JP7158129B2 - Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator - Google Patents

Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator Download PDF

Info

Publication number
JP7158129B2
JP7158129B2 JP2016243179A JP2016243179A JP7158129B2 JP 7158129 B2 JP7158129 B2 JP 7158129B2 JP 2016243179 A JP2016243179 A JP 2016243179A JP 2016243179 A JP2016243179 A JP 2016243179A JP 7158129 B2 JP7158129 B2 JP 7158129B2
Authority
JP
Japan
Prior art keywords
water
raw water
pipe
water turbine
turbine generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016243179A
Other languages
Japanese (ja)
Other versions
JP2018096315A (en
Inventor
修 服部
充 余田
佳介 瀧口
剛 梅丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Organo Corp
Original Assignee
Kansai Electric Power Co Inc
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Organo Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2016243179A priority Critical patent/JP7158129B2/en
Publication of JP2018096315A publication Critical patent/JP2018096315A/en
Application granted granted Critical
Publication of JP7158129B2 publication Critical patent/JP7158129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は、水力発電用液体供給システムと水車発電機への液体の供給方法に関し、特に水車発電機の水車用軸受または水車用軸封装置に供給する液体の供給システムに関する。 TECHNICAL FIELD The present invention relates to a liquid supply system for hydroelectric power generation and a liquid supply method for a hydraulic turbine generator, and more particularly to a liquid supply system for supplying liquid to a hydraulic turbine bearing or a hydraulic shaft seal device of the hydraulic generator.

水車発電機の主軸の軸受潤滑方式として油潤滑方式と水潤滑方式が知られている。油潤滑方式は河川への油の漏洩により周辺環境が汚染されるリスクがある。このため、近年では、軸受の潤滑に河川水を使用し、上記リスクを回避することが可能な水潤滑方式が採用されることがある。 An oil lubrication method and a water lubrication method are known as bearing lubrication methods for the main shaft of a water turbine generator. The oil lubrication system has the risk of polluting the surrounding environment due to oil leakage into the river. For this reason, in recent years, a water lubrication system that uses river water to lubricate the bearings and is capable of avoiding the above risk is sometimes adopted.

水潤滑方式では、軸受の潤滑材として河川水が直接使用されるため、軸受の摺動部への異物混入を防止する必要がある。特許文献1には、沈降分離設備と遠心分離設備を備えた液体供給システムが開示されている。 In the water lubrication system, river water is directly used as a lubricating material for the bearing, so it is necessary to prevent foreign matter from entering the sliding portion of the bearing. Patent Document 1 discloses a liquid supply system with sedimentation and centrifugation equipment.

特許第4628252号明細書Patent No. 4628252 specification

近年、気候変動の影響によって、短時間での集中的な豪雨が発生しやすくなっている。また、突然の火山の噴火によって、噴出物が河川へ流入することがある。このため、河川水中の異物の性状が変化し、沈降分離設備と遠心分離設備だけで軸受への異物混入防止を図ることが困難な状況となっている。沈降分離設備は異物の沈降速度の違いにより分離し、遠心分離設備は回転により作用する角運動量の差から分離を行うが、いずれも異物の粒径が小さいほど、水と異物が分離しづらいという原理的な課題を有するためである。その結果、河川の濁度が高い時は、磨耗防止のために発電の中断もしくは停止を余儀なくされ、また発電を継続した場合には、軸受への異物混入による水車の主軸の摩耗が発生しやすくなり、大がかりな補修、交換作業を行う頻度が増加する傾向にある。軸受を収容する軸受水槽の軸封止部も主軸との間に微小な隙間が設けられており、隙間への異物の侵入は主軸の摩耗を招く。 In recent years, due to the effects of climate change, it is becoming easier for short-term torrential rains to occur. Sudden volcanic eruptions can also cause ejecta to flow into rivers. For this reason, the properties of foreign matter in river water change, and it is difficult to prevent foreign matter from entering the bearings only with sedimentation separation equipment and centrifugal separation equipment. Sedimentation equipment separates contaminants by the difference in sedimentation speed, and centrifugal separation equipment separates them by the difference in angular momentum acting by rotation. This is because there is a problem in principle. As a result, when the turbidity of the river is high, power generation must be interrupted or stopped to prevent wear, and if power generation continues, the main shaft of the water turbine tends to wear due to foreign matter entering the bearings. As a result, the frequency of large-scale repair and replacement work tends to increase. A small gap is also provided between the shaft sealing portion of the bearing water tank that houses the bearing and the main shaft, and if foreign matter enters the gap, the main shaft will wear out.

また、水車発電機の運転中は、主軸および軸受に冷却水を常時連続供給する必要があるが、前述の如く河川水中の異物の性状が大きく変動するため、一定の処理水質を有する冷却水を安定して連続供給することができないという課題があった。 In addition, while the water turbine generator is in operation, it is necessary to continuously supply cooling water to the main shaft and bearings. There was a problem that it could not be stably and continuously supplied.

本発明は、水車発電機の主軸の異物による摩耗を低減するとともに、一定の処理水質を有する冷却水を安定して連続供給することができる水力発電用液体供給システムを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a liquid supply system for hydroelectric power generation that can reduce wear due to foreign matter on the main shaft of a water turbine generator and that can stably and continuously supply cooling water having a certain quality of treated water. .

本発明の水力発電用液体供給システムは、原水をろ過して、原水に含まれる異物の少なくとも一部が除去されたろ過水を作るろ過装置と、原水源をろ過装置に接続し、原水源で取水された原水をろ過装置に供給する第1の配管と、ろ過装置を水車発電機に接続し、ろ過水を水車発電機の水車用軸受または水車用軸封装置に供給する第2の配管と、を有している。ろ過装置は砂ろ過装置、精密ろ過膜装置または限外精密ろ過膜装置であり、原水に含まれる粒径5~75μm且つモース硬度6以上の異物の少なくとも一部を除去する。
一態様では、水力発電用液体供給システムは、第2の配管に接続され、ろ過水に該ろ過水の粘性を増加させる薬液を注入する薬液注入装置を有している。他の態様では、水力発電用液体供給システムは、水車発電機で加熱されたろ過水を第1の配管に戻す戻り配管と、戻り配管上に設けられたろ過水の冷却装置と、を有している。さらに他の態様では、水力発電用液体供給システムは、第1の配管から分岐し、ろ過装置をバイパスするバイパス配管を有している。
The liquid supply system for hydroelectric power generation of the present invention includes a filtration device that filters raw water to produce filtered water from which at least a portion of foreign matter contained in the raw water is removed; A first pipe that supplies raw water taken in to the filtration device, and a second pipe that connects the filtration device to the hydraulic turbine generator and supplies filtered water to the turbine bearing of the hydraulic turbine generator or the hydraulic turbine shaft seal device. and a plumbing. The filtering device is a sand filtering device, a microfiltration membrane device, or an ultra-microfiltration membrane device, and removes at least part of foreign substances having a particle size of 5 to 75 μm and a Mohs hardness of 6 or more contained in the raw water.
In one aspect, the liquid supply system for hydroelectric power generation includes a chemical injection device connected to the second pipe for injecting into the filtered water a chemical that increases the viscosity of the filtered water. In another aspect, a hydroelectric liquid supply system includes a return line returning filtered water heated by a hydro-turbine generator to a first line, and a chiller for the filtered water on the return line. ing. In yet another aspect, the hydroelectric liquid supply system includes a bypass line branching from the first line and bypassing the filtration device.

