、即ち、撮像角度θcが90度より小さくなるように配置されうる。また、複数の副撮像部103は、被検面11aを撮像する方位角φが互いに異なるように配置されている。ここで、被検面11aを撮像する方向とは、主撮像部102または副撮像部103の光軸に沿った方向であって、主撮像部102または副撮像部103から被検面11aに向かう方向のことである。また、本実施形態における方位角φは、被検面11aと平行な面内(例えばXY面内(水平面内))における角度のことであり、当該面内の基準方位(例えばX方向)に対する反時計回りの角度として定義される。
副撮像部103は、撮像角度θc(チルト角度)が変更可能なように支持部材に取り付けられる。は、ワーク11が配置される物体面を中心に位置が変更可能に保持される。例えば、図1に示すように、撮像対象物Wをワーク11として、撮像対象物Wからレンズの主面までの距離aを一定にするように副撮像部103の位置(撮像角度)が変更可能である。このとき、副撮像部103の位置に応じて、カメラ2とレンズ鏡筒3がシャインプルーフの条件を満たすように、カメラ揺動プレート21(カメラ2)とレンズ揺動プレート31(光学系)のそれぞれの回転角度を異ならせる。
次に、副撮像部103の位置調整機構について説明する。位置調整機構はカメラ・レンズ傾き角度調整機構70とカメラ2とレンズ鏡筒3とを一体で位置調整を行う。また、位置調整機構は、撮像角度θcを変更した場合に、被検面11aがカメラ2の視野内(撮像素子の撮像範囲内)となるように調整するためにも用いられる。以下、副撮像部103を単に撮像装置として説明する。図11は、位置調整機構を備えた撮像装置の概略図である。図11(a)は正面図、(b)は側面図、(c)は(a)のAA断面図である。尚、図2と同じ構成については、同一の符号を付けている。
図11(a)において、6は並進位置調整機構である並進調整プレートである。4’は並進調整機構を備えたフレーム(第3保持部)である。フレーム4’は、カメラ揺動プレート21(カメラ2)とレンズ揺動プレート31(光学系)の位置を一体的に変更するための部材である。フレーム4’は、下部にZ方向を長手方向とした長穴を備えたZ調整穴46を具備する。61は固定ボルトである。並進調整プレート6は、固定ボルト61の不図示のねじ穴を備える。Z調整穴46は、固定ボルト61が通過可能な丸みの半径を有し、固定ボルト61に対してZ調整穴46に沿ってフレーム4’をZ方向に並進可能とする。固定ボルト61は、フレーム4’を並進調整プレート6に固定する。Z方向の並進調整について説明する。固定ボルト61を緩め、並進調整プレート6に対してフレーム4’をZ方向にスライドさせ移動させて、再度固定ボルト61で締め付ける。これにより、カメラ・レンズ傾き角度調整機構70とカメラ2とレンズ鏡筒3とを一体でZ方向の並進調整を行う。
また、並進調整プレート6は、図11(c)に示すように、X方向を長手方向とした水平調整穴63を備える。62は、並進調整プレート6を、取付対象64に固定するための固定ボルトである。取付け対象64は、撮像対象を搭載する構造体(支持部材)等である。取付対象64は、固定ボルト62に対するねじ穴を備える。水平調整穴63は、固定ボルト62が通過可能な丸みの半径を有する。固定ボルト62を緩め、固定ボルト62に対して並進調整プレート6を水平調整穴63に沿って移動させることにより、並進調整プレート6をX方向に並進可能とする。取付対象64に対して並進調整プレート6をX方向にスライドさせ移動させた後、再度固定ボルト62で締め付ける。これにより、カメラ・レンズ傾き角度調整機構70とカメラ2とレンズ鏡筒3とを一体でX方向の並進調整を行う。レンズ鏡筒3のチルト角度を調整するとき、撮像対象物が視野外となる場合がある。これに対し、撮像対象物が視野内となるように、カメラ2とレンズ鏡筒3とを一体でZ方向及びX方向の少なくとも一方に並進調整を行う。
以上のように、本実施形態の撮像装置における並進位置調整機構により、チルト角度調整による撮像対象の視野範囲外へのずれに対し、傾き角度調整後にカメラ、レンズ鏡筒を傾き調整したまま一体として、並進位置調整配置することが可能となる。シャインプルーフの条件を満たすようにカメラ、レンズ鏡筒の傾き角度を調整した後、カメラ、レンズ鏡筒を一体として位置を調整することにより、撮像対象を視野内に配置することができるという効果を得る。
並進位置調整機構として、Y方向を長手方向とした長穴を備えたX方向調整プレートを用いてもよい。この場合、Y方向の並進調整が可能となる。更に、並進位置調整機構として、長穴による位置調整としたが、位置決めピン等の位置決め手段を用いてもよい。この場合、精度よく並進調整が可能となる。更にまた、並進位置調整機構として、長穴による位置調整としたが、リニアガイドやステージ及びそれらの組合せにしても良く、この場合、簡便な並進調整が可能となる。
次に、検査装置10を用いて被検面11aの外観を検査する方法について説明する。まず、制御部104は、被検面11aを照明する方向を変えながら主撮像部102によって被検面11aを複数回撮像する。制御部104は、被検面11aに光を照射する方位角φや角度θiが互いに異なる複数の状態になるように照明部101を制御し、複数の状態の各々について被検面11aを撮像するように主撮像部102を制御する。
制御部104は、撮像によって得られた画像に基づいて、被検面11aの欠陥(キズ、ムラ、光吸収性の異物)を検出するための画像を生成する。制御部は、撮像で得られた画像の各々に対してシェーディング補正を行った後、画素の位置ごとに、補正後の画像における明度の最大値と最小値との差を求める。
次に、制御部104は、主撮像部102で得られた画像、および副撮像部103で得られた画像に基づいて、被検面11a(ワーク11)の外観を評価する。例えば、制御部104は、被検面11aにキズ(微細なキズも含む)があるか否かの評価を、生成した画像に基づいて行いうる。また、制御部104は、被検面11aにムラがあるか否かの評価を、生成した画像に基づいて行いうる。
[実施形態5]
まず、実施形態4の検査装置によって被検物を検査する。そして、検査装置による被検物の検査結果を用いて、被検物の加工、変形や組立などの処理を行って、光学部品や装置ユニットなどの物品を製造することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は、これらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。

