JP2018096315A - Liquid supply system for hydraulic power generation and method for supplying liquid to hydraulic turbine generator - Google Patents
Liquid supply system for hydraulic power generation and method for supplying liquid to hydraulic turbine generator Download PDFInfo
- Publication number
- JP2018096315A JP2018096315A JP2016243179A JP2016243179A JP2018096315A JP 2018096315 A JP2018096315 A JP 2018096315A JP 2016243179 A JP2016243179 A JP 2016243179A JP 2016243179 A JP2016243179 A JP 2016243179A JP 2018096315 A JP2018096315 A JP 2018096315A
- Authority
- JP
- Japan
- Prior art keywords
- water
- raw water
- turbine generator
- pipe
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Hydraulic Turbines (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtration Of Liquid (AREA)
Abstract
Description
本発明は、水力発電用液体供給システムと水車発電機への液体の供給方法に関し、特に水車発電機の水車用軸受または水車用軸封装置に供給する液体の供給システムに関する。 The present invention relates to a liquid supply system for hydroelectric power generation and a method for supplying liquid to a water turbine generator, and more particularly to a liquid supply system for supplying water to a water turbine bearing or a water wheel shaft seal device of a water turbine generator.
水車発電機の主軸の軸受潤滑方式として油潤滑方式と水潤滑方式が知られている。油潤滑方式は河川への油の漏洩により周辺環境が汚染されるリスクがある。このため、近年では、軸受の潤滑に河川水を使用し、上記リスクを回避することが可能な水潤滑方式が採用されることがある。 An oil lubrication method and a water lubrication method are known as bearing lubrication methods for the main shaft of a water turbine generator. The oil lubrication method has a risk of contaminating the surrounding environment due to oil leakage into the river. For this reason, in recent years, a water lubrication system that uses river water to lubricate bearings and can avoid the above-mentioned risks may be employed.
水潤滑方式では、軸受の潤滑材として河川水が直接使用されるため、軸受の摺動部への異物混入を防止する必要がある。特許文献1には、沈降分離設備と遠心分離設備を備えた液体供給システムが開示されている。 In the water lubrication method, since river water is directly used as a bearing lubricant, it is necessary to prevent foreign matter from entering the sliding portion of the bearing. Patent Document 1 discloses a liquid supply system including a sedimentation facility and a centrifugal facility.
近年、気候変動の影響によって、短時間での集中的な豪雨が発生しやすくなっている。また、突然の火山の噴火によって、噴出物が河川へ流入することがある。このため、河川水中の異物の性状が変化し、沈降分離設備と遠心分離設備だけで軸受への異物混入防止を図ることが困難な状況となっている。沈降分離設備は異物の沈降速度の違いにより分離し、遠心分離設備は回転により作用する角運動量の差から分離を行うが、いずれも異物の粒径が小さいほど、水と異物が分離しづらいという原理的な課題を有するためである。その結果、河川の濁度が高い時は、磨耗防止のために発電の中断もしくは停止を余儀なくされ、また発電を継続した場合には、軸受への異物混入による水車の主軸の摩耗が発生しやすくなり、大がかりな補修、交換作業を行う頻度が増加する傾向にある。軸受を収容する軸受水槽の軸封止部も主軸との間に微小な隙間が設けられており、隙間への異物の侵入は主軸の摩耗を招く。 In recent years, due to the effects of climate change, intensive heavy rains have been likely to occur in a short time. In addition, sudden volcanic eruptions can cause the ejecta to flow into rivers. For this reason, the property of the foreign matter in river water changes, and it is difficult to prevent the foreign matter from being mixed into the bearing using only the sedimentation separation equipment and the centrifugal separation equipment. Sedimentation separation equipment separates due to the difference in the sedimentation speed of foreign matter, while centrifugal separation equipment separates from the difference in angular momentum acting by rotation, but in both cases, the smaller the foreign matter particle size, the more difficult it is to separate water and foreign matter. This is because it has a fundamental problem. As a result, when the turbidity of the river is high, power generation must be interrupted or stopped to prevent wear, and when power generation is continued, wear of the main shaft of the turbine is likely to occur due to contamination of the bearings. Therefore, the frequency of large-scale repair and replacement work tends to increase. The shaft sealing portion of the bearing water tank that houses the bearing is also provided with a minute gap between the main shaft, and entry of foreign matter into the gap causes wear of the main shaft.
また、水車発電機の運転中は、主軸および軸受に冷却水を常時連続供給する必要があるが、前述の如く河川水中の異物の性状が大きく変動するため、一定の処理水質を有する冷却水を安定して連続供給することができないという課題があった。 In addition, during operation of the turbine generator, it is necessary to continuously supply cooling water to the main shaft and bearings. However, since the properties of foreign matter in river water fluctuate greatly as described above, cooling water having a certain treated water quality is required. There was a problem that stable and continuous supply was not possible.
本発明は、水車発電機の主軸の異物による摩耗を低減するとともに、一定の処理水質を有する冷却水を安定して連続供給することができる水力発電用液体供給システムを提供することを目的とする。 An object of the present invention is to provide a liquid supply system for hydroelectric power generation that can reduce the wear caused by foreign matters on the main shaft of a water turbine generator and can stably and continuously supply cooling water having a certain treated water quality. .
本発明の水力発電用液体供給システムは、原水をろ過して、原水に含まれる異物の少なくとも一部が除去されたろ過水を作るろ過装置と、原水源をろ過装置に接続し、原水源で取水された原水をろ過装置に供給する第1の配管と、ろ過装置を水車発電機に接続し、ろ過水を水車発電機に供給する第2の配管と、を有している。 The liquid supply system for hydroelectric power generation according to the present invention includes a filtration device that filters raw water to produce filtered water from which at least a part of foreign matter contained in the raw water has been removed, and connects the raw water source to the filtration device. A first pipe for supplying the raw water taken to the filtration apparatus; and a second pipe for connecting the filtration apparatus to the turbine generator and supplying filtrate to the turbine generator.
本発明によれば、原水に含まれる異物の少なくとも一部がろ過装置で除去されるため、水車発電機の主軸の異物による摩耗を低減することができる水力発電用液体供給システムを提供することができる。 According to the present invention, since at least a part of the foreign matter contained in the raw water is removed by the filtering device, it is possible to provide a hydroelectric power supply system that can reduce wear caused by foreign matter on the main shaft of the turbine generator. it can.
