JP2008095565A - Submerged bearing lubricating system - Google Patents
Submerged bearing lubricating system Download PDFInfo
- Publication number
- JP2008095565A JP2008095565A JP2006275962A JP2006275962A JP2008095565A JP 2008095565 A JP2008095565 A JP 2008095565A JP 2006275962 A JP2006275962 A JP 2006275962A JP 2006275962 A JP2006275962 A JP 2006275962A JP 2008095565 A JP2008095565 A JP 2008095565A
- Authority
- JP
- Japan
- Prior art keywords
- water
- bearing
- foreign matter
- sorting tank
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Hydraulic Turbines (AREA)
Abstract
Description
本発明は、水車やポンプ水車等の水力機械において、水を潤滑剤に使用している水中軸受の潤滑システムに関するものである。 The present invention relates to a lubrication system for an underwater bearing that uses water as a lubricant in a hydraulic machine such as a water turbine or a pump turbine.
水車の主軸受には油潤滑軸受が主に用いられている。しかし、油流出等による河川汚染の心配から、水中軸受が最近注目されてきた。水中軸受にはセラミックスや樹脂材料を用いたものがあるが、セラミックスは割れ易いことや、高価なことからあまり使用されていない。一方、スーパーエンジニアリングプラスチックスの中で、セラミックスよりも低コストで、水潤滑特性に優れたポリエーテルエーテルケトン樹脂やポリフェニレンサルファイド樹脂を水中軸受の摺動面に適用する試みが見られる。このように、軸受摺動面に樹脂材料を用いた水中軸受の潤滑剤には耐摩耗性の観点から異物を含有しない清浄水(水道水や井戸水相当)が要求されている。ところが、水力発電所においては、水道水や井戸水を確保することが困難な状況にあり、水中軸受の採用が進まない状況になっている。そこで、河川水から異物を含有しない少量(数リットル/分)の清浄水(水道水や井戸水相当)を製造し、水中軸受に供給できる潤滑システムが確立できれば、水中軸受の実用化が加速的に進行する可能性がある。 Oil-lubricated bearings are mainly used as main bearings for water turbines. However, underwater bearings have recently attracted attention due to concerns about river pollution due to oil spills. Some underwater bearings use ceramics and resin materials, but ceramics are not used so much because they are easily broken and expensive. On the other hand, among super engineering plastics, attempts have been made to apply polyether ether ketone resins and polyphenylene sulfide resins, which are less expensive than ceramics and have excellent water lubrication characteristics, to the sliding surfaces of underwater bearings. As described above, clean water (corresponding to tap water or well water) that does not contain foreign substances is required from the viewpoint of wear resistance for a lubricant for an underwater bearing using a resin material for the bearing sliding surface. However, in hydropower plants, it is difficult to secure tap water and well water, and the adoption of underwater bearings has not progressed. Therefore, if a lubrication system that can produce a small amount (several liters / minute) of clean water (equivalent to tap water or well water) that does not contain foreign substances from river water and supply it to underwater bearings can be established, the practical application of underwater bearings will accelerate. May progress.
水車の軸受給水装置として、特開平9−310672号公報(特許文献1)に開示されている。この軸受給水装置は、給水鉄管から分岐した配管に主給水ストレーナを接続し、この主給水ストレーナの濾過水の出る吐出口に主給水管を介して主軸填座給水ストレーナを接続する。この主軸填座給水ストレーナの濾過水の出る吐出口は、主軸填座給水管を介して主軸填座に接続するとともに、排砂口は軸受冷却管を介して軸受に接続する。なお、主給水ストレーナの排砂口は排砂管を介して排砂槽に接続する。 JP-A-9-310672 (Patent Document 1) discloses a bearing water supply device for a water turbine. In this bearing water supply device, a main water strainer is connected to a pipe branched from a water supply iron pipe, and a main shaft-filled seat water supply strainer is connected to a discharge port through which filtrated water of the main water supply strainer flows through the main water supply pipe. The outlet from which the filtered water of the main shaft seating water supply strainer is discharged is connected to the main shaft seat via the main shaft seat water supply pipe, and the sand discharge port is connected to the bearing via the bearing cooling pipe. In addition, the sand discharge port of the main water supply strainer is connected to the sand discharge tank through the sand discharge pipe.
主給水ストレーナから出る主給水管を従来のように主軸填座給水ストレーナ行きと軸受行きとに分岐する必要がないので、冷却水配管が単純化される。 Since it is not necessary to branch the main water supply pipe coming out of the main water supply strainer to the main shaft-filled water supply strainer and the bearing as in the prior art, the cooling water piping is simplified.
また、水中軸受装置としては、特開平11−210611号公報(特許文献2)に開示されているように、軸受装置の潤滑,冷却を給水ポンプや急速濾過装置等の設備を用いることなく、河川水から取水し軸受の潤滑,冷却を行う方法である。この方法は、水を潤滑剤として使用する水中軸受装置において、上記水力機械のランナ室に水を供給する水圧鉄管の入口弁より上流側から、開閉弁を有する給水管を分岐導入する。そして、その給水管を介して水圧鉄管内の水を軸受部に給水する方法である。 As an underwater bearing device, as disclosed in Japanese Patent Application Laid-Open No. 11-210611 (Patent Document 2), lubrication and cooling of the bearing device can be performed without using facilities such as a water supply pump and a rapid filtration device. In this method, water is taken from water and the bearing is lubricated and cooled. In this method, in a submerged bearing device using water as a lubricant, a water supply pipe having an on-off valve is branched and introduced from an upstream side of an inlet valve of a hydraulic iron pipe for supplying water to the runner chamber of the hydraulic machine. And it is the method of supplying the water in a hydraulic iron pipe to a bearing part via the water supply pipe.
水中軸受材料にセラミックスやセラミックコーティング等の異物(河川水に含まれる異物)よりも高硬度の材料を用いた場合は、異物に対する耐摩耗性に優れているので上記の給水方法が十分に使用可能である。 If the underwater bearing material is made of a material that is harder than foreign matter (foreign matter contained in river water) such as ceramics or ceramic coating, it has excellent wear resistance against foreign matter, so the above water supply method can be used sufficiently. It is.
また、PEEK樹脂を用いた水潤滑のガイド軸受装置が特開2003−28146号公報(特許文献3)に開示されている。この軸受は回転体の半径方向荷重を支持するガイドセクタを備えた回転電機のガイド軸受装置において、ガイドセクタの摺動面材料として、高分子材料のポリエーテルエーテルケトン樹脂に繊維材料として例えば炭素繊維を充填した材料を用い、回転体とガイドセクタ間にタービン油より低粘度の潤滑流体として水またはアルコールを満たし、ガイドセクタを回転体に押し付けた状態で据え付けるものであり、安定した運転が可能であり、損失を低減することができるガイド軸受装置が得られる。 Further, a water-lubricated guide bearing device using PEEK resin is disclosed in Japanese Patent Laid-Open No. 2003-28146 (Patent Document 3). This bearing is a guide bearing device of a rotating electrical machine provided with a guide sector that supports a radial load of a rotating body. As a sliding surface material of the guide sector, a polyether ether ketone resin of a polymer material is used as a fiber material, for example, carbon fiber. Is filled with water or alcohol as a lubricating fluid having a viscosity lower than that of turbine oil between the rotating body and the guide sector, and the guide sector is pressed against the rotating body, enabling stable operation. In addition, a guide bearing device capable of reducing loss can be obtained.
