JP2018091640A - 装置の検査装置、および、装置の検査方法 - Google Patents

装置の検査装置、および、装置の検査方法 Download PDF

Info

Publication number
JP2018091640A
JP2018091640A JP2016232774A JP2016232774A JP2018091640A JP 2018091640 A JP2018091640 A JP 2018091640A JP 2016232774 A JP2016232774 A JP 2016232774A JP 2016232774 A JP2016232774 A JP 2016232774A JP 2018091640 A JP2018091640 A JP 2018091640A
Authority
JP
Japan
Prior art keywords
deep learning
correlation diagram
unit
physical quantity
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016232774A
Other languages
English (en)
Inventor
室崎 隆
Takashi Murozaki
隆 室崎
木村 一郎
Ichiro Kimura
一郎 木村
政博 西脇
Masahiro Nishiwaki
政博 西脇
昭弘 大東
Akihiro Daito
昭弘 大東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016232774A priority Critical patent/JP2018091640A/ja
Publication of JP2018091640A publication Critical patent/JP2018091640A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】 構成が異なる種々の装置の異常を検出可能な装置の検査装置を提供する。
【解決手段】 異常診断装置10は、振動センサ11,12、相関図生成部14、深層学習部15、および、判定部16を備える。振動センサ11,12は、稼働している回転装置5が有するベアリング91の振動の状態をベアリング91の加速度で示した加速度信号を出力可能である。相関図生成部14は、振動センサ11,12が出力する複数の加速度信号の相関を示す相関図を生成する。深層学習部15は、相関図生成部14が生成する相関図に基づく深層学習を行う。判定部16は、深層学習部15における深層学習の結果に基づいて回転装置5の状態を判定する。
【選択図】 図1