以下、図面を参照して本発明の一実施形態に係る水力発電用液体供給システムについて説明する。図1は、本発明が適用される水車発電機の概略構成を例示している。図2は水力発電用液体供給システム(以下、システム100という)の概念を示している。 Hereinafter, a liquid supply system for hydroelectric power generation according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 illustrates a schematic configuration of a water turbine generator to which the present invention is applied. FIG. 2 shows the concept of a hydroelectric power supply system (hereinafter referred to as system 100).
図1を参照すると、水車発電機1はランナ3が取り付けられた主軸2を有している。ランナ3は水圧鉄管4(図2参照)に接続されたケーシング5に収容されている。主軸2の上端部には、カップリング6を介して発電機7が取り付けられている。水圧鉄管4から供給された河川水がケーシング5の内部のランナ3を回転させることによって、発電機7による発電が行われる。水圧鉄管4には水車発電機1のメンテナンス時に河川水の供給を止めるための入口弁8(図2参照)が設けられている。 Referring to FIG. 1, a water turbine generator 1 has a main shaft 2 to which a runner 3 is attached. The runner 3 is accommodated in a casing 5 connected to a hydraulic iron pipe 4 (see FIG. 2). A generator 7 is attached to the upper end portion of the main shaft 2 via a coupling 6. The river water supplied from the hydraulic iron pipe 4 rotates the runner 3 inside the casing 5, thereby generating power by the generator 7. The hydraulic iron pipe 4 is provided with an inlet valve 8 (see FIG. 2) for stopping the supply of river water during maintenance of the turbine generator 1.
主軸2は水中軸受(以下、軸受9という)で支持されている。軸受9は軸受水槽10に収容されている。軸受9は滑り軸受であり、主軸2に取り付けられたカラー11と軸受9の滑り面9aとの間に微小なギャップ12が設けられている。軸受水槽10は河川水が充填されており、ギャップ12に流入した河川水が軸受9を潤滑するとともに、軸受9と主軸2を冷却する。軸受水槽10には河川水の供給配管(第2の配管L2)と、河川水の排出配管L7が接続されており、河川水が供給配管(第2の配管L2)から軸受水槽10に連続的に供給されるとともに、温度が上昇した河川水が軸受水槽10から河川に連続的に排出される。軸受水槽10の主軸2の貫通部には水車用軸封装置(以下、軸封装置13という)が設けられている。軸封装置13は軸受水槽10内の河川水の漏えいを防止する。 The main shaft 2 is supported by an underwater bearing (hereinafter referred to as a bearing 9). The bearing 9 is accommodated in a bearing water tank 10. The bearing 9 is a sliding bearing, and a minute gap 12 is provided between a collar 11 attached to the main shaft 2 and a sliding surface 9 a of the bearing 9. The bearing water tank 10 is filled with river water, and the river water flowing into the gap 12 lubricates the bearing 9 and cools the bearing 9 and the main shaft 2. A river water supply pipe (second pipe L2) and a river water discharge pipe L7 are connected to the bearing water tank 10, and the river water is continuously connected to the bearing water tank 10 from the supply pipe (second pipe L2). The river water whose temperature has risen is continuously discharged from the bearing water tank 10 to the river. A water wheel shaft seal device (hereinafter referred to as a shaft seal device 13) is provided in the penetrating portion of the main shaft 2 of the bearing water tank 10. The shaft seal device 13 prevents leakage of river water in the bearing water tank 10.
以下、水圧鉄管4から供給される河川水を「原水」といい、水圧鉄管4を「原水源」という。本明細書では、便宜上、後述する第1の配管L1を流れる水も「原水」と称する。すなわち、第1の配管L1上に設置された沈降分離装置22やストレーナ23等の何らかの処理装置で処理された水も「原水」という。同様に、本明細書では、便宜上、後述する第2の配管L2を流れる水を「ろ過水」と称する。すなわち、第2の配管L2上に設置された脱塩装置30等の何らかの処理装置で処理された水も「ろ過水」という。換言すれば、本願発明において特徴的な装置であるろ過装置28を基準として、ろ過装置28の上流側を流れる水を「原水」と総称し、ろ過装置28の下流側を流れる水を「ろ過水」と総称する。原水には通常、石英、長石などの鉱物の微粒子が含まれている。これらの微粒子に代表される、原水中に含まれる固体を「異物」という。 Hereinafter, river water supplied from the hydraulic iron pipe 4 is referred to as “raw water”, and the hydraulic iron pipe 4 is referred to as “raw water source”. In this specification, for the sake of convenience, water flowing through a first pipe L1 described later is also referred to as “raw water”. That is, water treated by some treatment device such as the sedimentation separation device 22 and the strainer 23 installed on the first pipe L1 is also referred to as “raw water”. Similarly, in this specification, for convenience, water flowing through a second pipe L2 described later is referred to as “filtered water”. That is, water treated by some treatment device such as the desalination device 30 installed on the second pipe L2 is also referred to as “filtered water”. In other words, on the basis of the filtering device 28 which is a characteristic device in the present invention, water flowing upstream of the filtering device 28 is collectively referred to as “raw water”, and water flowing downstream of the filtering device 28 is referred to as “filtered water”. ". Raw water usually contains fine particles of minerals such as quartz and feldspar. A solid contained in the raw water, represented by these fine particles, is called “foreign matter”.
システム100は原水をろ過するろ過装置28を有している。原水に含まれる異物の少なくとも一部が除去されてろ過水が作られ、ろ過水が水車発電機1の軸受9及び軸封装置13が収容される軸受水槽10に供給される。ろ過装置28は第1の配管L1によって原水源4に接続され、第2の配管L2によって軸受水槽10に接続されている。従って、原水源4から取水された原水は第1の配管L1を通ってろ過装置28に供給されてろ過水となり、ろ過水が第2の配管L2を通って軸受水槽10に供給される。ろ過装置28の下流には脱塩装置30が設けられている。脱塩装置としては、例えばイオン交換樹脂が充填されたカートリッジポリッシャーを用いることができる。ろ過水に含まれるイオン成分を除去することで、主軸2のさびの発生を抑制することができる。 The system 100 has a filtration device 28 for filtering raw water. At least a part of the foreign matter contained in the raw water is removed to produce filtered water, and the filtered water is supplied to the bearing water tank 10 in which the bearing 9 and the shaft seal device 13 of the turbine generator 1 are accommodated. The filtration device 28 is connected to the raw water source 4 by a first pipe L1 and is connected to the bearing water tank 10 by a second pipe L2. Therefore, the raw water taken from the raw water source 4 is supplied to the filtration device 28 through the first pipe L1 to become filtered water, and the filtered water is supplied to the bearing water tank 10 through the second pipe L2. A desalinator 30 is provided downstream of the filtration device 28. As the desalting apparatus, for example, a cartridge polisher filled with an ion exchange resin can be used. By removing the ionic component contained in the filtered water, it is possible to suppress the occurrence of rust on the main shaft 2.
