JP2018090885A - MOLTEN Zn-Al-Mg GROUP PLATED SHEET STEEL, AND MOLTEN Zn-Al-Mg GROUP PLATED SHEET STEEL MANUFACTURING METHOD - Google Patents

MOLTEN Zn-Al-Mg GROUP PLATED SHEET STEEL, AND MOLTEN Zn-Al-Mg GROUP PLATED SHEET STEEL MANUFACTURING METHOD Download PDF

Info

Publication number
JP2018090885A
JP2018090885A JP2016237590A JP2016237590A JP2018090885A JP 2018090885 A JP2018090885 A JP 2018090885A JP 2016237590 A JP2016237590 A JP 2016237590A JP 2016237590 A JP2016237590 A JP 2016237590A JP 2018090885 A JP2018090885 A JP 2018090885A
Authority
JP
Japan
Prior art keywords
plating layer
molten
steel sheet
alloy
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016237590A
Other languages
Japanese (ja)
Other versions
JP6880690B2 (en
Inventor
大地 上田
Daichi Ueda
大地 上田
義勝 西田
Yoshikatsu Nishida
義勝 西田
藤井 孝浩
Takahiro Fujii
孝浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2016237590A priority Critical patent/JP6880690B2/en
Publication of JP2018090885A publication Critical patent/JP2018090885A/en
Application granted granted Critical
Publication of JP6880690B2 publication Critical patent/JP6880690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a molten Zn-Al-Mg alloy plated sheet metal having a molten Zn-Al-Mg alloy plated layer, in which the exposure of a base material steel plate hardly occurs due to cracking and peel in a processing part of a molten Zn-Al-Mg alloy plated layer so that the reduction of anticorrosion in the processing part is suppressed and so that the plated sheet can be manufactured not by the rapid low-temperature heating.SOLUTION: A molten Zn-Al-Mg alloy plated sheet metal of the invention comprises a base material steel plate, a Ni plated layer having a thickness of 0.3 μm to 4.0 μm, and a molten Zn-Al-Mg alloy plating layer of Al: 1.0 weight % to 22.0 weight %; Mg: 0.5 weight % to 10.0 weight %, and the remainder being made of Zn, and a Ni-Al based inter-metallic compound between the Ni plated layer and the molten Zn alloy plated layer.SELECTED DRAWING: Figure 1

Description

本発明は、溶融Zn−Al−Mg系めっき鋼板および溶融Zn−Al−Mg系めっき鋼板の製造方法に関する。   The present invention relates to a molten Zn—Al—Mg-based plated steel sheet and a method for producing a molten Zn—Al—Mg-based plated steel sheet.

Zn系めっき鋼板は製造コストが安価であり、かつ、犠牲防食効果により鋼材を錆から保護する効果を有する。そのため、Zn系めっき鋼板は、自動車、建材、家電、土木など幅広い分野で利用されている。   The Zn-based plated steel sheet has a low manufacturing cost and has an effect of protecting the steel material from rust by a sacrificial anticorrosive effect. Therefore, Zn-based plated steel sheets are used in a wide range of fields such as automobiles, building materials, home appliances, and civil engineering.

Alの不動態化によって耐食性をより高め、寿命をより長くしたZn系めっき鋼板として、Zn−55%Al合金めっき鋼板が開発された。しかし、Zn−55%Al合金めっき鋼板は、高Al添加によりZn含有量が相対的に低下するため、犠牲防食効果がZnめっき鋼板よりも低くなり、めっき表面が傷ついたりして基材鋼板が露出すると腐食が発生しやすくなる。さらに、合金めっきは一般的に金属間化合物をめっき層に含むため塑性変形させにくく、各種加工によってめっき層の割れや剥離が生じて基材鋼板が露出しやすいため、特に加工部では腐食が発生しやすい。   A Zn-55% Al alloy-plated steel sheet has been developed as a Zn-based plated steel sheet with higher corrosion resistance and longer life due to Al passivation. However, the Zn-55% Al alloy plated steel sheet has a relatively low Zn content due to the addition of high Al, so that the sacrificial corrosion protection effect is lower than that of the Zn plated steel sheet, and the surface of the plated steel is damaged. When exposed, corrosion is likely to occur. Furthermore, alloy plating generally contains an intermetallic compound in the plating layer, so it is difficult to be plastically deformed, and the plating layer is cracked or peeled off by various processing, and the base steel sheet is likely to be exposed. It's easy to do.

Alによる不動態化およびZnによる犠牲防食効果をいずれも高めたZn系めっき鋼板として、溶融Zn−Al−Mg系めっき鋼板が開発された。溶融Zn−Al−Mg系めっき鋼板は、Alの不動態化による耐食性の高まりに加えて、犠牲防食効果で生成されるZn腐食生成物がMgにより緻密化されて加工部の周辺の基材鋼板を被覆することにより、加工部の耐食性も大きく向上している。   As a Zn-based plated steel sheet in which both the passivation by Al and the sacrificial anticorrosive effect by Zn have been enhanced, a molten Zn-Al-Mg-based plated steel sheet has been developed. The hot-dip Zn-Al-Mg-based plated steel sheet is a base steel sheet in the periphery of the processed part because Zn corrosion products produced by the sacrificial anticorrosive effect are densified by Mg in addition to the increase in corrosion resistance due to Al passivation. The corrosion resistance of the processed part is greatly improved.

しかし、溶融Zn−Al−Mg系めっき鋼板などの合金めっき鋼板でも、金属間化合物をめっき層に含むためめっき層を塑性変形させにくく、各種加工によってめっき層の割れや剥離が生じて基材鋼板が露出しやすいことには変わらない。また、溶融Zn−Al−Mg系めっき鋼板などでも、基材鋼板が露出した加工部の耐食性は、未加工部と同等にまで高まっているとはいえない。   However, even alloy-plated steel sheets such as hot-dip Zn-Al-Mg-plated steel sheets contain intermetallic compounds in the plating layer, so that the plating layer is difficult to be plastically deformed, and cracks and peeling of the plating layer occur due to various processing, and the base steel sheet Is still easy to expose. Moreover, it cannot be said that the corrosion resistance of the processed part where the base steel sheet is exposed is increased to the same level as that of the unprocessed part even in a molten Zn—Al—Mg-based plated steel sheet.

この問題に対し、特許文献1では、溶融Zn−Al合金めっき、溶融Zn−Al−Mg合金めっき、Al−Si合金めっきなど各種合金めっきを50℃以上150℃未満の温度領域に加熱保持したまま加工(温間加工)することで、めっき層の割れを大幅に低減し、加工部における耐食性の低下を抑制している。また、特許文献2では、Zn系合金めっきを90℃以上300℃未満で熱処理してめっき層内に微細結晶層を生成させ、加工によるめっき層の割れを微細化することで、加工部における耐食性の低下を抑制している。   With respect to this problem, in Patent Document 1, various alloy platings such as molten Zn—Al alloy plating, molten Zn—Al—Mg alloy plating, and Al—Si alloy plating are kept heated in a temperature range of 50 ° C. or more and less than 150 ° C. By processing (warm processing), the crack of the plating layer is greatly reduced, and the deterioration of the corrosion resistance in the processed portion is suppressed. Further, in Patent Document 2, the Zn-based alloy plating is heat-treated at a temperature of 90 ° C. or higher and lower than 300 ° C. to generate a fine crystal layer in the plating layer, and the cracking of the plating layer due to the processing is refined, thereby providing corrosion resistance in the processed portion. Is suppressed.

また、特許文献3では、溶融Zn−Al−Mg合金めっき層上に、密着性に優れたエポキシ系樹脂塗膜を介して伸び率100%以上の熱硬化型樹脂塗膜を積層させ、上記伸び率が高い塗膜にめっき層の割れを覆わせて基材鋼板を露出しにくくすることで、加工部における耐食性の低下を抑制している。   In Patent Document 3, a thermosetting resin coating film having an elongation of 100% or more is laminated on a molten Zn—Al—Mg alloy plating layer through an epoxy resin coating film having excellent adhesion, and the elongation described above is achieved. By covering the plated layer with cracks in a coating film having a high rate and making it difficult to expose the base steel plate, a decrease in corrosion resistance in the processed portion is suppressed.

また、特許文献4では、溶融Zn系合金めっき層の下層にNiめっき層を設けてめっき層と基材鋼板との界面にNi−Al−Fe−Zn化合物を生成させ、この金属間化合物のバインダー効果によって溶融Zn系合金めっき層の密着性を高めることで、溶融Zn系合金めっき層の割れや剥離を抑制して、加工部における耐食性の低下を抑制している。特許文献4には、付着量を0.2g/m以上2g/m以下としたプレNiめっきを基材鋼板に施した後、無酸化または還元雰囲気中で急速低温加熱を行い、その後にAlを含有するZnめっき浴中で溶融めっきを行えば、上記金属間化合物を有する溶融Zn系合金めっき鋼板を製造できると記載されている。 Moreover, in patent document 4, a Ni plating layer is provided in the lower layer of a hot-dip Zn type alloy plating layer, a Ni-Al-Fe-Zn compound is produced | generated in the interface of a plating layer and a base-material steel plate, The binder of this intermetallic compound By improving the adhesion of the molten Zn-based alloy plating layer by the effect, cracking and peeling of the molten Zn-based alloy plating layer are suppressed, and a decrease in corrosion resistance in the processed portion is suppressed. In Patent Document 4, after applying a pre-Ni plating with an adhesion amount of 0.2 g / m 2 or more to 2 g / m 2 or less to a base steel sheet, rapid low temperature heating is performed in a non-oxidizing or reducing atmosphere, and then It is described that a hot-dip Zn-based alloy-plated steel sheet having the intermetallic compound can be produced by hot-dip plating in a Zn plating bath containing Al.