Description

本発明は、稼働している装置の異常を検出可能な装置の検査装置、および、装置の検査方法に関する。
従来、稼働している装置の異常を検出可能な装置の検査装置が知られている。例えば、特許文献1には、二つのセンサの検出信号に基づいてアクチュエータの両端の間を移動するピストンの移動時間を算出する検出時間演算部、移動時間に対して所定の統計演算を行う統計処理部、および、統計処理部の処理結果に基づいてアクチュエータに異常が発生しているか否かを判定する判定部を備えるアクチュエータの検査装置が記載されている。
特開2015−14990号公報
しかしながら、特許文献1に記載のアクチュエータの検査装置は、ピストンの移動時間に対する所定の統計演算処理によってアクチュエータの異常を検出するため、ピストンが往復移動するアクチュエータにのみ適用される。このため、特許文献1に記載のアクチュエータの検査装置と同じ原理の検査装置を構成が異なる装置に適用する場合、当該構成が異なる装置に適合した統計演算処理を行う必要があり、特許文献1に記載のアクチュエータの検査装置は、汎用性が低い。
本発明は、上述の点を鑑みてなされたものであり、構成が異なる種々の装置の異常を検出可能な装置の検査装置を提供することにある。
本発明は、稼働している装置(5)における異常を検出可能な装置の検査装置であって、複数の物理量検出部(11,12,21,22,23)、相関図生成部(14,24,34)、深層学習部(15,25,35)および、判定部(16,26,36)を備える。
複数の物理量検出部は、装置の状態に相関する複数の物理量を検出可能に設けられ、複数の物理量に応じた物理量信号を出力可能である。
相関図生成部は、複数の物理量検出部が出力する複数の物理量信号の相関を示す相関図を生成する。
深層学習部は、相関図生成部が生成する相関図に基づく深層学習を行う。
判定部は、深層学習部における深層学習の結果に基づいて装置の状態を判定する。
本発明の装置の検査装置では、相関図生成部は、装置の状態に相関する複数の物理量に基づいて当該複数の物理量の相関を示す相関図を生成する。相関図には、装置の状態に相関する物理量であって一つの物理量検出部では検出不可能な物理量が含まれる。深層学習部では、相関図に基づく深層学習によって検査対象とする装置の状態を判定するための情報を蓄積する。判定部は、深層学習部に蓄積された情報に基づいて装置の状態を判定する。これにより、本発明の装置の検査装置は、深層学習部における相関図に基づく深層学習によって検査対象とする装置に特化した情報を蓄積することができるため、装置の種類に関わらず異常を検出することができる。
また、本発明は、稼働している装置の異常を検出可能な装置の検査方法であって、信号取得段階、相関図生成段階、深層学習段階、および、判定段階を含む。
信号取得段階では、当該装置の状態に相関する複数の物理量に応じた物理量信号を取得する。
相関図生成段階では、複数の物理量信号の相関を示す相関図を生成する。
深層学習段階では、相関図生成段階において生成される相関図に基づく深層学習を行う。
判定段階では、深層学習段階における深層学習の結果に基づいて装置の状態を判定する。
本発明の装置の検査方法では、信号取得段階において取得された複数の物理量信号の相関を示す相関図を相関図生成段階において生成する。深層学習段階では、相関図に基づく深層学習によって検査対象とする装置に状態を判定するための情報を蓄積する。判定段階では、深層学習段階に蓄積された情報に基づいて装置の状態を判定する。これにより、本発明の装置の検査方法は、深層学習段階における相関図に基づく深層学習によって検査対象とする装置に特化した情報を蓄積することができるため、装置の種類に関わらず異常を検出することができる。
本発明の第一実施形態による異常診断装置が適用される装置の模式図である。 本発明の第一実施形態による異常診断プロセスのフローチャートである。 本発明の第一実施形態による異常診断プロセスにおける相関図生成段階の内容を説明する模式図である。 本発明の第一実施形態による異常診断プロセスにおける深層学習段階の内容を説明する模式図である。 本発明の第二実施形態による異常診断装置が適用される装置の模式図である。 本発明の第二実施形態による異常診断プロセスのフローチャートである。 本発明の第二実施形態による異常診断プロセスにおける相関図生成段階の内容を説明する模式図である。 本発明の第二実施形態による異常診断プロセスにおける深層学習段階の内容を説明する模式図である。 本発明の第三実施形態による異常診断装置が適用される装置の模式図である。 本発明の第三実施形態による異常診断プロセスのフローチャートである。
以下、本発明の複数の実施形態について図面に基づいて説明する。
(第一実施形態)
本発明の第一実施形態による「装置の検査装置」としての異常診断装置10、および、「装置の検査方法」としての異常診断プロセスを図1〜4に基づいて説明する。異常診断装置10は、回転体3を回転可能に支持する回転装置5の状態を診断可能な装置である。
最初に、異常診断装置10が適用される回転装置5の構成を説明する。回転装置5は、モータ6、カップリング7、回転軸8、ベアリング91,92、および、回転体3を有する。回転装置5は、図示しない制御部からの指令に基づいて回転体3を回転する装置であって、回転体3の回転によって回転装置5の外部に仕事を行う装置である。
モータ6は、回転装置5のベース50上に固定されている。モータ6は、制御部からの指令に基づいて回転体3の回転駆動を制御可能である。
カップリング7は、モータ6の出力軸61と回転軸8とを連結可能に設けられている。カップリング7は、出力軸61と回転軸8との芯ずれを許容するよう設けられている。
回転軸8は、二つのベアリング91,92によって回転可能に支持されている。ベアリング91とベアリング92との間の回転軸8に回転体3が設けられている。
回転体3は、回転軸8と一体に回転可能に設けられている。回転体3は、図示しないベルトなどの連結部材を介して自身の回転トルクを回転装置5の外部の装置に伝達可能である。
次に、異常診断装置10の構成について説明する。異常診断装置10は、「物理量検出部」としての振動センサ11,12、AD変換部13、および、診断部100を備える。
振動センサ11は、加速度を検出可能なセンサであって、ベアリング91の側壁に設けられている。振動センサ11は、ベアリング91における回転体3の回転に伴う振動の状態を検出可能である。振動センサ11は、ベアリング91の振動の状態をベース50の上面51に略平行な方向の「物理量」としての加速度で示した「物理量信号」としての加速度信号を電気的に接続しているAD変換部13に出力する。
振動センサ12は、加速度を検出可能なセンサであって、ベアリング91の中心から見て振動センサ11と略90度の角度をなすベアリング91の側壁に設けられている。振動センサ12は、ベアリング91における回転体3の回転に伴う振動の状態を検出可能である。振動センサ12は、ベアリング91の振動の状態をベース50の上面51に対して略垂直な方向の「物理量」としての加速度で示した「物理量信号」としての加速度信号を電気的に接続しているAD変換部13に出力する。
AD変換部13は、振動センサ11,12が出力する加速度信号をアナログ信号からデジタル信号に変換する。AD変換部13は、デジタル信号に変換された振動センサ11,12が出力する加速度信号を診断部100に出力する。
診断部100は、内部にCPU、ROM、RAM、I/O、および、これらの構成を接続するバスラインなどを備える。診断部100における後述する処理は、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。診断部100は、相関図生成部14、深層学習部15、判定部16、および、出力部17を有する。
相関図生成部14は、AD変換部13と電気的に接続している。相関図生成部14は、AD変換部13が出力するデジタル信号に変換された加速度信号に基づいて相関図を生成する。相関図生成部14において生成される相関図の詳細は、後述する。
深層学習部15は、相関図生成部14と電気的に接続している。深層学習部15には、相関図生成部14で生成される相関図が有する特徴と回転装置5の状態を示すクラスとの組み合わせが事前に入力されている。深層学習部15は、当該組み合わせおよび相関図の画像解析の結果に基づく深層学習によって回転装置5に特化した情報を深層学習の結果として蓄積する。深層学習部15における深層学習の詳細は、後述する。
判定部16は、深層学習部15と電気的に接続している。判定部16は、深層学習部15が蓄積している情報および相関図の画像解析の結果に基づいて回転装置5の状態を判定する。判定部16は、判定結果を出力部17に出力する。
出力部17は、判定部16と電気的に接続している。出力部17は、判定部16が判定した回転装置5の状態についての判定結果を外部に出力する。
次に、異常診断装置10による回転装置5の診断プロセスについて図2〜4に基づいて説明する。図2に回転装置5の診断プロセスのフローチャートを示す。図2に示すフローチャートは、回転装置5が稼働している間、常時実行される。