第1の配管L1に沿って沈降分離装置22が設けられている。沈降分離装置22は比較的粒径の大きい異物を重力によって沈降させ、除去する。沈降分離装置22と原水源4の間には弁21が設けられている。弁21を閉じることで、沈降分離装置22のメンテナンス時に原水が沈降分離装置22に流入することが防止される。 A sedimentation separator 22 is provided along the first pipe L1. The sedimentation separator 22 sediments and removes foreign matters having a relatively large particle size by gravity. A valve 21 is provided between the sedimentation separator 22 and the raw water source 4. By closing the valve 21, raw water is prevented from flowing into the sedimentation separator 22 during maintenance of the sedimentation separator 22.
第1の配管L1の沈降分離装置22の下流にはストレーナ23が設けられており、沈降分離装置22で分離されなかった、比較的大きな粒径の異物が除去される。第1の配管L1のストレーナ23の下流には遠心分離装置25が設けられている。遠心分離装置25は遠心分離作用によって、ストレーナ23で除去できなかった、比重が水の比重である1より大きな異物を原水から分離する。分離された異物は配管を通って河川に排出される。遠心分離装置25の入口側には弁24が設けられている。弁24を閉じることで、遠心分離装置25のメンテナンス時に原水が遠心分離装置25に流入することが防止される。 A strainer 23 is provided downstream of the sedimentation separator 22 in the first pipe L1, and foreign substances having a relatively large particle size that have not been separated by the sedimentation separator 22 are removed. A centrifugal separator 25 is provided downstream of the strainer 23 of the first pipe L1. The centrifugal separator 25 separates, from the raw water, a foreign matter having a specific gravity greater than 1 that cannot be removed by the strainer 23 and has a specific gravity of water. The separated foreign matter is discharged to the river through the pipe. A valve 24 is provided on the inlet side of the centrifugal separator 25. By closing the valve 24, raw water is prevented from flowing into the centrifugal separator 25 during maintenance of the centrifugal separator 25.
第1の配管L1の遠心分離装置25の下流で、バイパス配管L3が第1の配管L1から分岐している。バイパス配管L3はろ過装置28をバイパスし、後述するろ過水槽36に接続されている。第1の配管L1の、遠心分離装置25の下流側の端部はろ過装置28に接続されている。 A bypass pipe L3 branches from the first pipe L1 downstream of the centrifugal separator 25 of the first pipe L1. The bypass pipe L3 bypasses the filtration device 28 and is connected to a filtered water tank 36 described later. The end of the first pipe L1 on the downstream side of the centrifugal separator 25 is connected to the filtration device 28.
第2の配管L2のろ過装置28の下流側には弁31を介してろ過水槽36が設けられている。ろ過水槽36はろ過装置28でろ過されたろ過水を貯蔵する。これによって、原水の供給量が変動した場合や、ろ過水槽36の上流側の設備(沈降分離装置22、遠心分離装置25、ろ過装置28等)が一時的に運転を停止した場合にも一定期間、ろ過水を軸受水槽10に供給することができる。ろ過水槽36に貯留されているろ過水からさらに異物を取り除くため、ろ過水をろ過水槽36とろ過装置28の間で循環させてもよい。この目的で、ろ過水槽36には戻り配管L4が接続されており、戻り配管L4の他端は第1の配管L1のろ過装置28の入口側に合流している。ろ過水の循環を制御するため、戻り配管L4には弁33とポンプ34が設置されている。第2の配管L2のろ過水槽36の下流側の端部は軸受水槽10に接続されている。これにより、第2の配管L2はろ過水を水車発電機1の軸受9及び軸封装置13に供給する。 A filtration water tank 36 is provided via a valve 31 on the downstream side of the filtration device 28 of the second pipe L2. The filtered water tank 36 stores the filtered water filtered by the filtering device 28. As a result, even when the supply amount of the raw water fluctuates, or when the equipment on the upstream side of the filtration water tank 36 (sedimentation separation device 22, centrifugal separation device 25, filtration device 28, etc.) temporarily stops operation, a certain period of time. The filtered water can be supplied to the bearing water tank 10. The filtered water may be circulated between the filtered water tank 36 and the filtering device 28 in order to further remove foreign matters from the filtered water stored in the filtered water tank 36. For this purpose, a return pipe L4 is connected to the filtered water tank 36, and the other end of the return pipe L4 joins the inlet side of the filtration device 28 of the first pipe L1. In order to control the circulation of filtered water, a valve 33 and a pump 34 are installed in the return pipe L4. The downstream end of the filtered water tank 36 of the second pipe L2 is connected to the bearing water tank 10. As a result, the second pipe L <b> 2 supplies filtered water to the bearing 9 and the shaft seal device 13 of the water turbine generator 1.
本願発明者は、既存の水車発電機における主軸の摩耗状況を調査した。調査対象の水車発電機が設置されている水力発電設備はろ過装置が設けられていない。河川水の濁度が高くなったときに軸受水槽内のろ過水を分析したところ、粒径0.5mm以下の透明、白色及び茶色の鉱物が検出された。透明な鉱物は主に石英であると考えられ、白色及び茶色の鉱物は主に長石であると考えられる。また、軸受と軸封部には破砕された鉱物片が多数付着していた。これらの鉱物片も主に石英と長石であると考えられる。 The inventor of the present application investigated the wear situation of the main shaft in the existing turbine generator. The hydropower facility where the surveyed turbine generator is installed does not have a filtration device. When the filtered water in the bearing water tank was analyzed when the turbidity of the river water became high, transparent, white and brown minerals having a particle size of 0.5 mm or less were detected. Transparent minerals are considered to be mainly quartz, and white and brown minerals are mainly considered to be feldspar. Moreover, many crushed mineral pieces adhered to the bearing and the shaft seal. These mineral pieces are also considered to be mainly quartz and feldspar.