Claims (13)

  1. 被検物を撮像する撮像装置であって、
    受光面を有する撮像素子と、
    前記撮像素子を保持する第1保持部と、
    被検物からの光を前記受光面に結像させる光学系と、
    前記光学系を保持する第2保持部と、を有し、
    前記第1保持部と前記第2保持部はそれぞれ、同一の回転軸を中心に回転可能であり、
    前記回転軸の中心軸は前記第1保持部内の領域を通り、
    前記回転軸の回りの前記第1保持部の第1回転角度と前記回転軸の回りの前記第2保持部の第2回転角度とを互いに異ならせるように前記回転軸の回りに前記第1保持部及び前記第2保持部を回転させることによって、前記受光面と前記光学系の主面との相対角度が変更される、ことを特徴とする撮像装置。
  2. 前記受光面を含む平面と前記光学系の主面を含む平面と前記被検物が配置される物体面を含む面がシャインプルーフの条件を満たすように、前記第1回転角度と前記第2回転角度を異ならせる、ことを特徴とする請求項1に記載の撮像装置。
  3. 前記第1回転角度が大きくなるにつれて、前記第1回転角度と第2回転角度の差が大きくなるように、前記第1回転角度と前記第2回転角度を異ならせる、ことを特徴とする請求項1又は2に記載の撮像装置。
  4. 前記回転軸の中心軸は前記撮像素子上にあることを特徴とする請求項1乃至3の何れか1項に記載の撮像装置。
  5. 前記回転軸の中心軸は前記撮像素子の受光面上にあることを特徴とする請求項4に記載の撮像装置。
  6. 前記第1保持部と前記第2保持部に接続されており、前記第1保持部と前記第2保持部を操作する1つの操作部材を有し、
    前記操作部材を動かすことによって、前記第1保持部と前記第2保持部を前記回転軸の回りに回転させる、ことを特徴とする請求項1乃至5の何れか1項に記載の撮像装置。
  7. 前記第1保持部と前記第2保持部のそれぞれは、前記操作部材によって回転される第1回転部材と、前記第1回転部材の角度変位を並進変位に変換する並進部材と、前記並進部材の並進変位を角度変位に変換する第2回転部材と、を有し、
    前記第2回転部材は前記回転軸に取り付けられ、前記回転軸の回りに回転する、ことを特徴とする請求項6に記載の撮像装置。
  8. 前記第1保持部の前記第1回転部材と前記第2保持部の前記第1回転部材が一体的に回転する、ことを特徴とする請求項7に記載の撮像装置。
  9. 前記第1保持部を前記回転軸の回りに回転駆動させる第1駆動部と、
    前記第2保持部を前記回転軸の回りに回転駆動させる第2駆動部と、を有することを特徴とする請求項1乃至5の何れか1項に記載の撮像装置。
  10. 前記被検物が配置される面に対して前記撮像装置の位置が変更可能であり、
    前記被検物が配置される面が前記撮像素子による撮像範囲内となるように前記撮像装置の位置が変更される、ことを特徴とする請求項1乃至9の何れか1項1に記載の撮像装置。
  11. 被検物を検査する検査装置であって、
    被検物を照明する照明部と、
    前記照明部によって照明された前記被検物を撮像する、請求項1乃至10の何れか1項に記載の撮像装置と、を有し、
    前記撮像装置によって得られた画像に基づいて前記被検物を検査することを特徴とする検査装置。
  12. 被検物を検査する検査装置であって、
    被検物を照明する照明部と、
    前記照明部によって照明された前記被検物を撮像する撮像装置と、を有し、
    前記撮像装置によって得られた画像に基づいて前記被検物を検査し、
    前記撮像装置は、
    受光面を有する撮像素子と、
    前記撮像素子を回転可能に保持する第1保持部と、
    前記被検物からの光を前記受光面に結像させる光学系と、
    前記光学系を回転可能に保持する第2保持部と、を有し、
    前記第1保持部及び前記第2保持部の位置を一体的に変更可能に保持する第3保持部と、を有し、
    前記被検物が配置される物体面を中心として前記第3保持部の位置が変更可能であり、
    前記第3保持部の位置に応じて前記撮像素子及び前記光学系がシャインプルーフの条件を満たすように、前記第1保持部の第1回転角度と前記第2保持部の第2回転角度とを互いに異ならせる、ことを特徴とする検査装置。
  13. 請求項11又は12に記載の検査装置を用いて被検物を検査する工程と、
    該検査された被検物を加工することにより物品を製造する工程と、を有することを特徴とする物品の製造方法。
JP2016238868A 2016-12-08 2016-12-08 撮像装置、検査装置及び製造方法 Pending JP2018096721A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016238868A JP2018096721A (ja) 2016-12-08 2016-12-08 撮像装置、検査装置及び製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016238868A JP2018096721A (ja) 2016-12-08 2016-12-08 撮像装置、検査装置及び製造方法