また、立軸ポンプの水中軸受の軸受間隙を揚液の一部によって潤滑し、かつ、立軸ポンプの運転中のみならず停止中であっても揚液に含まれる異物が水中軸受の軸受間隙内に侵入するのを防止する構造が特開平8−326691号公報(特許文献4)に開示されている。主軸を囲む円環状上部金具を水中軸受のボスの上端に取付け、この上部金具の上面を内周から外周に向かって下降するように傾斜させ、かつ、その外周面と内周面とを連通する潤滑水取入穴を設ける。また、水中軸受のボスの下端に主軸を囲む円環状下部金具を取付け、この下部金具の下面を内周から外周に向かって上昇するように傾斜させ、かつ、その内周面に螺旋状溝を設ける。このようにして、水中軸受の摺動面への異物の浸入を防止している。 Also, the bearing gap of the vertical shaft pump submersible bearing is lubricated by a part of the pumped liquid, and foreign matter contained in the pumped liquid enters the bearing gap of the submerged bearing not only during the operation of the vertical pump but also when it is stopped. Japanese Unexamined Patent Publication No. 8-326691 (Patent Document 4) discloses a structure for preventing intrusion. An annular upper bracket that surrounds the main shaft is attached to the upper end of the boss of the underwater bearing, the upper surface of the upper bracket is inclined so as to descend from the inner periphery toward the outer periphery, and the outer peripheral surface communicates with the inner peripheral surface. Provide a lubricating water intake hole. Also, an annular lower bracket surrounding the main shaft is attached to the lower end of the boss of the underwater bearing, the lower surface of the lower bracket is inclined so as to rise from the inner periphery toward the outer periphery, and a spiral groove is formed on the inner peripheral surface. Provide. In this way, entry of foreign matter into the sliding surface of the underwater bearing is prevented.
また、水中軸受を潤滑液で濡らし、潤滑液の圧力を軸受ケースの外側の圧力より僅かに高く調整する水中軸受潤滑システムが特開2002−1560928号公報(特許文献5)に開示されている。このシステムは軸受ケースの内部に水中軸受を設けるとともに、前記軸受ケースの軸方向両端側に軸封部材を設けて潤滑液室とし、この潤滑液室内の潤滑液で水中軸受が濡らし、潤滑液室に流入管で潤滑液ポンプで吐出した潤滑液を流入させ、さらに流出させ、この流出管に潤滑液圧力センサーと流量調整弁を設け、主ポンプの吐出側エルボに圧力センサーを設ける。 Japanese Patent Laid-Open No. 2002-1560928 (Patent Document 5) discloses an underwater bearing lubrication system that wets an underwater bearing with a lubricating liquid and adjusts the pressure of the lubricating liquid to be slightly higher than the pressure outside the bearing case. In this system, underwater bearings are provided inside the bearing case, and shaft sealing members are provided on both ends in the axial direction of the bearing case to form a lubricating liquid chamber. The underwater bearing is wetted by the lubricating liquid in the lubricating liquid chamber, and the lubricating liquid chamber The lubricating liquid discharged from the lubricating liquid pump is caused to flow into and out of the inflow pipe, and a lubricating liquid pressure sensor and a flow rate adjusting valve are provided in the outflow pipe, and a pressure sensor is provided in the discharge side elbow of the main pump.
揚水運転で、圧力センサーの検出値と、その位置と水中軸受の高低差から軸受ケースの外側の圧力を演算し、この演算した圧力よりも潤滑液室内の圧力を僅かに高くなるよう流量調整弁を調整し、また圧力センサーで吐出圧力が検出されない気中運転では、潤滑液室内の圧力が大気圧より僅かに高くなるように流量調整弁を調整するように構成されている。このようにすることで、先行待機運転ポンプの水中軸受摺接部の損傷を防止できる。 During pumping operation, the pressure outside the bearing case is calculated from the detected value of the pressure sensor and the height difference between the position and the underwater bearing, and the flow rate adjustment valve is set so that the pressure in the lubricating fluid chamber is slightly higher than the calculated pressure. In the aerial operation in which the discharge pressure is not detected by the pressure sensor, the flow rate adjustment valve is adjusted so that the pressure in the lubricating liquid chamber is slightly higher than the atmospheric pressure. By doing in this way, damage to the underwater bearing sliding contact part of a preceding standby operation pump can be prevented.
特許文献1における軸受の給水装置は、軸受を冷却するための冷却水配管系統の簡素化に関するもので、軸受を潤滑する潤滑剤の供給方式に関するものではない。水中軸受において、軸受の潤滑剤を河川水から製造し供給できれば、軸受の潤滑,冷却が同時に行えるのでさらに配管系統が簡略化できる可能性がある。しかし、軸受に使用する潤滑剤を河川水から製造し、軸受の潤滑,冷却を同時に行うことに対しては配慮されていない。
The bearing water supply apparatus in
また、特許文献2に開示されている水中軸受装置では軸受材料に河川水に含有する異物よりも高硬度のセラミックスやセラミックコーティングを用いているので十分使用できる。しかし、軸受材料に自己潤滑性を有し、水潤滑特性に優れた樹脂材料を用いようとすると、異物による損傷を受けるので水中軸受装置として使用できない可能性がある。したがって、この水中軸受装置では軸受材料に異物よりも低硬度の樹脂材料を用いることに対して十分に配慮されていない。
Further, in the underwater bearing device disclosed in
このため、軸受材料に低コストの樹脂材料を適用する場合、河川水から取水した水を水道水や井戸水相当に浄化して供給することが要求されている。 For this reason, when a low-cost resin material is applied to the bearing material, it is required to purify and supply water taken from river water equivalent to tap water or well water.