主軸2の摩耗の原因の一つは粒径である。主軸2と軸受9の間のギャップ12の寸法は一般に数十μmであるが、主軸2が軸受9に対して偏芯することもあるため、最大でギャップ12の寸法の2倍程度の粒径の異物がギャップ12に侵入しうる。同様の理由から数十μmより小さい粒径の異物がギャップ12に入り付着残存することもあり得る。これらの理由から、概ね粒径5〜75μm程度の異物を除去することで、主軸2の摩耗を抑えることができると考えられる。すなわち、粒径5μm未満の異物はギャップ12に侵入しても残存する可能性が小さく、粒径75μmを上回る異物はギャップ12に侵入する可能性が小さいので、これらの異物は本発明にとって重要ではない。また、図3には既存の水車発電機に備えられた遠心分離設備25の出口水に含まれる異物の粒度分布の測定例を、図4には出口水の光学顕微鏡による観察結果を示している。なお、遠心分離設備25の上流側には沈降分離設備22が設けられている。図4では、1目盛が100μmであり、色が濃い部分は粒径5〜75μm程度の異物が存在している部分を示しており、もやがかった若干色が濃い部分は、細かい粒子が集合している部分を示している。以上のことから、粒径5〜75μm程度の異物は既存の遠心分離設備25や沈降分離設備22では除去することが困難であることを確認した。 One of the causes of wear of the main shaft 2 is the particle size. The size of the gap 12 between the main shaft 2 and the bearing 9 is generally several tens of μm. However, since the main shaft 2 may be eccentric with respect to the bearing 9, the particle size is about twice as large as the size of the gap 12. Can enter the gap 12. For the same reason, a foreign substance having a particle diameter smaller than several tens of μm may enter the gap 12 and remain attached. For these reasons, it is considered that wear of the main shaft 2 can be suppressed by removing foreign matters having a particle size of about 5 to 75 μm. That is, foreign matter having a particle size of less than 5 μm is less likely to remain even if it enters the gap 12, and foreign matter having a particle size of more than 75 μm is less likely to enter the gap 12. Absent. FIG. 3 shows a measurement example of the particle size distribution of the foreign matter contained in the outlet water of the centrifugal separator 25 provided in the existing water turbine generator, and FIG. 4 shows the observation result of the outlet water using an optical microscope. . A sedimentation separation facility 22 is provided upstream of the centrifugal separation facility 25. In FIG. 4, one scale is 100 μm, and a dark portion indicates a portion where foreign matter having a particle size of about 5 to 75 μm is present, and a slightly dark portion having a slightly dark color collects fine particles. The part which is doing is shown. From the above, it was confirmed that foreign matters having a particle size of about 5 to 75 μm are difficult to remove with the existing centrifugal separation equipment 25 and sedimentation separation equipment 22.
粒径5〜75μm程度の異物は、質量が小さいため、遠心分離時に、作用する遠心力が小さくなる。それにより、水との分離がうまくできず、出口水に残ってしまうことを確認した。これまで水車発電機は、粒径が小さな異物に対して遠心分離設備25により、最終段の異物の除去を行ってきたが、本発明が課題とする、異物による磨耗の低減の効果が、不十分であることを確認した。 Since the foreign matter having a particle size of about 5 to 75 μm has a small mass, the centrifugal force that acts during centrifugation is reduced. As a result, it was confirmed that the water could not be separated well and remained in the outlet water. In the past, water turbine generators have removed foreign substances in the final stage from a foreign substance having a small particle size by means of a centrifugal separation device 25. However, the effect of reducing wear caused by foreign substances, which is a problem of the present invention, is not satisfactory. Confirmed that it was enough.
主軸2の摩耗のもう一つの原因は異物の硬度である。異物の硬度が主軸2の材料である鋼(スチール)の硬度を上回る場合、主軸2に異物による傷がつきやすくなる。鋼のモース硬度は5〜6であり、長石のモース硬度は6、石英のモース硬度は7である。従って、主軸2の摩耗に寄与する異物の種類は、モース硬度の観点からは主に石英であり、次に長石であると考えられる。 Another cause of wear of the main shaft 2 is the hardness of the foreign matter. When the hardness of the foreign matter exceeds the hardness of steel (steel) which is the material of the main shaft 2, the main shaft 2 is easily damaged by the foreign matter. Steel has a Mohs hardness of 5-6, feldspar has a Mohs hardness of 6, and quartz has a Mohs hardness of 7. Therefore, the type of foreign matter that contributes to the wear of the main shaft 2 is considered to be mainly quartz and then feldspar from the viewpoint of Mohs hardness.