最初に、ステップ(以下、単に「S」という)101において、診断部100を初期化する。S101では、診断部100は、自身のROM、RAMなどに残っている前回の情報を消去し初期化する。
次に、「信号取得段階」としてのS102において、診断部100に加速度信号を入力する。S102では、相関図生成部14にAD変換部13が出力するデジタル信号に変換された加速度信号を入力する。
次に、「相関図生成段階」としてのS103において、入力されたデジタル信号に変換された加速度信号に基づいて相関図を生成する。S103では、相関図生成部14に入力された二つの加速度信号に基づいて相関図を生成する。このとき生成される相関図について図3に基づいて説明する。
図3に、振動センサ11の加速度信号の時間変化を示す信号情報S11、および、振動センサ12の加速度信号の時間変化を示す信号情報S12を示す。信号情報S11,S12では、横軸に時間が示され、縦軸に加速度信号の大きさが示されている。
相関図生成部14では、信号情報S11と信号情報S12とを組み合わせた相関図DC10を生成する。相関図DC10は、いわゆる、リサージュ曲線といわれるものであって、横軸の値が振動センサ11の加速度信号の大きさを示し、縦軸の値が振動センサ12の加速度信号の大きさを示す。相関図DC10では、同時刻における振動センサ11の加速度信号の大きさと振動センサ12の加速度信号の大きさとを示す点(例えば、相関図DC10に示す点P10)の時間の経過に伴う軌跡が示される。
次に、「深層学習段階」としてのS104において、相関図に基づく深層学習を行う。S104では、深層学習部15は、S103において生成された相関図DC10に対して畳み込みニューラルネットワーク(CNN;Convolutional Neural Network)を利用した深層学習を行う。深層学習部15における深層学習の内容について図4に基づいて説明する。
最初に、深層学習部15は、相関図DC10に対して畳み込み処理を行う。具体的には、S103において生成された相関図DC10の全面をマトリックス状に分割し、相関図DC11(図4参照)を生成する。例えば、第一実施形態では、相関図DC10が40×40ピクセルの画像となるよう分割する。
次に、深層学習部15は、相関図DC11上に所定のサイズの設定窓W11を設定する。例えば、第一実施形態では、深層学習部15は、設定窓W11を4×4ピクセルに設定する。深層学習部15は、設定窓W11を図4の相関図DC11上に示されている一点鎖線矢印A111、A112に示すように、相関図DC11上を移動することによって、相関図DC11の局所における画像データに対して所定のフィルタ処理を施す。これにより、相関図DC11の局所における特徴、具体的には、相関図DC10の局所の形状が強調された複数の画像(以下、「特徴マップ」という)DC12(n)(nは、2以上の整数)が生成される。第一実施形態では、フィルタ係数が異なる複数の設定窓W11を設定し、それぞれの設定窓W11によって相関図DC11にフィルタ処理を施す。これにより、複数の特徴マップDC12(n)の組み合わせは、設定窓W11の数と同じ数だけ生成される。図4の二点鎖線の枠Im11には、一つの設定窓W11によってフィルタ処理された複数の特徴マップDC12(n)の集合を示す。
次に、深層学習部15は、活性化関数を利用して複数の特徴マップDC12(n)のそれぞれのコントラストを強調し、複数の特徴マップDC12(n)のそれぞれが有する特徴をさらに強調する。
次に、深層学習部15は、活性化関数によってコントラストが強調された特徴マップDC12(n)に対してプーリング処理を行う。具体的には、活性化関数によってコントラストが強調された複数の特徴マップDC12(n)のそれぞれに所定のサイズの設定窓W12を設定する。例えば、第一実施形態では、設定窓W12は、2×2ピクセルに設定する。深層学習部15は、設定窓W12を複数の特徴マップDC12(n)のそれぞれ、例えば、図4では、特徴マップDC12(m)(mは、1以上n以下の整数)において、一点鎖線矢印A121、A122に示すように、特徴マップDC12(m)上を移動することによって、特徴マップDC12(m)上の設定窓W12内の最大値を抽出する。なお、特徴マップDC12(m)の曲線は、相関図DC10上のリサージュ曲線の一部を示している。
次に、深層学習部15は、プーリング処理された複数の特徴マップDC12(n)を結合した画像(以下、「生成結合画像」という)を生成する。このとき、生成結合画像は、畳み込み処理において設定された設定窓W11の数と同じ数だけ生成される。
深層学習部15は、事前に入力されている装置の状態に関する情報と生成結合画像とを比較し、回転装置5の状態に関する情報を蓄積する。ここで、装置の状態に関する情報とは、回転装置5の状態を示すクラスと回転装置5の状態が当該クラスであるときの生成結合画像に相当する画像との組み合わせの情報であって、当該画像からクラスを導くことが可能となっている。例えば、クラスの名称として、ベアリングについては、内輪損傷、外輪損傷、保持器損傷などであったり、シャフトについては、芯ずれ、アンバランスなどであったりする。
深層学習部15では、このような回転装置5の状態に関する情報と相関図DC10とに基づいて、回転装置5の状態を判定するための情報、例えば、畳み込み処理におけるフィルタの値など相関図DC10の解析の方法や生成結合画像とクラスとの組み合わせの関係などを学習し、蓄積する。
次に、「判定段階」としてのS105において、回転装置5の状態を判定する。S105では、判定部16は、深層学習部15における深層学習、具体的には、相関図DC10の画像解析の結果および深層学習部15が蓄積している情報に基づいて、回転装置5の状態を判定する。具体的には、深層学習部15が蓄積している情報におけるクラスに対応する相関図が有する特徴と、相関図DC10の画像解析の結果とが一致するとき、判定部16は、回転装置5は、当該クラスの故障を抱えていると判定する。また、深層学習部15が蓄積している情報におけるクラスに対応する相関図が有する特徴と、相関図DC10の画像解析の結果とが一致しないとき、判定部16は、回転装置5は、異常を抱えておらず正常であると判定する。
次に、S106において、判定結果を出力する。S106では、出力部17は、判定部16における回転装置5の状態についての判定結果を外部に出力する。
異常診断装置10は、このようにして、回転装置5の状態を判定し、外部に通知する。
(a)第一実施形態による異常診断装置10では、相関図生成部14は、S103において、二つの振動センサ11,12が検出した回転装置5の状態に相関する複数の加速度信号に基づいて当該複数の加速度信号の相関を示す相関図を生成する。相関図には、回転装置5の状態に相関する物理量であって、振動センサ11,12のそれぞれでは検出不可能な物理量が含まれている。深層学習部15では、S104において、事前に入力されているクラスと回転装置5の状態が当該クラスであるときの生成結合画像に相当する画像との組み合わせの情報、および、相関図DC10に基づく深層学習によって、回転装置5の状態を判定するための情報を蓄積する。すなわち、相関図DC10を一つの画像として認識し、相関図DC10に含まれる一画素を一つのニューロンとする深層学習によって回転装置5に特化した画像解析の手法などを学習する。判定部16は、S105において、深層学習部15に蓄積されている回転装置5の状態を判定するための情報および相関図DC10に基づいて回転装置5の状態を判定する。これにより、第一実施形態は、装置の種類に関わらず異常を検出することができる。
(b)また、第一実施形態による異常診断装置10では、畳み込みニューラルネットワークを利用した深層学習によって回転装置5の状態を判定する。これにより、相関図DC10の特徴を人的に抽出することが不要となるため、回転装置5を検査する検査者の作業負担を軽減することができる。また、畳み込み処理およびプーリング処理による相関図DC10の解析において、相関図DC10の解像度は比較的低くても畳み込み処理およびプーリング処理によって相関図DC10の特徴を抽出することができるため、実用性に優れ、かつ、高精度の判定を行うことができる。
(第二実施形態)
次に、本発明の第二実施形態による装置の検査装置、および、装置の検査方法を図5〜8に基づいて説明する。第二実施形態は、装置の検査装置の構成が第一実施形態と異なる。また、第二実施形態は、装置の検査方法のプロセスの一部が第一実施形態と異なる。なお、第一実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
第二実施形態による異常診断装置20は、振動センサ11,12,21,22、モータセンサ23、AD変換部13、および、診断部200を備える。振動センサ21,22、および、モータセンサ23は、特許請求の範囲に記載の「物理量検出部」に相当する。