また、特許文献3において、ガイドセクタを備えた回転電機のガイド軸受装置において、ガイドセクタの摺動面材料として、高分子材料のポリエーテルエーテルケトン樹脂に繊維材料として例えば炭素繊維を充填した材料を用い、回転体とガイドセクタ間にタービン油より低粘度の潤滑流体として水またはアルコールを用いることが開示されている。水を用いているので低損失の軸受を達成できるが、長期使用を考えた場合、水の蒸発減量により軸受の潤滑剤が不足するので、保守なしに安定した摺動特性が得られない可能性がある。このため、蒸発減量による不足分の水を自動給水する必要があるが、補給方法については配慮されていない。 Further, in Patent Document 3, in a guide bearing device of a rotating electrical machine having a guide sector, as a sliding surface material of the guide sector, a material obtained by filling, for example, carbon fiber as a fiber material into a polyether ether ketone resin as a polymer material. It is disclosed that water or alcohol is used as a lubricating fluid having a viscosity lower than that of turbine oil between the rotating body and the guide sector. Since water is used, a low-loss bearing can be achieved, but when considering long-term use, there is a possibility that stable sliding characteristics may not be obtained without maintenance because the bearing lubricant is insufficient due to evaporation loss of water. There is. For this reason, it is necessary to automatically supply the water shortage due to evaporation loss, but the replenishment method is not considered.
また、特許文献4において、立軸ポンプの水中軸受の軸受間隙を揚液の一部によって潤滑し、かつ、立軸ポンプの運転中のみならず停止中であっても揚液に含まれる異物が水中軸受の軸受間隙内に浸入するのを防止した構造が開示されている。この水中軸受は揚液を潤滑剤に利用しているため、耐摩耗性向上の観点から軸受に異物浸入防止装置を設けている。
Further, in
この異物浸入防止装置を付けたことにより、揚液路の内周寄りの比較的清浄な揚液の一部が上部金具の潤滑水取入穴を経て軸受間隙内に取り入れられて軸受間隙を潤滑した後、下部金具の螺旋状溝によって付勢されて強制的に排出される。潤滑水には僅かな異物しか残存していないので、軸受の耐摩耗性は向上する。しかし、僅かな異物でも軸受摺動面を通過しないで軸受摺動面に埋め込まれる可能性がある。軸受摺動面に埋め込まれた異物は回転軸を摩耗損傷させる可能性がある。よって、長期間安定した軸受性能を維持することや、回転軸の損傷防止について十分に配慮されていない。 By installing this foreign matter intrusion prevention device, a part of the relatively clean pumped liquid near the inner periphery of the pumped path is taken into the bearing gap through the lubricating water intake hole of the upper bracket, and the bearing gap is lubricated. After that, it is urged by the spiral groove of the lower metal fitting and forcibly discharged. Since only a small amount of foreign matter remains in the lubricating water, the wear resistance of the bearing is improved. However, even a small amount of foreign matter may be embedded in the bearing sliding surface without passing through the bearing sliding surface. Foreign matter embedded in the bearing sliding surface may cause wear damage to the rotating shaft. Therefore, sufficient consideration has not been given to maintaining stable bearing performance for a long period of time and preventing damage to the rotating shaft.
また、特許文献5では、水中軸受の潤滑方法として水中軸受を潤滑液で濡らし、潤滑液の圧力を軸受ケースの外側の圧力より僅かに高く調整する水中軸受潤滑システムが開示されているが、このシステムでは潤滑液を潤滑液ポンプで軸受に供給する強制潤滑方式である。したがって、万一、潤滑液ポンプが故障した場合は主機排水ポンプの運転ができなくなる可能性があり、システムの高信頼化に対し十分配慮されていない。 Further, Patent Document 5 discloses an underwater bearing lubrication system in which an underwater bearing is wetted with a lubricating liquid as a lubricating method of the underwater bearing, and the pressure of the lubricating liquid is adjusted slightly higher than the pressure outside the bearing case. The system is a forced lubrication system in which lubricating liquid is supplied to the bearing by a lubricating liquid pump. Therefore, in the unlikely event that the lubricating liquid pump fails, there is a possibility that the main engine drain pump cannot be operated, and sufficient consideration has not been given to the high reliability of the system.
以上のように、公知例では軸受の冷却水配管系統,セラミックス又はポリエーテルエーテルケトン樹脂を用いた水中軸受装置、さらに、ポンプ用水中軸受の異物浸入防止装置,水中軸受潤滑システム等について開示されているが、水力発電所に設置されている水車の水中軸受の潤滑システムとして考えた場合、水力発電所では水道水,井戸水の確保が困難な状況なので、発電に利用している河川水を浄化して水道水や井戸水相当の清浄度を有する清浄水を製造し、この清浄水を水中軸受の潤滑剤に利用することが必須となるが、このような潤滑システム等については考慮がされていない。 As described above, the known example discloses a cooling water piping system for a bearing, a submerged bearing device using ceramics or polyether ether ketone resin, a foreign matter intrusion preventing device for a submerged pump bearing, a submerged bearing lubrication system, and the like. However, when considered as a lubrication system for underwater bearings of water turbines installed in hydroelectric power plants, it is difficult to secure tap water and well water at hydroelectric power plants, so the river water used for power generation is purified. However, it is essential to produce clean water having cleanliness equivalent to tap water or well water, and to use this clean water as a lubricant for underwater bearings, but such a lubrication system is not considered.
本発明の目的は、河川水から水道水や井戸水相当の清浄度を有する少量の清浄水を連続して製造し、かつ製造した清浄水を水中軸受の潤滑剤として自動供給できるような低コストで高信頼性の水中軸受の潤滑システムを提供することにある。 An object of the present invention is to produce a small amount of clean water having cleanliness equivalent to tap water or well water from river water continuously, and at a low cost so that the produced clean water can be automatically supplied as a lubricant for underwater bearings. The object is to provide a highly reliable underwater bearing lubrication system.
上記目的は、水車やポンプ水車等の水力機械における、水を潤滑剤として使用する水中軸受の潤滑システムにおいて、上記水力機械のランナ室に河川水を供給する水圧鉄管から開閉弁を有する給水管を分岐導出し、給水管の出口側に異物分級器を装着し、異物分級器の内筒出口側に選別槽を配置し、選別槽の出口側からオーバーフローした清浄水を潤滑剤として、水中軸受に供給するように構成したことを特徴とするものである。 The purpose of the present invention is to provide a submerged bearing lubrication system using water as a lubricant in a hydraulic machine such as a water turbine or a pump turbine, and a water supply pipe having an open / close valve from a hydraulic iron pipe for supplying river water to the runner chamber of the hydraulic machine. Branch out, attach a foreign substance classifier on the outlet side of the water supply pipe, place a sorting tank on the inner cylinder outlet side of the foreign substance classifier, and use the clean water overflowed from the outlet side of the sorting tank as a lubricant for the submersible bearing It is characterized by being configured to supply.