以上より、ろ過装置28は、原水に含まれる主軸2の摩耗の原因となる異物を除去できれば、特に限定されず、砂ろ過装置や、無機膜または有機膜を備えた精密ろ過膜装置(孔径は概ね0.05〜10μm)、または限外精密ろ過膜装置(孔径は概ね0.01〜0.001μm)を用いることができる。また、ろ過装置28は原水に含まれる粒径5〜75μm且つモース硬度6以上の異物の少なくとも一部を除去する性能を有していることが望ましい。なお、分析の結果、粒径75μm以下の異物の中には石英の粒子が多数含まれることが分かっており、粒径5〜75μmの粒子を除去することで、石英の粒子を効果的に除去することができる。以上の観点から、好適に利用できるろ過装置28は砂ろ過装置である。砂ろ過装置は粒状ろ材が単層または複層で充填されたろ過装置であり、粒径5〜75μm程度の粒子を効率よく除去する。粒状ろ材の間に水が通る流路が形成されるため、圧力損失も小さい。本発明では、ろ過装置28は、一定の処理水質を得るため、ろ過層全体を3次元的に有効利用できる複層とすることが望ましい。例えば、比重が小さくて粒径の大きなろ過材と比重が大きくて粒径の小さなろ過材を形成することで、大きな粒子から順に小さな粒子へと効果的に除去することができる。また、粒径5〜75μmの粒子は土砂の分類上ではシルトと呼ばれ、表面に電荷を有するが、ろ過設備28の前段で凝集剤等を注入し、シルト表面の電荷を中和して粒子同士を結合、凝集させることで除去効率を高めることもできる。 From the above, the filtration device 28 is not particularly limited as long as it can remove foreign matters that cause abrasion of the main shaft 2 contained in the raw water, and is a sand filtration device or a microfiltration membrane device equipped with an inorganic membrane or an organic membrane (the pore size is An approximate microfiltration membrane device (having a pore diameter of approximately 0.01 to 0.001 μm) can be used. Moreover, it is desirable that the filtration device 28 has a performance of removing at least a part of foreign matters having a particle diameter of 5 to 75 μm and a Mohs hardness of 6 or more contained in raw water. As a result of the analysis, it has been found that a foreign substance having a particle size of 75 μm or less contains a large number of quartz particles. By removing particles having a particle size of 5 to 75 μm, the quartz particles are effectively removed. can do. From the above viewpoint, the filtration device 28 that can be suitably used is a sand filtration device. The sand filtration device is a filtration device in which a particulate filter medium is filled with a single layer or multiple layers, and efficiently removes particles having a particle size of about 5 to 75 μm. Since a flow path through which water passes is formed between the particulate filter media, the pressure loss is also small. In the present invention, it is desirable that the filtration device 28 has a multilayer structure in which the entire filtration layer can be effectively used three-dimensionally in order to obtain a certain treated water quality. For example, by forming a filter medium having a small specific gravity and a large particle diameter and a filter medium having a large specific gravity and a small particle diameter, it is possible to effectively remove the particles from large particles to small particles in order. Particles having a particle size of 5 to 75 μm are called silt in the classification of earth and sand and have a charge on the surface, but a particle is formed by injecting a flocculant or the like before the filtration equipment 28 to neutralize the charge on the silt surface. Removal efficiency can also be improved by bonding and aggregating each other.
ろ過装置28の逆洗のため戻り配管L4から分岐し、ろ過装置28に接続された逆洗配管L5が設けられている。逆洗配管L5上にはろ過水の流れを制御するための弁32が設けられている。ろ過水槽36に貯蔵されたろ過水を通常の原水の流れと逆方向にろ過装置28に供給することで、捕捉された異物をろ過装置28から取り除くことができる。砂ろ過装置は一般に急激な差圧上昇が少ないため、逆洗の頻度を低減することができる。なお、逆洗の必要性を判定するため、ろ過装置28の入口側と出口側の差圧を測定する差圧計29が設けられており、差圧計29で測定した差圧が一定の値を超えた場合、逆洗を行うようにすることができる。また、差圧上昇速度(所定時間に対する差圧の上昇率)から逆洗頻度を自動的に切り替えることで、差圧上昇による流量低下を生じること無く、冷却水を安定して連続供給することができる。例えば、差圧上昇速度が増加した場合に逆洗頻度を増やし、差圧上昇速度が低下した場合は逆洗頻度を減らすようにする。具体的には、図5で示したように、通常の差圧上昇速度が40kPa/日の場合において逆洗頻度を1回/日としていた場合、差圧上昇速度が60kPa/日となったときには、逆洗頻度を2回/日とし、差圧上昇速度が80kPa/日となったときには、逆洗頻度を3回/日とするように制御する。 A backwash pipe L5 branched from the return pipe L4 and connected to the filter apparatus 28 is provided for backwashing of the filtration apparatus 28. A valve 32 for controlling the flow of filtered water is provided on the backwash pipe L5. The trapped foreign matter can be removed from the filtering device 28 by supplying the filtered water stored in the filtering water tank 36 to the filtering device 28 in the direction opposite to the flow of normal raw water. Since sand filter generally has little sudden increase in differential pressure, the frequency of backwashing can be reduced. In order to determine the necessity of backwashing, a differential pressure gauge 29 for measuring the differential pressure on the inlet side and the outlet side of the filtration device 28 is provided, and the differential pressure measured by the differential pressure gauge 29 exceeds a certain value. If this happens, backwashing can be performed. In addition, by automatically switching the backwash frequency from the differential pressure increase rate (the differential pressure increase rate with respect to a predetermined time), the cooling water can be stably and continuously supplied without causing a flow rate decrease due to the differential pressure increase. it can. For example, the backwash frequency is increased when the differential pressure increase rate is increased, and the backwash frequency is decreased when the differential pressure increase rate is decreased. Specifically, as shown in FIG. 5, when the normal pressure increase rate is 40 kPa / day and the backwash frequency is once / day, the differential pressure increase rate is 60 kPa / day. The backwash frequency is set to 2 times / day, and when the differential pressure increase rate reaches 80 kPa / day, the backwash frequency is controlled to be 3 times / day.
また、本発明では、冷却水を安定して連続供給するため、通水を継続しながら抑留量が多いろ過層を部分的または選択的に洗浄できる手段を設けることもできる。例えば、抑留量の多いろ過層の表層部を洗浄できるように洗浄配管及び洗浄排水配管を設け、ろ過通水を行いながら、洗浄配管から洗浄水を供給して、通水を停止させることなく部分洗浄を行う。 In the present invention, in order to stably supply the cooling water continuously, it is possible to provide means for partially or selectively washing the filtration layer having a large amount of detention while continuing the water flow. For example, a cleaning pipe and a cleaning drain pipe are provided so that the surface layer part of the filtration layer with a large amount of detention can be cleaned, and the cleaning water is supplied from the cleaning pipe while performing the filtration water flow without stopping the water flow. Wash.