振動センサ21は、加速度を検出可能なセンサであって、ベアリング92の側壁に設けられている。振動センサ21は、ベアリング92における回転体3の回転に伴う振動の状態を検出可能である。振動センサ21は、ベアリング92の振動の状態をベース50の上面51に略平行な方向の「物理量」としての加速度で示した「物理量信号」としての加速度信号を電気的に接続しているAD変換部13に出力する。
振動センサ22は、加速度を検出可能なセンサであって、ベアリング92の中心から見て振動センサ21と略90度の角度をなすベアリング92の側壁に設けられている。振動センサ22は、ベアリング92における回転体3の回転に伴う振動の状態を検出可能である。振動センサ22は、ベアリング92の振動の状態をベース50の上面51に対して略垂直な方向の「物理量」としての加速度で示した「物理量信号」としての加速度信号を電気的に接続しているAD変換部13に出力する。
モータセンサ23は、モータ6に設けられている。モータセンサ23は、モータ6における出力軸61の「物理量」としての回転速度や回転トルクなどに応じた「物理量信号」としてのモータ信号を電気的に接続しているAD変換部13に出力する。
AD変換部13は、振動センサ11,12,21,22が出力する加速度信号およびモータセンサ23が出力するモータ信号をアナログ信号からデジタル信号に変換する。AD変換部13は、デジタル信号に変換された加速度信号およびモータ信号を診断部200に出力する。
診断部200は、内部にCPU、ROM、RAM、I/O、および、これらの構成を接続するバスラインなどを備える。診断部200における後述する処理は、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。診断部200は、相関図生成部24、深層学習部25、判定部26、および、出力部17を有する。
相関図生成部24は、AD変換部13と電気的に接続している。相関図生成部24は、第一生成部241および第二生成部242を有する。
第一生成部241は、AD変換部13を介して振動センサ11,12,21,22と電気的に接続している。第一生成部241は、振動センサ11,12が出力する加速信号に基づく第一相関図、および、振動センサ21,22が出力する加速信号に基づく第二相関図を生成する。第一相関図および第二相関図は、いわゆる、二つの加速度信号の相関を示すリサージュ曲線であって、第一実施形態のS103において生成される相関図と同じ方法によって生成される。
第二生成部242は、AD変換部13を介して振動センサ11,12,21,22およびモータセンサ23と電気的に接続している。第二生成部242は、振動センサ11,12,21,22が出力する加速度信号およびモータセンサ23が出力する回転速度および回転トルクに応じたモータ信号に基づく第三相関図を生成する。第二生成部242において生成される第三相関図の詳細は、後述する。
深層学習部25は、相関図生成部14と電気的に接続している。深層学習部25は、第一学習部251、第二学習部252、および、正規化部254を有する。
第一学習部251は、第一生成部241と電気的に接続している。第一学習部251には、第一生成部241で生成される第一相関図および第二相関図が有する特徴と回転装置5のクラスとの組み合わせが事前に入力されている。第一学習部251は、当該組み合わせおよび第一相関図および第二相関図の画像解析の結果に基づく深層学習によって回転装置5に特化した情報を深層学習の結果として蓄積する。
第二学習部252は、第二生成部242と電気的に接続している。第二学習部252には、第二生成部242で生成される第三相関図が有する特徴と回転装置5のクラスとの組み合わせが事前に入力されている。第二学習部252は、当該組み合わせおよび相関図の画像解析の結果に基づく深層学習によって回転装置5に特化した情報を深層学習の結果として蓄積する。深層学習部25における深層学習の詳細は、後述する。
正規化部254は、第一学習部251および第二学習部252と電気的に接続している。正規化部254は、第一学習部251における深層学習の結果と第二学習部252における深層学習の結果に対して重み付けをした後に正規化する。
判定部26は、正規化部254と電気的に接続されている。判定部26は、深層学習部25が蓄積している情報、正規化部254において正規化された深層学習の結果および相関図の画像解析の結果に基づいて回転装置5の状態を判定する。判定部26は、判定結果を出力部17に出力する。
次に、異常診断装置20による回転装置5の診断プロセスについて図6〜8に基づいて説明する。図6に回転装置5の診断プロセスのフローチャートを示す。図6に示すフローチャートは、回転装置5が稼働している間、常時実行される。
最初に、S201において、第一実施形態のS101と同様に、診断部200を初期化する。
次に、「信号取得段階」としてのS202において、診断部200に加速度信号およびモータ信号を入力する。S202では、第一生成部241にデジタル信号に変換された加速度信号を入力する。また、第二生成部242にデジタル信号に変換された加速度信号およびモータ信号を入力する。
次に、「相関図生成段階」としてのS203において、デジタル信号に変換された加速度信号に基づいて第一相関図および第二相関図を生成する。
次に、「深層学習段階」としてのS204において、第一相関図および第二相関図に基づく深層学習を行う。S204では、第一学習部251は、第一相関図および第二相関図に対して、第一実施形態のS104における深層学習と同じ畳み込みニューラルネットワークを利用した深層学習を行う。これにより、第一学習部251は、第一相関図および第二相関図に基づいて生成される生成結合画像と回転装置5の状態に関する情報とに基づいて回転装置5の状態を判定するための情報を学習し、蓄積する。
また、S202の次に、「相関図生成段階」としてのS205において、デジタル信号に変換された加速度信号およびモータ信号に基づいて第三相関図を生成する。S205では、第二生成部242に入力された四つの加速度信号およびモータ信号に基づいて第三相関図を生成する。このとき生成される第三相関図について図7に基づいて説明する。
図7に、振動センサ11の加速度信号の時間変化を示す信号情報S11、振動センサ21の加速度信号の時間変化を示す信号情報S21、および、モータ信号に含まれる回転トルクの時間変化を示す信号情報S23を示す。信号情報S11,S21では、横軸に時間が示され、縦軸に加速度の大きさが示されている。信号情報S23では、横軸に時間が示され、縦軸に回転トルクの差分が示されている。
S205では、最初に、第二生成部242は、信号情報S11,S21をwavelet変換による時間軸上の周波数解析を行う。その解析結果を画像D11,D21とする。図示していないが、このとき、振動センサ12,22の加速度信号の時間変化を示す信号情報も、信号情報S11,S21と同様にwavelet変換による時間軸上の周波数解析を行う。
次に、第二生成部242は、画像DC11,D21、信号情報S23などを一つに結合した第三相関図DC20を生成する。第三相関図DC20では、図7に示すように、画像D11,D21、信号情報S23などが層状に配列される。このとき、振動センサ12,22の加速度信号のwavelet変換による時間軸上の周波数解析の結果や、モータ信号に含まれる回転速度の時間変化を示す信号情報も含まれるよう第三相関図DC20を生成する。
次に、「深層学習段階」としてのS206において、第三相関図DC20に基づく深層学習を行う。S206では、第二学習部252は、S205において生成された第三相関図DC20に対して畳み込みニューラルネットワークを利用した深層学習を行う。
第二学習部252における深層学習の内容について図8に基づいて説明する。
最初に、第二学習部252は、第三相関図DC20に対して畳み込み処理を行う。具体的には、第三相関図DC20をマトリックス状に分割し、相関図DC21(図8参照)を生成する。例えば、第二学習部252では、第三相関図DC20が40×8×pピクセルの画像となるよう分割する。ここで、pは、複数であって第三相関図DC20に含まれる信号情報単位の数を表す。すなわち、第三相関図DC20および第三相関図DC20をマトリックス状に分割した相関図DC21は、p個の信号情報を含んだ相関図となっている。
次に、第二学習部252は、相関図DC21上に所定のサイズの設定窓W21を設定する。例えば、第二実施形態では、第二学習部252は、設定窓W21を4×4ピクセルに設定する。第二学習部252は、設定窓W21を図8の相関図DC21上に示されている一点鎖線矢印A211、A212に示すように、相関図DC21上を移動することによって、相関図DC21の局所における画像データに対して所定のフィルタ処理を施す。このとき、第二学習部252は、設定窓W21を画像D11,D21、信号情報S23などのそれぞれの信号情報単位ごと移動し、それぞれの信号情報単位ごとに畳み込み処理を行う。
ここで、第二学習部252における畳み込み処理を、相関図DC21を画像D11,D21、信号情報S23などのそれぞれの信号情報単位に沿って分割して示した二点鎖線の枠Im21内の模式図を使って説明する。枠Im21内には、信号情報S11に対応する画像DC21(1)、信号情報S21に対応する画像DC21(2)、信号情報S23に対応する画像DC21(p)などを示す。