また、特許文献5では、溶融Zn系合金めっき層の下層にNiめっき層を設けることで溶融Zn系合金めっき層と基材鋼板との界面にNi−Al−Zn化合物による層を形成させ、この層にFe−Zn系金属間化合物のうちΓ相の成長を抑制させて溶融Zn系合金めっき層の密着性を高めることで、溶融Zn系合金めっき層の割れや剥離を抑制して、加工部における耐食性の低下を抑制している。特許文献5には、基材鋼板に付着量が0.2g/m以上2g/m以下のプレNiめっきを施した後、無酸化または還元雰囲気中で板温430℃以上500℃以下の範囲に30℃/秒の昇温速度で急速加熱を行い、その後にAlを含有するZnめっき浴中で溶融めっきを行えば、上記構成を有する溶融Zn系合金めっき鋼板を製造できると記載されている。 Moreover, in patent document 5, the layer by a Ni-Al-Zn compound is formed in the interface of a molten Zn-type alloy plating layer and a base-material steel plate by providing a Ni plating layer in the lower layer of a hot-dip Zn-type alloy plating layer, By suppressing the growth of the Γ phase in the Fe—Zn-based intermetallic compound in the layer and enhancing the adhesion of the molten Zn-based alloy plating layer, cracking and peeling of the molten Zn-based alloy plating layer are suppressed, and the processed part The deterioration of the corrosion resistance is suppressed. In Patent Document 5, after a pre-Ni plating having an adhesion amount of 0.2 g / m 2 or more and 2 g / m 2 or less is applied to a base steel sheet, the plate temperature is 430 ° C. or more and 500 ° C. or less in a non-oxidizing or reducing atmosphere. It is described that a hot-dip Zn-based alloy-plated steel sheet having the above-described configuration can be manufactured by performing rapid heating at a heating rate of 30 ° C./second in the range, and then performing hot-dip plating in a Zn plating bath containing Al. Yes.

なお、特許文献6では、Niめっき層に由来するNiAlをめっき層中に生成させることで、過合金化による加工時のめっき剥離や、合金化のむらによる外観品位の低下を、抑制している。特許文献6には、基材鋼板に付着量が0.05g/m以上0.25g/m以下のプレNiめっきを施した後、還元雰囲気中で板温405℃以上415℃以下の範囲に50℃/秒の昇温速度で急速加熱を行い、その後にAlを含有するZnめっき浴中で溶融めっきを行えば、上記構成を有する溶融Zn系合金めっき鋼板を製造できると記載されている。 In Patent Document 6, Ni 2 Al 3 derived from the Ni plating layer is generated in the plating layer, thereby suppressing plating peeling during processing due to overalloying and deterioration in appearance quality due to uneven alloying. ing. Patent Document 6, after the deposition amount is subjected to a pre-Ni plating 0.05 g / m 2 or more 0.25 g / m 2 or less to the substrate steel sheet, the range of the plate temperature 405 ° C. or higher 415 ° C. or less in a reducing atmosphere It is described that a hot-dip Zn-based alloy-plated steel sheet having the above-described configuration can be manufactured by performing rapid heating at a heating rate of 50 ° C./second and then performing hot-dip plating in a Zn plating bath containing Al. .

なお、溶融Zn系合金めっき層を形成するときは、基材鋼板をZnの融点(約430℃)の付近またはそれ以上の温度に加熱する。そのため、溶融Zn系合金めっき層の形成には、基材鋼板の焼鈍と、めっき層の形成とを、一連の工程として同一の装置内で連続して行えるという利点がある。焼鈍とは、基材鋼板を加熱および徐冷することで、圧延によって潰れた結晶組織を再結晶化させて基材鋼板を軟化させ、かつ、基材鋼板の表面を還元させてめっき性を向上させる処理であり、通常は、たとえば特許文献7に記載のように、基材鋼板を500℃よりも高い温度に加熱する。   When forming the molten Zn-based alloy plating layer, the base steel sheet is heated to a temperature near or higher than the melting point of Zn (about 430 ° C.). Therefore, the formation of the molten Zn-based alloy plating layer has an advantage that the annealing of the base steel plate and the formation of the plating layer can be performed continuously in the same apparatus as a series of steps. Annealing means heating and gradual cooling of the base steel sheet to recrystallize the crystal structure crushed by rolling, soften the base steel sheet, and reduce the surface of the base steel sheet to improve the plateability. Usually, for example, as described in Patent Document 7, the base steel sheet is heated to a temperature higher than 500 ° C.

特開2008−111189号公報JP 2008-1111189 A 特開2011−190507号公報JP 2011-190507 A 特開2003−277903号公報JP 2003-277903 A 特開2000−325871号公報JP 2000-325871 A 特開平4−147953号公報Japanese Patent Laid-Open No. 4-147533 特開2009−280859号公報JP 2009-280859 A 特開2014−189812号公報JP 2014-189812 A

特許文献1〜特許文献6に記載のように、合金めっき層を有するめっき鋼板において、加工部における耐食性の低下を抑制するための様々な方法が提案されている。これらのうち、特許文献4〜特許文献6に記載のように、基材鋼板にNiめっき層を形成した後に溶融Zn系合金めっき層を形成する方法は、追加の装置やめっき鋼板の製造条件の綿密な制御が不要であり、また、外部からの腐食因子による効果の低減が生じにくいという利点を有する。   As described in Patent Documents 1 to 6, various methods have been proposed for suppressing a decrease in corrosion resistance in a processed part in a plated steel sheet having an alloy plating layer. Among these, as described in Patent Documents 4 to 6, the method of forming the hot-dip Zn-based alloy plating layer after forming the Ni plating layer on the base steel sheet is based on the additional apparatus and the manufacturing conditions of the plated steel sheet. Close control is unnecessary, and there is an advantage that the reduction of the effect due to an external corrosion factor hardly occurs.

ここで、特許文献4および特許文献5では、Niめっきの付着量は0.2g/m以上2.0g/m以下としている。Niの室温での密度は約8.9g/cm(約8.9×10g/m)であるため、特許文献4および特許文献5におけるNiめっき層の膜厚は約0.02μm以上約0.22μm以下(約0.2×10−7m以上約2.2×10−7m以下)であると考えられる。同様に、特許文献6では、Niめっきの付着量は0.05g/m以上0.25g/m以下としており、このNiめっき層の膜厚は約0.006μm以上約0.028μm以下であると考えられる。特許文献4〜特許文献6における上記Niめっき層の膜厚は比較的薄く、十分に基材鋼板を覆えない領域が生じることがある。Niめっき層が基材鋼板を十分に覆えない領域では、Niを含む金属間化合物が十分に生成しないため、加工部における耐食性の低下も十分には抑制できない。 Here, Patent Document 4 and Patent Document 5, the adhesion amount of the Ni plating has a 0.2 g / m 2 or more 2.0 g / m 2 or less. Since the density of Ni at room temperature is about 8.9 g / cm 3 (about 8.9 × 10 6 g / m 3 ), the thickness of the Ni plating layer in Patent Document 4 and Patent Document 5 is about 0.02 μm. This is considered to be about 0.22 μm or less (about 0.2 × 10 −7 m or more and about 2.2 × 10 −7 m or less). Similarly, Patent Document 6, adhesion of Ni plating is for the 0.05 g / m 2 or more 0.25 g / m 2 or less, the film thickness of the Ni plating layer is less than about 0.006μm than about 0.028μm It is believed that there is. The film thickness of the Ni plating layer in Patent Documents 4 to 6 is relatively thin, and there may be a region where the base steel plate cannot be sufficiently covered. In a region where the Ni plating layer cannot sufficiently cover the base steel plate, an intermetallic compound containing Ni is not sufficiently generated, and thus a decrease in corrosion resistance in the processed portion cannot be sufficiently suppressed.

さらには、特許文献4では、めっき層と基材鋼板との界面に生成したNi−Al−Fe−Zn化合物のバインダー効果によって溶融Zn系合金めっき層の密着性を高めて、加工部における基材鋼板の露出を抑制している。また、特許文献5では、Ni−Al−Zn化合物にΓ相の成長を抑制させて、溶融Zn系合金めっき層の密着性を高め、加工部における基材鋼板の露出を抑制している。これらの文献における金属間化合物による効果を得るためには、めっき浴浸漬時に十分な量のNiめっきが残存している必要がある。そのため、特許文献4および特許文献5では、溶融めっき前の前処理加熱の加熱温度をより低温にし、かつ、より急速に加熱を行って、基材鋼板中へのNiの拡散を抑制する必要がある。また、特許文献6でも、めっき浴中へのNiの急激な溶出を抑制するため、前処理加熱の加熱温度は低温に設定されている。   Furthermore, in Patent Document 4, the adhesion of the molten Zn-based alloy plating layer is enhanced by the binder effect of the Ni—Al—Fe—Zn compound generated at the interface between the plating layer and the base steel sheet, and the base material in the processed part is obtained. The exposure of the steel sheet is suppressed. In Patent Document 5, the growth of the Γ phase is suppressed by the Ni—Al—Zn compound, the adhesion of the molten Zn-based alloy plating layer is improved, and the exposure of the base steel sheet in the processed portion is suppressed. In order to obtain the effects of the intermetallic compounds in these documents, it is necessary that a sufficient amount of Ni plating remains when immersed in the plating bath. For this reason, in Patent Document 4 and Patent Document 5, it is necessary to lower the heating temperature of the pretreatment heating before hot dipping and to more rapidly heat to suppress the diffusion of Ni into the base steel sheet. is there. Moreover, also in patent document 6, in order to suppress rapid elution of Ni in a plating bath, the heating temperature of pre-processing heating is set to low temperature.

しかし、前処理加熱の加熱温度が低温だと、基材鋼板の焼鈍が不十分で未再結晶部が生じることがあり、未再結晶部が生じると鋼板を加工しづらくなるため、めっき鋼板の加工に特殊な方法が必要となることがある。また、前処理加熱を急速に行うと、基材鋼板内に温度ムラ(特に板幅方向の温度ムラ)が生じて、基材鋼板に反りが発生しやすいため、加熱温度や均熱時間などの前処理加熱条件の厳密な管理が必要となることがある。   However, if the heating temperature of the pretreatment heating is low, annealing of the base steel sheet may be insufficient and an unrecrystallized part may occur, and if an unrecrystallized part occurs, it is difficult to process the steel sheet. Special methods may be required for processing. In addition, if pretreatment heating is performed rapidly, temperature unevenness (particularly temperature unevenness in the width direction of the plate) occurs in the base steel plate, and warpage is likely to occur in the base steel plate. Strict management of pretreatment heating conditions may be required.