Publications (1)

Publication Number Publication Date
JP2018096721A true JP2018096721A (ja) 2018-06-21

Family

ID=62631309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238868A Pending JP2018096721A (ja) 2016-12-08 2016-12-08 撮像装置、検査装置及び製造方法

Country Status (1)

Country Link
JP (1) JP2018096721A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068246A (ja) * 2018-10-23 2020-04-30 ワイエス株式会社 加工検査装置
CN111351799A (zh) * 2020-03-11 2020-06-30 凌云光技术集团有限责任公司 一种适用于显示屏缺陷检测的成像装置
CN111487251A (zh) * 2020-04-27 2020-08-04 中国科学院长春光学精密机械与物理研究所 一种aoi成像组件系统及其使用方法
CN113720574A (zh) * 2021-09-02 2021-11-30 中国空气动力研究与发展中心超高速空气动力研究所 一种风洞试验姿态测量系统的保护装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068246A (ja) * 2018-10-23 2020-04-30 ワイエス株式会社 加工検査装置
CN111351799A (zh) * 2020-03-11 2020-06-30 凌云光技术集团有限责任公司 一种适用于显示屏缺陷检测的成像装置
CN111487251A (zh) * 2020-04-27 2020-08-04 中国科学院长春光学精密机械与物理研究所 一种aoi成像组件系统及其使用方法
CN113720574A (zh) * 2021-09-02 2021-11-30 中国空气动力研究与发展中心超高速空气动力研究所 一种风洞试验姿态测量系统的保护装置

Similar Documents

Publication Publication Date Title
JP2018096721A (ja) 撮像装置、検査装置及び製造方法
JP4993691B2 (ja) ウエーハ裏面検査装置
WO2009090871A1 (ja) 被検査体の検査装置
TWI623724B (zh) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
WO2018212058A1 (ja) 外観検査装置
US6628746B2 (en) Image-based inspection system including positioning compensation for non-planar targets
JP2017120232A (ja) 検査装置
TWI387721B (zh) 三維形貌檢測裝置
JP5787261B2 (ja) 検査装置、及び検査方法
JP6310372B2 (ja) 検査装置
JP2000111502A (ja) 断層検査装置
TW201546443A (zh) 基板檢查裝置
KR20080096064A (ko) 스캔형 듀얼 모아레 검사장치 및 검사방법
JP4052547B2 (ja) 複数の1次元ccdカメラの姿勢および位置の調整方法
KR20160121716A (ko) 하이브리드 조명 기반 표면 검사 장치
KR101758647B1 (ko) 비평면 디스플레이 패널 검사장치
JP2008309503A (ja) 光学系駆動機構及び検査装置
CN106461382B (zh) 五轴光学检测系统
JP2007047010A (ja) ウェーハ外周検査方法
JP2002071587A (ja) X線検査装置
JP2010107220A (ja) 非円筒体の外周面検査方法及びその装置
CN112945131B (zh) 一种划痕深度测量装置及方法
KR100591312B1 (ko) 디스플레이 검사장치
JP4119828B2 (ja) 光学部材検査装置による球面部の検査方法
JP6014386B2 (ja) ガラス板の照明装置及び加工装置