第二学習部252における相関図DC21の畳み込み処理は、設定窓W21が、一点鎖線矢印A211、A212に示すように、画像DC21(1)上のみを移動することによって画像DC21(1)のみに対して行われると、次に、設定窓W21が、一点鎖線矢印A221、A222に示すように、画像DC21(2)上のみを移動することによって画像DC21(2)のみに対して行われる。その後、相関図DC21を構成する信号情報単位ごとに畳み込み処理が行われ、最後に、設定窓W21が画像DC21(p)上のみを移動することによって画像DC21(p)のみに対して行われ、第二学習部252における畳み込み処理が終了する。このように、第二学習部252における相関図DC21の畳み込み処理では、隣り合う信号情報の境界における畳み込み処理は行われないか、または、行われても該当する情報は排除される。これにより、相関図DC21は、p個の信号情報単位のそれぞれにおいてq個の特徴マップDC222が生成される。すなわち、q個の特徴マップDC222を有するグループがp個ある集合体Gp222が生成される。なお、図8では、一つの信号情報単位における複数の特徴マップD222のグループをGs(sは、p以下の整数)として示している。すなわち、グループG1からグループGpの集合体Gp222が、相関図DC21を一つの設定窓W21によって畳み込み処理のためのフィルタ処理が施された処理結果となる。
第二実施形態では、フィルタ係数が異なる複数の設定窓W21を設定し、それぞれの設定窓W21によってフィルタ処理を施す。これにより、グループGp222は、畳み込み処理において設定された設定窓W21の数と同じ数だけ生成される。
次に、第二学習部252は、第一実施形態と同様に、活性化関数を利用して特徴マップDC222のそれぞれが有する特徴をさらに強調した後、活性化関数によってコントラストが強調された特徴マップDC222のそれぞれに対してプーリング処理を行う。具体的には、例えば、図8に示す特徴マップDC222(2:r)上において、一点鎖線矢印A221、A222に沿って、例えば、2×2ピクセルの設定窓W22を移動し、特徴マップDC222(2:r)上の設定窓W22内の最大値を抽出する。なお、rは、1以上q以下の整数である。
次に、第二学習部252は、プーリング処理された複数の特徴マップDC222を結合した生成結合画像を生成する。このとき、生成結合画像は、畳み込み処理において設定された設定窓W21の数と同じ数だけ生成される。
例えば、第二実施形態では、第三相関図DC20における一つの信号情報単位は40×8ピクセルの画像となるよう形成されていることから、一つの信号情報単位は、設定窓W21が1ピクセルごとに移動する場合、畳み込み処理によって37×5ピクセルの画像となる。さらに、設定窓W22が1ピクセルごとに移動する場合、プーリング処理によって、一つの信号情報単位に基づく生成結合画像は、19×3ピクセルの画像となる。
第二学習部252は、事前に入力されている装置の状態に関する情報と生成結合画像とを比較し、回転装置5の状態に関する情報を蓄積する。ここで、S206での深層学習における装置の状態に関する情報を、ベアリングに関する既知の故障判別周波数の計算式に基づく情報とする。具体的には、第二学習部252は、第三相間図から導出された生成結合画像とベアリングに関して理論的に導出されている故障判別周波数の計算式に基づく画像情報とを比較し、回転装置5の状態を判定するための情報としてベアリング単独の状態を判定する情報を学習し、蓄積する。
次に、「正規化段階」として、S207において、深層学習部25の深層学習の結果を正規化する。S207では、正規化部254は、第一学習部251における深層学習の結果と第二学習部252における深層学習の結果とに対して重み付けをする。正規化部254は、重み付けにしたがって深層学習の結果の合算が1となるよう処理する。第二実施形態では、第二学習部252における深層学習の結果を第一学習部251における深層学習の結果に比べ重くする。
次に、「判定段階」としてのS208において、第一実施形態のS105と同様に、回転装置5の状態を判定する。S208では、判定部26は、正規化部254における深層学習部25の複数の深層学習の結果に対する正規化の結果および相関図の画像解析の結果に基づいて、回転装置5の状態を判定する。
次に、S209において、第一実施形態のS106と同様に、判定結果を出力する。S209では、出力部17は、判定部26における回転装置5の状態についての判定結果を外部に出力する。
異常診断装置20は、このようにして、回転装置5の状態を判定し、外部に通知する。
(c)第二実施形態による異常診断装置20では、第二学習部252には、ベアリングに関して理論的に導出されている故障判別周波数の計算式が事前に入力されている。また、第二生成部242は、S205において、振動センサ11,12,21,22の加速度信号の周波数解析の結果などから第三相関図DC20を生成する。これにより、第二学習部252は、S206において、ベアリングに関して理論的に導出されている故障判別周波数の計算式を当てはめることができるため、ベアリング91,92のそれぞれの状態を高精度に判定を行うことができる。したがって、第二実施形態では、第一実施形態の効果(a)、(b)を奏するとともに、ベアリング91,92の異常を高精度に検出することができる。
(d)また、第二実施形態では、正規化部254は、S207において、第一学習部251における深層学習の結果および第二学習部252における深層学習の結果に対して正規化する。このとき、正規化部254は、ベアリングに関する故障判別周波数の計算式による判定が比較的重くなるよう重み付けした後、正規化する。これにより、回転装置5の状態を判定する際、事前に入力されている装置の状態に関する情報と実データに基づいて生成された生成結合画像との比較に比べ、ベアリング91,92の状態を理論的に判定可能な故障判別周波数の計算式に重点を置くこととなり、より理論的な診断を行うことができる。したがって、回転装置5の異常を高精度に検出することができる。
(e)また、第二実施形態では、第二生成部242は、S205において、加速度を検出可能な振動センサ11,12,21,22が出力する加速度信号をwavelet変換による時間軸上の周波数解析を行う。これにより、第三実施形態は、ベアリング91,92の加速度信号の周波数解析の結果と故障モードとに因果関係がある回転装置5について特に高精度に検出することができる。
(第三実施形態)
次に、本発明の第三実施形態による回転診断装置を図9,10に基づいて説明する。第三実施形態は、診断プロセスの一部が第二実施形態と異なる。なお、第二実施形態と実質的に同一の部位には同一の符号を付し、説明を省略する。
第三実施形態による異常診断装置30は、振動センサ11,12,21,22、モータセンサ23、AD変換部13、および、診断部300を備える。
診断部300は、内部にCPU、ROM、RAM、I/O、および、これらの構成を接続するバスラインなどを備える。診断部300における後述する処理は、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。診断部300は、相関図生成部34、深層学習部35、判定部36、および、出力部17を有する。
相関図生成部34は、AD変換部13と電気的に接続している。相関図生成部34は、第一生成部241、第二生成部242、および、第三生成部343を有する。
第三生成部343は、AD変換部13を介して振動センサ11,12,21,22およびモータセンサ23と電気的に接続している。第三生成部343は、振動センサ11,12,21,22が出力する加速度信号の時間変化を示す図、および、モータセンサ23が出力する回転速度および回転トルクに応じたモータ信号の時間変化を示す図を生成する。
深層学習部35は、相関図生成部14と電気的に接続している。深層学習部35は、第一学習部251、第二学習部252、第三学習部353、および、正規化部354を有する。
第三学習部353は、第三生成部343と電気的に接続している。第三学習部353には、第三生成部343で生成される加速度信号の時間変化を示す図およびモータ信号の時間変化を示す図が有する特徴と回転装置5のクラスとの組み合わせが事前に入力されている。第三学習部353は、当該組み合わせおよび加速度信号およびモータ信号の時間変化を示す図の画像解析の結果に基づく深層学習によって回転装置5に特化した情報を深層学習の結果として蓄積する。
正規化部354は、第一学習部251、第二学習部252および第三学習部353と電気的に接続している。正規化部354は、第一学習部251における深層学習の結果、第二学習部252における深層学習の結果および第三学習部353における深層学習の結果に対して重み付けをした後に正規化する。