本発明は、上記事情に鑑みてなされたものであり、溶融Zn−Al−Mg合金めっき層を有する溶融Zn−Al−Mg合金めっき鋼板において、溶融Zn−Al−Mg合金めっき層の加工部における割れおよび剥離などによる基材鋼板の露出が生じにくいため加工部における耐食性の低下が抑制され、かつ、急速低温加熱によらずとも製造可能な溶融Zn−Al−Mg合金めっき鋼板、およびそのような溶融Zn−Al−Mg合金めっき鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a molten Zn-Al-Mg alloy-plated steel sheet having a molten Zn-Al-Mg alloy plated layer, in a processed portion of the molten Zn-Al-Mg alloy plated layer. Since the exposure of the base steel sheet due to cracking and peeling is difficult to occur, the deterioration of the corrosion resistance in the processed part is suppressed, and the molten Zn-Al-Mg alloy-plated steel sheet that can be manufactured without rapid low temperature heating, and such It aims at providing the manufacturing method of a hot-dip Zn-Al-Mg alloy plating steel plate.

本発明者らは鋭意検討の結果、Niめっき層をより厚くし、かつ、溶融Zn−Al−Mg合金めっき層を形成する前に、Niめっき層を前処理加熱における通常の昇温速度で通常の到達温度に加熱してNiめっき層を軟化させることで、上記加工部における割れおよび剥離などによる基材鋼板の露出が生じにくく、加工部における耐食性の低下が抑制されることを見出した。   As a result of intensive studies, the inventors of the present invention have made the Ni plating layer thicker, and before forming the molten Zn—Al—Mg alloy plating layer, the Ni plating layer is usually heated at a normal temperature increase rate in pretreatment heating. It was found that by heating to the ultimate temperature and softening the Ni plating layer, exposure of the base steel sheet due to cracking and peeling in the processed part is less likely to occur, and a decrease in corrosion resistance in the processed part is suppressed.

つまり、本発明の一態様は、基材鋼板と、膜厚が0.3μm以上4.0μm以下であるNiめっき層と、Al:1.0質量%以上22.0重量%以下、Mg:0.5質量%以上10.0重量%以下、残部がZnからなる溶融Zn−Al−Mg合金めっき層と、がこの順に積層され、前記Niめっき層と前記溶融Zn合金めっき層との間に、Ni−Al系金属間化合物を含む、溶融Zn−Al−Mg系めっき鋼板に関する。   That is, according to one embodiment of the present invention, a base steel plate, a Ni plating layer having a thickness of 0.3 μm to 4.0 μm, Al: 1.0% by mass to 22.0% by weight, Mg: 0 A molten Zn—Al—Mg alloy plating layer composed of 0.5% by mass to 10.0% by weight and the balance of Zn being laminated in this order, and between the Ni plating layer and the molten Zn alloy plating layer, The present invention relates to a molten Zn—Al—Mg plated steel sheet containing a Ni—Al based intermetallic compound.

また、本発明の別の態様は、膜厚が0.3μm以上4.0μm以下であるNiめっき層を基材鋼板の表面に有するNiめっき鋼板を、Niめっき層の表面温度が500℃より高く860℃以下の温度になるまで4℃/秒以上28℃/秒以下の昇温速度で加熱して、加熱処理を行う工程と、前記加熱処理が行われたNiめっき鋼板を溶融Zn−Al−Mg合金めっき浴に浸漬して、前記Niめっき鋼板の前記Niめっき層を有する表面に溶融Zn−Al−Mg合金めっき層を形成する工程と、を含む、溶融Zn−Al−Mg系めっき鋼板の製造方法に関する。   Another aspect of the present invention provides a Ni-plated steel sheet having a Ni-plated layer having a film thickness of 0.3 μm or more and 4.0 μm or less on the surface of the base steel sheet, the surface temperature of the Ni-plated layer being higher than 500 ° C. Heating at a heating rate of 4 ° C./second or more and 28 ° C./second or less until reaching a temperature of 860 ° C. or less, and heat-treating the Ni-plated steel sheet subjected to the heat treatment. Dipping in a Mg alloy plating bath and forming a molten Zn-Al-Mg alloy plated layer on the surface of the Ni plated steel plate having the Ni plated layer, It relates to a manufacturing method.

本発明によれば、溶融Zn−Al−Mg合金めっき層を有する溶融Zn−Al−Mg合金めっき鋼板において、溶融Zn−Al−Mg合金めっき層の加工部における割れおよび剥離などによる基材鋼板の露出が生じにくく、加工部における耐食性の低下が抑制され、かつ、急速低温加熱によらずとも製造可能な溶融Zn−Al−Mg合金めっき鋼板およびそのような溶融Zn−Al−Mg合金めっき鋼板の製造方法が提供される。   According to the present invention, in a molten Zn-Al-Mg alloy-plated steel sheet having a molten Zn-Al-Mg alloy plating layer, the base steel sheet is caused by cracking and peeling in the processed portion of the molten Zn-Al-Mg alloy plating layer. A molten Zn—Al—Mg alloy-plated steel sheet that is less likely to be exposed, has a reduced corrosion resistance in a processed part, and can be manufactured without rapid low-temperature heating, and such a molten Zn—Al—Mg alloy-plated steel sheet A manufacturing method is provided.

図1は、本発明の一実施形態に関する溶融Zn−Al−Mg合金めっき鋼板の模式断面図である。FIG. 1 is a schematic cross-sectional view of a hot-dip Zn—Al—Mg alloy-plated steel sheet according to an embodiment of the present invention. 図2は、図1に示す溶融Zn−Al−Mg合金めっき鋼板を加工した後の模式断面図である。FIG. 2 is a schematic cross-sectional view after processing the hot-dip Zn—Al—Mg alloy-plated steel sheet shown in FIG.

1.溶融Zn−Al−Mg系めっき鋼板
本発明の一実施形態に係る溶融Zn−Al−Mg系めっき鋼板(以下、単に「めっき鋼板」ともいう。)100は、図1に示すように、基材鋼板110と、膜厚が0.3μm以上4.0μm以下であるNiめっき層120と、Al:1.0質量%以上22.0重量%以下、Mg:0.5質量%以上10.0重量%以下、残部がZnからなる溶融Zn−Al−Mg合金めっき層130と、がこの順に積層されている。また、上記溶融Zn−Al−Mg系めっき鋼板100は、Niめっき層120と溶融Zn−Al−Mg合金めっき層130との間に、Ni−Al系金属間化合物140を含む。
1. As shown in FIG. 1, a molten Zn—Al—Mg-based plated steel sheet (hereinafter, also simply referred to as “plated steel sheet”) 100 according to an embodiment of the present invention is a base material. Steel plate 110, Ni plating layer 120 having a film thickness of 0.3 μm or more and 4.0 μm or less, Al: 1.0% by mass or more and 22.0% by weight or less, Mg: 0.5% by mass or more and 10.0% by weight %, And a molten Zn—Al—Mg alloy plating layer 130 with the balance being Zn is laminated in this order. Further, the molten Zn—Al—Mg based plated steel sheet 100 includes a Ni—Al based intermetallic compound 140 between the Ni plated layer 120 and the molten Zn—Al—Mg alloy plated layer 130.

めっき鋼板100は、板状のめっき鋼板でもよいし、加工された鋼板にめっきが施された加工品や、めっきが施された板状の鋼板を加工して得られる加工品であってもよい。   The plated steel plate 100 may be a plate-like plated steel plate, a processed product obtained by plating a processed steel plate, or a processed product obtained by processing a plated steel plate that has been plated. .

なお、めっき鋼板100に含まれる各めっき層および金属間化合物の組成は、エネルギー分散型X線分析(EDX)やナノビーム電子回折(NBD)などの公知の方法で測定することができる。   In addition, the composition of each plating layer and intermetallic compound contained in the plated steel sheet 100 can be measured by a known method such as energy dispersive X-ray analysis (EDX) or nanobeam electron diffraction (NBD).

[基材鋼板110]
基材鋼板110の種類は、特に限定されない。たとえば、基材鋼板110は、低炭素鋼、中炭素鋼および高炭素鋼などを含む炭素鋼でもよいし、Mn、Cr、Si、Niなどを含有する合金鋼でもよい。また、基材鋼板110は、Alキルド鋼などを含むキルド鋼でもよいし、リムド鋼でもよい。良好なプレス成形性が必要とされる場合は、低炭素Ti添加鋼および低炭素Nb添加鋼などを含む深絞り用鋼板が基材鋼板110として好ましい。また、P、Si、Mnなどの量を特定の値に調整した高強度鋼板を基材鋼板110として用いてもよい。
[Substrate steel plate 110]
The kind of the base steel plate 110 is not particularly limited. For example, the base steel plate 110 may be carbon steel including low carbon steel, medium carbon steel, high carbon steel, or the like, or may be alloy steel containing Mn, Cr, Si, Ni, or the like. Further, the base steel plate 110 may be killed steel including Al killed steel or rimmed steel. When good press formability is required, a steel sheet for deep drawing including a low carbon Ti-added steel and a low carbon Nb-added steel is preferable as the base steel sheet 110. Moreover, you may use the high strength steel plate which adjusted the quantity of P, Si, Mn, etc. to the specific value as the base-material steel plate 110. FIG.

[Niめっき層120]
Niめっき層120は、膜厚が0.3μm以上4.0μm以下である、Niめっきによって構成される層である。
[Ni plating layer 120]
The Ni plating layer 120 is a layer formed by Ni plating with a film thickness of 0.3 μm or more and 4.0 μm or less.