また上記目的を達成するために、本発明は、水車やポンプ水車等の水力機械における、水を潤滑剤として使用する水中軸受の潤滑システムにおいて、上記水力機械のランナ室に河川水を供給する水圧鉄管から分岐導出した配管に主給水ストレーナを装着し、この主給水ストレーナの吐出側に接続された開閉弁を有する給水管を取付け、該給水管に異物分級器を設置し、異物分級器の内筒出口側に選別槽を配置し、選別槽の出口側からオーバーフローした清浄水を潤滑剤として、水中軸受に供給するように構成したことを特徴とするものである。 In order to achieve the above object, the present invention provides a hydraulic system for supplying river water to a runner chamber of a hydraulic machine in a submersible bearing lubrication system using water as a lubricant in a hydraulic machine such as a water turbine or a pump turbine. A main water strainer is attached to the pipe branched from the iron pipe, a water supply pipe having an open / close valve connected to the discharge side of the main water strainer is attached, and a foreign substance classifier is installed in the water pipe. A sorting tank is arranged on the tube outlet side, and clean water overflowed from the outlet side of the sorting tank is supplied as a lubricant to the submersible bearing.
また上記目的を達成するために、本発明は、水車やポンプ水車等の水力機械における、水を潤滑剤として使用する水中軸受の潤滑システムにおいて、上記水力機械のランナ室に河川水を供給する水圧鉄管から分岐した配管に接続された主給水ストレーナとこの主給水ストレーナの吐出側に接続された開閉弁を有する配管に減圧装置を接続し、減圧装置の出口側に異物分級器を固定し、異物分級器の内筒出口側に選別槽を設置し、選別槽の出口側からオーバーフローした清浄水を潤滑剤として、水中軸受に供給するように構成したことを特徴とするものである。 In order to achieve the above object, the present invention provides a hydraulic system for supplying river water to a runner chamber of a hydraulic machine in a submersible bearing lubrication system using water as a lubricant in a hydraulic machine such as a water turbine or a pump turbine. A decompressor is connected to a pipe having a main water strainer connected to the pipe branched from the iron pipe and an open / close valve connected to the discharge side of the main water strainer, and a foreign substance classifier is fixed to the outlet side of the decompressor. A sorting tank is installed on the inner cylinder outlet side of the classifier, and clean water overflowed from the outlet side of the sorting tank is supplied as a lubricant to the submersible bearing.
上記発明において、より好ましくは、次の構成とすることにある。
(1)前記異物分級器は異物排出口と内筒出口を同方向に構成し、かつ内筒入口部分に小径管を設置した構成としたこと。
(2)前記選別槽は底部に堆積した沈殿物を攪拌,排出するための排除手段と、少なくとも一枚以上の整流板とで構成したこと。
In the above invention, more preferably, the following configuration is adopted.
(1) The foreign substance classifier has a foreign substance discharge port and an inner cylinder outlet configured in the same direction, and a small-diameter pipe installed at the inner cylinder inlet portion.
(2) The sorting tank is composed of an exclusion means for stirring and discharging the sediment deposited on the bottom, and at least one current plate.
本発明によれば、河川水から水道水や井戸水相当の清浄度を有する少量の清浄水を連続して製造し、かつ製造した清浄水を水中軸受の潤滑剤として自動供給できるような低コストで高信頼性の水中軸受の潤滑システムを提供できる。 According to the present invention, a small amount of clean water having a cleanliness equivalent to tap water or well water is continuously produced from river water, and the produced clean water can be automatically supplied as a lubricant for underwater bearings at a low cost. A highly reliable underwater bearing lubrication system can be provided.
以下、本発明の各実施例について図を用いて説明する。第2実施例以降の実施例においては第1実施例と共通する構成の重複する説明を省略する。なお、各実施例の図における同一符号は同一物又は相当物を示す。 Embodiments of the present invention will be described below with reference to the drawings. In the second and subsequent embodiments, the duplicate description of the configuration common to the first embodiment is omitted. In addition, the same code | symbol in the figure of each Example shows the same thing or an equivalent.
図1は本発明の一実施の形態を示す図である。
図1において、水車1の主軸2の上部にはカップリング3を介して発電機4が直結されると共に、ケーシング5には水圧鉄管6が接続されている。水圧鉄管6からケーシング5に流入した河川水は主軸2の下端部に固定した羽根車(図示せず)に回転力を与え、その後ドラフトチューブ7から流出する。上記水圧鉄管6にはケーシング5寄りに入口弁8が設置されており、この入口弁8より上流側において水圧鉄管6から給水管9が分岐導出されている。ここでは、給水管9の分岐位置を入口弁の上流側にしているが、入口弁の下流側に設けても同等の効果を奏するので、特に分岐位置を限定するものでは無い。給水管9には開閉弁10が固定され、開閉弁10の出口側の給水管9aには異物分級器11を装着し、異物分級器11の内筒出口側11aから落下する異物制限水(小径異物のみが含まれる)を貯める選別槽12を設け、この選別槽12の出口側からオーバーフローした清浄水を貯める受け皿13を設け、この受け皿13に水中軸受と連通する給水管9bが接続されている。この選別槽12には異物分級器11の内筒出口側11aから落下した異物制限水が直接に受け皿13側に流れていくのを防止するため仕切り板14を設け、落下した異物制限水を下側に流れ込ませるようにしている。よって、落下した異物制限水は仕切り板
14の下部を通過した後に、複数枚配置された整流板15の間を流過し出口12aに到達するが、この間で小径異物は沈殿するので異物を全く含まない清浄水へと変化していく。
FIG. 1 is a diagram showing an embodiment of the present invention.
In FIG. 1, a
一方、異物制限水に含まれる小径異物は流過していく過程で沈殿していき、底部16に堆積するが、この堆積した沈殿物を定期的に選別槽外へ排出するための排除手段17を設けている。ここでは、排除手段17は底部の堆積物を攪拌,排出するスクリュー17aと、スクリュー17aを駆動する電動機17bと、排出口17dと、電磁弁17cとで構成されている。沈殿物の排出は定期的に行われるが、その時の動作を次に示す。
On the other hand, the small-diameter foreign matter contained in the foreign matter-restricted water precipitates in the course of flowing and accumulates on the bottom 16, and the removing means 17 for periodically discharging the deposited precipitate out of the sorting tank. Is provided. Here, the exclusion means 17 includes a
沈殿物が多くなると、電動機17bを動作させ、スクリュー17aを回転させる。回転するスクリューにより沈殿物は排出口に送られる。電磁弁17cを開くことにより沈殿物が異物制限水とともに外部に排出される。沈殿物の排除手段として、単に選別槽の底部を傾斜させ、排出する時の異物制限水の流れを利用する方法が考えられたが、選別槽内に固化した沈殿物は排出時の異物制限水の移動流速で、排出口まで移動させることが困難であり、沈殿物を攪拌し移動させる作業が必要であることが分かった。これに対して、本発明のように、沈殿物を攪拌し、排出口まで強制的に移動させる方法が有効であることが実験で確認された。
When the amount of sediment increases, the electric motor 17b is operated and the
電磁弁は異物分級器側に設置することが望ましい。異物分級器側が、沈降する異物粒径の大きい側となるので沈殿物を排出口側に容易に移動できるためである。電磁弁17cを開くことにより、選別槽の水位は低下し、受け皿の方に清浄水は行かなくなるが、水中軸受の潤滑水の減量は蒸発分程度なので、問題無く運転が継続できる。選別槽の異物制限水がなくなると、電磁弁17cを閉じて、異物制限水の貯水を開始する。水位は徐々に上昇して来るが、この間異物制限水に含まれる小径異物は沈降していくので、貯水が完了すると選別槽出口12aから受け皿に清浄水がオーバーフローしてくる。このように、定期的な選別槽に堆積した沈殿物を排出できるので、選別槽の貯水容量を一定値に維持でき、長期間安定して清浄水を水中軸受に供給できる。
It is desirable to install the solenoid valve on the foreign matter classifier side. This is because the foreign substance classifier side is the side where the particle size of the foreign substance that settles is large, and the precipitate can be easily moved to the discharge port side. By opening the
図2は図1に示した選別槽のA−A断面図である。
図2において、整流板15と上蓋18との間に複数の連通口19を形成している。この連通口19を形成することにより、空気層も受け皿側へ移動させることができるので、貯水量の変化が防止できる。また、選別槽は沈降する異物が底部に集まるように、傾斜部分19aを有している。沈降する異物は傾斜部分を滑落して、スクリュー上面に堆積していく。前述のように、沈殿物は排除手段により、定期的に外に排出される。
FIG. 2 is a cross-sectional view of the sorting tank shown in FIG.