判定部36は、正規化部354と電気的に接続されている。判定部36は、深層学習部35が蓄積している情報、正規化部354において正規化された深層学習の結果および相関図の画像解析の結果に基づいて回転装置5の状態を判定する。判定部36は、判定結果を出力部17に出力する。
次に、異常診断装置30による回転装置5の診断プロセスについて図10に基づいて説明する。図10に回転装置5の診断プロセスのフローチャートを示す。図10に示すフローチャートは、回転装置5が稼働している間、常時実行される。
最初に、S301において、第二実施形態のS201と同様に、診断部300を初期化する。
次に、「信号取得段階」としてのS302において、第二実施形態のS202と同様に、診断部300に加速度信号およびモータ信号を入力する。
次に、「相関図生成段階」としてのS303において、第二実施形態のS203と同様に、デジタル信号に変換された加速度信号に基づいて第一相関図および第二相関図を生成する。
次に、「深層学習段階」としてのS304において、第二実施形態のS204と同様に、第一相関図および第二相関図に基づく深層学習を行う。S304では、第一学習部251は、第一相関図および第二相関図に対して、第二実施形態のS204における深層学習と同じ畳み込みニューラルネットワークを利用した深層学習を行う。
また、S302の次に、「相関図生成段階」としてのS305において、第二実施形態のS205と同様に、デジタル信号に変換された加速度信号およびモータ信号に基づいて第三相関図を生成する。
次に、「深層学習段階」としてのS306において、S304と同様に、第三相関図に基づく深層学習を行う。
また、S302の次のS307において、入力信号の時間変化を示す図を生成する。S307では、第三生成部343は、振動センサ11,12,21,22の加速度信号の時間変化を示す図、および、モータ信号の時間変化を示す図を生成する。
次に、S308において、加速度信号の時間変化を示す図およびモータ信号の時間変化を示す図に基づく深層学習を行う。S308では、第三学習部353は、S304およびS306と同様に、加速度信号の時間変化を示す図およびモータ信号の時間変化を示す図に対して畳み込みニューラルネットワークを利用した深層学習を行う。
S308では、第三学習部353は、加速度信号の時間変化を示す図およびモータ信号の時間変化を示す図をマトリックス状に分割した図において畳み込み処理を行い、それぞれの図の特徴マップを生成する。第三学習部353は、活性化関数の利用およびプーリング処理した複数の特徴マップを結合した生成結合画像を事前に入力されている装置の状態に関する情報と比較し、回転装置5の状態に関する情報を蓄積する。
S308での深層学習における装置の状態に関する情報は、これまでの回転装置5の使用において発生した想定外の異常に基づく情報(以下、「想定外情報」という)とする。この想定外情報とは、回転装置5を利用する上で想定外の要因によって起きる異常に基づく情報であって、回転装置5の長時間の使用や使用されている回転装置5の台数の増加などによって蓄積される情報である。具体的には、回転装置5を利用した加工装置における加工条件の変更や被加工部材の材料の変化、ロット違いなど、回転装置5を一定の条件下で使用している限りは発生しない異常であるものの、回転装置5の実使用に即して発生する異常に関する情報である。第三実施形態では、この想定外情報を回転装置5の状態に関する情報として、第三学習部353に事前に入力しておく。第三学習部353は、想定外情報と生成結合画像とを比較し、回転装置5の状態を判定するための情報を学習し、蓄積する。
次に、「正規化段階」として、S309において、深層学習部35の深層学習の結果を正規化する。S309では、正規化部354は、第一学習部251における深層学習の結果、第二学習部252における深層学習の結果および第三学習部353における深層学習の結果に対して重み付けをする。正規化部354は、重み付けにしたがって深層学習の結果の合算が1となるよう処理する。第三実施形態では、第三学習部353における深層学習の結果を第二学習部252における深層学習の結果に比べ重くする。
次に、「判定段階」としてのS310において、第二実施形態のS208と同様に、回転装置5の状態を判定する。S310では、判定部36は、正規化部354における深層学習部35の複数の深層学習の結果に対する正規化の結果および相関図の画像解析の結果に基づいて、回転装置5の状態を判定する。
次に、S311において、第二実施形態のS209と同様に、判定結果を出力する。S311では、出力部17は、判定部36における回転装置5の状態についての判定結果を外部に出力する。
異常診断装置30は、このようにして、回転装置5の状態を判定し、外部に通知する。
第三実施形態による異常診断装置30では、S308において、第三学習部353には、想定外情報が事前に入力されている。想定外情報は、実際に発生した異常に基づく情報であるが、一回の実データに基づく深層学習を行う第一学習部251、および、理論的に導出されている故障判別周波数の計算式に基づく深層学習を行う第二学習部252においては、情報が蓄積されない。そこで、第三実施形態では、第三学習部353は、S308において、事前に入力した想定外情報と生成結合画像とを比較し、回転装置5の状態を判定するための情報を蓄積するとともに、回転装置5の状態の判定に利用する。これにより、第三実施形態は、第一実施形態の効果(a),(b)、および、第二実施形態の効果(c),(e)を奏するとともに、回転装置5の異常をさらに高精度に検出することができる。
また、第三実施形態では、正規化部354は、S309において、第一学習部251における深層学習の結果、第二学習部252における深層学習の結果および第三学習部353における深層学習の結果を正規化する。このとき、正規化部354は、想定外情報に基づく判定が比較的重くなるよう重み付けした後、正規化する。これにより、事前に入力されている装置の状態に関する情報と実データに基づいて生成された生成結合画像との比較やベアリング91,92の状態を理論的に判定可能な故障判別周波数の計算式に比べ、回転装置5のこれまでの使用によって現場で取得された情報に重点を置くこととなる。したがって、回転装置5の異常をさらに高精度に検出することができる。
(他の実施形態)
第一実施形態では、異常診断装置および異常診断プロセスは、回転体を回転可能に支持する回転装置に適用されるとした。しかしながら、異常診断装置および異常診断プロセスが適用される装置は、これに限定されない。稼働しているときに複数の「物理量検出部」によって自身の状態に相関する複数の物理量が検出可能な装置であればよい。
上述の実施形態では、深層学習部は、畳み込みニューラルネットワークを利用した深層学習を行うとした。しかしながら、深層学習の内容は、これに限定されない。
また、畳み込みニューラルネットワークを利用した深層学習において、特徴マップのコントラストを強調するため、活性化関数を利用するとした。しかしながら、活性化関数は利用しなくてもよい。
また、畳み込みニューラルネットワークを利用した深層学習において、畳み込み処理およびプーリング処理は、それぞれ一回ずつ行うとしたが、それぞれ複数回行ってもよいし、畳み込み処理の回数とプーリング処理の回数とが異なってもよい。
上述の実施形態では、プーリング処理は、特徴マップ上の設定窓内の最大値を抽出するとした。しかしながら、プーリング処理は、これに限定されない。特徴マップ上の設定窓内の平均値を演算してもよい。
上述の実施形態では、畳み込み処理における設定窓は、複数設定されるとした。しかしながら、設定窓は、一つであってもよい。複数設定することによって深層学習の精度は向上するが、一つの設定窓であっても、フィルタ処理が的確な処理内容であれば深層学習は可能である。
第一実施形態では、診断部には加速度信号が入力されるとした。しかしながら、診断部に入力される信号の種類はこれに限定されない。
第一実施形態では、「相関図」として二つの加速度信号によるリサージュ曲線を生成するとした。第二、三実施形態では、「相関図」として加速度信号の周波数解析の結果とモータ信号の時間変化を示す図とからなる相関図を生成するとした。しかしながら、「相関図」は、これに限定されない。「相関図」は、回転装置の状態に相関する複数の物理量信号の相関を示すよう形成されていればよい。例えば、加速度信号の周波数解析の結果を「相関図」としてもよい。
第二実施形態では、ベアリングに関する故障判別周波数の計算式の重み付けを比較的高くするとした。また、第三実施形態では、想定外情報の重み付けを比較的高くするとした。しかしながら、重み付けは、任意に設定することが可能である。
以上、本発明はこのような実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の形態で実施可能である。
5・・・回転装置(装置)
10,20,30・・・異常診断装置(装置の検査装置)
11,12,21,22・・・振動センサ(物理量検出部)
23・・・モータセンサ(物理量検出部)
14,24,34・・・相関図生成部
15,25,35・・・深層学習部
16,26,36・・・判定部