原水中の異物の含有量が少ない場合、一部または全部の原水を、ろ過装置28を通さずに水車発電機1に供給することもできる。この目的で、第1の配管L1には、原水中の異物の粒度分布を測定する第1の測定手段39(センサー)が設けられている。また、第1の配管L1の、バイパス配管L3の分岐部とろ過装置28との間に第1の弁26が設けられ、バイパス配管L3上に第2の弁27が設けられている。センサー39で測定された粒度分布に基づき、制御手段38は第1の弁26と第2の弁27の開度を制御する。通常は第1の弁26が全開、第2の弁27が全閉であり、原水の全量がろ過装置28に通される。制御手段38は、上述の粒径5〜75μmの粒子がほとんど原水中に含まれていないと判断した場合、全量をバイパスするため第1の弁26を全閉し、第2の弁27を全開する。センサー39で測定された粒度分布によって、遠心分離装置25を出た原水の一部だけがバイパス配管L3を通るように第1の弁26と第2の弁27の開度を調整してもよい。異物の粒度分布に代えて、または異物の粒度分布に加えて、原水の濁度、色度あるいは差圧を測定してもよい。また主軸2と軸受9の間のギャップ12を定量的に監視するため、軸受水槽10内、より具体的には軸受9と軸封装置13の少なくとも一方の圧力を測定する第2の測定手段40(センサー)が設けられている(図1参照)。センサー40で圧力低下を検知した場合、摩耗により隙間が大きくなっていること、すなわちギャップ12が増加していることを示唆する。センサー40と前述のセンサー39を組み合わせることで、センサー40の測定結果から全量処理、もしくはバイパス処理を判断するセンサー39の粒度分布の数値を補正して、摩耗低減に効果的な運転に変更することができる。 When the content of foreign matter in the raw water is small, a part or all of the raw water can be supplied to the turbine generator 1 without passing through the filtering device 28. For this purpose, the first pipe L1 is provided with a first measuring means 39 (sensor) for measuring the particle size distribution of foreign matter in the raw water. Moreover, the 1st valve 26 is provided between the branch part of the bypass piping L3 of the 1st piping L1, and the filtration apparatus 28, and the 2nd valve 27 is provided on the bypass piping L3. Based on the particle size distribution measured by the sensor 39, the control means 38 controls the opening degrees of the first valve 26 and the second valve 27. Normally, the first valve 26 is fully open and the second valve 27 is fully closed, and the entire amount of raw water is passed through the filtration device 28. When the control means 38 determines that the above-mentioned particles having a particle diameter of 5 to 75 μm are hardly contained in the raw water, the first valve 26 is fully closed and the second valve 27 is fully opened to bypass the entire amount. To do. Depending on the particle size distribution measured by the sensor 39, the opening degree of the first valve 26 and the second valve 27 may be adjusted so that only a part of the raw water exiting the centrifugal separator 25 passes through the bypass pipe L3. . The turbidity, chromaticity, or differential pressure of the raw water may be measured instead of or in addition to the particle size distribution of the foreign material. Further, in order to quantitatively monitor the gap 12 between the main shaft 2 and the bearing 9, second measuring means 40 for measuring the pressure in the bearing water tank 10, more specifically, at least one of the bearing 9 and the shaft seal device 13 is used. (Sensor) is provided (see FIG. 1). When the pressure drop is detected by the sensor 40, it indicates that the gap is increased due to wear, that is, the gap 12 is increased. By combining the sensor 40 and the above-described sensor 39, the numerical value of the particle size distribution of the sensor 39 for judging the total amount processing or the bypass processing is corrected from the measurement result of the sensor 40, and the operation is changed to an effective operation for reducing wear. Can do.
軸受9の潤滑性能を高めるために、ろ過水の粘度を増加させることができる。水潤滑方式の水車発電機で軸受の潤滑材として使用される水は、油潤滑方式の水車発電機で軸受の潤滑材として使用されるタービン油などと比べ、動粘度がはるかに小さい。このため、起動・停止時や低速回転中に十分な潤滑性と水膜厚さが得られない可能性があり、油潤滑方式の水車発電機と比べて、軸受の摺動面での摩耗や焼付きが発生しやすい。従って、水潤滑方式の水車発電機で軸受の潤滑材として使用されるろ過水は、より優れた摺動特性と自己潤滑性を備えることが望ましい。この目的で、ろ過水に粘性を増加させるための薬液を注入する薬液注入装置37が第2の配管L2に接続されている。薬液としては例えばキサンタンガムを用いることができる。キサンタンガムは液体に粘り気を与える増粘剤であり、軸受9のギャップ12に形成される水膜の厚さを増加させる。キサンタンガムは土壌に生息する微生物から作られる多糖類からなるため、そのまま河川に排出しても環境への負荷が小さい。しかし、本実施形態では、キサンタンガムを効率的に使用するため、軸受9で加熱されたろ過水を第1の配管L1に戻す戻り配管L6が設けられており、キサンタンガムを含むろ過水を循環させることができる。軸受9を通って加熱されたろ過水を冷却するため、戻り配管L6上にろ過水の冷却装置35が設けられている。ろ過水の循環運転の際にろ過水を冷却するための熱源としては、遠心分離装置25の出口水を利用することができる。図2には、遠心分離装置25の出口と冷却装置35を接続する冷却水供給配管L8が設けられている。冷却装置35でろ過水を冷却した遠心分離装置25の出口水は河川に排出することができる。 In order to improve the lubrication performance of the bearing 9, the viscosity of filtered water can be increased. Water used as a bearing lubricant in a water-lubricated turbine generator has a much lower kinematic viscosity than turbine oil used as a bearing lubricant in an oil-lubricated turbine generator. For this reason, there is a possibility that sufficient lubricity and water film thickness may not be obtained during starting / stopping and low-speed rotation, and compared with oil-lubricated water turbine generators, Seizure is likely to occur. Therefore, it is desirable that the filtered water used as a bearing lubricant in a water-lubricated water turbine generator has better sliding characteristics and self-lubricating properties. For this purpose, a chemical solution injection device 37 for injecting a chemical solution for increasing the viscosity of the filtered water is connected to the second pipe L2. For example, xanthan gum can be used as the chemical solution. Xanthan gum is a thickener that gives viscosity to the liquid and increases the thickness of the water film formed in the gap 12 of the bearing 9. Xanthan gum consists of polysaccharides made from microorganisms that inhabit the soil, so even if it is discharged into the river as it is, the burden on the environment is small. However, in this embodiment, in order to efficiently use xanthan gum, a return pipe L6 is provided to return the filtered water heated by the bearing 9 to the first pipe L1, and the filtered water containing xanthan gum is circulated. Can do. In order to cool the filtered water heated through the bearing 9, a cooling device 35 for the filtered water is provided on the return pipe L6. The outlet water of the centrifugal separator 25 can be used as a heat source for cooling the filtered water during the circulating operation of the filtered water. In FIG. 2, a cooling water supply pipe L <b> 8 that connects the outlet of the centrifugal separator 25 and the cooling device 35 is provided. The outlet water of the centrifugal separator 25 having cooled the filtered water by the cooling device 35 can be discharged into the river.