In FIG. 2, a plurality of
図3は水中軸受の断面図である。
図3において、水中軸受30は主軸2の外周に固定したスリーブ32とこのスリーブ
32と摺接する軸受部材33と潤滑水を貯水する水槽20とで構成されている。給水管
9bはこの水槽20を貫通し、水槽内部に開口しており、水中軸受に清浄水を供給されるように構成している。余分な清浄水は排水管21から漏水し、一定の水位に維持されるようになっている。しかして、上記開閉弁10を開することによって水圧鉄管6内の河川水が異物分級器11に自動的に吹き込まれ、選別槽を経由して浄化された清浄水が得られる。
FIG. 3 is a sectional view of the underwater bearing.
In FIG. 3, the
図4に示すように、異物分級器11に吹き込まれた河川水は外筒22の内周面に沿って旋回流となり、この河川水に含まれる異物には遠心力が働き、大きな異物(粒径:0.2
mm以上)は外周側に移行する。移行した大きな異物は外筒内周面に沿って旋回しながら重力方向に下降していき異物排出口23から河川水と共に放出していく。このため、異物分級器中心付近は小さな異物(粒径:0.2mm 未満)のみを含んだ異物制限水が存在する。小さな異物のみを含んだ異物制限水は内筒出口11aから流出していく。内筒11bは入口部分に小径管11cを配置している。一般的に、内筒11bの外径Dcと外筒22の内径Deとの間には適正な範囲があり、以下に示す寸法関係となっている。
As shown in FIG. 4, the river water blown into the
mm or more) moves to the outer periphery. The transferred large foreign matter descends in the direction of gravity while turning along the inner peripheral surface of the outer cylinder, and is discharged along with river water from the foreign
Dc=(1/4〜1/6)De
例えば、外筒22の内径Deを100mm程度に設計すると、Dcは20mm程度になる。したがって、小径管が入口部分にない場合は、内筒出口からの吐出流量が必要流量(数リットル/min )を大幅に超過してしまい、河川水を無駄に捨ててしまうことになり節水型が不可欠である。そこで、適正な寸法関係を維持して、供給する清浄水を節水できるように、内筒入口部分に小径管11cを設置した。小径管11cの大きさを適正なものにすることで、必要流量を確保できる。小径管11cから流入する異物制限水は内筒11bのみの場合よりも、より中心側になるので異物制限水に含まれる異物粒径はさらに小径化が図れ、かつ、異物濃度も減少できるので選別槽の異物排除手段を動作させるインターバルを長くすることが可能となる。その結果、異物排除手段を作動させる費用が節約できる。
Dc = (1/4 to 1/6) De
For example, when the inner diameter De of the
また、本発明の異物分級器11では、異物排出口23と内筒出口11aとを同方向に配置し、異物排出口23が内筒11bと外筒22とで囲まれている。
In the
一方、一般に用いられている公知のサイクロン形状を図10に示すが、異物排出口31dと内筒出口31eとは反対方向に構成している。この構成で、吹き込み速度が速くなると旋回流の影響を受けて異物排出口31d上部の水も旋回し、外気よりも低圧部分が発生する。その結果、低圧部分は気柱を形成し、気中がサイクロン内部に成長して行き、異物排出口31dが気柱で塞がれる状況に進展する。したがって、吹込み速度が速くなると十分な異物排出機能が維持できなくなる。
On the other hand, a known cyclone shape generally used is shown in FIG. 10, and the foreign
これに対して、本発明の異物分級器11では、異物排出口23が内筒11bと外筒22とで囲まれているので、気柱の影響を全く受けないので吹き込み速度に無関係に安定した異物排出機能が維持できる。更に、本発明の異物分級器では、異物制限水(小径異物のみが含まれる水)は重力方向に落下していくので、従来例のように上向きにした場合よりもスムーズとなり、一定量の異物制限水が長期間安定して供給できる。異物分級器11から落下した異物制限水は選別槽12内に供給される。選別槽12内の水位は徐々に上昇していき、出口側に設置した受け皿13にオーバーフローしていく。オーバーフローしていく流量が数リットル/分であれば、選別槽12内の異物制限水の流速は0.002m/s 程度である。
On the other hand, in the
図5は選別槽入口から受け皿側に向かって0.002m/sで異物制限水が移動した場合、各異物粒径の沈降距離と進行方向距離との関係を示す図である。
図5において、実線で示す異物粒径100μmの場合、進行方向距離0.04m で、約6m沈降することになる。一方、二点鎖線で示す異物粒径1μmの場合、進行方向距離
0.2m で、約0.6m 沈降することになる。この結果から、選別槽の入口から受け皿側までの距離を0.5m 程度確保できれば、受け皿13には清浄水が供給できる。清浄水は受け皿13と連結された給水管9bにより、水中軸受に供給される。
FIG. 5 is a diagram showing the relationship between the settling distance of each particle size and the traveling direction distance when the foreign material restricted water moves at 0.002 m / s from the sorting tank inlet toward the tray.