Claims (10)

  1. 稼働している装置(5)の異常を検出可能な装置の検査装置であって、
    前記装置の状態に相関する複数の物理量を検出可能に設けられ、複数の物理量に応じた物理量信号を出力可能な複数の物理量検出部(11,12,21,22,23)と、
    複数の前記物理量検出部が出力する複数の物理量信号の相関を示す相関図を生成する相関図生成部(14,24,34)と、
    前記相関図生成部が生成する相関図に基づく深層学習を行う深層学習部(15,25,35)と、
    前記深層学習部における深層学習の結果に基づいて前記装置の状態を判定する判定部(16,26,36)と、
    を備える装置の検査装置。
  2. 前記深層学習部は、相関図に対する畳み込みニューラルネットワークによる深層学習を行う請求項1に記載の装置の検査装置。
  3. 前記深層学習部は、複数の物理量信号が層状に配列されている相関図に対する畳み込み処理およびプーリング処理を行うとき、当該相関図に含まれる複数の物理量信号のそれぞれに対して畳み込み処理およびプーリング処理を行う請求項2に記載の装置の検査装置。
  4. 前記相関図生成部は、複数の前記物理量検出部が出力する物理量信号をwavelet変換による時間軸上の周波数解析の結果に基づいて相関図を生成する請求項1〜3のいずれか一項に記載の装置の検査装置。
  5. 前記深層学習部は、複数の前記相関図生成部のそれぞれにおいて生成される複数の相関図のそれぞれに基づく深層学習を行う複数の学習部(251,252)、および、複数の前記学習部のそれぞれにおける複数の深層学習の結果に対して重み付けした後に正規化する正規化部(254,354)を有する請求項1〜4のいずれか一項に記載の装置の検査装置。
  6. 稼働している装置(5)の異常を検出可能な装置の検査方法であって、
    当該装置の状態に相関する複数の物理量に応じた物理量信号を取得する信号取得段階と、
    複数の物理量信号の相関を示す相関図を生成する相関図生成段階と、
    前記相関図生成段階において生成される相関図に基づく深層学習を行う深層学習段階と、
    前記深層学習段階における深層学習の結果に基づいて前記装置の状態を判定する判定段階と、
    含む装置の検査方法。
  7. 前記深層学習段階における深層学習は、相関図に対する畳み込みニューラルネットワークによるものである請求項6に記載の装置の検査方法。
  8. 相関図が層状に配列されている複数の物理量信号から形成されているとき、前記深層学習段階における深層学習は、当該相関図に含まれる複数の物理量信号のそれぞれに対して畳み込み処理およびプーリング処理を行う請求項7に記載の装置の検査方法。
  9. 前記相関図生成段階において、物理量信号をwavelet変換による時間軸上の周波数解析の結果に基づいて相関図を生成する請求項6〜8のいずれか一項に記載の装置の検査方法。
  10. 複数の前記深層学習段階の後であって、かつ、前記判定段階の前に、複数の前記深層学習段階における複数の深層学習の結果に対して重み付けした後に正規化する正規化段階をさらに含む請求項6〜9のいずれか一項に記載の装置の検査方法。
JP2016232774A 2016-11-30 2016-11-30 装置の検査装置、および、装置の検査方法 Pending JP2018091640A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016232774A JP2018091640A (ja) 2016-11-30 2016-11-30 装置の検査装置、および、装置の検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016232774A JP2018091640A (ja) 2016-11-30 2016-11-30 装置の検査装置、および、装置の検査方法