本発明によれば、原水に含まれる異物の少なくとも一部がろ過装置で除去されるため、水車発電機の主軸の異物による摩耗を低減することができる水力発電用液体供給システムを提供することができる。 According to the present invention, since at least part of the foreign matter contained in the raw water is removed by the filtering device, it is possible to provide a hydraulic power generation liquid supply system capable of reducing abrasion caused by the foreign matter on the main shaft of the water turbine generator. can.

本発明が適用される水車発電機の概略構成図である。1 is a schematic configuration diagram of a water turbine generator to which the present invention is applied; FIG. 本発明の一実施形態に係る水力発電用液体供給システムの概略構成図である。1 is a schematic configuration diagram of a liquid supply system for hydroelectric power generation according to an embodiment of the present invention; FIG. 遠心分離装置出口水に含まれる異物の粒径分布の測定例である。It is an example of measurement of the particle size distribution of foreign matter contained in centrifugal separator outlet water. 遠心分離装置出口水の光学顕微鏡による観察例である。It is an example of observation with an optical microscope of centrifugal separator outlet water. 差圧上昇速度に応じた逆洗運用例である。It is an example of backwash operation according to the rate of increase in differential pressure.

以下、図面を参照して本発明の一実施形態に係る水力発電用液体供給システムについて説明する。図1は、本発明が適用される水車発電機の概略構成を例示している。図2は水力発電用液体供給システム(以下、システム100という)の概念を示している。 Hereinafter, a liquid supply system for hydroelectric power generation according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 illustrates a schematic configuration of a water turbine generator to which the present invention is applied. FIG. 2 illustrates the concept of a hydroelectric liquid supply system (hereinafter referred to as system 100).

図1を参照すると、水車発電機1はランナ3が取り付けられた主軸2を有している。ランナ3は水圧鉄管4(図2参照)に接続されたケーシング5に収容されている。主軸2の上端部には、カップリング6を介して発電機7が取り付けられている。水圧鉄管4から供給された河川水がケーシング5の内部のランナ3を回転させることによって、発電機7による発電が行われる。水圧鉄管4には水車発電機1のメンテナンス時に河川水の供給を止めるための入口弁8(図2参照)が設けられている。 Referring to Figure 1, a hydro-turbine generator 1 has a main shaft 2 on which a runner 3 is mounted. The runner 3 is housed in a casing 5 connected to a penstock 4 (see FIG. 2). A generator 7 is attached to the upper end of the main shaft 2 via a coupling 6 . The river water supplied from the penstock 4 rotates the runner 3 inside the casing 5 to generate electricity by the generator 7 . The penstock 4 is provided with an inlet valve 8 (see FIG. 2) for stopping the supply of river water during maintenance of the hydraulic turbine generator 1 .

主軸2は水中軸受(以下、軸受9という)で支持されている。軸受9は軸受水槽10に収容されている。軸受9は滑り軸受であり、主軸2に取り付けられたカラー11と軸受9の滑り面9aとの間に微小なギャップ12が設けられている。軸受水槽10は河川水が充填されており、ギャップ12に流入した河川水が軸受9を潤滑するとともに、軸受9と主軸2を冷却する。軸受水槽10には河川水の供給配管(第2の配管L2)と、河川水の排出配管L7が接続されており、河川水が供給配管(第2の配管L2)から軸受水槽10に連続的に供給されるとともに、温度が上昇した河川水が軸受水槽10から河川に連続的に排出される。軸受水槽10の主軸2の貫通部には水車用軸封装置(以下、軸封装置13という)が設けられている。軸封装置13は軸受水槽10内の河川水の漏えいを防止する。 The main shaft 2 is supported by an underwater bearing (hereinafter referred to as bearing 9). The bearing 9 is housed in a bearing water tank 10 . The bearing 9 is a sliding bearing, and a small gap 12 is provided between a collar 11 attached to the main shaft 2 and a sliding surface 9a of the bearing 9. As shown in FIG. The bearing water tank 10 is filled with river water, and the river water flowing into the gap 12 lubricates the bearings 9 and cools the bearings 9 and the main shaft 2 . A river water supply pipe (second pipe L2) and a river water discharge pipe L7 are connected to the bearing water tank 10, and the river water flows continuously from the supply pipe (second pipe L2) to the bearing water tank 10. , and the river water whose temperature has risen is continuously discharged from the bearing water tank 10 into the river. A shaft sealing device for a water turbine (hereinafter referred to as a shaft sealing device 13) is provided in the penetrating portion of the main shaft 2 of the bearing water tank 10. As shown in FIG. The shaft seal device 13 prevents leakage of river water in the bearing water tank 10 .

以下、水圧鉄管4から供給される河川水を「原水」といい、水圧鉄管4を「原水源」という。本明細書では、便宜上、後述する第1の配管L1を流れる水も「原水」と称する。すなわち、第1の配管L1上に設置された沈降分離装置22やストレーナ23等の何らかの処理装置で処理された水も「原水」という。同様に、本明細書では、便宜上、後述する第2の配管L2を流れる水を「ろ過水」と称する。すなわち、第2の配管L2上に設置された脱塩装置30等の何らかの処理装置で処理された水も「ろ過水」という。換言すれば、本願発明において特徴的な装置であるろ過装置28を基準として、ろ過装置28の上流側を流れる水を「原水」と総称し、ろ過装置28の下流側を流れる水を「ろ過水」と総称する。原水には通常、石英、長石などの鉱物の微粒子が含まれている。これらの微粒子に代表される、原水中に含まれる固体を「異物」という。 Hereinafter, the river water supplied from the penstock 4 is called "raw water", and the penstock 4 is called "raw water source". In this specification, for the sake of convenience, the water flowing through the first pipe L1, which will be described later, is also referred to as "raw water." In other words, water that has been treated by some sort of treatment device such as the sedimentation separation device 22 or the strainer 23 installed on the first pipe L1 is also referred to as "raw water." Similarly, in this specification, for the sake of convenience, the water flowing through the second pipe L2, which will be described later, is referred to as "filtered water." In other words, water that has been treated by some kind of treatment device such as the desalination device 30 installed on the second pipe L2 is also referred to as "filtered water." In other words, based on the filtering device 28, which is a device characteristic of the present invention, the water flowing upstream of the filtering device 28 is collectively referred to as "raw water", and the water flowing downstream of the filtering device 28 is referred to as "filtered water". ” collectively. Raw water usually contains fine particles of minerals such as quartz and feldspar. Solids contained in the raw water, represented by these fine particles, are called "foreign matter".

システム100は原水をろ過するろ過装置28を有している。原水に含まれる異物の少なくとも一部が除去されてろ過水が作られ、ろ過水が水車発電機1の軸受9及び軸封装置13が収容される軸受水槽10に供給される。ろ過装置28は第1の配管L1によって原水源4に接続され、第2の配管L2によって軸受水槽10に接続されている。従って、原水源4から取水された原水は第1の配管L1を通ってろ過装置28に供給されてろ過水となり、ろ過水が第2の配管L2を通って軸受水槽10に供給される。ろ過装置28の下流には脱塩装置30が設けられている。脱塩装置としては、例えばイオン交換樹脂が充填されたカートリッジポリッシャーを用いることができる。ろ過水に含まれるイオン成分を除去することで、主軸2のさびの発生を抑制することができる。 The system 100 has a filtering device 28 for filtering raw water. At least part of the foreign matter contained in the raw water is removed to produce filtered water, and the filtered water is supplied to the bearing water tank 10 in which the bearing 9 and the shaft seal device 13 of the hydro turbine generator 1 are accommodated. The filtering device 28 is connected to the raw water source 4 by a first pipe L1 and to the bearing water tank 10 by a second pipe L2. Therefore, the raw water taken from the raw water source 4 is supplied to the filtering device 28 through the first pipe L1 to be filtered water, and the filtered water is supplied to the bearing water tank 10 through the second pipe L2. A desalting device 30 is provided downstream of the filtering device 28 . As the desalting device, for example, a cartridge polisher filled with an ion exchange resin can be used. By removing the ionic components contained in the filtered water, the main shaft 2 can be prevented from rusting.

第1の配管L1に沿って沈降分離装置22が設けられている。沈降分離装置22は比較的粒径の大きい異物を重力によって沈降させ、除去する。沈降分離装置22と原水源4の間には弁21が設けられている。弁21を閉じることで、沈降分離装置22のメンテナンス時に原水が沈降分離装置22に流入することが防止される。 A sedimentation separation device 22 is provided along the first pipe L1. The sedimentation separation device 22 sediments and removes foreign matter with a relatively large particle size by gravity. A valve 21 is provided between the sedimentation separator 22 and the raw water source 4 . Closing the valve 21 prevents raw water from flowing into the sedimentation device 22 during maintenance of the sedimentation device 22 .

第1の配管L1の沈降分離装置22の下流にはストレーナ23が設けられており、沈降分離装置22で分離されなかった、比較的大きな粒径の異物が除去される。第1の配管L1のストレーナ23の下流には遠心分離装置25が設けられている。遠心分離装置25は遠心分離作用によって、ストレーナ23で除去できなかった、比重が水の比重である1より大きな異物を原水から分離する。分離された異物は配管を通って河川に排出される。遠心分離装置25の入口側には弁24が設けられている。弁24を閉じることで、遠心分離装置25のメンテナンス時に原水が遠心分離装置25に流入することが防止される。 A strainer 23 is provided downstream of the sedimentation separation device 22 in the first pipe L1, and removes relatively large-sized foreign matter that has not been separated by the sedimentation separation device 22 . A centrifugal separator 25 is provided downstream of the strainer 23 of the first pipe L1. The centrifugal separation device 25 separates, by the centrifugal action, foreign substances having a specific gravity greater than 1, which is the specific gravity of water, and which could not be removed by the strainer 23 . The separated foreign matter is discharged into a river through a pipe. A valve 24 is provided on the inlet side of the centrifuge 25 . Closing the valve 24 prevents raw water from entering the centrifuge 25 during maintenance of the centrifuge 25 .

第1の配管L1の遠心分離装置25の下流で、バイパス配管L3が第1の配管L1から分岐している。バイパス配管L3はろ過装置28をバイパスし、後述するろ過水槽36に接続されている。第1の配管L1の、遠心分離装置25の下流側の端部はろ過装置28に接続されている。 A bypass line L3 branches from the first line L1 downstream of the centrifugal separator 25 of the first line L1. The bypass pipe L3 bypasses the filtration device 28 and is connected to a filtration water tank 36, which will be described later. The downstream end of the centrifugal separator 25 of the first pipe L1 is connected to the filtering device 28 .

第2の配管L2のろ過装置28の下流側には弁31を介してろ過水槽36が設けられている。ろ過水槽36はろ過装置28でろ過されたろ過水を貯蔵する。これによって、原水の供給量が変動した場合や、ろ過水槽36の上流側の設備(沈降分離装置22、遠心分離装置25、ろ過装置28等)が一時的に運転を停止した場合にも一定期間、ろ過水を軸受水槽10に供給することができる。ろ過水槽36に貯留されているろ過水からさらに異物を取り除くため、ろ過水をろ過水槽36とろ過装置28の間で循環させてもよい。この目的で、ろ過水槽36には戻り配管L4が接続されており、戻り配管L4の他端は第1の配管L1のろ過装置28の入口側に合流している。ろ過水の循環を制御するため、戻り配管L4には弁33とポンプ34が設置されている。第2の配管L2のろ過水槽36の下流側の端部は軸受水槽10に接続されている。これにより、第2の配管L2はろ過水を水車発電機1の軸受9及び軸封装置13に供給する。 A filtering water tank 36 is provided via a valve 31 downstream of the filtering device 28 in the second pipe L2. The filtered water tank 36 stores filtered water filtered by the filtering device 28 . As a result, even if the supply amount of raw water fluctuates, or if the equipment on the upstream side of the filtration water tank 36 (sedimentation separation device 22, centrifugal separation device 25, filtration device 28, etc.) temporarily stops operating, , filtered water can be supplied to the bearing water tank 10 . In order to further remove foreign matter from the filtered water stored in the filtered water tank 36 , the filtered water may be circulated between the filtered water tank 36 and the filtering device 28 . For this purpose, a return pipe L4 is connected to the filter water tank 36, and the other end of the return pipe L4 merges with the inlet side of the filter device 28 of the first pipe L1. A valve 33 and a pump 34 are installed in the return line L4 to control the circulation of filtered water. The downstream end of the filtering water tank 36 of the second pipe L2 is connected to the bearing water tank 10 . As a result, the second pipe L2 supplies the filtered water to the bearing 9 and the shaft seal device 13 of the water turbine generator 1 .

本願発明者は、既存の水車発電機における主軸の摩耗状況を調査した。調査対象の水車発電機が設置されている水力発電設備はろ過装置が設けられていない。河川水の濁度が高くなったときに軸受水槽内のろ過水を分析したところ、粒径0.5mm以下の透明、白色及び茶色の鉱物が検出された。透明な鉱物は主に石英であると考えられ、白色及び茶色の鉱物は主に長石であると考えられる。また、軸受と軸封部には破砕された鉱物片が多数付着していた。これらの鉱物片も主に石英と長石であると考えられる。 The inventor of the present application investigated the wear condition of the main shaft in the existing water turbine generator. The hydropower facilities where the hydro turbine generators of the survey target are installed are not equipped with filtration equipment. When the filtered water in the bearing water tank was analyzed when the turbidity of the river water became high, transparent, white and brown minerals with a particle size of 0.5 mm or less were detected. Clear minerals are believed to be primarily quartz, and white and brown minerals are primarily considered to be feldspars. In addition, a large number of crushed mineral fragments were attached to the bearing and shaft seal. These mineral fragments are also believed to be mainly quartz and feldspar.

主軸2の摩耗の原因の一つは粒径である。主軸2と軸受9の間のギャップ12の寸法は一般に数十μmであるが、主軸2が軸受9に対して偏芯することもあるため、最大でギャップ12の寸法の2倍程度の粒径の異物がギャップ12に侵入しうる。同様の理由から数十μmより小さい粒径の異物がギャップ12に入り付着残存することもあり得る。これらの理由から、概ね粒径5~75μm程度の異物を除去することで、主軸2の摩耗を抑えることができると考えられる。すなわち、粒径5μm未満の異物はギャップ12に侵入しても残存する可能性が小さく、粒径75μmを上回る異物はギャップ12に侵入する可能性が小さいので、これらの異物は本発明にとって重要ではない。また、図3には既存の水車発電機に備えられた遠心分離設備25の出口水に含まれる異物の粒度分布の測定例を、図4には出口水の光学顕微鏡による観察結果を示している。なお、遠心分離設備25の上流側には沈降分離設備22が設けられている。図4では、1目盛が100μmであり、色が濃い部分は粒径5~75μm程度の異物が存在している部分を示しており、もやがかった若干色が濃い部分は、細かい粒子が集合している部分を示している。以上のことから、粒径5~75μm程度の異物は既存の遠心分離設備25や沈降分離設備22では除去することが困難であることを確認した。 One of the causes of wear of the spindle 2 is grain size. The dimension of the gap 12 between the spindle 2 and the bearing 9 is generally several tens of μm. foreign matter can enter the gap 12 . For the same reason, foreign matter with a particle size smaller than several tens of micrometers may enter the gap 12 and remain there. For these reasons, it is considered that the wear of the main shaft 2 can be suppressed by removing foreign matter having a particle size of approximately 5 to 75 μm. That is, foreign matter with a particle diameter of less than 5 μm is less likely to remain even if it enters the gap 12, and foreign matter with a particle diameter of more than 75 μm is less likely to enter the gap 12, so these foreign matter are not important to the present invention. do not have. In addition, FIG. 3 shows an example of measurement of the particle size distribution of foreign matter contained in the outlet water of the centrifugal separation equipment 25 provided in the existing water turbine generator, and FIG. 4 shows the observation results of the outlet water with an optical microscope. . A sedimentation separation facility 22 is provided on the upstream side of the centrifugal separation facility 25 . In FIG. 4, one scale is 100 μm, and the darker color indicates the portion where foreign matter with a particle size of about 5 to 75 μm is present. indicates the part where From the above, it was confirmed that the existing centrifugal separation equipment 25 and sedimentation separation equipment 22 are difficult to remove foreign matter with a particle size of about 5 to 75 μm.

粒径5~75μm程度の異物は、質量が小さいため、遠心分離時に、作用する遠心力が小さくなる。それにより、水との分離がうまくできず、出口水に残ってしまうことを確認した。これまで水車発電機は、粒径が小さな異物に対して遠心分離設備25により、最終段の異物の除去を行ってきたが、本発明が課題とする、異物による磨耗の低減の効果が、不十分であることを確認した。 Foreign matter with a particle size of about 5 to 75 μm has a small mass, so that the centrifugal force acting on it is small during centrifugation. As a result, it was confirmed that the separation from water was not successful and remained in the outlet water. Until now, in the water turbine generator, the centrifugal separation equipment 25 has been used to remove foreign matter with a small particle size in the final stage, but the effect of reducing wear due to foreign matter, which is the subject of the present invention, is insufficient. Confirmed to be sufficient.

主軸2の摩耗のもう一つの原因は異物の硬度である。異物の硬度が主軸2の材料である鋼(スチール)の硬度を上回る場合、主軸2に異物による傷がつきやすくなる。鋼のモース硬度は5~6であり、長石のモース硬度は6、石英のモース硬度は7である。従って、主軸2の摩耗に寄与する異物の種類は、モース硬度の観点からは主に石英であり、次に長石であると考えられる。 Another cause of wear of the spindle 2 is the hardness of foreign matter. If the hardness of the foreign matter exceeds the hardness of steel, which is the material of the spindle 2, the spindle 2 is likely to be damaged by the foreign matter. Steel has a Mohs hardness of 5-6, feldspar has a Mohs hardness of 6, and quartz has a Mohs hardness of 7. Therefore, from the viewpoint of Mohs' hardness, the foreign matter that contributes to the wear of the main shaft 2 is mainly quartz, followed by feldspar.

以上より、ろ過装置28は、原水に含まれる主軸2の摩耗の原因となる異物を除去できれば、特に限定されず、砂ろ過装置や、無機膜または有機膜を備えた精密ろ過膜装置(孔径は概ね0.05~10μm)、または限外精密ろ過膜装置(孔径は概ね0.01~0.001μm)を用いることができる。また、ろ過装置28は原水に含まれる粒径5~75μm且つモース硬度6以上の異物の少なくとも一部を除去する性能を有していることが望ましい。なお、分析の結果、粒径75μm以下の異物の中には石英の粒子が多数含まれることが分かっており、粒径5~75μmの粒子を除去することで、石英の粒子を効果的に除去することができる。以上の観点から、好適に利用できるろ過装置28は砂ろ過装置である。砂ろ過装置は粒状ろ材が単層または複層で充填されたろ過装置であり、粒径5~75μm程度の粒子を効率よく除去する。粒状ろ材の間に水が通る流路が形成されるため、圧力損失も小さい。本発明では、ろ過装置28は、一定の処理水質を得るため、ろ過層全体を3次元的に有効利用できる複層とすることが望ましい。例えば、比重が小さくて粒径の大きなろ過材と比重が大きくて粒径の小さなろ過材を形成することで、大きな粒子から順に小さな粒子へと効果的に除去することができる。また、粒径5~75μmの粒子は土砂の分類上ではシルトと呼ばれ、表面に電荷を有するが、ろ過設備28の前段で凝集剤等を注入し、シルト表面の電荷を中和して粒子同士を結合、凝集させることで除去効率を高めることもできる。 From the above, the filtering device 28 is not particularly limited as long as it can remove foreign substances contained in the raw water that cause wear of the main shaft 2, and is a sand filtering device, a microfiltration membrane device equipped with an inorganic membrane or an organic membrane (pore diameter is approximately 0.05 to 10 μm), or an ultra-microfiltration membrane device (pore size approximately 0.01 to 0.001 μm). Moreover, it is desirable that the filtering device 28 has the ability to remove at least part of the foreign substances with a particle size of 5 to 75 μm and a Mohs hardness of 6 or more contained in the raw water. As a result of analysis, it has been found that many quartz particles are contained in foreign matter with a particle size of 75 μm or less, and removing particles with a particle size of 5 to 75 μm effectively removes quartz particles can do. From the above point of view, the filter device 28 that can be preferably used is a sand filter device. A sand filter is a filtration device filled with granular filter media in a single layer or multiple layers, and efficiently removes particles with a particle size of about 5 to 75 μm. Pressure loss is also small because channels through which water passes are formed between the granular filter media. In the present invention, in order to obtain a constant quality of treated water, it is desirable that the filtration device 28 be a multi-layered structure that can effectively utilize the entire filtration layer three-dimensionally. For example, by forming a filter medium with a small specific gravity and a large particle size and a filter medium with a large specific gravity and a small particle size, particles can be effectively removed from larger particles to smaller particles. In addition, particles with a particle size of 5 to 75 μm are called silt in terms of classification of earth and sand, and have an electric charge on the surface. It is also possible to increase the removal efficiency by binding and aggregating them.

ろ過装置28の逆洗のため戻り配管L4から分岐し、ろ過装置28に接続された逆洗配管L5が設けられている。逆洗配管L5上にはろ過水の流れを制御するための弁32が設けられている。ろ過水槽36に貯蔵されたろ過水を通常の原水の流れと逆方向にろ過装置28に供給することで、捕捉された異物をろ過装置28から取り除くことができる。砂ろ過装置は一般に急激な差圧上昇が少ないため、逆洗の頻度を低減することができる。なお、逆洗の必要性を判定するため、ろ過装置28の入口側と出口側の差圧を測定する差圧計29が設けられており、差圧計29で測定した差圧が一定の値を超えた場合、逆洗を行うようにすることができる。また、差圧上昇速度(所定時間に対する差圧の上昇率)から逆洗頻度を自動的に切り替えることで、差圧上昇による流量低下を生じること無く、冷却水を安定して連続供給することができる。例えば、差圧上昇速度が増加した場合に逆洗頻度を増やし、差圧上昇速度が低下した場合は逆洗頻度を減らすようにする。具体的には、図5で示したように、通常の差圧上昇速度が40kPa/日の場合において逆洗頻度を1回/日としていた場合、差圧上昇速度が60kPa/日となったときには、逆洗頻度を2回/日とし、差圧上昇速度が80kPa/日となったときには、逆洗頻度を3回/日とするように制御する。 A backwashing pipe L5 branched from the return pipe L4 and connected to the filtering device 28 is provided for backwashing the filtering device 28 . A valve 32 for controlling the flow of filtered water is provided on the backwash pipe L5. By supplying the filtered water stored in the filtered water tank 36 to the filtering device 28 in a direction opposite to the normal flow of raw water, the trapped foreign matter can be removed from the filtering device 28 . The sand filter generally has less abrupt rise in differential pressure, so the frequency of backwashing can be reduced. In addition, in order to determine the necessity of backwashing, a differential pressure gauge 29 is provided to measure the differential pressure between the inlet side and the outlet side of the filtering device 28. When the differential pressure measured by the differential pressure gauge 29 exceeds a certain value, If so, it can be backwashed. In addition, by automatically switching the backwash frequency based on the differential pressure rise rate (rate of rise in differential pressure over a predetermined time period), cooling water can be stably and continuously supplied without causing a decrease in flow rate due to an increase in differential pressure. can. For example, the frequency of backwashing is increased when the rate of increase in differential pressure increases, and the frequency of backwashing is decreased when the rate of increase in differential pressure decreases. Specifically, as shown in FIG. 5, when the normal differential pressure increase rate is 40 kPa/day and the backwash frequency is set to 1 time/day, when the differential pressure increase rate is 60 kPa/day, , the backwashing frequency is set to 2 times/day, and when the differential pressure rise rate reaches 80 kPa/day, the backwashing frequency is controlled to be 3 times/day.

また、本発明では、冷却水を安定して連続供給するため、通水を継続しながら抑留量が多いろ過層を部分的または選択的に洗浄できる手段を設けることもできる。例えば、抑留量の多いろ過層の表層部を洗浄できるように洗浄配管及び洗浄排水配管を設け、ろ過通水を行いながら、洗浄配管から洗浄水を供給して、通水を停止させることなく部分洗浄を行う。 Further, in the present invention, in order to stably and continuously supply cooling water, it is also possible to provide a means for partially or selectively washing the filtration layer with a large retention amount while continuing water flow. For example, a cleaning pipe and a cleaning drainage pipe are provided so that the surface layer of the filtration layer with a large amount of retention can be washed, and while filtering water is being passed, washing water is supplied from the washing pipe to partially clean the surface without stopping the water flow. Wash.

原水中の異物の含有量が少ない場合、一部または全部の原水を、ろ過装置28を通さずに水車発電機1に供給することもできる。この目的で、第1の配管L1には、原水中の異物の粒度分布を測定する第1の測定手段39(センサー)が設けられている。また、第1の配管L1の、バイパス配管L3の分岐部とろ過装置28との間に第1の弁26が設けられ、バイパス配管L3上に第2の弁27が設けられている。センサー39で測定された粒度分布に基づき、制御手段38は第1の弁26と第2の弁27の開度を制御する。通常は第1の弁26が全開、第2の弁27が全閉であり、原水の全量がろ過装置28に通される。制御手段38は、上述の粒径5~75μmの粒子がほとんど原水中に含まれていないと判断した場合、全量をバイパスするため第1の弁26を全閉し、第2の弁27を全開する。センサー39で測定された粒度分布によって、遠心分離装置25を出た原水の一部だけがバイパス配管L3を通るように第1の弁26と第2の弁27の開度を調整してもよい。異物の粒度分布に代えて、または異物の粒度分布に加えて、原水の濁度、色度あるいは差圧を測定してもよい。また主軸2と軸受9の間のギャップ12を定量的に監視するため、軸受水槽10内、より具体的には軸受9と軸封装置13の少なくとも一方の圧力を測定する第2の測定手段40(センサー)が設けられている(図1参照)。センサー40で圧力低下を検知した場合、摩耗により隙間が大きくなっていること、すなわちギャップ12が増加していることを示唆する。センサー40と前述のセンサー39を組み合わせることで、センサー40の測定結果から全量処理、もしくはバイパス処理を判断するセンサー39の粒度分布の数値を補正して、摩耗低減に効果的な運転に変更することができる。 If the content of foreign substances in the raw water is small, part or all of the raw water can be supplied to the hydro-turbine generator 1 without passing through the filtering device 28 . For this purpose, the first pipe L1 is provided with a first measuring means 39 (sensor) for measuring the particle size distribution of foreign substances in the raw water. A first valve 26 is provided between the branch of the bypass pipe L3 and the filtering device 28 of the first pipe L1, and a second valve 27 is provided on the bypass pipe L3. Based on the particle size distribution measured by the sensor 39 , the control means 38 controls the opening degrees of the first valve 26 and the second valve 27 . Normally, the first valve 26 is fully open, the second valve 27 is fully closed, and the entire amount of raw water is passed through the filtering device 28 . When the control means 38 determines that the raw water contains almost no particles with a particle size of 5 to 75 μm, the first valve 26 is fully closed and the second valve 27 is fully opened to bypass the entire amount. do. Depending on the particle size distribution measured by the sensor 39, the opening degrees of the first valve 26 and the second valve 27 may be adjusted so that only a portion of the raw water exiting the centrifugal separator 25 passes through the bypass pipe L3. . Instead of or in addition to the particle size distribution of foreign matter, turbidity, chromaticity or differential pressure of raw water may be measured. Also, in order to quantitatively monitor the gap 12 between the spindle 2 and the bearing 9, a second measuring means 40 for measuring the pressure in the bearing water tank 10, more specifically at least one of the bearing 9 and the shaft sealing device 13. (sensor) is provided (see FIG. 1). A pressure drop detected by the sensor 40 indicates that the gap is widening due to wear, ie, the gap 12 is increasing. By combining the sensor 40 and the above-described sensor 39, the numerical value of the particle size distribution of the sensor 39, which determines full amount processing or bypass processing from the measurement result of the sensor 40, is corrected, and the operation is changed to an effective operation for reducing wear. can be done.

軸受9の潤滑性能を高めるために、ろ過水の粘度を増加させることができる。水潤滑方式の水車発電機で軸受の潤滑材として使用される水は、油潤滑方式の水車発電機で軸受の潤滑材として使用されるタービン油などと比べ、動粘度がはるかに小さい。このため、起動・停止時や低速回転中に十分な潤滑性と水膜厚さが得られない可能性があり、油潤滑方式の水車発電機と比べて、軸受の摺動面での摩耗や焼付きが発生しやすい。従って、水潤滑方式の水車発電機で軸受の潤滑材として使用されるろ過水は、より優れた摺動特性と自己潤滑性を備えることが望ましい。この目的で、ろ過水に粘性を増加させるための薬液を注入する薬液注入装置37が第2の配管L2に接続されている。薬液としては例えばキサンタンガムを用いることができる。キサンタンガムは液体に粘り気を与える増粘剤であり、軸受9のギャップ12に形成される水膜の厚さを増加させる。キサンタンガムは土壌に生息する微生物から作られる多糖類からなるため、そのまま河川に排出しても環境への負荷が小さい。しかし、本実施形態では、キサンタンガムを効率的に使用するため、軸受9で加熱されたろ過水を第1の配管L1に戻す戻り配管L6が設けられており、キサンタンガムを含むろ過水を循環させることができる。軸受9を通って加熱されたろ過水を冷却するため、戻り配管L6上にろ過水の冷却装置35が設けられている。ろ過水の循環運転の際にろ過水を冷却するための熱源としては、遠心分離装置25の出口水を利用することができる。図2には、遠心分離装置25の出口と冷却装置35を接続する冷却水供給配管L8が設けられている。冷却装置35でろ過水を冷却した遠心分離装置25の出口水は河川に排出することができる。 In order to improve the lubricating performance of the bearing 9, the viscosity of the filtered water can be increased. Water, which is used as a lubricant for bearings in water-lubricated water turbine generators, has much lower kinematic viscosity than turbine oil, which is used as a lubricant for bearings in oil-lubricated turbine generators. For this reason, there is a possibility that sufficient lubricity and water film thickness cannot be obtained during start/stop and low-speed rotation, and compared to oil-lubricated water turbine generators, there is less wear and tear on the sliding surfaces of the bearings. Seizure is likely to occur. Therefore, it is desirable that filtered water used as a lubricant for bearings in water-lubricated water turbine generators has better sliding properties and self-lubricating properties. For this purpose, a chemical injection device 37 for injecting a chemical for increasing the viscosity of filtered water is connected to the second pipe L2. For example, xanthan gum can be used as the chemical solution. Xanthan gum is a thickening agent that gives viscosity to the liquid and increases the thickness of the water film formed in the gap 12 of the bearing 9 . Since xanthan gum is composed of polysaccharides produced by microorganisms living in the soil, even if it is directly discharged into rivers, the burden on the environment is small. However, in this embodiment, in order to use xanthan gum efficiently, a return pipe L6 is provided to return the filtered water heated by the bearing 9 to the first pipe L1, and the filtered water containing xanthan gum is circulated. can be done. A filtered water cooling device 35 is provided on the return line L6 to cool the filtered water heated through the bearing 9 . Outlet water of the centrifugal separator 25 can be used as a heat source for cooling the filtered water during circulation operation of the filtered water. In FIG. 2, a cooling water supply pipe L8 connecting the outlet of the centrifugal separator 25 and the cooling device 35 is provided. The outlet water of the centrifugal separator 25 which cooled filtered water with the cooling device 35 can be discharged|emitted to a river.

以上説明したように、本発明の水力発電用液体供給システム100によって、水車発電機の軸受及び軸封装置に混入する可能性のある異物をあらかじめ原水から除去することができるため、主軸の摩耗を抑えることができる。また、水力発電用液体供給システム100は無人運転が可能である。すなわち、上述したろ過装置28への全量通水運転、部分通水運転、バイパス運転、逆洗、循環運転などは全て制御手段38によって自動で行うことができる。このため、通常無人運転が行われる水力発電設備に本システムを導入しても、水力発電設備の無人運転は引き続き可能である。 As described above, the liquid supply system 100 for hydroelectric power generation of the present invention can remove foreign matter from the raw water in advance that may enter the bearings and shaft seals of the water turbine generator, thereby reducing the wear of the main shaft. can be suppressed. Also, the hydroelectric liquid supply system 100 is capable of unattended operation. In other words, the control means 38 can automatically perform all of the above-described full water flow operation, partial water flow operation, bypass operation, backwashing, circulation operation, and the like. For this reason, even if this system is introduced into hydroelectric power facilities that normally operate unmanned, unmanned operation of the hydroelectric power facilities can continue.

さらに、ろ過装置を用いることでシステム全体を小型化することができる。水力発電設備では平坦な敷地を確保することが難しい場合があり、大きな平面積を必要とする沈降分離装置の設置が困難となる場合がある。また、沈降分離装置の平面積が大きいほど小さな粒径の異物を除去できる(沈降させる)ことから、実施形態で説明した粒径5~75μmの異物を除去するために、既設の沈降分離装置の平面積を拡大することも考えられるが、同様の理由から困難な場合がある。例えば粒径10μmの異物を沈降分離装置で除去する場合、原水の流量が2m/hであれば平面積4mの、原水の流量が12m/hであれば平面積24mの沈降分離装置が必要となる。これに対し、ろ過装置として砂ろ過装置を用いる場合、原水の流量が2m/hであれば平面積0.4mの、原水の流量が12m/hであれば平面積2.4mの砂ろ過装置で十分である。 Furthermore, the size of the entire system can be reduced by using the filtering device. It may be difficult to secure a flat site for a hydroelectric power plant, and it may be difficult to install a sedimentation separator that requires a large flat area. In addition, since the larger the flat area of the sedimentation device, the smaller the particle size foreign matter can be removed (settled), in order to remove the foreign matter with a particle size of 5 to 75 μm described in the embodiment, the existing sedimentation device Enlarging the plane area is also conceivable, but may be difficult for similar reasons. For example, when removing foreign matter with a particle size of 10 μm with a sedimentation separation device, if the flow rate of raw water is 2 m 3 /h, the plane area is 4 m 2 , and if the flow rate of raw water is 12 m 3 /h, the plane area is 24 m 2 . equipment is required. On the other hand, when a sand filter is used as a filter, the flat area is 0.4 m 2 if the raw water flow rate is 2 m 3 /h, and the flat area is 2.4 m 2 if the raw water flow rate is 12 m 3 /h. sand filter equipment is sufficient.

1 水車発電機
2 主軸
9 軸受
10 軸受水槽
12 ギャップ
13 軸封装置
22 沈降分離装置
25 遠心分離装置
28 ろ過装置
36 ろ過水槽
100 水力発電用液体供給システム
L1 第1の配管
L2 第2の配管
1 Hydro Turbine Generator 2 Main Shaft 9 Bearing 10 Bearing Water Tank 12 Gap 13 Shaft Seal Device 22 Sedimentation Separation Device 25 Centrifugal Separator 28 Filtration Device 36 Filtration Water Tank 100 Liquid Supply System for Hydraulic Power Generation L1 First Pipe L2 Second Pipe

Claims (10)

原水をろ過して、前記原水に含まれる異物の少なくとも一部が除去されたろ過水を作るろ過装置と、
原水源を前記ろ過装置に接続し、前記原水源で取水された原水を前記ろ過装置に供給する第1の配管と、
前記ろ過装置を水車発電機に接続し、前記ろ過水を前記水車発電機の水車用軸受または水車用軸封装置に供給する第2の配管と、
前記第2の配管に接続され、前記ろ過水に該ろ過水の粘性を増加させる薬液を注入する薬液注入装置と、を有し、
前記ろ過装置は砂ろ過装置、精密ろ過膜装置または限外精密ろ過膜装置であり、前記原水に含まれる粒径5~75μm且つモース硬度6以上の異物の少なくとも一部を除去する、水力発電用液体供給システム。
a filtration device that filters raw water to produce filtered water from which at least a portion of foreign matter contained in the raw water has been removed;
a first pipe that connects a raw water source to the filtering device and supplies raw water taken from the raw water source to the filtering device;
a second pipe that connects the filtering device to a water turbine generator and supplies the filtered water to a water turbine bearing or a water turbine shaft sealing device of the water turbine generator;
a chemical injection device that is connected to the second pipe and injects into the filtered water a chemical that increases the viscosity of the filtered water ;
The filtration device is a sand filtration device, a microfiltration membrane device, or an ultra microfiltration membrane device, and removes at least part of foreign substances with a particle size of 5 to 75 μm and a Mohs hardness of 6 or more contained in the raw water, for hydroelectric power generation. liquid supply system.
原水をろ過して、前記原水に含まれる異物の少なくとも一部が除去されたろ過水を作るろ過装置と、
原水源を前記ろ過装置に接続し、前記原水源で取水された原水を前記ろ過装置に供給する第1の配管と、
前記ろ過装置を水車発電機に接続し、前記ろ過水を前記水車発電機の水車用軸受または水車用軸封装置に供給する第2の配管と、
前記水車発電機で加熱された前記ろ過水を前記第1の配管に戻す戻り配管と、
前記戻り配管上に設けられた前記ろ過水の冷却装置と、を有し、
前記ろ過装置は砂ろ過装置、精密ろ過膜装置または限外精密ろ過膜装置であり、前記原水に含まれる粒径5~75μm且つモース硬度6以上の異物の少なくとも一部を除去する、水力発電用液体供給システム。
a filtration device that filters raw water to produce filtered water from which at least a portion of foreign matter contained in the raw water has been removed;
a first pipe that connects a raw water source to the filtering device and supplies raw water taken from the raw water source to the filtering device;
a second pipe that connects the filtering device to a water turbine generator and supplies the filtered water to a water turbine bearing or a water turbine shaft sealing device of the water turbine generator;
a return pipe that returns the filtered water heated by the water turbine generator to the first pipe;
and the filtered water cooling device provided on the return pipe ,
The filtration device is a sand filtration device, a microfiltration membrane device, or an ultra microfiltration membrane device, and removes at least part of foreign substances with a particle size of 5 to 75 μm and a Mohs hardness of 6 or more contained in the raw water . liquid supply system.
前記ろ過装置は、単層または複層で充填された粒状ろ材を備えた砂ろ過装置である、請求項1または2に記載の水力発電用液体供給システム。 3. A liquid supply system for hydroelectric power generation according to claim 1 or 2 , wherein the filter device is a sand filter device with granular filter media packed in a single layer or multiple layers. 前記砂ろ過装置は複層の粒状ろ材を備えており、
通水を継続しながら前記粒状ろ材の抑留量が多い層を部分的または選択的に洗浄する洗浄手段を備えている、請求項に記載の水力発電用液体供給システム。
The sand filter device comprises multiple layers of granular filter media,
4. A liquid supply system for hydroelectric power generation according to claim 3 , comprising washing means for partially or selectively washing the high retention layer of said particulate filter media while continuing to pass water.
原水をろ過して、前記原水に含まれる異物の少なくとも一部が除去されたろ過水を作るろ過装置と、
原水源を前記ろ過装置に接続し、前記原水源で取水された原水を前記ろ過装置に供給する第1の配管と、
前記ろ過装置を水車発電機に接続し、前記ろ過水を前記水車発電機の水車用軸受または水車用軸封装置に供給する第2の配管と、
前記第1の配管から分岐し、前記ろ過装置をバイパスするバイパス配管と、を有し
前記ろ過装置は砂ろ過装置、精密ろ過膜装置または限外精密ろ過膜装置であり、前記原水に含まれる粒径5~75μm且つモース硬度6以上の異物の少なくとも一部を除去する、水力発電用液体供給システム。
a filtering device that filters raw water to produce filtered water from which at least a portion of foreign matter contained in the raw water has been removed;
a first pipe that connects a raw water source to the filtering device and supplies raw water taken from the raw water source to the filtering device;
a second pipe that connects the filtering device to a water turbine generator and supplies the filtered water to a water turbine bearing or a water turbine shaft sealing device of the water turbine generator;
a bypass pipe that branches from the first pipe and bypasses the filtering device ;
The filtration device is a sand filtration device, a microfiltration membrane device, or an ultra microfiltration membrane device, and removes at least a part of foreign substances having a particle size of 5 to 75 μm and a Mohs hardness of 6 or more contained in the raw water, for hydroelectric power generation. liquid supply system.
前記第1の配管の前記バイパス配管の分岐部と前記ろ過装置との間に位置する第1の弁と、
前記バイパス配管上に位置する第2の弁と、
前記第1の配管に設けられ、原水中の前記異物の粒度分布または前記原水の濁度、色度若しくは差圧を測定する第1の測定手段と、前記水車発電機の水車用軸受または水車用軸封装置の圧力を測定する第2の測定手段と、
前記第1及び第2の測定手段の測定結果に応じて前記第1の弁と前記第2の弁の開度を制御する制御手段と、を有する、請求項に記載の水力発電用液体供給システム。
a first valve positioned between a branching portion of the bypass pipe of the first pipe and the filtering device;
a second valve located on the bypass pipe;
A first measuring means provided in the first pipe and measuring the particle size distribution of the foreign matter in the raw water or the turbidity, chromaticity or differential pressure of the raw water, and the hydraulic bearing of the hydraulic turbine generator or the water a second measuring means for measuring the pressure of the vehicle shaft sealing device;
6. The liquid supply for hydroelectric power generation according to claim 5 , further comprising control means for controlling opening degrees of said first valve and said second valve according to measurement results of said first and second measurement means. system.
前記第1の配管の前記ろ過装置の上流に設けられた沈降分離槽と、前記第1の配管の前記ろ過装置の上流に設けられた遠心分離装置の少なくともいずれかを有する、請求項1からのいずれか1項に記載の水力発電用液体供給システム。 Claims 1 to 6 , comprising at least one of a sedimentation separation tank provided upstream of the filtering device in the first pipe and a centrifugal separation device provided upstream of the filtering device in the first pipe A liquid supply system for hydroelectric power generation according to any one of Claims 1 to 3. 前記第2の配管の前記ろ過装置の下流に設けられたろ過水槽を有する、請求項1からのいずれか1項に記載の水力発電用液体供給システム。 8. A liquid supply system for hydroelectric power generation according to any one of claims 1 to 7 , comprising a filtering water tank provided downstream of said filtering device in said second pipe. 原水源で取水された原水をろ過して、前記原水に含まれる異物の少なくとも一部が除去されたろ過水を作ることと、
前記ろ過水を水車発電機の水車用軸受または水車用軸封装置に供給することと、を有し、
前記ろ過水を作る際に、砂ろ過装置、精密ろ過膜装置または限外精密ろ過膜装置によって、前記原水に含まれる粒径5~75μm且つモース硬度6以上の異物の少なくとも一部が除去され
前記原水源で取水された原水中の前記異物の粒度分布または前記原水の濁度、色度若しくは差圧を測定することと、
前記異物の粒度分布または前記原水の濁度、色度若しくは差圧の測定結果に応じて、前記原水の少なくとも一部をろ過することなく前記水車発電機の前記水車用軸受または前記水車用軸封装置に供給することと、をさらに有する、水車発電機への液体の供給方法。
Filtering raw water taken from a raw water source to produce filtered water from which at least a portion of foreign matter contained in the raw water has been removed;
supplying the filtered water to a water turbine bearing or a water turbine shaft seal device of a water turbine generator,
When making the filtered water, at least part of the foreign matter with a particle size of 5 to 75 μm and a Mohs hardness of 6 or more contained in the raw water is removed by a sand filter device, a microfiltration membrane device, or an ultra microfiltration membrane device ,
measuring the particle size distribution of the foreign matter or the turbidity, chromaticity or differential pressure of the raw water in the raw water taken from the raw water source;
The water turbine bearing of the water turbine generator or the water turbine without filtering at least a part of the raw water according to the particle size distribution of the foreign matter or the measurement result of the turbidity, chromaticity or differential pressure of the raw water and supplying a shaft sealing device .
前記水車発電機の前記水車用軸受または前記水車用軸封装置の圧力を測定することと、
前記水車用軸受または前記水車用軸封装置の圧力測定結果に応じて、前記異物の粒度分布または前記原水の濁度、色度若しくは差圧の測定結果を補正し、前記原水の少なくとも一部をろ過することなく前記水車発電機の前記水車用軸受または前記水車用軸封装置に供給することと、を有する、請求項に記載の水車発電機への液体の供給方法。
measuring the pressure of the water turbine bearing or the water turbine shaft seal device of the water turbine generator ;
According to the pressure measurement result of the water turbine bearing or the water turbine shaft sealing device, the particle size distribution of the foreign matter or the measurement result of the turbidity, chromaticity or differential pressure of the raw water is corrected, and at least one of the raw water 10. A method of supplying liquid to a water turbine generator according to claim 9 , comprising supplying the liquid to the water turbine bearing or the water turbine shaft seal device of the water turbine generator without filtering the water turbine generator.
JP2016243179A 2016-12-15 2016-12-15 Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator Active JP7158129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016243179A JP7158129B2 (en) 2016-12-15 2016-12-15 Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243179A JP7158129B2 (en) 2016-12-15 2016-12-15 Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator

Publications (2)

Publication Number Publication Date
JP2018096315A JP2018096315A (en) 2018-06-21
JP7158129B2 true JP7158129B2 (en) 2022-10-21

Family

ID=62632581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243179A Active JP7158129B2 (en) 2016-12-15 2016-12-15 Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator

Country Status (1)

Country Link
JP (1) JP7158129B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748567B (en) * 2019-10-16 2024-10-11 哈尔滨迅普科技发展有限公司 Bearing oil groove sealing seat ring of combined structure light split type hydraulic generator
CN115111267B (en) * 2022-06-08 2024-07-05 华能花凉亭水电有限公司 Mixed-flow turbine water guide bearing structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141804A (en) 2002-10-25 2004-05-20 Japan Organo Co Ltd Processing method and apparatus for aquatic organism
JP2013116457A (en) 2011-12-05 2013-06-13 Kurita Water Ind Ltd Flocculation treatment method of silt-containing water and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210611A (en) * 1998-01-27 1999-08-03 Toshiba Corp Submerged bearing device
JP2008095565A (en) * 2006-10-10 2008-04-24 Hitachi Engineering & Services Co Ltd Submerged bearing lubricating system
JP5415514B2 (en) * 2011-11-15 2014-02-12 中国電力株式会社 Water supply flow rate control device and method for controlling the water supply flow rate of a hydroelectric power plant
SG11201509720TA (en) * 2013-05-27 2015-12-30 Toray Industries Operation method for water treatment device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141804A (en) 2002-10-25 2004-05-20 Japan Organo Co Ltd Processing method and apparatus for aquatic organism
JP2013116457A (en) 2011-12-05 2013-06-13 Kurita Water Ind Ltd Flocculation treatment method of silt-containing water and device

Also Published As

Publication number Publication date
JP2018096315A (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP7158129B2 (en) Liquid supply system for hydroelectric power generation and method for supplying liquid to water turbine generator
CN110998103B (en) Hydraulic energy transfer system with filter system
KR101436767B1 (en) Cooling medium discharge structure for electric motor, and electric motor
US6702729B2 (en) Centrifugal cleaner for industrial lubricants
KR101142345B1 (en) Non-point source contaminant treatment apparatus
CN106430412B (en) Axial flow type underwater three-stage separation method and control system thereof
CN109414632A (en) The filtration system of the filtering of oil for marine machinery oily, particularly for such as engine of boat and ship etc
CA3094021A1 (en) An apparatus for separating components of a fluid stream
WO2007011233A1 (en) Fluid separator
CN104265213A (en) Closed well washing water recycling equipment
CN206881934U (en) Full-automatic drainage type centrifugal oil purifier
KR20000063103A (en) Liquid the use of filteration filter continuous washin system
JP6810020B2 (en) Disc centrifuge
KR20100006366A (en) Recycling system of oil
RU2372295C1 (en) Installation for purification of oil-containing liquids
KR100866039B1 (en) Apparatus for filtering wastewater
Devisilov et al. Hydrodynamic filters in hydraulic fluid cleaning system of hydraulic drive
JP2007127026A (en) Lubricating system for submerged bearing device
JP2008095565A (en) Submerged bearing lubricating system
JP6071281B2 (en) Water-lubricated hydroelectric generator
KR101735562B1 (en) Oil flushing adaptor unit for power plant turbine and flushing apparatus having the same
CN209697190U (en) A kind of decanter centrifuge forcedlubricating system
JP4080287B2 (en) Oil purifier
US1318086A (en) And keclaimistg system
KR101894867B1 (en) Flushing apparatus for turbine apparatus of power plant

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211111

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211116

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211210

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211214

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220906

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20221004

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221011

R150 Certificate of patent or registration of utility model

Ref document number: 7158129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150