以上説明したように、本発明の水力発電用液体供給システム100によって、水車発電機の軸受及び軸封装置に混入する可能性のある異物をあらかじめ原水から除去することができるため、主軸の摩耗を抑えることができる。また、水力発電用液体供給システム100は無人運転が可能である。すなわち、上述したろ過装置28への全量通水運転、部分通水運転、バイパス運転、逆洗、循環運転などは全て制御手段38によって自動で行うことができる。このため、通常無人運転が行われる水力発電設備に本システムを導入しても、水力発電設備の無人運転は引き続き可能である。 As described above, the hydroelectric power supply system 100 according to the present invention can remove foreign substances from the raw water that may be mixed in the bearings and shaft seals of the turbine generator in advance. Can be suppressed. Further, the liquid supply system 100 for hydroelectric power generation can be operated unattended. That is, the above-described total water flow operation, partial water flow operation, bypass operation, backwashing, circulation operation and the like can be automatically performed by the control means 38. For this reason, even if this system is introduced into a hydroelectric power generation facility that normally performs unmanned operation, the unmanned operation of the hydroelectric power generation facility is still possible.
さらに、ろ過装置を用いることでシステム全体を小型化することができる。水力発電設備では平坦な敷地を確保することが難しい場合があり、大きな平面積を必要とする沈降分離装置の設置が困難となる場合がある。また、沈降分離装置の平面積が大きいほど小さな粒径の異物を除去できる(沈降させる)ことから、実施形態で説明した粒径5〜75μmの異物を除去するために、既設の沈降分離装置の平面積を拡大することも考えられるが、同様の理由から困難な場合がある。例えば粒径10μmの異物を沈降分離装置で除去する場合、原水の流量が2m3/hであれば平面積4m2の、原水の流量が12m3/hであれば平面積24m2の沈降分離装置が必要となる。これに対し、ろ過装置として砂ろ過装置を用いる場合、原水の流量が2m3/hであれば平面積0.4m2の、原水の流量が12m3/hであれば平面積2.4m2の砂ろ過装置で十分である。 Furthermore, the whole system can be reduced in size by using a filtration apparatus. In hydroelectric power generation facilities, it may be difficult to secure a flat site, and it may be difficult to install a sedimentation separator that requires a large flat area. In addition, since the foreign matter having a smaller particle size can be removed (sedimented) as the plane area of the sedimentation separator is larger, in order to remove the foreign matter having a particle size of 5 to 75 μm described in the embodiment, Although it is conceivable to enlarge the plane area, it may be difficult for the same reason. For example, when removing a foreign substance having a particle size of 10 μm with a sedimentation separator, if the raw water flow rate is 2 m 3 / h, the flat area is 4 m 2 , and if the raw water flow rate is 12 m 3 / h, the sedimentation separation is 24 m 2 . A device is required. In contrast, when using a sand filtration device as a filtering device, if the flow rate of raw water 2m 3 / h of a plane area 0.4 m 2, the flow rate of raw water 12m 3 / if h planar area 2.4 m 2 A sand filter is sufficient.
1 水車発電機
2 主軸
9 軸受
10 軸受水槽
12 ギャップ
13 軸封装置
22 沈降分離装置
25 遠心分離装置
28 ろ過装置
36 ろ過水槽
100 水力発電用液体供給システム
L1 第1の配管
L2 第2の配管
DESCRIPTION OF SYMBOLS 1 Turbine generator 2 Main shaft 9 Bearing 10 Bearing water tank 12 Gap 13 Shaft seal device 22 Sedimentation separator 25 Centrifugal separator 28 Filtration device 36 Filtration water tank 100 Liquid supply system for hydroelectric power generation L1 1st piping L2 2nd piping
Claims (14)
原水源を前記ろ過装置に接続し、前記原水源で取水された原水を前記ろ過装置に供給する第1の配管と、
前記ろ過装置を水車発電機に接続し、前記ろ過水を前記水車発電機に供給する第2の配管と、を有する、水力発電用液体供給システム。 A filtration device for filtering raw water to produce filtered water from which at least a part of the foreign matter contained in the raw water has been removed;
A first pipe for connecting a raw water source to the filtration device and supplying raw water taken from the raw water source to the filtration device;
A liquid supply system for hydroelectric power generation, comprising: a second pipe that connects the filtration device to a turbine generator and supplies the filtrate to the turbine generator.
前記戻り配管上に設けられた前記ろ過水の冷却装置と、を有する、請求項1から4のいずれか1項に記載の水力発電用液体供給システム。 A return pipe for returning the filtered water heated by the turbine generator to the first pipe;
The liquid supply system for hydroelectric power generation according to any one of claims 1 to 4, further comprising: a cooling device for the filtered water provided on the return pipe.
通水を継続しながら前記粒状ろ材の抑留量が多い層を部分的または選択的に洗浄する洗浄手段を備えている、請求項7に記載の水力発電用液体供給システム。 The sand filtration device comprises a multi-layer granular filter medium,
The liquid supply system for hydroelectric power generation according to claim 7, further comprising a cleaning unit that partially or selectively cleans the layer having a large amount of retention of the granular filter medium while continuing water flow.
前記バイパス配管上に位置する第2の弁と、
前記第1の配管に設けられ、原水中の前記異物の粒度分布または前記原水の濁度、色度若しくは差圧を測定する第1の測定手段と、前記水車発電機の水車用軸受または水車用軸封装置の圧力を測定する第2の測定手段と、
前記第1及び第2の測定手段の測定結果に応じて前記第1の弁と前記第2の弁の開度を制御する制御手段と、を有する、請求項9に記載の水力発電用液体供給システム。 A first valve located between the branch of the bypass pipe of the first pipe and the filtration device;
A second valve located on the bypass pipe;
A first measuring means provided in the first pipe for measuring the particle size distribution of the foreign matter in the raw water or the turbidity, chromaticity or differential pressure of the raw water; A second measuring means for measuring the pressure of the vehicle shaft seal device;
The liquid supply for hydropower generation according to claim 9, further comprising a control unit that controls an opening degree of the first valve and the second valve in accordance with a measurement result of the first and second measurement units. system.
前記ろ過水を水車発電機に供給することと、を有する、水車発電機への液体の供給方法。 Filtering raw water taken from the raw water source to produce filtered water from which at least a portion of the foreign matter contained in the raw water has been removed;
Supplying the filtered water to the water turbine generator.