In FIG. 5, when the particle size of the foreign substance is 100 μm shown by the solid line, it settles for about 6 m at a travel direction distance of 0.04
前述したように、定期的にスクリューを回転させ、電磁弁17cを開することにより、選別槽12内の底部に堆積している沈殿物を排出できるので、異物制限水から清浄水を製造する機能が長期間維持できる。水中軸受に供給される清浄水は、軸受摺動面を潤滑,冷却するので、安定した軸受性能が得られる。
As described above, the sediment accumulated on the bottom of the
したがって、水中軸受は長期間に渡って、摩耗損傷が防止でき安定した軸受性能を維持できる。さらに、河川水から清浄水を製造できるので、水道水や井戸水の確保が不要となり、低コストの水中軸受の潤滑システムが提供できる。ここでは、選別槽内に堆積した沈殿物を攪拌,排出する排除手段を構成する要素として、スクリューを使用しているが、回転しながら排出口に沈殿物を輸送できる機能を有する部材であれば特に限定するものでは無い。 Therefore, the underwater bearing can prevent wear damage and maintain stable bearing performance for a long period of time. Furthermore, since clean water can be produced from river water, it is not necessary to secure tap water or well water, and a low-cost submersible bearing lubrication system can be provided. Here, a screw is used as an element constituting the exclusion means for stirring and discharging the sediment accumulated in the sorting tank, but any member having a function of transporting the sediment to the discharge port while rotating can be used. There is no particular limitation.
異物分級器と選別槽を組合せた水中軸受の潤滑システムでは、異物分級器及び選別槽共に、異物の堆積が確実に防止できる構造となっているため、高い信頼性を有する低コストの潤滑システムが確立できる。 In the submersible bearing lubrication system that combines a foreign substance classifier and a sorting tank, both the foreign substance classifier and the sorting tank have a structure that can reliably prevent the accumulation of foreign substances. Therefore, there is a highly reliable and low-cost lubrication system. Can be established.
図6は本発明による水中軸受の潤滑システムの第二の実施例を示す図である。
図6において、この実施例で、第一の実施例と異なるのは選別槽12に設置している整流板15を一枚にした点にある。この実施例によれば、基本的には前述した第一の実施例と同様の作用効果を得ることができる他、整流板の枚数が減らせるので、材料費,製作費が節約でき潤滑システムの低コスト化が図れる。さらに、整流板が減ったことにより、異物制限水の貯水容量が多くなるので貯水容量一定の観点から、選別槽の小型化に繋がり、低コスト化と設置面積の縮小とが達成できる。
FIG. 6 is a view showing a second embodiment of the lubrication system for an underwater bearing according to the present invention.
In FIG. 6, this embodiment is different from the first embodiment in that the
図7は本発明による水中軸受の潤滑システムの第三の実施例を示す図である。
図7において、この実施例で第一の実施例と異なるのは水圧鉄管6と開閉弁10との間に主給水ストレーナ40を装着した点にある。この実施例によれば、基本的には前述した第一の実施例と同様の作用効果を得ることができる他、主給水ストレーナ40は直径3mm程度の穴を多数穿孔した鋼板を円筒状に丸めて、円筒の内側に河川水を入れ、濾過した河川水が外側に流出するように構成されている。したがって、異物分級器に流入してくる異物粒径を3mm以下に押えることができるので、異物分級器での異物排除機能が向上し、選別槽へ落下する異物制限水の異物混入濃度も低下でき、選別槽に設けた異物排除手段の動作回数を減らすことができる。この結果、潤滑システムとして更に信頼性が向上する。
FIG. 7 is a view showing a third embodiment of the underwater bearing lubrication system according to the present invention.
In FIG. 7, this embodiment differs from the first embodiment in that a
図8に本発明による水中軸受の潤滑システムの第四の実施例を示す図である。
図8において、この実施例で、第一の実施例と異なるのは水圧鉄管6と開閉弁10との間に主給水ストレーナ40を設置し、さらに開閉弁10の突出側に減圧装置50を設けた点にある。この実施例によれば、基本的には前述した第一の実施例と同様の作用効果を得ることができる他、主給水ストレーナ40と減圧装置50を付加しているので、異物分級器への吹き込み水質,速度を同時に調整することができ、水中軸受に供給される河川水の量を適正化できる。このため、水圧鉄管からの取水量が適正な量に制御できる水中軸受の潤滑システムが構築できる。
FIG. 8 is a diagram showing a fourth embodiment of the submersible bearing lubrication system according to the present invention.
In FIG. 8, this embodiment differs from the first embodiment in that a
図9に本発明による水中軸受の潤滑システムの第五の実施例を示す図である。
図9において、この実施例で第一の実施例と異なるのは選別槽の底部を傾斜面19bとした点にある。この実施例によれば、基本的には前述した第一の実施例と同様の作用効果を得ることができる他、底部を傾斜させているので、沈殿物の排除手段が動作すると沈殿物は排出口側に移動し易くなり、動作時間を短縮することが可能となる。この結果、スクリューの長寿命化が図れ、潤滑システムの長期信頼性が維持できる。
FIG. 9 is a view showing a fifth embodiment of the submersible bearing lubrication system according to the present invention.
In FIG. 9, this embodiment differs from the first embodiment in that the bottom of the sorting tank is an
以上のごとく、本発明によれば、水車やポンプ水車等の水力機械における、水を潤滑剤として使用する水中軸受の潤滑システムにおいて、上記水力機械のランナ室に河川水を供給する水圧鉄管から開閉弁を有する給水管を分岐導出し、給水管の出口側に異物分級器を装着し、異物分級器の内筒出口から流出した異物制限水を貯める選別槽を設け、選別槽の出口側からオーバーフローした清浄水を潤滑剤として、水中軸受に供給するように構成しているので、水中軸受には河川水より浄化した水道水や井戸水相当の清浄度を有する清浄水が供給され、長期間にわたって安定した軸受性能が得られる水中軸受を提供できる。 As described above, according to the present invention, in a hydraulic system such as a water turbine or a pump turbine, an underwater bearing lubrication system that uses water as a lubricant opens and closes from a hydraulic iron pipe that supplies river water to the runner chamber of the hydraulic machine. A water supply pipe with a valve is branched and led out, a foreign matter classifier is installed on the outlet side of the water supply pipe, a sorting tank is provided to store the foreign substance restriction water flowing out from the inner cylinder outlet of the foreign substance classifier, and overflows from the outlet side of the sorting tank Since the purified water is supplied to the underwater bearing as a lubricant, the underwater bearing is supplied with clean water having a cleanliness equivalent to tap water or well water purified from river water and stable for a long period of time. It is possible to provide an underwater bearing capable of obtaining the above-mentioned bearing performance.