Niめっき層120の膜厚が0.3μm以上であると、溶融Zn−Al−Mg系めっきを行う際の前処理加熱を500℃より高くしても、基材鋼板110へのNiの拡散によるNiめっき層120の消失が生じない。そのため、Niめっき層120が基材鋼板110を十分に被覆し、Niめっき層120と溶融Zn−Al−Mg系めっき層との間のより広い範囲で金属間化合物140が十分に生成される。これにより、溶融Zn−Al−Mg系めっき層の密着性が高まり、溶融Zn−Al−Mg系めっき層が加工部で割れたり剥離したりすることによる加工部の露出が抑制され、加工部における耐食性の低下を抑制することができる。   When the film thickness of the Ni plating layer 120 is 0.3 μm or more, even if the pretreatment heating when performing the molten Zn—Al—Mg based plating is higher than 500 ° C., it is caused by the diffusion of Ni into the base steel plate 110. The disappearance of the Ni plating layer 120 does not occur. Therefore, the Ni plating layer 120 sufficiently covers the base steel plate 110, and the intermetallic compound 140 is sufficiently generated in a wider range between the Ni plating layer 120 and the molten Zn—Al—Mg plating layer. As a result, the adhesion of the molten Zn—Al—Mg-based plating layer is enhanced, and the exposure of the processed part due to the molten Zn—Al—Mg-based plated layer being cracked or peeled off at the processed part is suppressed. A reduction in corrosion resistance can be suppressed.

また、Niめっき層120の膜厚が0.3μm以上であると、溶融Zn−Al−Mg系めっきを行う際の前処理加熱を500℃より高くしたときに、Niめっき層が軟化して、図2に示すように、Niめっき層の冷却後にめっき鋼板を加工してもNiめっき層120がより割れにくくなる。そのため、加工時に溶融Zn−Al−Mg合金めっき層130や金属間化合物140が割れても、軟化したNiめっき層120は割れずに基材鋼板110を被覆するため、基材鋼板110が露出しにくく、Niめっき層120のバリア型防食効果によって加工部においても耐食性が低下しにくい。これに対し、特許文献4〜特許文献6に示すように低温急速加熱を行うと、Niめっき層120は十分に軟化しないため、加工時にNiめっき層120も割れやすく、基材鋼板110も露出しやすい。   Moreover, when the film thickness of the Ni plating layer 120 is 0.3 μm or more, when the pretreatment heating when performing the molten Zn—Al—Mg based plating is higher than 500 ° C., the Ni plating layer is softened, As shown in FIG. 2, even if the plated steel sheet is processed after cooling the Ni plating layer, the Ni plating layer 120 becomes more difficult to break. Therefore, even if the molten Zn—Al—Mg alloy plating layer 130 or the intermetallic compound 140 is cracked during processing, the softened Ni plating layer 120 covers the base steel plate 110 without cracking, so that the base steel plate 110 is exposed. It is difficult to reduce the corrosion resistance even in the processed part due to the barrier type anticorrosion effect of the Ni plating layer 120. On the other hand, when the low temperature rapid heating is performed as shown in Patent Documents 4 to 6, since the Ni plating layer 120 is not sufficiently softened, the Ni plating layer 120 is easily broken during processing, and the base steel plate 110 is also exposed. Cheap.

さらには、Niめっき層120の膜厚が0.3μm以上であると、特許文献4〜特許文献6に記載されているような急速低温加熱によらずとも、めっき浴浸漬時に十分な量のNiめっきを残存させることができる。そのため、基材鋼板110をより高い到達温度で十分に焼鈍して軟化させ、めっき鋼板100の加工をより容易にすることができる。また、基材鋼板110をより遅い昇温速度で昇温させることができるため、基材鋼板110内に温度ムラを生じにくくして、基材鋼板110に反りを発生させにくくすることができる。   Furthermore, when the film thickness of the Ni plating layer 120 is 0.3 μm or more, a sufficient amount of Ni during immersion in the plating bath can be obtained regardless of rapid low-temperature heating as described in Patent Documents 4 to 6. Plating can remain. Therefore, the base steel plate 110 can be sufficiently annealed and softened at a higher ultimate temperature, and the processing of the plated steel plate 100 can be made easier. In addition, since the base steel plate 110 can be heated at a slower temperature increase rate, temperature unevenness is less likely to occur in the base steel plate 110 and warpage of the base steel plate 110 can be prevented.

なお、特許文献4ではNiめっき層の膜厚が0.22μmを超えると溶融Zn系合金めっき層の密着性が低下してめっき鋼板の耐食性が低下するとされており、特許文献5ではNiめっき層の膜厚が0.2μmを超えるとめっき鋼板の耐食性が低下するとされている。また、特許文献6では特定の金属間化合物を生成するためにNiめっき層の膜厚を0.028μm以下にしている。これに対し、Niめっき層の膜厚を0.3μm以上にしても、500℃より高い温度での加熱によってNiめっき層を軟化させることで、めっき鋼板の耐食性が高まることは、いずれの文献にも記載も示唆もされていない。   In Patent Document 4, when the thickness of the Ni plating layer exceeds 0.22 μm, the adhesion of the hot-dip Zn-based alloy plating layer decreases and the corrosion resistance of the plated steel sheet decreases. In Patent Document 5, the Ni plating layer If the film thickness exceeds 0.2 μm, the corrosion resistance of the plated steel sheet is said to decrease. Moreover, in patent document 6, in order to produce | generate a specific intermetallic compound, the film thickness of Ni plating layer shall be 0.028 micrometer or less. On the other hand, even if the film thickness of the Ni plating layer is 0.3 μm or more, the corrosion resistance of the plated steel sheet is enhanced by softening the Ni plating layer by heating at a temperature higher than 500 ° C. Is neither described nor suggested.

一方で、Niめっき層120の膜厚が4.0μm以下であると、製造コストを必要以上に増大させることがない。   On the other hand, when the thickness of the Ni plating layer 120 is 4.0 μm or less, the manufacturing cost is not increased more than necessary.

加工部における耐食性の低下を十分に抑制しつつ、製造コストをより抑制する観点からは、Niめっき層120の膜厚は0.5μm以上2.0μm以下であることが好ましく、0.5μm以上1.0μm以下であることがより好ましい。   From the viewpoint of further suppressing the manufacturing cost while sufficiently suppressing the deterioration of the corrosion resistance in the processed part, the thickness of the Ni plating layer 120 is preferably 0.5 μm or more and 2.0 μm or less, and 0.5 μm or more and 1 More preferably, it is 0.0 μm or less.

[溶融Zn−Al−Mg合金めっき層130]
溶融Zn−Al−Mg合金めっき層130は、1.0質量%以上22.0質量%以下のAlおよび0.5質量%以上10.0質量%以下のMgを含む溶融Al、Mg含有Znめっき層である。溶融Zn−Al−Mg合金めっき層130は、残部が実質的にZnからなるが、加工部の耐食性を顕著に低下させない限り、Si、TiおよびBなどを含む他の元素を含んでいてもよい。
[Hot Zn-Al-Mg Alloy Plating Layer 130]
The molten Zn—Al—Mg alloy plating layer 130 is a molten Al-containing Mg plating containing 1.0% by mass or more and 22.0% by mass or less of Al and 0.5% by mass or more and 10.0% by mass or less of Mg. Is a layer. The molten Zn—Al—Mg alloy plating layer 130 is substantially made of Zn, but may contain other elements including Si, Ti, and B, as long as the corrosion resistance of the processed portion is not significantly reduced. .

溶融Zn−Al−Mg合金めっき層130中のAlは、不動態化してめっき鋼板100の耐食性を高め、かつ、製造時のドロス発生を抑制する。Al含有量が1.0重量%未満だと、めっき鋼板100の耐食性が十分に高まらず、また、ドロスの発生も十分に抑制されない。Al含有量が22.0重量%を超えると、溶融Zn系合金めっき層130の密着性が低下し、また、Znによる犠牲防食効果も十分に発揮されないことがある。   Al in the molten Zn—Al—Mg alloy plating layer 130 is passivated to enhance the corrosion resistance of the plated steel sheet 100 and suppress the generation of dross during manufacturing. When the Al content is less than 1.0% by weight, the corrosion resistance of the plated steel sheet 100 is not sufficiently increased, and the generation of dross is not sufficiently suppressed. If the Al content exceeds 22.0% by weight, the adhesion of the molten Zn-based alloy plating layer 130 is lowered, and the sacrificial anticorrosive effect by Zn may not be sufficiently exhibited.

溶融Zn−Al−Mg合金めっき層130中のMgは、溶融Zn−Al−Mg合金めっき層130表面に緻密な腐食生成物を均一に生成させ、腐食因子の浸食を防いで当該めっき鋼板100の耐食性を高める。Mg含有量が0.5重量%未満だと、上記緻密で均一な腐食生成物が生成しにくく、めっき鋼板100の耐食性が十分に高まらない。Mg含有量が10.0重量%を超えると、上記耐食性の向上効果が飽和する一方でZnによる犠牲防食効果が低下し、また、ドロスも発生しやすくなる。   Mg in the molten Zn—Al—Mg alloy plating layer 130 uniformly generates a dense corrosion product on the surface of the molten Zn—Al—Mg alloy plating layer 130, thereby preventing corrosion factors from being eroded. Increase corrosion resistance. When the Mg content is less than 0.5% by weight, the dense and uniform corrosion product is not easily generated, and the corrosion resistance of the plated steel sheet 100 is not sufficiently increased. When the Mg content exceeds 10.0% by weight, the effect of improving the corrosion resistance is saturated, while the sacrificial anticorrosive effect by Zn is reduced, and dross is likely to occur.

AlおよびMgの含有量がいずれも上記範囲である溶融Zn−Al−Mg合金めっき層130では、めっき層中の金属組織中に[Al/Zn/ZnMg]または[Al/Zn/Zn11Mg]の三元共晶が晶出することがある。これらの三元共晶のうち、[Al/Zn/ZnMg]に含まれるZnMg相はより変色しにくく、また、より腐食されにくい。 In the molten Zn-Al-Mg alloy plating layer 130 in which the contents of Al and Mg are both in the above range, [Al / Zn / Zn 2 Mg] or [Al / Zn / Zn 11 ] in the metal structure in the plating layer. A ternary eutectic of Mg 2 ] may be crystallized. Of these ternary eutectics, the Zn 2 Mg phase contained in [Al / Zn / Zn 2 Mg] is more difficult to discolor and less susceptible to corrosion.

そのため、めっき鋼板100の変色をより生じにくくし、かつ、めっき鋼板100の耐食性もより高める観点からは、溶融Zn−Al−Mg合金めっき層130は、めっき層中の金属組織中に[Al/Zn/ZnMg]の三元共晶を有することが好ましい。また、Zn11Mgの晶出を抑制して表面外観をより良好にし、かつ、耐食性をより高める観点からは、[Al/Zn/ZnMg]の三元共晶組織の素地中に[初晶Al]が混在した金属組織を有することがより好ましい。このような金属組織を生成しやすくする観点からは、溶融Zn−Al−Mg合金めっき層130は、4.0質量%以上10.0質量%以下のAlおよび1.0質量%以上4.0質量%以下のMgを含むことが好ましい。 Therefore, from the viewpoint of making the discoloration of the plated steel plate 100 less likely to occur and enhancing the corrosion resistance of the plated steel plate 100, the molten Zn—Al—Mg alloy plated layer 130 has [Al / It preferably has a ternary eutectic of [Zn / Zn 2 Mg]. Further, from the viewpoint of suppressing the crystallization of Zn 11 Mg 2 to improve the surface appearance and to further improve the corrosion resistance, [Al / Zn / Zn 2 Mg] ternary eutectic structure in the substrate [ More preferably, it has a metal structure mixed with primary Al]. From the viewpoint of facilitating the formation of such a metal structure, the molten Zn—Al—Mg alloy plating layer 130 has an Al content of 4.0% by mass or more and 10.0% by mass or less and 1.0% by mass or more and 4.0% by mass. It is preferable to contain not more than mass% Mg.

溶融Zn−Al−Mg合金めっき層130は、基材鋼板110とめっき層との密着性を向上させるために、Siを0.005質量%以上2.0質量%以下の範囲でめっき層に含有していてもよい。また、Ti、B、Ti−B合金、Ti含有化合物またはB含有化合物をめっき層に含有していてもよい。これらの化合物の含有量は、Tiが0.001質量%以上0.1質量%以下となるように、Bが0.0005質量%以上0.045質量%以下となるように設定することが好ましい。TiまたはBを過剰量含有すると、めっき層に析出物を成長させるおそれがある。   The molten Zn—Al—Mg alloy plating layer 130 contains Si in the plating layer in a range of 0.005% by mass to 2.0% by mass in order to improve the adhesion between the base steel plate 110 and the plating layer. You may do it. Further, Ti, B, Ti—B alloy, Ti-containing compound or B-containing compound may be contained in the plating layer. The content of these compounds is preferably set so that B is 0.0005 mass% or more and 0.045 mass% or less so that Ti is 0.001 mass% or more and 0.1 mass% or less. . When an excessive amount of Ti or B is contained, there is a possibility that precipitates are grown on the plating layer.

溶融Zn−Al−Mg合金めっき層130の厚みは、特に限定されないが、3μm以上100μm以下であることが好ましい。めっき層の厚みが3μm未満の場合、取り扱い時に基材鋼板110に到達するキズが入りやすくなるため、外観の保持性および耐食性が低下するおそれがある。一方、めっき層130の厚みが100μm超の場合、圧縮を受けた際の延性がめっき層130と基材鋼板110との間で異なるため、加工部においてめっき層と基材鋼板110とが剥離してしまうおそれがある。   The thickness of the molten Zn—Al—Mg alloy plating layer 130 is not particularly limited, but is preferably 3 μm or more and 100 μm or less. When the thickness of the plating layer is less than 3 μm, scratches that reach the base steel plate 110 are likely to occur during handling, and thus there is a concern that the external appearance retainability and the corrosion resistance may be reduced. On the other hand, when the thickness of the plating layer 130 is more than 100 μm, the ductility when subjected to compression differs between the plating layer 130 and the base steel plate 110, so that the plating layer and the base steel plate 110 peel at the processed portion. There is a risk that.

[Ni−Al系金属間化合物140]
Ni−Al系金属間化合物140は、Niめっき層120と溶融Zn−Al−Mg合金めっき層130との界面に存在する。Ni−Al系金属間化合物140は、上記界面に連続した層を形成していてもよいし、上記界面に不連続な島状に分布していてもよい。
[Ni-Al intermetallic compound 140]
The Ni—Al-based intermetallic compound 140 exists at the interface between the Ni plating layer 120 and the molten Zn—Al—Mg alloy plating layer 130. The Ni—Al-based intermetallic compound 140 may form a continuous layer at the interface, or may be distributed in a discontinuous island shape at the interface.

Ni−Al系金属間化合物140は、Niめっき層120および溶融Zn−Al−Mg合金めっき層130の双方と親和性が高いため、溶融Zn−Al−Mg合金めっき層130の密着性をより高め、溶融Zn−Al−Mg合金めっき層130の割れや剥離を生じにくくする。そのため、Ni−Al系金属間化合物140は、めっき鋼板100の加工時に基材鋼板110を露出しにくくして、加工部における耐食性の低下を抑制する。   Since the Ni—Al-based intermetallic compound 140 has high affinity with both the Ni plating layer 120 and the molten Zn—Al—Mg alloy plating layer 130, the adhesion of the molten Zn—Al—Mg alloy plating layer 130 is further increased. Further, cracking and peeling of the molten Zn—Al—Mg alloy plating layer 130 are made difficult to occur. Therefore, the Ni—Al-based intermetallic compound 140 makes it difficult to expose the base steel plate 110 when the plated steel plate 100 is processed, and suppresses a decrease in corrosion resistance in the processed portion.

また、Ni−Al系金属間化合物140は、耐酸化性が高い。そのため、Ni−Al系金属間化合物140は、めっき鋼板100の耐食性をより高めることができる。   Further, the Ni—Al-based intermetallic compound 140 has high oxidation resistance. Therefore, the Ni—Al-based intermetallic compound 140 can further improve the corrosion resistance of the plated steel sheet 100.

Ni−Al系金属間化合物140は、NiおよびAlを主成分とする金属間化合物であればよく、NiAl、NiAl、NiAl、NiAlなどであればよい。これらのうち、耐酸化性を高める観点からは、NiAlが好ましい。 The Ni—Al-based intermetallic compound 140 may be an intermetallic compound mainly composed of Ni and Al, and may be NiAl 3 , NiAl, Ni 3 Al, Ni 2 Al 3 , or the like. Of these, NiAl 3 is preferable from the viewpoint of improving oxidation resistance.

2.溶融Zn−Al−Mg系めっき鋼板の製造方法
上述した溶融Zn−Al−Mg系めっき鋼板100は、(1)膜厚が0.3μm以上4.0μm以下であるNiめっき層を基材鋼板の表面に有するNiめっき鋼板(以下、単に「Niめっき鋼板」ともいう。)を、Niめっき層の表面温度の最高値(以下、単に「到達温度」ともいう。)が500℃より高く860℃以下の温度になるまで4℃/秒以上28℃/秒以下の昇温速度で加熱して、加熱処理を行う工程(以下、単に「加熱処理工程」ともいう。)と、(2)加熱処理が行われたNiめっき鋼板を、Al:1.0質量%以上22.0重量%以下、Mg:0.5質量%以上10.0重量%以下、残部がZnからなる溶融Zn−Al−Mg合金めっき浴に浸漬して、Niめっき鋼板のNiめっき層を有する表面に、溶融Zn−Al−Mg合金めっき層を形成する工程(以下、単に「合金めっき層を形成する工程」ともいう。)と、を含む方法によって製造される。
2. Manufacturing method of hot-dip Zn—Al—Mg-based plated steel plate The hot-dip Zn—Al—Mg-based plated steel plate 100 described above includes (1) a Ni-plated layer having a film thickness of 0.3 μm or more and 4.0 μm or less. The Ni-plated steel sheet (hereinafter also simply referred to as “Ni-plated steel sheet”) on the surface has a maximum surface temperature of the Ni plating layer (hereinafter also simply referred to as “attainable temperature”) higher than 500 ° C. and 860 ° C. or lower. A process of heating at a rate of temperature rise of 4 ° C./second or more and 28 ° C./second or less (hereinafter also simply referred to as “heat treatment process”), and (2) The Ni-plated steel sheet is made of a molten Zn—Al—Mg alloy comprising Al: 1.0% by mass to 22.0% by weight, Mg: 0.5% by mass to 10.0% by weight, and the balance being Zn. Immerse it in the plating bath to make the Ni A surface having come layer, prepared by a method comprising forming a hot-dip Zn-Al-Mg alloy plating layer (hereinafter, simply referred to as "the step of forming the alloy plating layer".) And the.

上記溶融Zn−Al−Mg系めっき鋼板の製造方法は、(3)基材鋼板の表面にNiめっき層を形成する工程(以下、単に「Niめっき層を形成する工程」ともいう。)を(1)加熱処理工程の前に含んでいてもよく、さらに、(4)基材鋼板を作製する工程を(3)Niめっき層を形成する工程の前に含んでいてもよい。   In the method for producing the hot-dip Zn—Al—Mg-based plated steel sheet, (3) a step of forming a Ni plating layer on the surface of the base steel plate (hereinafter, also simply referred to as “step of forming a Ni plating layer”) ( 1) It may be included before the heat treatment step, and further, (4) a step of producing a base steel plate may be included before (3) a step of forming the Ni plating layer.

なお、合金めっき層を形成するときにNi−Al系金属間化合物が形成されるため、上記Niめっき層の膜厚は、実際には(2)合金めっき層を形成する工程の後に若干薄くなる。しかし、このときの上記Niめっき層の膜厚の変化は少なく、膜厚はほぼ変化しないとみなすことができる。   Since the Ni—Al intermetallic compound is formed when the alloy plating layer is formed, the film thickness of the Ni plating layer is actually slightly reduced after the step (2) of forming the alloy plating layer. . However, there is little change in the film thickness of the Ni plating layer at this time, and it can be considered that the film thickness hardly changes.