前記異物の粒度分布または前記原水の濁度、色度若しくは差圧の測定結果に応じて、前記原水の少なくとも一部をろ過することなく前記水車発電機に供給することと、を有する、請求項11または12に記載の水車発電機への液体の供給方法。 Measuring the particle size distribution of the foreign matter in the raw water taken from the raw water source or the turbidity, chromaticity or differential pressure of the raw water;
And supplying at least a part of the raw water to the turbine generator without filtering according to a particle size distribution of the foreign matter or a measurement result of turbidity, chromaticity or differential pressure of the raw water. A method for supplying a liquid to the water turbine generator according to 11 or 12.
前記水車用軸受または水車用軸封装置の圧力測定結果に応じて、前記異物の粒度分布または前記原水の濁度、色度若しくは差圧の測定結果を補正し、前記原水の少なくとも一部をろ過することなく前記水車発電機に供給することと、を有する、請求項13に記載の水車発電機への液体の供給方法。 Measuring the pressure of the turbine bearing of the turbine generator or the shaft seal device for turbine,
At least a part of the raw water is corrected by correcting the particle size distribution of the foreign matter or the measurement result of turbidity, chromaticity or differential pressure of the raw water according to the pressure measurement result of the bearing for water turbine or the shaft seal device for water turbine. The method for supplying liquid to the turbine generator according to claim 13, further comprising: supplying the turbine generator to the turbine generator without filtering.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016243179A JP7158129B2 (en) | 2016-12-15 | 2016-12-15 | Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016243179A JP7158129B2 (en) | 2016-12-15 | 2016-12-15 | Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018096315A true JP2018096315A (en) | 2018-06-21 |
JP7158129B2 JP7158129B2 (en) | 2022-10-21 |
Family
ID=62632581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016243179A Active JP7158129B2 (en) | 2016-12-15 | 2016-12-15 | Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7158129B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110748567A (en) * | 2019-10-16 | 2020-02-04 | 哈尔滨迅普科技发展有限公司 | Combined structure light split type hydraulic generator bearing oil groove sealing seat ring |
CN115111267A (en) * | 2022-06-08 | 2022-09-27 | 华能花凉亭水电有限公司 | Water guide bearing structure of mixed-flow water turbine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11210611A (en) * | 1998-01-27 | 1999-08-03 | Toshiba Corp | Submerged bearing device |
JP2008095565A (en) * | 2006-10-10 | 2008-04-24 | Hitachi Engineering & Services Co Ltd | Submerged bearing lubricating system |
JP2013104250A (en) * | 2011-11-15 | 2013-05-30 | Chugoku Electric Power Co Inc:The | Water supply flow controller of hydraulic power station, and water supply flow control method thereof |
WO2014192619A1 (en) * | 2013-05-27 | 2014-12-04 | 東レ株式会社 | Operation method for water treatment device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3986413B2 (en) | 2002-10-25 | 2007-10-03 | オルガノ株式会社 | Aquatic organism processing method and apparatus |
JP5874360B2 (en) | 2011-12-05 | 2016-03-02 | 栗田工業株式会社 | Method and apparatus for flocculation treatment of silt-containing water |
-
2016
- 2016-12-15 JP JP2016243179A patent/JP7158129B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11210611A (en) * | 1998-01-27 | 1999-08-03 | Toshiba Corp | Submerged bearing device |
JP2008095565A (en) * | 2006-10-10 | 2008-04-24 | Hitachi Engineering & Services Co Ltd | Submerged bearing lubricating system |
JP2013104250A (en) * | 2011-11-15 | 2013-05-30 | Chugoku Electric Power Co Inc:The | Water supply flow controller of hydraulic power station, and water supply flow control method thereof |
WO2014192619A1 (en) * | 2013-05-27 | 2014-12-04 | 東レ株式会社 | Operation method for water treatment device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110748567A (en) * | 2019-10-16 | 2020-02-04 | 哈尔滨迅普科技发展有限公司 | Combined structure light split type hydraulic generator bearing oil groove sealing seat ring |
CN115111267A (en) * | 2022-06-08 | 2022-09-27 | 华能花凉亭水电有限公司 | Water guide bearing structure of mixed-flow water turbine |
CN115111267B (en) * | 2022-06-08 | 2024-07-05 | 华能花凉亭水电有限公司 | Mixed-flow turbine water guide bearing structure |
Also Published As
Publication number | Publication date |
---|---|
JP7158129B2 (en) | 2022-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7158129B2 (en) | Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator | |
KR101142345B1 (en) | Non-point source contaminant treatment apparatus | |
CN109414632A (en) | The filtration system of the filtering of oil for marine machinery oily, particularly for such as engine of boat and ship etc | |
CN102939268B (en) | Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor | |
JP2014094431A (en) | Working liquid cleaning system | |
CA2802110A1 (en) | Wastewater hydrocarbon extraction and environmental treatment method and system | |
CN104265213A (en) | Closed well washing water recycling equipment | |
CN206881934U (en) | Full-automatic drainage type centrifugal oil purifier | |
KR20100006366A (en) | Recycling system of oil | |
JP4628252B2 (en) | Lubricating system for underwater bearing equipment | |
Devisilov et al. | Hydrodynamic filters in hydraulic fluid cleaning system of hydraulic drive | |
CN218237023U (en) | Hydraulic generator bearing lubricating oil purification monitoring optimization system | |
EP3525906B1 (en) | Device for treating an effluent and method for treating an effluent | |
KR101735562B1 (en) | Oil flushing adaptor unit for power plant turbine and flushing apparatus having the same | |
CN209697190U (en) | A kind of decanter centrifuge forcedlubricating system | |
JP4080287B2 (en) | Oil purifier | |
CN210287255U (en) | Lubricating oil self-circulation filtering and recovering device | |
US1318086A (en) | And keclaimistg system | |
CN207749089U (en) | A kind of traditional vacuum combined type oil cleaning device | |
JP2008221063A (en) | Operation method of water treatment system | |
CN102985377B (en) | To the method that water processes for the purpose of desalination | |
CN205241286U (en) | Hypergravity oil -water separator | |
KR101894867B1 (en) | Flushing apparatus for turbine apparatus of power plant | |
JP2014013003A (en) | Water lubrication type hydroelectric power generator | |
CN221045619U (en) | Graphene-based rotary drum type precise filtering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170116 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210329 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210817 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211101 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20211101 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20211111 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20211116 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20211210 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20211214 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220412 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20220628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220804 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220906 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20221004 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20221004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221011 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7158129 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |