JP2018094998A - Wheel structure and vehicle - Google Patents

Wheel structure and vehicle Download PDF

Info

Publication number
JP2018094998A
JP2018094998A JP2016239628A JP2016239628A JP2018094998A JP 2018094998 A JP2018094998 A JP 2018094998A JP 2016239628 A JP2016239628 A JP 2016239628A JP 2016239628 A JP2016239628 A JP 2016239628A JP 2018094998 A JP2018094998 A JP 2018094998A
Authority
JP
Japan
Prior art keywords
wheel
passive
base
rotation mechanism
passive wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016239628A
Other languages
Japanese (ja)
Other versions
JP6755044B2 (en
Inventor
俊樹 益田
Toshiki Masuda
俊樹 益田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2016239628A priority Critical patent/JP6755044B2/en
Publication of JP2018094998A publication Critical patent/JP2018094998A/en
Application granted granted Critical
Publication of JP6755044B2 publication Critical patent/JP6755044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Handcart (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wheel structure and a vehicle capable of improving a traveling property with respect to an irregular ground such as a step, a slope, and a bumpy road while stabilizing a load-carrying platform when the vehicle travels forward and backward.SOLUTION: A wheel structure includes a base member being extended in a forward/backward direction, an extension base part that is fixed to the base member and extended in the vertical direction from the base member, a driving wheel support part connecting the base member and driving wheels such that the driving wheels are relatively movable in the vertical direction with respect to the base member, and a lever member that is extended to intersect with the extension base part and supported to be rotatable with respect to the extension base part. When the driving wheels are relatively moved in the vertical direction with respect to the base member, driven wheels are respectively linked and relatively moved in the vertical direction through the lever member.SELECTED DRAWING: Figure 2

Description

本発明は、車輪構造体及び車両に関する。   The present invention relates to a wheel structure and a vehicle.

車輪を有したロボット等の左右独立駆動型の移動機構に要求される事項は、踏破性、機敏性及び安定性である。踏破性とは、あらゆる形状の路面に対して、車輪が接地している状態で、ロボット本体の重量バランスを安定に保ちながら、転倒もしくは移動途中で動作不能状態にならず、移動する能力である。また、機敏性とは、方向転換、姿勢の保持したままの移動、運動の軽快具合といった、ロボットの作業を空間的、時間的な効率化、多様化を実現するための能力である。これら各々の性能をバランスよく確保しつつ、かつ現実的なコストで運用を可能とするよう、最適な構造を有する移動機構を設計することが望まれる。   Matters required for a left-right independent drive type moving mechanism such as a robot having wheels are traversability, agility, and stability. Traversability refers to the ability to move on a road surface of any shape while the wheels are in contact with the ground, while maintaining a stable weight balance of the robot body, without being inoperable during a fall or moving. . Agility is the ability to achieve spatial and temporal efficiencies and diversification of robot work, such as turning around, moving while maintaining posture, and lightness of movement. It is desired to design a moving mechanism having an optimum structure so that each of these performances can be secured in a balanced manner and can be operated at a realistic cost.

上述のような移動機構を有するロボットは、荷物を運搬できるように荷台を有することがある。荷台を有するロボットの移動機構としては、例えば4輪や6輪の移動機構が挙げられる。
4輪の移動機構としては、1つの同一の直線状に別々に駆動する2つの駆動輪が中央に配置され、その前後に対称的に水平面において自由な方向に回転できる2つのキャスター車輪が配置される、いわゆる対向2輪構造機構がある。
また、6輪の移動機構としては非特許文献1に開示されるような、ロッカーリンクとボギーリンクを兼ね備えたロッカーボギー機構がある。ロッカーボギー機構では、後輪を支持する支持部材が、前輪及び中輪を支持する支持部材に対して、回転機構を介して回動可能に構成されている。
A robot having a moving mechanism as described above may have a loading platform so that a load can be carried. Examples of the moving mechanism of the robot having the loading platform include a four-wheel or six-wheel moving mechanism.
As the four-wheel moving mechanism, two driving wheels that are driven separately in the same straight line are arranged in the center, and two caster wheels that can be rotated in a free direction symmetrically in the horizontal plane are arranged before and after that. There is a so-called opposed two-wheel structure mechanism.
Moreover, as a 6-wheel moving mechanism, there is a rocker bogie mechanism having both a rocker link and a bogie link as disclosed in Non-Patent Document 1. In the rocker bogie mechanism, the support member that supports the rear wheel is configured to be rotatable with respect to the support member that supports the front wheel and the middle wheel via a rotation mechanism.

Richard Volpe, ”Navigation Results from Desert Field Tests of the Rocky 7 Mars Rover Prototype” The International Journal of Robotics Research Vol. 18, No. 7, July 1999, pp. 669-683Richard Volpe, “Navigation Results from Desert Field Tests of the Rocky 7 Mars Rover Prototype” The International Journal of Robotics Research Vol. 18, No. 7, July 1999, pp. 669-683

荷台を有するロボットの移動機構として、4輪の対向2輪構造機構を用いる場合、各車輪及びその支持部材が剛体で繋がれているため段差を乗り越える際に、最初に前輪一輪のみが段差に乗り上げる。そのため、ロボット全体が傾き、ロボット全体と荷台とが不安定になるおそれがある。また、各車輪及びその支持部材が剛体で繋がれているため、ロボットが水平面から登り斜面への進入した場合、中央の2つの駆動輪が浮き、前進できなくなるおそれがある。   When using a four-wheel opposed two-wheel structure mechanism as a moving mechanism for a robot having a loading platform, each wheel and its support member are connected by a rigid body, so when overcoming the step, only one front wheel first climbs the step. . For this reason, the entire robot may be tilted, and the entire robot and the loading platform may become unstable. Further, since each wheel and its supporting member are connected by a rigid body, when the robot climbs from the horizontal plane and enters the slope, the two central driving wheels may float and cannot move forward.

また、荷台を有するロボットの移動機構として、6輪のロッカーボギー構造を用いる場合、段差を乗り越える際や斜面を走行する際にも各車輪は路面に接地し良好な駆動性能を得る。従って、段差を乗り越えたり斜面を上り下りしたりする際の踏破性を向上することができる。
一方、ロッカーボギー構造は前後方向における対称性がないため、前進時と後進時とでは踏破性能が異なり、特に荷台に重い荷物を搭載した場合、後進時に不安定になるおそれがある。また、ロッカーボギー構造は、前輪から回転機構の回転軸までと回転機構の回転軸から駐輪までとのリンクの比を同じにした場合、中輪から重心までと重心から後輪までとのリンク比が異なる。そのため特に荷台に重い荷物を搭載した場合、段差を乗越える際に不安定になるおそれがある。
In addition, when a six-wheel rocker bogie structure is used as a moving mechanism of a robot having a loading platform, each wheel comes in contact with the road surface and obtains good driving performance even when climbing over a step or traveling on a slope. Accordingly, it is possible to improve the traversability when climbing over a step or going up and down a slope.
On the other hand, since the rocker bogie structure has no symmetry in the front-rear direction, the traverse performance differs between forward travel and reverse travel, and particularly when a heavy load is mounted on the loading platform, it may become unstable during reverse travel. Also, the rocker bogie structure has links from the middle wheel to the center of gravity and from the center of gravity to the rear wheel when the link ratio from the front wheel to the rotating shaft of the rotating mechanism is the same as that of the rotating mechanism to the parking wheel. The ratio is different. For this reason, particularly when a heavy load is loaded on the loading platform, there is a risk that the vehicle may become unstable when climbing over a step.

本発明はこのような事情を考慮してなされたもので、前進時及び後進時の両方において、荷台を安定させながら段差や斜面、凸凹道などの不整地の踏破性を向上させる車輪構造体及び車両を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and in both forward and reverse travel, a wheel structure that improves the breakthrough of rough terrain such as steps, slopes, and uneven roads while stabilizing the loading platform and The object is to provide a vehicle.

上記課題を解決するために、本発明の第1態様に係る車輪構造体は、第1方向に延在するベース部材と、前記第1方向に並ぶ第1受動輪及び第2受動輪と、前記第1受動輪と前記第2受動輪との間に配置されかつ独立して駆動可能な駆動輪と、前記ベース部材に固定され、前記ベース部材から前記第1方向に垂直な第2方向に向かって延出する第1及び第2の延出基部と、前記第1の延出基部に対して前記第1受動輪が回動するように、前記第1の延出基部の延出端部と前記第1受動輪とを連結する第1受動輪支持部と、前記第2の延出基部に対して前記第2受動輪が回動するように、前記第2の延出基部の延出端部と前記第2受動輪とを連結する第2受動輪支持部と、前記第2方向に延在し、前記駆動輪が前記ベース部材に対して前記第2方向に相対移動可能に前記ベース部材と前記駆動輪とを連結する駆動輪支持部と、前記駆動輪に固定される駆動輪基部と、前記駆動輪基部に対して第1の回転機構を介して回転可能に第一端が支持される第1のリンク部材と、前記駆動輪基部に対して第2の回転機構を介して回転可能に第一端が支持される第2のリンク部材と、 前記第1の延出基部に交差するように延在しかつ前記第1の延出基部に対して回転可能に第3の回転機構を介して支持され、前記第1受動輪支持部に接続される第一部分と、前記第1のリンク部材の第二端に接続されかつ前記第3の回転機構を挟んで前記第一部分に対向する第二部分とを有する第1のてこ部材と、前記第2の延出基部に交差するように延在しかつ前記第2の延出基部に対して第4の回転機構を介して回転可能に支持され、前記第2受動輪支持部に接続される第一部分と、前記第2のリンク部材の第二端に接続されかつ前記第4の回転機構を挟んで前記第一部分に対向する第二部分とを有する第2のてこ部材と、を備え、前記駆動輪が前記ベース部材に対して前記第2方向に相対移動した際に、前記第1のてこ部材及び第2のてこ部材を介して、前記第1受動輪及び前記第2受動輪が前記第2方向にそれぞれ連動して相対移動するように構成される。   In order to solve the above problem, a wheel structure according to a first aspect of the present invention includes a base member extending in a first direction, a first passive wheel and a second passive wheel arranged in the first direction, A drive wheel that is disposed between the first passive wheel and the second passive wheel and can be driven independently, and is fixed to the base member, and extends from the base member in a second direction perpendicular to the first direction. Extending first and second extending bases, and an extending end of the first extending base so that the first passive wheel rotates with respect to the first extending base, An extension end of the second extension base so that the second passive wheel rotates with respect to a first passive wheel support part connecting the first passive wheel and the second extension base. And a second passive wheel support portion that connects the second passive wheel to the second passive wheel, and extends in the second direction, the drive wheel being in the second direction relative to the base member A drive wheel support part that connects the base member and the drive wheel so as to be relatively movable in a direction, a drive wheel base part fixed to the drive wheel, and a first rotation mechanism with respect to the drive wheel base part A first link member whose first end is rotatably supported, a second link member whose first end is rotatably supported via a second rotation mechanism with respect to the drive wheel base, The first extending base extends so as to intersect the first extending base, and is supported via a third rotating mechanism so as to be rotatable with respect to the first extending base, and is connected to the first passive wheel support. A first lever member having a first portion and a second portion connected to the second end of the first link member and facing the first portion across the third rotation mechanism; and the second lever member Extending to intersect the extension base and via a fourth rotating mechanism to the second extension base A first part supported rotatably and connected to the second passive wheel support part; connected to a second end of the second link member; and opposed to the first part across the fourth rotation mechanism A second lever member having a second portion, and when the drive wheel moves relative to the base member in the second direction, the first lever member and the second lever member Thus, the first passive wheel and the second passive wheel are configured to move relative to each other in the second direction.

前記第1方向において、前記第1受動輪の支持軸から前記第3の回転機構の回転軸までの距離と、前記第2受動輪の支持軸から前記第4の回転機構の回転軸までの距離とが1対1の割合であってもよい。   In the first direction, the distance from the support shaft of the first passive wheel to the rotation shaft of the third rotation mechanism, and the distance from the support shaft of the second passive wheel to the rotation shaft of the fourth rotation mechanism May be in a one-to-one ratio.

前記第1のリンク部材と前記第1のてこ部材とが第5の回転機構で接続され、前記第2のリンク部材と前記第2のてこ部材とが第6の回転機構で接続され、前記第1受動輪、前記第2受動輪、及び前記駆動輪が水平面に接地した状態において、前記第1の回転機構の回転軸から前記第5の回転機構の回転軸までの距離と前記第2の回転機構の回転軸から前記第6の回転機構の回転軸までの距離とが1対1の割合であり、前記第5の回転機構の回転軸から重心までの距離と、前記第6の回転機構の回転軸から重心までの距離とが1対1の割合であってもよい。   The first link member and the first lever member are connected by a fifth rotating mechanism, the second link member and the second lever member are connected by a sixth rotating mechanism, and the first In a state where one passive wheel, the second passive wheel, and the driving wheel are in contact with a horizontal plane, the distance from the rotation axis of the first rotation mechanism to the rotation axis of the fifth rotation mechanism and the second rotation The distance from the rotation axis of the mechanism to the rotation axis of the sixth rotation mechanism is a one-to-one ratio, the distance from the rotation axis of the fifth rotation mechanism to the center of gravity, and the distance of the sixth rotation mechanism The distance from the rotation axis to the center of gravity may be a ratio of 1: 1.

前記駆動輪の車軸から前記第2方向への仮想延長線上に前記車輪構造体の重心があってもよい。   There may be a center of gravity of the wheel structure on a virtual extension line in the second direction from the axle of the drive wheel.

前記第1方向において、前記第1の回転機構の方が前記第2の回転機構よりも前記第2受動輪に近い位置に配置されてもよい。   In the first direction, the first rotation mechanism may be disposed closer to the second passive wheel than the second rotation mechanism.

前記第1のリンク部材と前記第1のてこ部材とが前記第1のてこ部材の延在する方向に位置を調整可能な第5の回転機構で接続され、前記第2のリンク部材と前記第2のてこ部材とが前記第2のてこ部材の延在する方向に位置を調整可能な第6の回転機構で接続されてもよい。   The first link member and the first lever member are connected by a fifth rotation mechanism whose position can be adjusted in the extending direction of the first lever member, and the second link member and the first lever member are connected to each other. The second lever member may be connected by a sixth rotating mechanism whose position can be adjusted in the extending direction of the second lever member.

前記第1受動輪支持部が前記第1受動輪から掛かる衝撃を緩和可能な第1の懸架部を含み、前記第1の懸架部と前記第1のてこ部材とが接続されており、前記第2受動輪支持部が前記第2受動輪から掛かる衝撃を緩和可能な第2の懸架部を含み、前記第2の懸架部と前記第2のてこ部材とが接続されていてもよい。   The first passive wheel support part includes a first suspension part that can reduce an impact applied from the first passive wheel, the first suspension part and the first lever member are connected, and The 2nd passive wheel support part may include the 2nd suspension part which can relieve the impact applied from the 2nd passive wheel, and the 2nd suspension part and the 2nd lever member may be connected.

本発明の第2態様に係る車両であって、上記第1態様に係る車輪構造体を2つ備え、前記2つの車輪構造体が前記第1方向及び前記第2方向の両方に垂直な第3方向に連結されている。   A vehicle according to a second aspect of the present invention, the vehicle comprising two wheel structures according to the first aspect, wherein the two wheel structures are perpendicular to both the first direction and the second direction. Linked in the direction.

上記第2態様に係る車両は、前記2つの車輪構造体の前記ベース部材で構成される荷台をさらに備えてもよい。   The vehicle according to the second aspect may further include a cargo bed constituted by the base members of the two wheel structures.

上記第2態様に係る車両は、前記荷台上に設置されるロードセルをさらに備えてもよい。   The vehicle according to the second aspect may further include a load cell installed on the loading platform.

本発明の上記態様に係る車輪構造体及び車両によれば、荷台を安定させながら段差や斜面、凸凹道の不整地の踏破性を向上させることができる。   According to the wheel structure and the vehicle according to the above aspect of the present invention, it is possible to improve the level of stepping on a step, a slope, and an uneven road on a rough road while stabilizing the loading platform.

本発明の実施形態に係る車両を示す上面斜視図である。1 is a top perspective view showing a vehicle according to an embodiment of the present invention. 本発明の実施形態に係る車両及び車輪構造体を示す側面図である。It is a side view which shows the vehicle and wheel structure which concern on embodiment of this invention. 本発明の実施形態に係る車両及び車輪構造体を示す上面図である。It is a top view which shows the vehicle and wheel structure which concern on embodiment of this invention. 本発明の実施形態に係る車両及び車輪構造体を示す正面図である。It is a front view which shows the vehicle and wheel structure which concern on embodiment of this invention. 本発明の実施形態に係る車両が段差に登る際の車輪の接地状態を示す。The grounding state of the wheel at the time of the vehicle which concerns on embodiment of this invention climbs a level | step difference is shown. 本発明の実施形態に係る車両が斜面を登りはじめる際の車輪の接地状態を示す。The ground state of the wheel at the time of the vehicle which concerns on embodiment of this invention begins to climb a slope is shown. 本発明の実施形態に係る車両が斜面を下りはじめる際の車輪の接地状態を示す。The wheel grounding state at the time of the vehicle which concerns on embodiment of this invention starts going down a slope is shown.

以下、好適な実施形態に基づいて、本発明を説明する。なお、本実施形態では、車輪の直径の1/3程度の高さの段差、10度程度の斜面の踏破する際に荷台を安定させることを想定している。   Hereinafter, the present invention will be described based on preferred embodiments. In the present embodiment, it is assumed that the platform is stabilized when a step having a height of about 1/3 of the diameter of the wheel is traversed on a slope of about 10 degrees.

[車両1及び車輪構造体10の構成]
本発明の一実施形態に係る車両1及び車輪構造体10を図1〜4に示す。図1は車両1の上面斜視図である。図2は車両1及び車輪構造体10の側面図である。図3は車両1及び車輪構造体10の上面図である。図4は車両1及び車輪構造体10の正面図である。なお、図2〜4においては車輪構造体10の構造の見易さの観点から荷台及びロードセルが取り外された状態を示している。また、図1〜4を用いた説明では全車輪が水平面上に接地している状態を前提としており、段差や斜面などを乗り越える際は各構成要素の状態が変化する場合もある。
[Configuration of Vehicle 1 and Wheel Structure 10]
A vehicle 1 and a wheel structure 10 according to an embodiment of the present invention are shown in FIGS. FIG. 1 is a top perspective view of the vehicle 1. FIG. 2 is a side view of the vehicle 1 and the wheel structure 10. FIG. 3 is a top view of the vehicle 1 and the wheel structure 10. FIG. 4 is a front view of the vehicle 1 and the wheel structure 10. 2 to 4 show a state in which the loading platform and the load cell are removed from the viewpoint of easy viewing of the structure of the wheel structure 10. 1 to 4 is based on the premise that all wheels are in contact with a horizontal plane, and the state of each component may change when climbing over a step or a slope.

なお、図面においてXは車両1の前後方向(第1方向)であり、Zは車両1の上下方向(第2方向)であり、Yは車両1の左右方向(第3方向)である。なお、以下の説明では便宜上図2における右側を車両1(車輪構造体10)の前側とし、接地面が設けられる側を下側とする。   In the drawings, X is the front-rear direction (first direction) of the vehicle 1, Z is the up-down direction (second direction) of the vehicle 1, and Y is the left-right direction (third direction) of the vehicle 1. In the following description, for convenience, the right side in FIG. 2 is the front side of the vehicle 1 (wheel structure 10), and the side on which the ground contact surface is provided is the lower side.

図1〜4に示すように、本実施形態に係る車両1は2つの車輪構造体10で構成される六輪移動架台である。本実施形態において同一の構成部分には同一の符号を付している。
2つの車輪構造体10は左右方向Yに各車輪の内側が互いに対向するように配置され、車輪構造体10の上部に設けられるベース部材20同士が連結部材13で連結されている。これにより、車両1は6つの車輪が接地した状態で支持されており、駆動していない状態でも安定して自立することができる。
また、2つの車輪構造体10の上部には荷台11が設けられ、車両1は荷台11の上に荷物を搭載して運搬することができる。
また、荷台11上には重量を測定可能なセンサであるロードセル12が間隔を空けて4つ配置されている。これにより、ロードセル12を介して荷台11上に搭載される荷物の重量を監視することができる。
As shown in FIGS. 1 to 4, the vehicle 1 according to the present embodiment is a six-wheel mobile gantry constituted by two wheel structures 10. In the present embodiment, the same components are denoted by the same reference numerals.
The two wheel structures 10 are arranged so that the inner sides of the wheels face each other in the left-right direction Y, and base members 20 provided at the upper part of the wheel structure 10 are connected by a connecting member 13. Thereby, the vehicle 1 is supported in a state where the six wheels are in contact with the ground, and can stably stand on its own even when not being driven.
In addition, a loading platform 11 is provided on the upper part of the two wheel structures 10, and the vehicle 1 can carry a load on the loading platform 11.
In addition, four load cells 12 that are sensors capable of measuring weight are arranged on the loading platform 11 at intervals. Thereby, the weight of the load mounted on the loading platform 11 can be monitored via the load cell 12.

続いて車輪構造体10の構成について説明する。
本実施形態係る車輪構造体10は、ベース部材20、受動輪(第1受動輪、第2受動輪)21、22、及び駆動輪23を有する。また、車輪構造体10は各車輪21〜23をベース部材20に接続するための構成として、延出基部(第1の延出基部、第2の延出基部)24、25、受動輪支持部(第1の受動輪支持部、第2の受動輪支持部)26、27、駆動輪支持部28を有する。さらに車輪構造体10は各車輪21〜23を連動させるための構成として、駆動輪基部29、リンク部材(第1のリンク部材、第2のリンク部材)30、31、てこ部材(第1のてこ部材、第2のてこ部材)32、33を有する。
Next, the configuration of the wheel structure 10 will be described.
The wheel structure 10 according to the present embodiment includes a base member 20, passive wheels (first and second passive wheels) 21 and 22, and a drive wheel 23. In addition, the wheel structure 10 has a configuration for connecting the wheels 21 to 23 to the base member 20, extending base portions (first extending base portion, second extending base portion) 24 and 25, and passive wheel support portions. (First passive wheel support portion, second passive wheel support portion) 26 and 27 and a drive wheel support portion 28. Further, the wheel structure 10 includes a drive wheel base 29, link members (first link member, second link member) 30, 31, lever member (first lever) as a configuration for interlocking the wheels 21 to 23. Member, second lever member) 32, 33.

ベース部材20は車輪構造体10の上部に配置され、前後方向Xに延在している。またベース部材20は平面視が矩形の枠形状を有しており、連結部材13で連結された2つのベース部材20の上に荷台11を安定して固定することができる。   The base member 20 is disposed on the wheel structure 10 and extends in the front-rear direction X. The base member 20 has a rectangular frame shape in plan view, and the loading platform 11 can be stably fixed on the two base members 20 connected by the connecting member 13.

受動輪21、22は前後方向Xに間隔を空けて並列されている。受動輪21、22は、駆動機構を有さず、水平面上を自由な方向に向くように回転するように構成される。受動輪21、22としては、例えばキャスターやボールキャスター、全方向車輪であるオムニホイール(登録商標)を用いることが挙げられる。この中でもキャスターを用いることが特に好ましく、キャスターを用いれば安価で、走行性能の高い構成を実現できる。また、キャスターは耐荷重特性に優れることから、車両に重い荷物を搭載した際も受動輪21、22が破損して走行不能となりづらい。   The passive wheels 21 and 22 are arranged in parallel with a space in the front-rear direction X. The passive wheels 21 and 22 do not have a drive mechanism, and are configured to rotate so as to face a free direction on a horizontal plane. Examples of the passive wheels 21 and 22 include a caster, a ball caster, and an omni-directional wheel (registered trademark) that is an omnidirectional wheel. Among these, it is particularly preferable to use a caster, and if a caster is used, a structure that is inexpensive and has high running performance can be realized. In addition, since the caster is excellent in load-bearing characteristics, even when a heavy load is mounted on the vehicle, the passive wheels 21 and 22 are damaged and it is difficult to run.

駆動輪23は、受動輪21、22の間に配置される。駆動輪23はモータ34によって独立して駆動可能である。車両1を前進させる際は2つの駆動輪23をそれぞれ同じ速度で正回転させ、車両1を後退させる際は2つの駆動輪23をそれぞれ同じ速度で逆回転させる。また、2つの駆動輪23を互いに逆方向に回転させることで、車両1を水平方向に回転させることができる。
本実施形態では受動輪21、22の間に配置される駆動輪23の径が受動輪21、22の径よりも大きい。これにより、前後方向Xにおける車両1の安定性をより高めることができる。
The drive wheel 23 is disposed between the passive wheels 21 and 22. The drive wheels 23 can be driven independently by a motor 34. When the vehicle 1 is moved forward, the two drive wheels 23 are rotated forward at the same speed, and when the vehicle 1 is moved backward, the two drive wheels 23 are rotated reversely at the same speed. Further, the vehicle 1 can be rotated in the horizontal direction by rotating the two drive wheels 23 in opposite directions.
In the present embodiment, the diameter of the drive wheel 23 disposed between the passive wheels 21 and 22 is larger than the diameter of the passive wheels 21 and 22. Thereby, the stability of the vehicle 1 in the front-rear direction X can be further increased.

延出基部24、25は、それぞれ一端がベース部材20に固定され、ベース部材20から下方向に向かって延出する直線形状を有する。
延出基部24は、ベース部材20の前側の端部から下方向に向かって延出し、その延出端部24aには回転機構56を介して受動輪支持部26が接続される。また延出基部24にはてこ部材32を回転可能に支持するための回転機構(第3の回転機構)52が設けられる。同様に延出基部25は、ベース部材20の後ろ側の端部から下方向に向かって延出し、その延出端部25aには回転機構57を介して受動輪支持部27が接続される。延出基部25にはてこ部材33を回転可能に支持するための回転機構(第4の回転機構)53が設けられる。
Each of the extending bases 24 and 25 has a linear shape in which one end is fixed to the base member 20 and extends downward from the base member 20.
The extended base portion 24 extends downward from the front end portion of the base member 20, and the passive wheel support portion 26 is connected to the extended end portion 24 a via a rotation mechanism 56. The extending base 24 is provided with a rotation mechanism (third rotation mechanism) 52 for rotatably supporting the lever member 32. Similarly, the extended base portion 25 extends downward from the rear end portion of the base member 20, and the passive wheel support portion 27 is connected to the extended end portion 25 a via the rotation mechanism 57. The extension base 25 is provided with a rotation mechanism (fourth rotation mechanism) 53 for rotatably supporting the lever member 33.

受動輪支持部26、27は延出端部24a、25aにそれぞれ接続され、延出基部24、25と受動輪21、22とをそれぞれ連結する。
受動輪支持部26は受動輪基部35と懸架部36とで構成される。
受動輪基部35は、延出端部24aから前方斜め下方向に延出する部分35aとそこから下方向に延びて受動輪21を支持する部分35bとで構成されるV字形状を有する。受動輪支持部26は延出端部24aに設けられる回転機構56を回転軸として回転可能である。つまり、受動輪支持部26は、受動輪21が段差や斜面等を乗り越える際に、ベース部材20に対して上下方向Zに受動輪21が相対移動されるように構成されている。
また懸架部36は、上下方向Zに延在し、第一端36aが受動輪基部35の前方向に延出する部分35aのおおよそ中央部に回転可能に装着され、第一端とは反対の第二端がてこ部材32の第一端32aに回転可能に装着される。これにより、ベース部材20に対して上下方向Zに受動輪21が相対移動した場合に、懸架部36はてこ部材32の第一端32aを押し上げたり、引っ張り下げたりすることができる。懸架部36としては、例えばコイルスプリングやダンパーなどの衝撃緩衝機構を含む部材や棒部材などを用いることができる。懸架部36としてコイルスプリングなどの衝撃緩衝部材を用いれば、受動輪21が段差や障害物を乗り越える際に受動輪21から車両1に掛かる衝撃を懸架部36によって緩和することができるため好ましい。
同様に受動輪支持部27は受動輪基部37と懸架部38とで構成される。
受動輪基部37は、延出端部25aから後方斜め下方向に延出する部分37aとそこから下方向に延びて受動輪22を支持する部分37bとで構成されるV字形状を有する。受動輪支持部27は延出端部25aに設けられる回転機構57を回転軸として回転可能である。つまり、受動輪支持部27は、受動輪22が段差や斜面等を乗り越える際に、ベース部材20に対して上下方向Zに受動輪22が相対移動されるように構成されている。
また懸架部38は、上下方向Zに延在し、第一端38aが受動輪基部37の前方向に延出する部分37aのおおよそ中央部に回転可能に装着され、第二端38bがてこ部材33の第一端33aに回転可能に装着される。これにより、ベース部材20に対して上下方向Zに受動輪22が相対移動した場合に、懸架部38はてこ部材33の第一端33aを押し上げたり、引っ張り下げたりすることができる。その他の懸架部38の構成は懸架部36と同様である。
The passive wheel support portions 26 and 27 are connected to the extended end portions 24a and 25a, respectively, and connect the extended base portions 24 and 25 to the passive wheels 21 and 22, respectively.
The passive wheel support portion 26 includes a passive wheel base portion 35 and a suspension portion 36.
The passive wheel base portion 35 has a V-shape configured by a portion 35 a that extends diagonally forward and downward from the extended end portion 24 a and a portion 35 b that extends downward therefrom and supports the passive wheel 21. The passive wheel support portion 26 is rotatable with a rotation mechanism 56 provided at the extended end portion 24a as a rotation axis. That is, the passive wheel support portion 26 is configured such that the passive wheel 21 is moved relative to the base member 20 in the vertical direction Z when the passive wheel 21 climbs over a step, a slope, or the like.
The suspension portion 36 extends in the up-down direction Z, and the first end 36a is rotatably attached to a substantially central portion of the portion 35a extending in the forward direction of the passive wheel base portion 35, and is opposite to the first end. The second end is rotatably attached to the first end 32 a of the lever member 32. Thereby, when the passive wheel 21 moves relative to the base member 20 in the vertical direction Z, the suspension part 36 can push up or pull down the first end 32 a of the lever member 32. As the suspension part 36, for example, a member including an impact buffering mechanism such as a coil spring or a damper, a bar member, or the like can be used. It is preferable to use an impact buffering member such as a coil spring as the suspension part 36 because the suspension part 36 can mitigate the impact applied to the vehicle 1 from the passive wheel 21 when the passive wheel 21 gets over a step or an obstacle.
Similarly, the passive wheel support portion 27 includes a passive wheel base portion 37 and a suspension portion 38.
The passive wheel base portion 37 has a V-shape that includes a portion 37 a that extends obliquely rearward and downward from the extended end portion 25 a and a portion 37 b that extends downward therefrom and supports the passive wheel 22. The passive wheel support portion 27 can rotate with a rotation mechanism 57 provided at the extended end portion 25a as a rotation axis. That is, the passive wheel support portion 27 is configured such that the passive wheel 22 is moved relative to the base member 20 in the vertical direction Z when the passive wheel 22 climbs over a step or a slope.
The suspension portion 38 extends in the up-down direction Z, the first end 38a is rotatably attached to the approximate center of the portion 37a extending in the forward direction of the passive wheel base portion 37, and the second end 38b is a lever member. A first end 33a of 33 is rotatably mounted. Thereby, when the passive wheel 22 moves relative to the base member 20 in the vertical direction Z, the suspension portion 38 can push up or pull down the first end 33 a of the lever member 33. Other configurations of the suspension portion 38 are the same as those of the suspension portion 36.

駆動輪支持部28は、ベース部材20の前後方向Xのおおよそ中央部から下方向に延在しており、ベース部材20と駆動輪23とを連結している。駆動輪支持部28はスライド式又は伸縮式の棒状部材で形成され、上下方向Zの長さが可変である。つまり、駆動輪23は駆動輪支持部28を介してベース部材20に対して上下方向Zに対してのみ相対移動するように構成される。
これにより、例えば駆動輪23が凹部を通過する際には、重力の作用によって駆動輪支持部28が伸びることで駆動輪23が接地する状態を保つことができる。従って、駆動輪23が浮いて、前進又は後進不可能になることを回避することができる。さらに、例えば駆動輪23が凸部を通過する際には、駆動輪支持部28が縮むことで受動輪21、22を含む全車輪が接地する状態を保つことができる。従って、受動輪21、22が浮いて、車両1が不安定な状態になることを回避することができる。
また、駆動輪支持部28がベース部材20と駆動輪23とを連結することによって、駆動輪23はベース部材20及び荷台11に対して前後方向Xには相対移動しない。従って、段差や斜面を走行する際にも荷台11の状態を安定させることができる。
また、駆動輪支持部28は、伸縮方向(上下方向Z)に駆動輪支持部28を付勢可能なコイルスプリング(不図示)をその内部に有してもよい。特に受動輪21、22、及び駆動輪23が水平面に接地した状態において、駆動輪支持部28が伸びる方向に付勢されるようにコイルスプリングが設置されることが好ましい。これにより、駆動輪23が段差や障害物を乗り越える際に駆動輪23から車両1に掛かる衝撃を緩和することができるとともに、水平面走行時には駆動輪23を地面に押し付けることができる。
The drive wheel support portion 28 extends downward from approximately the center in the front-rear direction X of the base member 20, and connects the base member 20 and the drive wheel 23. The drive wheel support portion 28 is formed of a slide-type or extendable rod-like member, and the length in the vertical direction Z is variable. That is, the drive wheel 23 is configured to move relative to the base member 20 only in the vertical direction Z via the drive wheel support portion 28.
Thereby, for example, when the driving wheel 23 passes through the recess, the driving wheel support portion 28 extends due to the action of gravity, so that the driving wheel 23 can be kept in a grounded state. Therefore, it is possible to avoid the drive wheel 23 from floating and becoming impossible to move forward or backward. Further, for example, when the driving wheel 23 passes through the convex portion, the driving wheel support portion 28 is contracted so that all the wheels including the passive wheels 21 and 22 can be kept in contact with the ground. Therefore, it can be avoided that the passive wheels 21 and 22 float and the vehicle 1 becomes unstable.
Further, the drive wheel support portion 28 connects the base member 20 and the drive wheel 23, so that the drive wheel 23 does not move relative to the base member 20 and the loading platform 11 in the front-rear direction X. Therefore, the state of the loading platform 11 can be stabilized even when traveling on a step or a slope.
Further, the drive wheel support portion 28 may have a coil spring (not shown) that can bias the drive wheel support portion 28 in the expansion / contraction direction (vertical direction Z). In particular, in a state where the passive wheels 21 and 22 and the drive wheel 23 are in contact with the horizontal plane, the coil spring is preferably installed so that the drive wheel support portion 28 is biased in the extending direction. As a result, the impact applied to the vehicle 1 from the drive wheel 23 when the drive wheel 23 gets over a step or an obstacle can be mitigated, and the drive wheel 23 can be pressed against the ground when traveling on a horizontal plane.

駆動輪基部29は、駆動輪23に固定される。駆動輪基部29は側面視が例えば略逆三角形状の板材である。駆動輪支持部28が上下方向Zに伸縮する際には、駆動輪基部29は駆動輪23と連動してベース部材20に対して上下方向Zに相対移動する。駆動輪基部29には前後方向Xに間隔を空けて2つの回転機構(第1の回転機構、第2の回転機構)50、51が設けられている。駆動輪基部29は回転機構50を介してリンク部材30と、回転機構51を介してリンク部材31と接続される。   The drive wheel base 29 is fixed to the drive wheel 23. The drive wheel base 29 is a plate material having a substantially inverted triangular shape when viewed from the side. When the drive wheel support portion 28 expands and contracts in the vertical direction Z, the drive wheel base portion 29 moves relative to the base member 20 in the vertical direction Z in conjunction with the drive wheel 23. The drive wheel base 29 is provided with two rotation mechanisms (first rotation mechanism and second rotation mechanism) 50 and 51 spaced in the front-rear direction X. The drive wheel base 29 is connected to the link member 30 via the rotation mechanism 50 and to the link member 31 via the rotation mechanism 51.

リンク部材30は一端が回転機構50を介して駆動輪基部29に対して回転可能に支持されている。リンク部材30の他端は、てこ部材32の第二端32bに近い位置に回転機構(第5の回転機構)54を介して、回転可能に支持される。
同様に、リンク部材31は一端が回転機構51を介して駆動輪基部29に対して回転可能に支持されている。リンク部材31の他端は、てこ部材33の第二端33bに近い位置に回転機構(第6の回転機構)55を介して、回転可能に支持される。
One end of the link member 30 is rotatably supported with respect to the drive wheel base 29 via the rotation mechanism 50. The other end of the link member 30 is rotatably supported at a position close to the second end 32 b of the lever member 32 via a rotation mechanism (fifth rotation mechanism) 54.
Similarly, one end of the link member 31 is supported so as to be rotatable with respect to the drive wheel base 29 via the rotation mechanism 51. The other end of the link member 31 is rotatably supported via a rotation mechanism (sixth rotation mechanism) 55 at a position close to the second end 33 b of the lever member 33.

てこ部材32は延出基部24に交差するように前後方向Xに延在する棒状の部材である。各車輪が水平面に接地した状態では、てこ部材32は前方に向かってやや上方に傾いている。てこ部材32は、延出基部24との交差点において、回転機構52を介して延出基部24に回転可能に支持されている。ここで、てこ部材32の第一端(第一部分)32aは受動輪支持部26の懸架部36の第二端36bに回転可能に支持される。また、てこ部材32の第二端32bに近い位置(第二部分)には回転機構54が配置され、回転機構54を介してリンク部材30の端部に回転可能に支持される。つまり、てこ部材32は回転機構52を支点とするてこ構造になっている。なお、回転機構54は回転機構52を挟んで第一端33aと対向するように設けられていればよい。
従って、受動輪21がベース部材20に対して上方向に移動すると、受動輪支持部26、てこ部材32、リンク部材30、駆動輪基部29が連動して、駆動輪23はベース部材20に対して下方向に移動する。従って、受動輪21が段差や登り坂を乗り越える際に、駆動輪23が浮くことなく、全車輪が接地する状態を安定して保つことができる。
また受動輪21がベース部材20に対して下方向に移動すると、受動輪支持部26、てこ部材32、リンク部材30、駆動輪基部29が連動して、駆動輪23はベース部材20に対して上方向に移動する。例えば、受動輪21が凹部や下り坂を乗り越える際、受動輪21が下方向に移動すると駆動輪23が上方向に移動し、これにより駆動輪23が接地している限りは、受動輪21は接地面に向かう方向にさらに移動する。従って、受動輪21が凹部や下り坂を乗り越える際に、受動輪21が浮くことなく、全車輪が接地する状態を安定して保つことができる。
The lever member 32 is a rod-like member extending in the front-rear direction X so as to intersect the extended base portion 24. In a state where each wheel is in contact with the horizontal plane, the lever member 32 is inclined slightly upward toward the front. The lever member 32 is rotatably supported by the extension base 24 via a rotation mechanism 52 at the intersection with the extension base 24. Here, the first end (first portion) 32 a of the lever member 32 is rotatably supported by the second end 36 b of the suspension portion 36 of the passive wheel support portion 26. Further, a rotation mechanism 54 is disposed at a position (second portion) near the second end 32 b of the lever member 32, and is rotatably supported by the end portion of the link member 30 via the rotation mechanism 54. That is, the lever member 32 has a lever structure with the rotation mechanism 52 as a fulcrum. The rotation mechanism 54 may be provided so as to face the first end 33a with the rotation mechanism 52 interposed therebetween.
Therefore, when the passive wheel 21 moves upward with respect to the base member 20, the passive wheel support portion 26, the lever member 32, the link member 30, and the driving wheel base portion 29 are interlocked, and the driving wheel 23 moves relative to the base member 20. To move downward. Therefore, when the passive wheel 21 climbs over a step or uphill, the driving wheel 23 does not float, and the state where all the wheels are in contact with the ground can be stably maintained.
When the passive wheel 21 moves downward with respect to the base member 20, the passive wheel support portion 26, the lever member 32, the link member 30, and the drive wheel base portion 29 are interlocked, and the drive wheel 23 is moved relative to the base member 20. Move up. For example, when the passive wheel 21 gets over a recess or downhill, if the passive wheel 21 moves downward, the driving wheel 23 moves upward, and as long as the driving wheel 23 is grounded, the passive wheel 21 Move further in the direction toward the ground plane. Therefore, when the passive wheel 21 gets over the recess or the downhill, the passive wheel 21 does not float, and the state where all the wheels are grounded can be stably maintained.

本実施形態では回転機構52からてこ部材32の第一端32aまでの距離よりも、回転機構52から回転軸54までの距離の方が長く設定されている。従って、受動輪21が段差や上り坂を乗り越える際に受動輪21がベース部材20に対して少しでも上方向に移動すると、受動輪支持部26、てこ部材32、リンク部材30、駆動輪基部29が連動して、駆動輪23はベース部材20に対して下方向に移動する作用が強く働く。従って、受動輪21が段差や登り坂を乗り越える際に駆動輪23が接地する状態をより安定して保つことができる。   In the present embodiment, the distance from the rotation mechanism 52 to the rotation shaft 54 is set longer than the distance from the rotation mechanism 52 to the first end 32a of the lever member 32. Therefore, when the passive wheel 21 moves over the base member 20 even when the passive wheel 21 climbs over a step or uphill, the passive wheel support portion 26, the lever member 32, the link member 30, and the drive wheel base portion 29 are moved. In conjunction with this, the drive wheel 23 acts strongly to move downward relative to the base member 20. Therefore, the state in which the driving wheel 23 contacts the ground when the passive wheel 21 climbs over a step or uphill can be more stably maintained.

また同様に、てこ部材33は延出基部25に交差するように前後方向Xに延在する棒状の部材である。各車輪が水平面に接地した状態では、てこ部材33は後方に向かってやや上方に傾いている。てこ部材33は、延出基部25との交差点において、回転機構53を介して延出基部25に回転可能に支持されている。ここで、てこ部材33の第一端(第一部分)33aは受動輪支持部27の懸架部38の第二端38bに回転可能に支持される。てこ部材33の第二端33bに近い位置(第二部分)には回転機構55が配置され、回転機構55を介してリンク部材31の端部に回転可能に支持される。つまり、てこ部材33は回転機構53を支点とするてこ構造になっている。なお、回転機構55は回転機構53を挟んで第一端33aと対向するように設けられていればよい。
受動輪22がベース部材20に対して上方向に移動すると、受動輪支持部27、てこ部材33、リンク部材31、駆動輪基部29が連動して、駆動輪23はベース部材20に対して下方向に移動する。従って、受動輪22が段差や登り坂を乗り越える際にも、駆動輪23が浮くことなく、全車輪が接地する状態を安定して保つことができる。
また受動輪22がベース部材20に対して下方向に移動すると、受動輪支持部27、てこ部材33、リンク部材31、駆動輪基部29が連動して、駆動輪23はベース部材20に対して上方向に移動する。例えば、受動輪22が凹部や下り坂を乗り越える際、受動輪21が下方向に移動すると駆動輪23が上方向に移動し、これにより駆動輪23が接地している限りは、受動輪22は接地面に向かう方向にさらに移動する。従って、受動輪22が凹部や下り坂を乗り越える際にも、受動輪22が浮くことなく、全車輪が接地する状態を安定して保つことができる。
Similarly, the lever member 33 is a rod-shaped member extending in the front-rear direction X so as to intersect the extended base portion 25. In a state where each wheel is in contact with the horizontal plane, the lever member 33 is inclined slightly upward toward the rear. The lever member 33 is rotatably supported by the extension base 25 via a rotation mechanism 53 at the intersection with the extension base 25. Here, the first end (first portion) 33 a of the lever member 33 is rotatably supported by the second end 38 b of the suspension portion 38 of the passive wheel support portion 27. A rotation mechanism 55 is disposed at a position (second portion) near the second end 33 b of the lever member 33, and is rotatably supported by the end portion of the link member 31 via the rotation mechanism 55. That is, the lever member 33 has a lever structure with the rotation mechanism 53 as a fulcrum. The rotation mechanism 55 may be provided so as to face the first end 33a with the rotation mechanism 53 interposed therebetween.
When the passive wheel 22 moves upward with respect to the base member 20, the passive wheel support portion 27, the lever member 33, the link member 31, and the drive wheel base portion 29 are interlocked so that the drive wheel 23 moves downward with respect to the base member 20. Move in the direction. Therefore, even when the passive wheel 22 climbs over a step or an uphill, the state where all the wheels are grounded can be stably maintained without the drive wheel 23 floating.
Further, when the passive wheel 22 moves downward with respect to the base member 20, the passive wheel support portion 27, the lever member 33, the link member 31, and the drive wheel base portion 29 are interlocked so that the drive wheel 23 moves relative to the base member 20. Move up. For example, when the passive wheel 22 gets over a recess or downhill, if the passive wheel 21 moves downward, the driving wheel 23 moves upward, and as long as the driving wheel 23 is grounded, the passive wheel 22 Move further in the direction toward the ground plane. Therefore, even when the passive wheel 22 gets over the recess or the downhill, the passive wheel 22 can be stably kept in a state where all the wheels are grounded without being lifted.

本実施形態では回転機構52からてこ部材32の第一端32aまでの距離よりも、回転機構52から回転軸54までの距離の方が長く設定されている。従って、受動輪21が段差や上り坂を乗り越える際に受動輪21がベース部材20に対して少しでも上方向に移動すると、受動輪支持部26、てこ部材32、リンク部材30、駆動輪基部29が連動して、駆動輪23はベース部材20に対して下方向に移動する作用が強く働く。従って、受動輪21が段差や登り坂を乗り越える際に駆動輪23が接地する状態をより安定して保つことができる。   In the present embodiment, the distance from the rotation mechanism 52 to the rotation shaft 54 is set longer than the distance from the rotation mechanism 52 to the first end 32a of the lever member 32. Therefore, when the passive wheel 21 moves over the base member 20 even when the passive wheel 21 climbs over a step or uphill, the passive wheel support portion 26, the lever member 32, the link member 30, and the drive wheel base portion 29 are moved. In conjunction with this, the drive wheel 23 acts strongly to move downward relative to the base member 20. Therefore, the state in which the driving wheel 23 contacts the ground when the passive wheel 21 climbs over a step or uphill can be more stably maintained.

つまり、本実施形態では、車両1の前進時だけでなく後進時にも、段差や斜面を乗り越える際に全車輪が接地する状態を安定して保つことができる。   That is, in the present embodiment, not only when the vehicle 1 is moving forward but also when moving backward, it is possible to stably maintain a state where all the wheels are in contact with the ground when climbing over a step or a slope.

また上述のてこ構造の作用の反対の作用として、駆動輪23がベース部材20に対して上方向に移動すると、駆動輪基部29、リンク部材30、てこ部材32、受動輪支持部26が連動して、受動輪21はベース部材20に対して下方向に移動する。さらに駆動輪基部29、リンク部材31、てこ部材33、受動輪支持部27が連動して、受動輪22はベース部材20に対して下方向に移動する。従って、駆動輪23が障害物などを乗り越える際に、受動輪21、22が浮くことなく、全車輪が接地する状態を安定して保つことができる。
また、駆動輪23がベース部材20に対して下方向に移動すると、駆動輪基部29、リンク部材30、てこ部材32、受動輪支持部26が連動して、受動輪21はベース部材20に対して上方向に移動する。さらに、駆動輪基部29、リンク部材31、てこ部材33、受動輪支持部27が連動して、受動輪22はベース部材20に対して上方向に移動する。例えば、駆動輪23が凹部を乗り越える際、駆動輪23が下方向に移動すると受動輪21、22が上方向に移動し、これにより受動輪21、22が接地している限りは、駆動輪23は接地面に向かう方向にさらに移動する。従って、駆動輪23が凹部を乗り越える際に、駆動輪23が浮くことなく、全車輪が接地する状態を安定して保つことができる。
Further, as an operation opposite to the operation of the lever structure described above, when the driving wheel 23 moves upward with respect to the base member 20, the driving wheel base 29, the link member 30, the lever member 32, and the passive wheel support portion 26 are interlocked. Thus, the passive wheel 21 moves downward with respect to the base member 20. Further, the driving wheel base 29, the link member 31, the lever member 33, and the passive wheel support portion 27 are interlocked to move the passive wheel 22 downward with respect to the base member 20. Therefore, when the driving wheel 23 gets over an obstacle or the like, the passive wheels 21 and 22 do not float, and the state where all the wheels are grounded can be stably maintained.
Further, when the driving wheel 23 moves downward with respect to the base member 20, the driving wheel base 29, the link member 30, the lever member 32, and the passive wheel support portion 26 are interlocked so that the passive wheel 21 moves relative to the base member 20. Move up. Further, the drive wheel base 29, the link member 31, the lever member 33, and the passive wheel support portion 27 are interlocked to move the passive wheel 22 upward with respect to the base member 20. For example, when the driving wheel 23 gets over the recess, if the driving wheel 23 moves downward, the passive wheels 21 and 22 move upward, and as long as the passive wheels 21 and 22 are grounded, the driving wheel 23 Moves further in the direction toward the ground plane. Therefore, when the driving wheel 23 gets over the recess, the driving wheel 23 does not float, and the state where all the wheels are grounded can be stably maintained.

また、てこ部材32、33は、てこ部材32、33が延在する方向に平行な方向に長辺を有する長孔32c、33cをそれぞれ有している。そしててこ部材32における回転機構54の位置を長孔32cの長さ分だけ調整することができる。さらにてこ部材33における回転機構55の位置を長孔33cの長さ分だけ調整することができる。これにより想定される段差や障害物などの大きさ、形状に合せて最適な位置に回転機構54、55を配置させてから車両1を走行させることができる。例えば、てこ部材の32、33の第二端32b、33bにより近い位置に回転機構54、55をそれぞれ配置すれば、上下方向Zにおいて、受動輪21または22が駆動輪23に対して離れた距離まで相対移動できる。従って、車両1が大きな段差を乗り越える場合でも各車輪21、22,23の全車輪が接地する状態を安定して保つことができる。   Further, the lever members 32 and 33 have long holes 32c and 33c each having a long side in a direction parallel to the direction in which the lever members 32 and 33 extend. The position of the rotation mechanism 54 in the lever member 32 can be adjusted by the length of the long hole 32c. Furthermore, the position of the rotation mechanism 55 in the lever member 33 can be adjusted by the length of the long hole 33c. As a result, the vehicle 1 can be run after the rotation mechanisms 54 and 55 are arranged at optimum positions in accordance with the size and shape of the level difference and obstacles assumed. For example, if the rotating mechanisms 54 and 55 are respectively arranged at positions closer to the second ends 32 b and 33 b of the lever members 32 and 33, the distance in which the passive wheel 21 or 22 is separated from the driving wheel 23 in the vertical direction Z. Can move relative to Therefore, even when the vehicle 1 gets over a large step, it is possible to stably maintain a state where all the wheels 21, 22, and 23 are in contact with the ground.

さらに、本実施形態では、前後方向Xにおいて回転機構50の方が回転機構51よりも受動輪22に近い位置に配置され、これにより、前後方向Xにおいて回転機構54の方が回転機構55よりも受動輪22に近い位置に配置される。このように回転機構50、51、54、55を配置することによって、てこ部材32、33の長さをより長く構成することができる。これにより、受動輪21、22の上下方向Zへの可動域を広げることでき、より大きな段差や急こう配の斜面であっても全車輪が接地する状態を保つことができる。   Further, in the present embodiment, the rotation mechanism 50 is disposed closer to the passive wheel 22 than the rotation mechanism 51 in the front-rear direction X, and accordingly, the rotation mechanism 54 is greater than the rotation mechanism 55 in the front-rear direction X. It is arranged at a position close to the passive wheel 22. By arranging the rotation mechanisms 50, 51, 54, and 55 in this way, the lengths of the lever members 32 and 33 can be configured to be longer. Thereby, the movable range to the up-down direction Z of the passive wheels 21 and 22 can be expanded, and the state which all the wheels contact | ground can be maintained even if it is a bigger level | step difference or a steep slope.

また、本実施形態では、前後方向Xにおいて、受動輪21の接地位置から回転機構52の回転軸までの距離と、受動輪22の接地位置から回転機構53の回転軸までの距離とが1対1の割合であることが好ましい。これにより、前進時と後進時とでの踏破性能の差を抑制することができる。
ただし、受動輪21、22としてキャスターを用いる場合、ヨーイングによって回転機構52、53に対する受動輪21、22の接地点の相対位置が走行方向によって変化する。従って、受動輪21、22の支持軸L1、L2との位置関係に基づいて設計してもよい。その場合、受動輪21の支持軸L1から回転機構52の回転軸までの距離と、受動輪22の支持軸L2から回転機構53の回転軸までの距離とが1対1の割合であることが好ましい。
なお、上述の割合について厳密に1対1である必要はなく、前進時と後進時とでの踏破性能の差を十分に抑制することができれば、多少の誤差は許容される。
In this embodiment, in the front-rear direction X, the distance from the ground contact position of the passive wheel 21 to the rotation shaft of the rotation mechanism 52 and the distance from the ground contact position of the passive wheel 22 to the rotation shaft of the rotation mechanism 53 are a pair. A ratio of 1 is preferred. Thereby, the difference in leveling performance between forward and reverse travel can be suppressed.
However, when a caster is used as the passive wheels 21 and 22, the relative position of the grounding point of the passive wheels 21 and 22 with respect to the rotation mechanisms 52 and 53 varies depending on the traveling direction by yawing. Therefore, you may design based on the positional relationship with the support shafts L1 and L2 of the passive wheels 21 and 22. FIG. In this case, the distance from the support axis L1 of the passive wheel 21 to the rotation axis of the rotation mechanism 52 and the distance from the support axis L2 of the passive wheel 22 to the rotation axis of the rotation mechanism 53 are in a one-to-one ratio. preferable.
Note that the above-described ratios do not have to be strictly one-to-one, and some errors are allowed as long as the difference in stepping performance between forward and reverse travel can be sufficiently suppressed.

また、本実施形態では、受動輪21、22、及び駆動輪23が水平面に接地した状態において、回転機構50の回転軸から回転機構54の回転軸までの距離と回転機構51の回転軸から回転機構55の回転軸までの距離とが1対1の割合であり、回転機構54の回転軸から重心Gまでの距離と、回転機構55の回転軸から重心Gまでの距離とが1対1の割合となるように車輪構造体10が構成されていることが好ましい。このように車輪構造体10を構成することで、前進時と後進時とでの踏破性能の差をさらに抑制することができる。
なお、上述の割合についても厳密に1対1である必要はなく、前進時と後進時とでの踏破性能の差を十分に抑制することができれば、多少の誤差は許容される。
In the present embodiment, the distance from the rotation axis of the rotation mechanism 50 to the rotation axis of the rotation mechanism 54 and the rotation from the rotation axis of the rotation mechanism 51 in a state where the passive wheels 21 and 22 and the drive wheel 23 are in contact with the horizontal plane. The distance from the rotation axis of the mechanism 55 to the center of gravity G is 1: 1, and the distance from the rotation axis of the rotation mechanism 54 to the center of gravity G and the distance from the rotation axis of the rotation mechanism 55 to the center of gravity G are 1: 1. It is preferable that the wheel structure 10 is configured to have a ratio. By configuring the wheel structure 10 in this way, it is possible to further suppress the difference in leveling performance between forward and reverse travel.
In addition, the above-mentioned ratio does not need to be strictly 1: 1, and a slight error is allowed if the difference in stepping performance between forward traveling and backward traveling can be sufficiently suppressed.

また、本実施形態では、駆動輪23の車軸から上下方向Zへの仮想延長線上に重心Gがあるように車輪構造体10が構成されていることが好ましい。このように車輪構造体10を構成することで走行時の車両1の安定性を高めることができる。   In the present embodiment, the wheel structure 10 is preferably configured so that the center of gravity G is on a virtual extension line in the vertical direction Z from the axle of the drive wheel 23. By configuring the wheel structure 10 in this way, the stability of the vehicle 1 during traveling can be enhanced.

また、車両1を構成する各要素の材料としては、金属、木、樹脂材料、セラミクスなどを用いればよく、用途に適した特性を有していれば限定されない。   Moreover, as a material of each element which comprises the vehicle 1, what is necessary is just to use a metal, wood, a resin material, ceramics, etc., and if it has the characteristic suitable for a use, it will not be limited.

本実施形態に係る車両1によれば、各車輪の上下動に応じて他の車輪が連動することで、各車輪に荷重を分散させることができ、それにより走行をなめらかにすることができる。従って、本実施形態に係る車両1によって、荷台を安定させながら、段差や傾斜、凸凹道の不整地踏破性を向上させることが可能となる。   According to the vehicle 1 according to the present embodiment, the other wheels are interlocked according to the vertical movement of each wheel, so that the load can be distributed to each wheel, thereby making it possible to smoothly travel. Therefore, with the vehicle 1 according to the present embodiment, it is possible to improve the level difference, the inclination, and the rough road through the uneven road while stabilizing the loading platform.

[車両1が段差及び斜面を踏破する際の各車輪の接地状態]
図5〜7に車両1が段差及び斜面を踏破する際の各車輪の接地状態を模式的に示す。図5は車両1が段差に登る際、図6は車両が斜面を登りはじめる際、図7は車両1が斜面を下りはじめる際の車輪の接地状態を示す。
[Grounding state of each wheel when the vehicle 1 goes through the steps and slopes]
5 to 7 schematically show the ground contact state of each wheel when the vehicle 1 passes through the steps and the slope. FIG. 5 shows the ground contact state of the wheel when the vehicle 1 climbs the step, FIG. 6 shows the vehicle as it begins to climb the slope, and FIG. 7 shows the wheel when the vehicle 1 begins to descend the slope.

図5に示すように本実施形態に係る車両1によれば、受動輪21が段差Pに登った直後にも各車輪21〜23が連動して上下動することで駆動輪23に十分な接地力を持ったまま、空転することなく踏破することが可能となる。また、駆動輪23が段差Pに乗り上げた直後であっても各車輪21〜23が連動して上下動することで後輪である受動輪22は接地状態を保つことができる。従って、すべての車輪が接地した状態で、安定して段差Pを踏破することが可能となる。   As shown in FIG. 5, according to the vehicle 1 according to the present embodiment, the wheels 21 to 23 move up and down in conjunction with each other even immediately after the passive wheel 21 climbs the step P, so that sufficient grounding is provided to the drive wheel 23. It is possible to break through without running idle while having power. In addition, even immediately after the drive wheel 23 rides on the step P, each of the wheels 21 to 23 moves up and down in conjunction with each other, so that the passive wheel 22 that is the rear wheel can maintain a grounded state. Therefore, it is possible to stably step through the step P with all the wheels in contact with the ground.

また、図6に示すように、本実施形態に係る車両1によれば、受動輪21が水平面から登り斜面に進入した直後にも各車輪21〜23が連動して上下動することで駆動輪23に十分な接地力を持ったまま、空転することなく踏破することが可能となる。また、その後も全車輪が登り斜面に完全に進入するまで接地状態を保つことができる。従って、すべての車輪が接地した状態で、安定して登り斜面を踏破することが可能となる。   Further, as shown in FIG. 6, according to the vehicle 1 according to this embodiment, the wheels 21 to 23 move up and down in conjunction with each other even immediately after the passive wheel 21 climbs from the horizontal plane and enters the slope. It is possible to step through the vehicle without idling while maintaining a sufficient grounding force at 23. Further, after that, the grounding state can be maintained until all the wheels climb and completely enter the slope. Therefore, it is possible to stably climb and climb over the slope while all the wheels are in contact with the ground.

さらに、図7に示すように、本実施形態に係る車両1によれば、受動輪21が水平面から下り斜面に進入した直後にも各車輪21〜23が連動して上下動することで受動輪21に十分な接地力を持ったまま、受動輪21が浮いて不安定な状態となることなく踏破することが可能となる。また、その後も全車輪が下り斜面に完全に進入するまで接地状態を保つことができる。従って、すべての車輪が接地した状態で、安定して下り斜面を踏破することが可能となる。   Furthermore, as shown in FIG. 7, according to the vehicle 1 according to the present embodiment, the passive wheels 21 to 23 move up and down in conjunction with the passive wheels 21 immediately after the passive wheels 21 enter the down slope from the horizontal plane. It is possible to pass through the passive wheel 21 without floating and being in an unstable state while maintaining a sufficient grounding force on the wheel 21. Further, after that, the ground contact state can be maintained until all the wheels completely enter the down slope. Therefore, it is possible to stably traverse downhill slopes with all wheels in contact with the ground.

以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。   The preferred embodiments of the present invention have been described above, but the present invention is not limited to these examples. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. The present invention is not limited by the above description, but only by the scope of the appended claims.

1…車両、10…車輪構造体、11…荷台、12…ロードセル、20…ベース部材、21、22…受動輪(第1受動輪、第2受動輪)、24、25…延出基部(第1の延出基部、第2の延出基部)、24a、25a…延出端部、26、27…受動輪支持部(第1の受動輪支持部、第2の受動輪支持部)、28…駆動輪支持部、29…駆動輪基部、30、31…リンク部材(第1のリンク部材、第2のリンク部材)、32、33…てこ部材(第1のてこ部材、第2のてこ部材)、50〜55…回転機構(第1〜6の回転機構)、G…重心 DESCRIPTION OF SYMBOLS 1 ... Vehicle, 10 ... Wheel structure, 11 ... Loading platform, 12 ... Load cell, 20 ... Base member, 21, 22 ... Passive wheel (1st passive wheel, 2nd passive wheel), 24, 25 ... Extension base (1st 1 extended base, second extended base), 24a, 25a ... extended end, 26, 27 ... passive wheel support (first passive wheel support, second passive wheel support), 28 ... driving wheel support part, 29 ... driving wheel base part, 30, 31 ... link member (first link member, second link member), 32, 33 ... lever member (first lever member, second lever member) ), 50 to 55: Rotating mechanism (first to sixth rotating mechanisms), G: Center of gravity

Claims (10)