(1)加熱処理工程
本工程では、Niめっき層を表面に有するNiめっき鋼板を加熱する。
(1) Heat treatment process At this process, the Ni plating steel plate which has a Ni plating layer on the surface is heated.

加熱は、到達温度が500℃より高く860℃以下の温度になるように行う。到達温度が500℃より高いと、Niめっき層が十分に軟化し、冷却されても軟化した状態を維持するため、加工時に溶融Zn−Al−Mg合金めっき層が割れても、軟化したNiめっき層は割れずに基材鋼板を被覆するため基材鋼板が露出しにくく、加工部においても耐食性が低下しにくい。また、到達温度が500℃より高いと、基材鋼板の結晶組織が十分に再結晶化するため、内部応力が十分に暖和されて基材鋼板が十分に軟化し、めっき鋼板の加工がより容易になる。到達温度が860℃以下であると、再結晶化による結晶粒が粗大化しすぎず、基材鋼板の靱性が低下しすぎないため、めっき鋼板の加工がより容易になる。上記観点からは、到達温度は550℃以上800℃以下であることが好ましい。   Heating is performed so that the ultimate temperature is higher than 500 ° C and lower than 860 ° C. When the temperature reached is higher than 500 ° C., the Ni plating layer is sufficiently softened to maintain the softened state even when cooled. Therefore, even if the molten Zn—Al—Mg alloy plating layer cracks during processing, the softened Ni plating Since the layer covers the base steel plate without cracking, the base steel plate is difficult to be exposed, and the corrosion resistance is also unlikely to deteriorate in the processed portion. Also, when the ultimate temperature is higher than 500 ° C, the crystal structure of the base steel sheet is sufficiently recrystallized, so that the internal stress is sufficiently warmed and the base steel sheet is sufficiently softened, making it easier to process the plated steel sheet. become. When the ultimate temperature is 860 ° C. or lower, the crystal grains due to recrystallization do not become too coarse, and the toughness of the base steel sheet does not deteriorate too much, so that the plated steel sheet can be processed more easily. From the above viewpoint, the ultimate temperature is preferably 550 ° C. or higher and 800 ° C. or lower.

加熱の昇温速度は、4℃/秒以上28℃/秒以下である。昇温速度が4℃/秒以上であると、生産ラインの通板速度を十分に速くでき、生産性を高めることができる。また、昇温速度が4℃/秒以上28℃/秒以下であると、基材鋼板内に温度ムラ(特に板幅方向の温度ムラ)が生じにくいため、基材鋼板に反りが発生しにくい。上記観点からは、昇温速度は、8℃/秒以上20℃/秒以下であることが好ましい。   The heating rate of heating is 4 ° C./second or more and 28 ° C./second or less. When the rate of temperature increase is 4 ° C./second or more, the plate speed of the production line can be sufficiently increased, and the productivity can be increased. In addition, when the heating rate is 4 ° C./second or more and 28 ° C./second or less, temperature unevenness (particularly temperature unevenness in the width direction of the plate) hardly occurs in the base steel plate, and thus the base steel plate hardly warps. . From the above viewpoint, the temperature rising rate is preferably 8 ° C./second or more and 20 ° C./second or less.

その他の加熱処理の条件は、溶融Zn−Al−Mg合金めっき層を形成するための前処理として通常行われる焼鈍と同様にすることができる。たとえば、上記到達温度に加熱されたNiめっき鋼板は、30秒以上保持することが好ましい。次の(2)合金めっき層を形成する工程におけるNiめっき鋼板の好適な温度が到達温度よりも低温である場合は、5℃/秒以上の降温速度でNiめっき層の表面温度が上記好適な温度になるまでNiめっき鋼板を冷却して、次の合金めっき層を形成する工程を行えばよい。   The other heat treatment conditions can be the same as the annealing that is normally performed as the pretreatment for forming the molten Zn—Al—Mg alloy plating layer. For example, the Ni-plated steel sheet heated to the above-mentioned temperature is preferably held for 30 seconds or more. When the suitable temperature of the Ni-plated steel sheet in the next step (2) of forming the alloy plating layer is lower than the ultimate temperature, the surface temperature of the Ni plating layer is preferably the above at a temperature decreasing rate of 5 ° C./second or more. What is necessary is just to perform the process of cooling a Ni plating steel plate until it becomes temperature and forming the next alloy plating layer.

(2)合金めっき層を形成する工程
合金めっき層は、溶融Zn−Al−Mg合金めっき層を基材鋼板の表面に形成するための公知の方法で形成することができる。たとえば、上述した溶融Zn−Al−Mg合金めっき層と同様の組成(Al:1.0質量%以上22.0重量%以下、Mg:0.5質量%以上10.0重量%以下、残部:Zn)を有する溶融Zn−Al−Mg合金めっき浴に、上記(1)加熱処理工程で加熱処理を行ったNiめっき鋼板を浸漬すればよい。
(2) Step of forming an alloy plating layer The alloy plating layer can be formed by a known method for forming a molten Zn-Al-Mg alloy plating layer on the surface of a base steel sheet. For example, the same composition as the above-described molten Zn—Al—Mg alloy plating layer (Al: 1.0 mass% to 22.0 wt%, Mg: 0.5 mass% to 10.0 wt%, balance: What is necessary is just to immerse the Ni plating steel plate which heat-processed at the said (1) heat processing process in the hot-dip Zn-Al-Mg alloy plating bath which has Zn).

溶融Zn−Al−Mg合金めっきの付着量は、溶融Zn−Al−Mg合金めっき層の膜厚が上述した範囲になるように調整すればよい。   The adhesion amount of the molten Zn—Al—Mg alloy plating may be adjusted so that the film thickness of the molten Zn—Al—Mg alloy plating layer is in the above-described range.

なお、(1)加熱処理工程および(2)合金めっき層を形成する工程は、連続溶融Znめっきライン(Continuous Galvanizing Line:CGL)を行う同一の装置内で、連続して行うことができる。   Note that (1) the heat treatment step and (2) the step of forming the alloy plating layer can be continuously performed in the same apparatus that performs a continuous molten Zn plating line (CGL).

(3)Niめっき層を形成する工程
Niめっき層は、鋼板の表面にNiめっきを施す公知の方法で形成することができる。Niめっき層の形成は、電気めっき法および無電解めっき法のいずれによってもよい。電気めっき法としては、たとえば、全硫酸塩浴を用いた電気めっき法、ワット浴を用いた電気めっき法、およびスルファミン酸浴などを用いることができる。無電解めっき法としては、還元剤として次亜リン酸、ジメチルアミンボランおよびヒドラジンなどを用いることができる。これらのうち、連続製造を可能にし、かつ、膜厚の制御も容易にする観点からは、電気めっき法が好ましい。
(3) Step of forming Ni plating layer The Ni plating layer can be formed by a known method of applying Ni plating to the surface of the steel sheet. The Ni plating layer may be formed by either electroplating or electroless plating. As the electroplating method, for example, an electroplating method using a total sulfate bath, an electroplating method using a watt bath, a sulfamic acid bath, or the like can be used. In the electroless plating method, hypophosphorous acid, dimethylamine borane, hydrazine, or the like can be used as a reducing agent. Of these, the electroplating method is preferable from the viewpoint of enabling continuous production and facilitating the control of the film thickness.

めっき浴の組成は特に制限されず、鋼板の種類、めっき膜厚、電解めっきの電流密度および無電解めっきの還元剤などに応じて任意に設定すればよい。   The composition of the plating bath is not particularly limited, and may be arbitrarily set according to the type of steel sheet, the plating film thickness, the current density of electrolytic plating, the reducing agent for electroless plating, and the like.

また、Niめっきを施す前に、アルカリ脱脂、酸洗などの前処理を行ってもよい。   Moreover, before performing Ni plating, you may perform pretreatment, such as alkali degreasing and pickling.

(4)基材鋼板を作製する工程
基材鋼板は、高炉から取り出した溶銑を転炉で精錬して溶鋼とし、溶鋼を鋳造して得られるスラブを圧延(熱間圧延および冷間圧延など)して、製造することができる。この工程中、熱間圧延後、上記加熱工程前に鋼板を500℃より高い温度に加熱して焼鈍(中間焼鈍)していてもよい。しかし、上記加熱工程で焼鈍の効果が得られるため、熱間圧延後、上記加熱工程前に鋼板を500℃より高い温度に加熱してなくてもよい。
(4) Process for producing base steel sheet The base steel sheet is obtained by refining the hot metal taken out of the blast furnace into a molten steel and rolling a slab obtained by casting the molten steel (hot rolling, cold rolling, etc.) And can be manufactured. During this process, after hot rolling, the steel sheet may be heated to a temperature higher than 500 ° C. and annealed (intermediate annealing) before the heating process. However, since the effect of annealing is obtained in the heating step, the steel plate may not be heated to a temperature higher than 500 ° C. after the hot rolling and before the heating step.

以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.

[実験例1]
(1)基材鋼板
基材鋼板として一般用の冷間圧延鋼板であり板厚が0.8mmのSPCCを使用した。本実施例で用いたSPCCに含まれるFe以外の成分を表1に示す。
[Experimental Example 1]
(1) Base steel plate SPCC having a thickness of 0.8 mm was used as a base steel plate, a cold-rolled steel plate for general use. Table 1 shows components other than Fe contained in the SPCC used in this example.

Figure 2018090885
Figure 2018090885

(2)Niめっき層の形成
上記の鋼板にアルカリ脱脂、酸洗を行い、Niめっき層を電気めっき法で形成して、Niめっき鋼板とした。電気めっきの浴組成および条件を表2に示す。めっき浴中に流す電流量は、ファラデーの第1法則を用いて計算されるNiめっき層の膜厚が0.1μm、0.3μm、0.5μm、0.7μm、1.0μm、2.0μmまたは4.0μmになるように調整した。なお、膜厚は電解式膜厚計(株式会社中央製作所製、TH−11)にて確認した。
(2) Formation of Ni plating layer The above steel sheet was subjected to alkali degreasing and pickling, and a Ni plating layer was formed by an electroplating method to obtain a Ni plated steel sheet. Table 2 shows the bath composition and conditions for electroplating. The amount of current that flows in the plating bath is 0.1 μm, 0.3 μm, 0.5 μm, 0.7 μm, 1.0 μm, 2.0 μm, as calculated from the first law of Faraday. Or it adjusted so that it might become 4.0 micrometers. In addition, the film thickness was confirmed with an electrolytic film thickness meter (manufactured by Chuo Seisakusho, TH-11).

Figure 2018090885
Figure 2018090885

(3)試験1:Niめっき層の軟化の評価
膜厚が1.0μmのNiめっき層を形成したNiめっき鋼板を還元炉に入れて、到達温度が400℃、450℃、500℃、550℃、600℃、または700℃になるように昇温速度10℃/sで加熱して、加熱処理した。Niめっき層の軟化の度合いを調べるため、加熱処理後、室温に冷却した後のNiめっき層のビッカース硬度を測定した。ビッカース硬度測定は微小硬さ試験機(株式会社ミツトヨ製、HM−221)にて測定した。表3に測定結果を示す。なお、ビッカース硬度は3回測定した平均値を示している。
(3) Test 1: Evaluation of softening of Ni-plated layer A Ni-plated steel sheet on which a Ni-plated layer having a thickness of 1.0 μm was formed was placed in a reduction furnace, and the ultimate temperatures were 400 ° C., 450 ° C., 500 ° C., 550 ° C. , 600 ° C., or 700 ° C. at a rate of temperature increase of 10 ° C./s for heat treatment. In order to investigate the degree of softening of the Ni plating layer, the Vickers hardness of the Ni plating layer after the heat treatment and after cooling to room temperature was measured. Vickers hardness was measured with a micro hardness tester (manufactured by Mitutoyo Corporation, HM-221). Table 3 shows the measurement results. In addition, Vickers hardness has shown the average value measured 3 times.

Figure 2018090885
Figure 2018090885

ビッカース硬度の測定結果から、到達温度が500℃以下の場合、Niめっき層が十分に軟化しないことがわかる。   From the measurement result of the Vickers hardness, it can be seen that when the ultimate temperature is 500 ° C. or less, the Ni plating layer is not sufficiently softened.

(4−1)試験2:溶融Zn−Al−Mg合金めっき層の形成
上記Niめっき層を形成したNiめっき鋼板を、到達温度が500℃または700℃の条件で加熱処理した。加熱処理した各Niめっき鋼板を、浴温400℃、430℃、450℃、500℃または600℃の溶融Zn−Al−Mg合金めっき浴に2秒間浸漬した後、降温速度12℃/秒で冷却して、溶融Zn−Al−Mg合金めっき層を形成して、溶融Zn−Al−Mg合金めっき鋼板とした。溶融Zn−Al−Mg合金めっき浴の組成は表4および表5に記載のように変化させた。溶融Zn−Al−Mg合金めっきの片面付着量は、ワイピングにより60g/mに調整した。
(4-1) Test 2: Formation of hot-dip Zn-Al-Mg alloy plating layer The Ni-plated steel sheet on which the Ni plating layer was formed was heat-treated at a temperature of 500 ° C or 700 ° C. Each heat-treated Ni-plated steel sheet was immersed in a molten Zn—Al—Mg alloy plating bath at a bath temperature of 400 ° C., 430 ° C., 450 ° C., 500 ° C. or 600 ° C. for 2 seconds, and then cooled at a temperature drop rate of 12 ° C./second. Then, a molten Zn—Al—Mg alloy plated layer was formed to obtain a molten Zn—Al—Mg alloy plated steel sheet. The composition of the molten Zn—Al—Mg alloy plating bath was changed as shown in Tables 4 and 5. The single-side adhesion amount of the molten Zn—Al—Mg alloy plating was adjusted to 60 g / m 2 by wiping.

(4−2)試験2:評価
[Niめっき層]
上記各溶融Zn−Al−Mg合金めっき鋼板の断面を走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)で観察して、Niめっき層が残存したか否かを確認した。
(4-2) Test 2: Evaluation [Ni plating layer]
A cross section of each of the above-described hot-dip Zn—Al—Mg alloy-plated steel sheets was observed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) to confirm whether or not the Ni plating layer remained.

[金属間化合物]
また、Niめっき層と溶融Zn−Al−Mg合金めっき層との間に形成された金属間化合物の組成を、40nmφの測定領域に電子線を照射し、結晶構造情報を測定し解析を行うナノビーム電子回折(NBD)にて測定した。
[Intermetallic compounds]
In addition, the composition of the intermetallic compound formed between the Ni plating layer and the molten Zn-Al-Mg alloy plating layer is irradiated with an electron beam to the measurement region of 40 nmφ, and the nanobeam for measuring and analyzing the crystal structure information It was measured by electron diffraction (NBD).

[加工部露出]
上記の溶融Zn−Al−Mg合金めっき鋼板を、JIS Z 2248に準じた方法で2T曲げ試験に供した。2T曲げ試験後の上記各溶融Zn−Al−Mg合金めっき鋼板の断面をSEMまたはTEMで観察して、Niめっき層および金属間化合物が割れているか否かを観察して、これらが割れているとき、加工部で基材鋼板が露出していると判断した。
[Processed part exposure]
The hot-dip Zn—Al—Mg alloy-plated steel sheet was subjected to a 2T bending test by a method according to JIS Z 2248. The cross section of each molten Zn-Al-Mg alloy-plated steel sheet after the 2T bending test is observed with SEM or TEM to observe whether the Ni plating layer and the intermetallic compound are cracked. At that time, it was determined that the base steel plate was exposed at the processed portion.

[耐食性]
上記の2T曲げ試験に供した溶融Zn−Al−Mg合金めっき鋼板を、JASO M609およびJASO M610に準じた方法で複合サイクル腐食試験(CCT)にて耐食性を評価した。CCTは、塩水噴霧(2hr、35℃)、乾燥(4hr、60℃)および湿潤(2hr、50℃)を1サイクルとし、発生した赤錆の面積率が5%となるサイクル数を耐食性の評価とした。
[Corrosion resistance]
The corrosion resistance of the molten Zn—Al—Mg alloy-plated steel sheet subjected to the 2T bending test was evaluated by a combined cycle corrosion test (CCT) by a method according to JASO M609 and JASO M610. In CCT, salt spray (2 hr, 35 ° C.), drying (4 hr, 60 ° C.) and wet (2 hr, 50 ° C.) are defined as one cycle, and the number of cycles where the generated red rust area ratio is 5% is evaluated as corrosion resistance. did.

Figure 2018090885
Figure 2018090885

Figure 2018090885
Figure 2018090885

基材鋼板と、膜厚が0.3μm以上4.0μm以下であるNiめっき層と、Al:1.0質量%以上22.0重量%以下、Mg:0.5質量%以上10.0重量%以下、残部がZnからなる溶融Zn−Al−Mg合金めっき層と、がこの順に積層され、Niめっき層と溶融Zn合金めっき層との間に、Ni−Al系金属間化合物を含む、実施例1〜6は、残存したNiめっき層によって基材鋼板が十分に覆われていて、加工部での基材鋼板の露出は確認されなかった。また、実施例1〜6は、赤錆の面積率が5%となるまでのサイクル数もより多く、耐食性がより高いことが確認された。なお、ナノビーム電子回折にて分析した結果、溶融Zn−Al−Mg合金めっき層中にNiは存在しなかった。   Base steel plate, Ni plating layer having a film thickness of 0.3 μm or more and 4.0 μm or less, Al: 1.0 mass% or more and 22.0 wt% or less, Mg: 0.5 mass% or more and 10.0 weight %, A molten Zn—Al—Mg alloy plating layer consisting of Zn in the balance is laminated in this order, and a Ni—Al intermetallic compound is included between the Ni plating layer and the molten Zn alloy plating layer. In Examples 1 to 6, the base steel plate was sufficiently covered with the remaining Ni plating layer, and the exposure of the base steel plate in the processed part was not confirmed. In addition, in Examples 1 to 6, it was confirmed that the number of cycles until the area ratio of red rust reached 5% was higher and the corrosion resistance was higher. As a result of analysis by nanobeam electron diffraction, Ni was not present in the molten Zn—Al—Mg alloy plating layer.

一方、Niめっき層を形成しなかった比較例1は、加工部で溶融Zn−Al−Mg合金めっき層が割れて基材鋼板が露出しており、また、加工部の耐食性も低かった。   On the other hand, in Comparative Example 1 in which the Ni plating layer was not formed, the molten Zn—Al—Mg alloy plating layer was cracked in the processed part, and the base steel sheet was exposed, and the corrosion resistance of the processed part was also low.

また、形成したNiめっき層の膜厚が0.1μmである比較例2は、到達温度を700℃にしたところ、Niめっき層が消失していた。EDXにて分析したところ、Niは鋼板に拡散していた。そのため、加工部で溶融Zn−Al−Mg合金めっき層が割れて基材鋼板が露出しており、また、加工部の耐食性も低かった。   Further, in Comparative Example 2 where the thickness of the formed Ni plating layer was 0.1 μm, the Ni plating layer disappeared when the ultimate temperature was set to 700 ° C. When analyzed by EDX, Ni was diffused in the steel sheet. Therefore, the molten Zn-Al-Mg alloy plating layer was cracked in the processed part, and the base steel sheet was exposed, and the corrosion resistance of the processed part was also low.