Publications (1)

Publication Number Publication Date
JP2018091640A true JP2018091640A (ja) 2018-06-14

Family

ID=62565512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016232774A Pending JP2018091640A (ja) 2016-11-30 2016-11-30 装置の検査装置、および、装置の検査方法

Country Status (1)

Country Link
JP (1) JP2018091640A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932174A (zh) * 2018-12-28 2019-06-25 南京信息工程大学 一种基于多任务深度学习的齿轮箱故障诊断方法
CN110068760A (zh) * 2019-04-23 2019-07-30 哈尔滨理工大学 一种基于深度学习的异步电动机故障诊断方法
KR102189269B1 (ko) * 2019-10-22 2020-12-09 경북대학교 산학협력단 컨볼루션 신경망을 이용한 유도 모터의 결함 진단방법 및 시스템
JP2021018148A (ja) * 2019-07-19 2021-02-15 株式会社ミツバ 異常検出システム
JP2021032822A (ja) * 2019-08-28 2021-03-01 カヤバ システム マシナリー株式会社 検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法
WO2023276895A1 (ja) 2021-06-30 2023-01-05 株式会社デンソー 設備状態監視システム
JP7349339B2 (ja) 2019-12-04 2023-09-22 株式会社日立製作所 振動機械の異常診断装置、および、異常診断方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241945A (ja) * 1998-02-25 1999-09-07 Mitsubishi Electric Corp 異音検査装置
JP2016168046A (ja) * 2015-03-09 2016-09-23 学校法人法政大学 植物病診断システム、植物病診断方法、及びプログラム
US20160307071A1 (en) * 2015-04-20 2016-10-20 Xerox Corporation Fisher vectors meet neural networks: a hybrid visual classification architecture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241945A (ja) * 1998-02-25 1999-09-07 Mitsubishi Electric Corp 異音検査装置
JP2016168046A (ja) * 2015-03-09 2016-09-23 学校法人法政大学 植物病診断システム、植物病診断方法、及びプログラム
US20160307071A1 (en) * 2015-04-20 2016-10-20 Xerox Corporation Fisher vectors meet neural networks: a hybrid visual classification architecture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932174A (zh) * 2018-12-28 2019-06-25 南京信息工程大学 一种基于多任务深度学习的齿轮箱故障诊断方法
CN110068760A (zh) * 2019-04-23 2019-07-30 哈尔滨理工大学 一种基于深度学习的异步电动机故障诊断方法
JP2021018148A (ja) * 2019-07-19 2021-02-15 株式会社ミツバ 異常検出システム
JP2021032822A (ja) * 2019-08-28 2021-03-01 カヤバ システム マシナリー株式会社 検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法
JP7252863B2 (ja) 2019-08-28 2023-04-05 Kyb株式会社 検査装置の異常箇所評価システムおよび検査装置の異常箇所評価方法
KR102189269B1 (ko) * 2019-10-22 2020-12-09 경북대학교 산학협력단 컨볼루션 신경망을 이용한 유도 모터의 결함 진단방법 및 시스템
JP7349339B2 (ja) 2019-12-04 2023-09-22 株式会社日立製作所 振動機械の異常診断装置、および、異常診断方法
WO2023276895A1 (ja) 2021-06-30 2023-01-05 株式会社デンソー 設備状態監視システム

Similar Documents

Publication Publication Date Title
JP2018091640A (ja) 装置の検査装置、および、装置の検査方法
Hasan et al. Acoustic spectral imaging and transfer learning for reliable bearing fault diagnosis under variable speed conditions
KR101998559B1 (ko) 딥 러닝과 웨이블렛 변환을 이용한 회전체의 고장 진단 시스템
JP7270773B2 (ja) 誘導電動機の軸受故障重大度を推定する方法
Khan et al. Automated bearing fault diagnosis using 2D analysis of vibration acceleration signals under variable speed conditions
Jiménez-Guarneros et al. Diagnostic of combined mechanical and electrical faults in ASD-powered induction motor using MODWT and a lightweight 1-D CNN
JP6508017B2 (ja) 機械設備の評価方法
JP6120720B2 (ja) 周波数分析方法、及びこの周波数分析方法を用いた回転機器の診断方法
CA2874991A1 (en) Methods and apparatuses for defect diagnosis in a mechanical system
KR101967301B1 (ko) 학습 데이터 융합을 이용한 회전체의 고장 진단 시스템
Immovilli et al. Experimental investigation of shaft radial load effect on bearing fault signatures detection
JP5765881B2 (ja) 設備機器の診断装置
Hizarci et al. Vibration region analysis for condition monitoring of gearboxes using image processing and neural networks
JP2020183939A (ja) ギアボックスの異常検出方法及び情報処理装置
Piltan et al. Fault Diagnosis of Bearings Using an Intelligence-Based Autoregressive Learning Lyapunov Algorithm.
Han et al. A novel intelligent fault diagnosis method based on dual convolutional neural network with multi-level information fusion
Irfan et al. Analysis of bearing surface roughness defects in induction motors
Irfan et al. Analysis of distributed faults in inner and outer race of bearing via Park vector analysis method
CN113916535A (zh) 基于时频和cnn的轴承诊断方法、系统、设备及介质
JP6733838B1 (ja) 転がり軸受の異常診断方法及び異常診断装置
Moghadasian et al. Induction motor fault diagnosis using ANFIS based on vibration signal spectrum analysis
Ribeiro et al. Mechanical fault detection in electric motors measured by a digital signal processing device in an optical mouse
EP3953580B1 (en) A method for computer-implemented monitoring of a component of a wind turbine
JP7349339B2 (ja) 振動機械の異常診断装置、および、異常診断方法
JP5321646B2 (ja) 異常検査方法及び異常検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200204