車輪構造体であって、
第1方向に延在するベース部材と、
前記第1方向に並ぶ第1受動輪及び第2受動輪と、前記第1受動輪と前記第2受動輪との間に配置されかつ独立して駆動可能な駆動輪と、
前記ベース部材に固定され、前記ベース部材から前記第1方向に垂直な第2方向に向かって延出する第1及び第2の延出基部と、
前記第1の延出基部に対して前記第1受動輪が回動するように、前記第1の延出基部の延出端部と前記第1受動輪とを連結する第1受動輪支持部と、
前記第2の延出基部に対して前記第2受動輪が回動するように、前記第2の延出基部の延出端部と前記第2受動輪とを連結する第2受動輪支持部と、
前記第2方向に延在し、前記駆動輪が前記ベース部材に対して前記第2方向に相対移動可能に前記ベース部材と前記駆動輪とを連結する駆動輪支持部と、
前記駆動輪に固定される駆動輪基部と、
前記駆動輪基部に対して第1の回転機構を介して回転可能に第一端が支持される第1のリンク部材と、
前記駆動輪基部に対して第2の回転機構を介して回転可能に第一端が支持される第2のリンク部材と、
前記第1の延出基部に交差するように延在しかつ前記第1の延出基部に対して回転可能に第3の回転機構を介して支持され、前記第1受動輪支持部に接続される第一部分と、前記第1のリンク部材の第二端に接続されかつ前記第3の回転機構を挟んで前記第一部分に対向する第二部分とを有する第1のてこ部材と、
前記第2の延出基部に交差するように延在しかつ前記第2の延出基部に対して第4の回転機構を介して回転可能に支持され、前記第2受動輪支持部に接続される第一部分と、前記第2のリンク部材の第二端に接続されかつ前記第4の回転機構を挟んで前記第一部分に対向する第二部分とを有する第2のてこ部材と、を備え、
前記駆動輪が前記ベース部材に対して前記第2方向に相対移動した際に、前記第1のてこ部材及び第2のてこ部材を介して、前記第1受動輪及び前記第2受動輪が前記第2方向にそれぞれ連動して相対移動するように構成される車輪構造体。
A wheel structure,
A base member extending in a first direction;
A first passive wheel and a second passive wheel arranged in the first direction; a drive wheel disposed between the first passive wheel and the second passive wheel and capable of being driven independently;
First and second extending bases fixed to the base member and extending from the base member in a second direction perpendicular to the first direction;
A first passive wheel support portion that connects the extended end portion of the first extension base portion and the first passive wheel so that the first passive wheel rotates relative to the first extension base portion. When,
A second passive wheel support portion that connects the extension end portion of the second extension base portion and the second passive wheel so that the second passive wheel rotates with respect to the second extension base portion. When,
A driving wheel support that extends in the second direction and connects the base member and the driving wheel so that the driving wheel is relatively movable in the second direction with respect to the base member;
A drive wheel base fixed to the drive wheel;
A first link member having a first end supported rotatably with respect to the drive wheel base via a first rotation mechanism;
A second link member having a first end supported rotatably relative to the drive wheel base via a second rotation mechanism;
The first extending base extends so as to intersect the first extending base, and is supported via a third rotating mechanism so as to be rotatable with respect to the first extending base, and is connected to the first passive wheel support. A first lever member connected to the second end of the first link member and facing the first portion across the third rotation mechanism;
The second extending base extends so as to intersect the second extending base, and is rotatably supported via a fourth rotating mechanism with respect to the second extending base, and is connected to the second passive wheel support. And a second lever member connected to the second end of the second link member and having a second portion facing the first portion across the fourth rotation mechanism,
When the driving wheel moves relative to the base member in the second direction, the first passive wheel and the second passive wheel are moved through the first lever member and the second lever member, respectively. A wheel structure configured to move relative to each other in the second direction.
前記第1方向において、前記第1受動輪の支持軸から前記第3の回転機構の回転軸までの距離と、前記第2受動輪の支持軸から前記第4の回転機構の回転軸までの距離とが1対1の割合である請求項1に記載の車輪構造体。   In the first direction, the distance from the support shaft of the first passive wheel to the rotation shaft of the third rotation mechanism, and the distance from the support shaft of the second passive wheel to the rotation shaft of the fourth rotation mechanism The wheel structure according to claim 1, wherein and are in a one-to-one ratio. 前記第1のリンク部材と前記第1のてこ部材とが第5の回転機構で接続され、前記第2のリンク部材と前記第2のてこ部材とが第6の回転機構で接続され、
前記第1受動輪、前記第2受動輪、及び前記駆動輪が水平面に接地した状態において、前記第1の回転機構の回転軸から前記第5の回転機構の回転軸までの距離と前記第2の回転機構の回転軸から前記第6の回転機構の回転軸までの距離とが1対1の割合であり、前記第5の回転機構の回転軸から重心までの距離と、前記第6の回転機構の回転軸から重心までの距離とが1対1の割合である請求項1又は2に記載の車輪構造体。
The first link member and the first lever member are connected by a fifth rotation mechanism, the second link member and the second lever member are connected by a sixth rotation mechanism,
In a state where the first passive wheel, the second passive wheel, and the driving wheel are in contact with a horizontal plane, the distance from the rotation axis of the first rotation mechanism to the rotation axis of the fifth rotation mechanism and the second The distance from the rotation axis of the rotation mechanism to the rotation axis of the sixth rotation mechanism is a 1: 1 ratio, and the distance from the rotation axis to the center of gravity of the fifth rotation mechanism is the sixth rotation. The wheel structure according to claim 1 or 2, wherein the distance from the rotation axis of the mechanism to the center of gravity is a ratio of 1: 1.
前記駆動輪の車軸から前記第2方向への仮想延長線上に重心がある請求項1〜3のいずれか一項に記載の車輪構造体。   The wheel structure as described in any one of Claims 1-3 which has a gravity center on the virtual extension line to the said 2nd direction from the axle shaft of the said driving wheel. 前記第1方向において、前記第1の回転機構の方が前記第2の回転機構よりも前記第2受動輪に近い位置に配置される請求項1〜4のいずれか一項に記載の車輪構造体。   The wheel structure according to any one of claims 1 to 4, wherein in the first direction, the first rotation mechanism is disposed closer to the second passive wheel than the second rotation mechanism. body. 前記第1のリンク部材と前記第1のてこ部材とが前記第1のてこ部材の延在する方向に位置を調整可能な第5の回転機構で接続され、前記第2のリンク部材と前記第2のてこ部材とが前記第2のてこ部材の延在する方向に位置を調整可能な第6の回転機構で接続される請求項1〜5のいずれか一項に記載の車輪構造体。   The first link member and the first lever member are connected by a fifth rotation mechanism whose position can be adjusted in the extending direction of the first lever member, and the second link member and the first lever member are connected to each other. The wheel structure according to any one of claims 1 to 5, wherein the second lever member is connected by a sixth rotating mechanism whose position is adjustable in a direction in which the second lever member extends. 前記第1受動輪支持部が前記第1受動輪から掛かる衝撃を緩和可能な第1の懸架部を含み、前記第1の懸架部と前記第1のてこ部材とが接続されており、
前記第2受動輪支持部が前記第2受動輪から掛かる衝撃を緩和可能な第2の懸架部を含み、前記第2の懸架部と前記第2のてこ部材とが接続されている請求項1〜6のいずれか一項に記載の車輪構造体。
The first passive wheel support part includes a first suspension part capable of mitigating an impact applied from the first passive wheel, and the first suspension part and the first lever member are connected;
2. The second passive wheel support portion includes a second suspension portion that can reduce an impact applied from the second passive wheel, and the second suspension portion and the second lever member are connected to each other. The wheel structure as described in any one of -6.
車両であって、
請求項1〜7のいずれか一項に記載の車輪構造体を2つ備え、
前記2つの車輪構造体が前記第1方向及び前記第2方向の両方に垂直な第3方向に連結されている車両。
A vehicle,
Two wheel structures according to any one of claims 1 to 7 are provided,
The vehicle in which the two wheel structures are connected in a third direction perpendicular to both the first direction and the second direction.
前記2つの車輪構造体の前記ベース部材上に設けられる荷台をさらに備える請求項8に記載の車両。   The vehicle according to claim 8, further comprising a cargo bed provided on the base member of the two wheel structures. 前記荷台に設置されるロードセルをさらに備える請求項9に記載の車両。   The vehicle according to claim 9, further comprising a load cell installed on the loading platform.
JP2016239628A 2016-12-09 2016-12-09 Wheel structure and vehicle Active JP6755044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016239628A JP6755044B2 (en) 2016-12-09 2016-12-09 Wheel structure and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016239628A JP6755044B2 (en) 2016-12-09 2016-12-09 Wheel structure and vehicle

Publications (2)

Publication Number Publication Date
JP2018094998A true JP2018094998A (en) 2018-06-21
JP6755044B2 JP6755044B2 (en) 2020-09-16

Family

ID=62631745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239628A Active JP6755044B2 (en) 2016-12-09 2016-12-09 Wheel structure and vehicle

Country Status (1)

Country Link
JP (1) JP6755044B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112319652A (en) * 2020-11-19 2021-02-05 中国人民解放军国防科技大学 Wheel lifting device, vehicle and active obstacle crossing method
JP2021079875A (en) * 2019-11-21 2021-05-27 トヨタ自動車株式会社 Three-row wheel vehicle
JP2021142961A (en) * 2020-03-13 2021-09-24 トヨタ自動車株式会社 Three-row wheel vehicle
JP2021142962A (en) * 2020-03-13 2021-09-24 トヨタ自動車株式会社 Three-row wheel vehicle
CN115557126A (en) * 2022-08-01 2023-01-03 泰州市佳洁环保科技有限公司 Intelligent garbage classification room easy to move
WO2023244171A1 (en) * 2022-06-13 2023-12-21 Globotix Pte. Ltd. Autonomous modular robot and methods thereof
WO2024154577A1 (en) * 2023-01-20 2024-07-25 株式会社 富士ワールド Multiple-wheel wheelchair

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492786A (en) * 1990-08-09 1992-03-25 Nissan Motor Co Ltd Running device for unmanned carriage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492786A (en) * 1990-08-09 1992-03-25 Nissan Motor Co Ltd Running device for unmanned carriage

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021079875A (en) * 2019-11-21 2021-05-27 トヨタ自動車株式会社 Three-row wheel vehicle
JP7181507B2 (en) 2019-11-21 2022-12-01 トヨタ自動車株式会社 three-row wheeled vehicle
JP2021142961A (en) * 2020-03-13 2021-09-24 トヨタ自動車株式会社 Three-row wheel vehicle
JP2021142962A (en) * 2020-03-13 2021-09-24 トヨタ自動車株式会社 Three-row wheel vehicle
CN112319652A (en) * 2020-11-19 2021-02-05 中国人民解放军国防科技大学 Wheel lifting device, vehicle and active obstacle crossing method
WO2023244171A1 (en) * 2022-06-13 2023-12-21 Globotix Pte. Ltd. Autonomous modular robot and methods thereof
CN115557126A (en) * 2022-08-01 2023-01-03 泰州市佳洁环保科技有限公司 Intelligent garbage classification room easy to move
CN115557126B (en) * 2022-08-01 2023-12-15 珠海正圆城市服务有限公司 Intelligent garbage classification room easy to move
WO2024154577A1 (en) * 2023-01-20 2024-07-25 株式会社 富士ワールド Multiple-wheel wheelchair

Also Published As

Publication number Publication date
JP6755044B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP2018094998A (en) Wheel structure and vehicle
US10336380B2 (en) Rocker bogie
JP4930003B2 (en) Mobile robot
JP6467124B2 (en) Wheel support structure for traveling cart
JP2009526703A (en) Suspension device
JP7048578B2 (en) Vehicles with front and / or rear steering mechanisms based on applying lateral horizontal forces to the vehicle chassis
US20070137902A1 (en) Crawler moving system having variable configuration
JP2022542911A (en) driverless transportation system
US20210282987A1 (en) Wheelchair
CN113200099A (en) All-terrain wheel-leg robot
JP2015128973A (en) Movable body
JP7413810B2 (en) Drive wheel unit and traveling device
CN109153425B (en) Self-balancing transporter with foot platforms for angular movement
NZ566056A (en) Castor wheel assembly with adjustment of angular displacement of yoke axis relative to castor pin axis
US20100219005A1 (en) Suspension for a telepresence robot
GB2333698A (en) Castor with variable inclination of swivel axis
CN1206380A (en) Suspension device with crank type axle
WO2019008673A1 (en) Rocker bogie mechanism and travel device
WO2018180754A1 (en) Vehicle
KR200225664Y1 (en) Three wheeled vehicle with semi-active tilt control mechanism
EP3199487A1 (en) Improved tower waggon
JP5220478B2 (en) Bicycle with posture maintenance device
KR200486043Y1 (en) Two-Wheeled Vehicle and Dual front wheel tilting Combined with steering device
JP2022095277A (en) Electric wheelchair
WO2021125348A1 (en) Vehicle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6755044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250