すなわち、水圧鉄管から導出した河川水は異物分級器に吹き込まれる。異物分級器に吹き込まれた河川水には旋回流が与えられ、大きな異物(粒径:0.2mm 以上)は遠心力により最外周を旋回しながら重力方向に移動し、異物排出口より外部に放出される。異物分級器の中央部に設けられた内筒出口から、異物制限水(大きな異物を取り除いた後の河川水)が選別槽内に落下していく。選別槽内に落下した異物制限水に含有する異物(粒径:0.2mm 未満)は底の方へ浸入し流れとともに底の方へ沈降していき、選別槽の出口側からは水道水や井戸水相当の清浄度を有する清浄水が流出する。この清浄水を水中軸受に供給するので、安定した軸受性能が得られる。また、長期間の使用に対しても一定量の清浄水が常に供給されるので、潤滑剤の減少に伴う潤滑不良が防止でき安定した軸受性能を得ることができる。 That is, the river water derived from the hydraulic iron pipe is blown into the foreign matter classifier. A swirl flow is given to the river water blown into the foreign matter classifier, and large foreign matter (particle size: 0.2 mm or more) moves in the direction of gravity while turning around the outermost periphery by centrifugal force, and is exposed to the outside from the foreign matter discharge port. Released. Foreign substance restricted water (river water after removing large foreign substances) falls into the sorting tank from the inner cylinder outlet provided at the center of the foreign substance classifier. Foreign matter (particle size: less than 0.2 mm) contained in the restricted water that has fallen into the sorting tank penetrates toward the bottom and settles toward the bottom along with the flow. Clean water with cleanliness equivalent to well water flows out. Since this clean water is supplied to the underwater bearing, stable bearing performance can be obtained. Further, since a certain amount of clean water is always supplied even for long-term use, it is possible to prevent poor lubrication due to a decrease in the lubricant and to obtain stable bearing performance.
前述した本発明の好ましい構成によれば、前記異物分級器は異物排出口と異物制限水の出口側である内筒出口を同方向に構成し、かつ内筒入口部分に小径管が付いているので、異物分級器の吹き込み速度に関係なく異物排出口からの排砂機能が維持できると共に、少量の異物制限水を選別槽に供給できる。したがって、この異物分級器であると、長期間に渡り安定して、少量の異物制限水を選別槽に供給できる。この結果、高信頼性の潤滑システムが提供できる。 According to the preferred configuration of the present invention described above, the foreign substance classifier comprises a foreign substance discharge port and an inner cylinder outlet which is the outlet side of the foreign substance restricted water in the same direction, and a small diameter pipe is attached to the inner cylinder inlet portion. Therefore, the sand discharging function from the foreign substance discharge port can be maintained regardless of the blowing speed of the foreign substance classifier, and a small amount of foreign substance restricted water can be supplied to the sorting tank. Therefore, this foreign matter classifier can stably supply a small amount of foreign matter restricted water to the sorting tank over a long period of time. As a result, a highly reliable lubrication system can be provided.
また、前述した本発明の好ましい構成によれが、前記選別槽は選別槽下部に堆積した沈殿物を攪拌,排出するための排除手段を設けているので、選別槽の下部に沈殿物が堆積するのが防止でき、長期間の使用に対しても無保守で使用できる。 Further, according to the above-described preferred configuration of the present invention, the sorting tank is provided with an exclusion means for stirring and discharging the sediment deposited at the bottom of the sorting tank, so that the sediment is deposited at the bottom of the sorting tank. It can be used without maintenance even for long-term use.
本発明の水中軸受の潤滑システムであると、水圧鉄管から導出した河川水は異物分級器に流入する。異物分級器に流入した河川水には旋回流が与えられ、異物は遠心力により最外周を旋回しながら重力方向に移動し、排砂口より外部に放出される。異物分級器の中央部に設けられた小径管の内側から、大きな異物排除後の異物減少水が選別槽内に落下していく。選別槽内の異物減少水に含有する異物(粒径:0.2mm 未満)は流れと共に底の方へ沈降していき、異物を全く含まない清浄水へと変化していく。この清浄水をオーバーフローさせて、水中軸受に供給されるので、安定した軸受性能が得られる。また、選別槽には沈殿物排除手段が設置されているので、定期的に動作させることにより貯水量を一定に保持できるので、安定して清浄水が供給できる。その結果、潤滑剤の減少が防止でき安定した軸受性能を得ることができる。 In the submersible bearing lubrication system of the present invention, river water derived from the hydraulic iron pipe flows into the foreign matter classifier. A swirling flow is given to the river water that has flowed into the foreign matter classifier, and the foreign matter moves in the direction of gravity while turning around the outermost periphery by centrifugal force, and is discharged to the outside from the sand discharge port. From the inside of the small diameter tube provided at the center of the foreign matter classifier, the foreign matter reduced water after the large foreign matter is removed falls into the sorting tank. The foreign matter (particle size: less than 0.2 mm) contained in the foreign matter-reduced water in the sorting tank settles toward the bottom along with the flow, and changes to clean water that does not contain any foreign matter. Since this clean water is overflowed and supplied to the underwater bearing, stable bearing performance can be obtained. Moreover, since the sediment removal means is installed in the sorting tank, the amount of stored water can be kept constant by operating it periodically, so that clean water can be supplied stably. As a result, the lubricant can be prevented from decreasing and stable bearing performance can be obtained.
1 水車
2 主軸
3 カップリング
4 発電機
5 ケーシング
6 水圧鉄管
7 ドラフトチューブ
8 入口弁
9,9a,9b 給水管
10 開閉弁
11 異物分級器
11b 内筒
11c 小径管
12 選別槽
12a 選別槽出口
13 受け皿
14 仕切り板
15 整流板
16 底部
17 排除手段
17a スクリュー
17b 電動機
17c 電磁弁
17d 排出口
18 上蓋
19 連通口
19a 傾斜部分
20 水槽
21 排水管
22 外筒
23 異物排出口
30 水中軸受
40 主給水ストレーナ
50 減圧装置
DESCRIPTION OF
Claims (5)
上記水力機械のランナ室に河川水を供給する水圧鉄管から分岐導出した配管に主給水ストレーナを装着し、この主給水ストレーナの吐出側に接続された開閉弁を有する給水管を取付け、この給水管に異物分級器を設置し、この異物分級器の内筒出口側に選別槽を配置し、この選別槽の出口側からオーバーフローした清浄水を潤滑剤として水中軸受に供給するようにしたことを特徴とする水中軸受の潤滑システム。 In submerged bearing lubrication systems that use water as a lubricant in hydraulic machines such as water turbines and pump turbines,
A main water strainer is attached to a pipe branched from a hydraulic iron pipe that supplies river water to the runner room of the hydraulic machine, and a water pipe having an on-off valve connected to the discharge side of the main water strainer is attached. A foreign matter classifier is installed on the inner cylinder outlet side of the foreign matter classifier, and a clean water overflowing from the outlet side of the sorting tank is supplied to the underwater bearing as a lubricant. Underwater bearing lubrication system.
上記水力機械のランナ室に河川水を供給する水圧鉄管から分岐した配管に接続された主給水ストレーナと、この主給水ストレーナの吐出側に接続された開閉弁を有する配管に減圧装置を接続し、この減圧装置の出口側に異物分級器を固定し、この異物分級器の内筒出口側に選別槽を設置し、この選別槽の出口側からオーバーフローした清浄水を潤滑剤として水中軸受に供給するようにしたことを特徴とする水中軸受の潤滑システム。 In submerged bearing lubrication systems that use water as a lubricant in hydraulic machines such as water turbines and pump turbines,
A decompressor is connected to a main water strainer connected to a pipe branched from a hydraulic iron pipe for supplying river water to the runner chamber of the hydraulic machine, and a pipe having an on-off valve connected to the discharge side of the main water strainer, A foreign substance classifier is fixed to the outlet side of the decompression device, a sorting tank is installed on the inner cylinder outlet side of the foreign substance classifier, and clean water overflowed from the outlet side of the sorting tank is supplied to the underwater bearing as a lubricant. A lubrication system for an underwater bearing characterized by the above.
前記の異物分級器は異物排出口と内筒出口を同方向に構成し、かつ内筒入口部分に小径管を設置したことを特徴とする水中軸受の潤滑システム。 The underwater bearing lubrication system according to any one of claims 1 to 3,
The foreign matter classifier has a foreign matter discharge port and an inner cylinder outlet configured in the same direction, and a small-diameter pipe is installed at the inner cylinder inlet portion.
前記選別槽はその底部に堆積した沈殿物を攪拌,排出するための排除手段と、少なくとも一枚以上の整流板を設けたことを特徴とする水中軸受の潤滑システム。 The underwater bearing lubrication system according to any one of claims 1 to 3,
The submerged bearing lubrication system is characterized in that the sorting tank is provided with an excluding means for stirring and discharging sediment deposited on the bottom of the sorting tank and at least one current plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006275962A JP2008095565A (en) | 2006-10-10 | 2006-10-10 | Submerged bearing lubricating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006275962A JP2008095565A (en) | 2006-10-10 | 2006-10-10 | Submerged bearing lubricating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008095565A true JP2008095565A (en) | 2008-04-24 |
Family
ID=39378676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006275962A Pending JP2008095565A (en) | 2006-10-10 | 2006-10-10 | Submerged bearing lubricating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008095565A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137509A1 (en) * | 2011-04-05 | 2012-10-11 | 株式会社 東芝 | Bearing device and hydraulic machine |
CN103362724A (en) * | 2013-08-08 | 2013-10-23 | 中水北方勘测设计研究有限责任公司 | Sediment-reducing and abrasion-resistant water turbine volute and method for reducing sediment and resisting abrasion by means of water turbine volute |
JP2014013003A (en) * | 2012-07-04 | 2014-01-23 | Kawasaki Heavy Ind Ltd | Water lubrication type hydroelectric power generator |
JP2018096315A (en) * | 2016-12-15 | 2018-06-21 | 関西電力株式会社 | Liquid supply system for hydraulic power generation and method for supplying liquid to hydraulic turbine generator |
WO2019220991A1 (en) * | 2018-05-18 | 2019-11-21 | オルガノ株式会社 | Cooling water supply system and cooling water supply method for hydroelectric power generating system |
-
2006
- 2006-10-10 JP JP2006275962A patent/JP2008095565A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012137509A1 (en) * | 2011-04-05 | 2012-10-11 | 株式会社 東芝 | Bearing device and hydraulic machine |
JPWO2012137509A1 (en) * | 2011-04-05 | 2014-07-28 | 株式会社東芝 | Bearing device, hydraulic machine |
JP5687759B2 (en) * | 2011-04-05 | 2015-03-18 | 株式会社東芝 | Bearing device, hydraulic machine |
US9512873B2 (en) | 2011-04-05 | 2016-12-06 | Kabushiki Kaisha Toshiba | Bearing device and hydraulic machine |
JP2014013003A (en) * | 2012-07-04 | 2014-01-23 | Kawasaki Heavy Ind Ltd | Water lubrication type hydroelectric power generator |
CN103362724A (en) * | 2013-08-08 | 2013-10-23 | 中水北方勘测设计研究有限责任公司 | Sediment-reducing and abrasion-resistant water turbine volute and method for reducing sediment and resisting abrasion by means of water turbine volute |
JP2018096315A (en) * | 2016-12-15 | 2018-06-21 | 関西電力株式会社 | Liquid supply system for hydraulic power generation and method for supplying liquid to hydraulic turbine generator |
WO2019220991A1 (en) * | 2018-05-18 | 2019-11-21 | オルガノ株式会社 | Cooling water supply system and cooling water supply method for hydroelectric power generating system |
JP2019199854A (en) * | 2018-05-18 | 2019-11-21 | オルガノ株式会社 | Cooling water supply system and cooling water supply method in hydroelectric power generation system |
CN111989483A (en) * | 2018-05-18 | 2020-11-24 | 奥加诺株式会社 | Cooling water supply system and cooling water supply method in hydraulic power generation system |
JP7015208B2 (en) | 2018-05-18 | 2022-02-02 | オルガノ株式会社 | Cooling water supply system and cooling water supply method in hydroelectric power generation system |
CN111989483B (en) * | 2018-05-18 | 2022-04-29 | 奥加诺株式会社 | Cooling water supply system and cooling water supply method in hydraulic power generation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2496002C2 (en) | Device for separation and collection of fluid medium entrapped in gas from reservoir | |
RU2522695C2 (en) | Device for spraying with liquid at well inflow compression | |
JP2008095565A (en) | Submerged bearing lubricating system | |
JP4628252B2 (en) | Lubricating system for underwater bearing equipment | |
JP4989664B2 (en) | Vertical shaft pump | |
JP6781020B2 (en) | Vertical pump | |
CN206881934U (en) | Full-automatic drainage type centrifugal oil purifier | |
CN107051754A (en) | Full-automatic drainage type centrifugal oil purifier | |
US10655632B2 (en) | Shaft seal device and vertical pump with this shaft seal device | |
JP6411902B2 (en) | Vertical shaft pump | |
US20210107043A1 (en) | Method and apparatus for cleaning and removing contaminants from the interior of a lubricant run-down tank | |
JP5021576B2 (en) | Pad type bearing device and horizontal axis turbine | |
JP2023009253A (en) | Solid-liquid separation installation | |
JP7158129B2 (en) | Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator | |
JP7561680B2 (en) | Submersible bearing structure, vertical pump, pump system, and lubricating liquid supply method | |
JP2012177478A (en) | Safety valve | |
KR20020005520A (en) | Micro bubble generator and air flotation system using the same | |
CN100370211C (en) | Liquid dumping device | |
JP4704066B2 (en) | Vertical shaft pump | |
JPS6142114B2 (en) | ||
JP2022169194A (en) | Vertical shaft pump and prior standby operation method of the same | |
CN201137583Y (en) | Vertical type water pump possessing guard tube-type clear water lubrication bearing structure | |
JP2016098845A (en) | Bearing oil supply apparatus and bearing oil supply method | |
CN221705177U (en) | Novel oil film bearing oil circulation system | |
JP2017227203A (en) | Pump facility |