到達温度を500℃とした比較例3は、Niめっき層は残存していたものの、Niめっき層が十分に軟化しなかったため、加工部でNiめっき層に割れが発生し、基材鋼板が露出しており、また、加工部の耐食性も低かった。なお、若干の耐食性向上が見受けられるが、Niめっき層の膜厚が同じ実施例4などと比較してもその程度はさほど高くはなく、Niめっきによる密着性向上による効果であってNiめっき層のバリア型防食効果によるものとは認められない。   In Comparative Example 3 in which the reached temperature was 500 ° C., although the Ni plating layer remained, the Ni plating layer was not softened sufficiently, so that the Ni plating layer cracked in the processed part, and the base steel plate was exposed. Moreover, the corrosion resistance of the processed part was also low. In addition, although some corrosion resistance improvement is seen, even if compared with Example 4 etc. with the same film thickness of Ni plating layer, the extent is not so high, and it is the effect by the adhesive improvement by Ni plating, and Ni plating layer It is not recognized to be due to the barrier type anticorrosive effect

めっき浴成分を変更した実施例7〜実施例14でも、同様に、加工部での基材鋼板の露出は確認されず、また、加工部の耐食性もより高かった。   Also in Examples 7 to 14 in which the plating bath components were changed, similarly, the exposure of the base steel sheet in the processed part was not confirmed, and the corrosion resistance of the processed part was higher.

一方で、Niめっき層を形成しなかった比較例5〜比較例12は、加工部で溶融Zn−Al−Mg合金めっき層が割れて基材鋼板が露出しており、また、同じ温度で焼鈍した実施例1〜6と比較して加工部の耐食性も低かった。   On the other hand, in Comparative Examples 5 to 12 in which the Ni plating layer was not formed, the molten Zn—Al—Mg alloy plating layer was cracked in the processed part and the base steel sheet was exposed, and annealing was performed at the same temperature. The corrosion resistance of the processed part was also lower than in Examples 1-6.

本発明の溶融Zn−Al−Mg合金めっき鋼板は、加工部の耐食性が高いため、建築物の屋根材や外装材、家電製品、自動車などに使用されるめっき鋼板などの耐食性が要求される用途に好適に使用できる。また、本発明の溶融Zn−Al−Mg合金めっき鋼板は、製造および加工が容易であるため、安価で製造できる。   The hot-dip Zn-Al-Mg alloy-plated steel sheet of the present invention has high corrosion resistance in the processed part, and therefore is required for corrosion resistance of plated steel sheets used for building roofing materials, exterior materials, home appliances, automobiles, etc. Can be suitably used. Moreover, since the hot-dip Zn—Al—Mg alloy-plated steel sheet of the present invention is easy to manufacture and process, it can be manufactured at low cost.

100 溶融Zn−Al−Mg合金めっき鋼板
110 基材鋼板
120 Niめっき層
130 溶融Zn−Al−Mg合金めっき層
140 Ni−Al系金属間化合物
DESCRIPTION OF SYMBOLS 100 Hot-dip Zn-Al-Mg alloy plating steel plate 110 Base steel plate 120 Ni plating layer 130 Hot-melt Zn-Al-Mg alloy plating layer 140 Ni-Al type intermetallic compound

Claims (5)

基材鋼板と、
膜厚が0.3μm以上4.0μm以下であるNiめっき層と、
Al:1.0質量%以上22.0重量%以下、Mg:0.5質量%以上10.0重量%以下、残部がZnからなる溶融Zn−Al−Mg合金めっき層と、がこの順に積層され、
前記Niめっき層と前記溶融Zn−Al−Mg合金めっき層との間に、Ni−Al系金属間化合物を含む、
溶融Zn−Al−Mg系めっき鋼板。
A base steel plate;
A Ni plating layer having a film thickness of 0.3 μm or more and 4.0 μm or less;
Al: 1.0% by mass or more and 22.0% by weight or less, Mg: 0.5% by mass or more and 10.0% by weight or less, and a molten Zn—Al—Mg alloy plating layer composed of Zn in the order of lamination. And
Between the Ni plating layer and the molten Zn—Al—Mg alloy plating layer, a Ni—Al-based intermetallic compound is included.
Fused Zn-Al-Mg-based plated steel sheet.
前記溶融Zn−Al−Mg合金めっき層は、Si、TiおよびBからなる群から選択される元素を含有する、請求項1に記載の溶融Zn−Al−Mg系めっき鋼板。   2. The molten Zn—Al—Mg based plated steel sheet according to claim 1, wherein the molten Zn—Al—Mg alloy plating layer contains an element selected from the group consisting of Si, Ti, and B. 3. 膜厚が0.3μm以上4.0μm以下であるNiめっき層を基材鋼板の表面に有するNiめっき鋼板を、Niめっき層の表面温度が500℃より高く860℃以下の温度になるまで4℃/秒以上28℃/秒以下の昇温速度で加熱して、加熱処理を行う工程と、
前記加熱処理が行われたNiめっき鋼板を、Al:1.0質量%以上22.0重量%以下、Mg:0.5質量%以上10.0重量%以下、残部がZnからなる溶融Zn−Al−Mg合金めっき浴に浸漬して、前記Niめっき鋼板の前記Niめっき層を有する表面に溶融Zn−Al−Mg合金めっき層を形成する工程と、
を含む、溶融Zn−Al−Mg系めっき鋼板の製造方法。
A Ni plated steel sheet having a Ni plated layer having a film thickness of 0.3 μm or more and 4.0 μm or less on the surface of the base steel sheet is 4 ° C. until the surface temperature of the Ni plated layer is higher than 500 ° C. and lower than 860 ° C. Heating at a temperature rising rate of 28 ° C./second or more and performing a heat treatment;
The Ni-plated steel sheet subjected to the heat treatment is Al: 1.0% by mass to 22.0% by weight, Mg: 0.5% by mass to 10.0% by weight, and the balance is molten Zn— Dipping in an Al-Mg alloy plating bath to form a molten Zn-Al-Mg alloy plating layer on the surface of the Ni-plated steel sheet having the Ni plating layer;
The manufacturing method of the hot dip Zn-Al-Mg system plating steel plate containing this.
前記加熱処理を行う工程と、前記溶融Zn−Al−Mg合金めっき層を形成する工程とは、同一の装置内で連続して行う、請求項3に記載の溶融Zn−Al−Mg系めっき鋼板の製造方法。   The molten Zn-Al-Mg-based plated steel sheet according to claim 3, wherein the step of performing the heat treatment and the step of forming the molten Zn-Al-Mg alloy plating layer are continuously performed in the same apparatus. Manufacturing method. 膜厚が0.3μm以上4.0μm以下であるNiめっき層を基材鋼板の表面に形成する工程を、前記加熱する工程の前に含む、請求項3または4に記載の溶融Zn−Al−Mg系めっき鋼板の製造方法。   5. The molten Zn—Al— according to claim 3, comprising a step of forming a Ni plating layer having a thickness of 0.3 μm or more and 4.0 μm or less on the surface of the base steel plate before the heating step. Manufacturing method of Mg-based plated steel sheet.
JP2016237590A 2016-12-07 2016-12-07 Method for manufacturing molten Zn-Al-Mg-based galvanized steel sheet and molten Zn-Al-Mg-based plated steel sheet Active JP6880690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237590A JP6880690B2 (en) 2016-12-07 2016-12-07 Method for manufacturing molten Zn-Al-Mg-based galvanized steel sheet and molten Zn-Al-Mg-based plated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237590A JP6880690B2 (en) 2016-12-07 2016-12-07 Method for manufacturing molten Zn-Al-Mg-based galvanized steel sheet and molten Zn-Al-Mg-based plated steel sheet

Publications (2)

Publication Number Publication Date
JP2018090885A true JP2018090885A (en) 2018-06-14
JP6880690B2 JP6880690B2 (en) 2021-06-02

Family

ID=62563667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237590A Active JP6880690B2 (en) 2016-12-07 2016-12-07 Method for manufacturing molten Zn-Al-Mg-based galvanized steel sheet and molten Zn-Al-Mg-based plated steel sheet

Country Status (1)

Country Link
JP (1) JP6880690B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846353A (en) * 2021-10-13 2021-12-28 东北大学 Method for preparing aluminum magnesium alloy by using polar aprotic organic solvent
JP7315522B2 (en) 2020-11-11 2023-07-26 Jfe鋼板株式会社 Manufacturing method of hot-dip galvanized steel sheet with excellent material stability

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate
JPS627889A (en) * 1985-07-03 1987-01-14 Nippon Steel Corp Zinc or zinc alloy plated steel sheet having superior corrosion resistance and paintability
JPH03207887A (en) * 1989-09-01 1991-09-11 Kawasaki Steel Corp Production of plated steel sheet for welded can
JP2000104154A (en) * 1998-07-02 2000-04-11 Nippon Steel Corp Plated steel sheet and coated steel sheet excellent in corrosion resistance and production of the same
JP2002206191A (en) * 2000-11-08 2002-07-26 Kawasaki Steel Corp Tinned steel sheet and chemical conversion solution
CN101225518A (en) * 2007-12-14 2008-07-23 华南理工大学 Hot-dip galvanizing with electroless ni pre-plating method for controlling thickness of silicon-containing active steel plating
WO2016071399A1 (en) * 2014-11-04 2016-05-12 Voestalpine Stahl Gmbh Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776176A (en) * 1980-10-28 1982-05-13 Nippon Steel Corp Manufacture of high preformance hot-galvanized steel plate
JPS627889A (en) * 1985-07-03 1987-01-14 Nippon Steel Corp Zinc or zinc alloy plated steel sheet having superior corrosion resistance and paintability
JPH03207887A (en) * 1989-09-01 1991-09-11 Kawasaki Steel Corp Production of plated steel sheet for welded can
JP2000104154A (en) * 1998-07-02 2000-04-11 Nippon Steel Corp Plated steel sheet and coated steel sheet excellent in corrosion resistance and production of the same
JP2002206191A (en) * 2000-11-08 2002-07-26 Kawasaki Steel Corp Tinned steel sheet and chemical conversion solution
CN101225518A (en) * 2007-12-14 2008-07-23 华南理工大学 Hot-dip galvanizing with electroless ni pre-plating method for controlling thickness of silicon-containing active steel plating
WO2016071399A1 (en) * 2014-11-04 2016-05-12 Voestalpine Stahl Gmbh Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315522B2 (en) 2020-11-11 2023-07-26 Jfe鋼板株式会社 Manufacturing method of hot-dip galvanized steel sheet with excellent material stability
CN113846353A (en) * 2021-10-13 2021-12-28 东北大学 Method for preparing aluminum magnesium alloy by using polar aprotic organic solvent

Also Published As

Publication number Publication date
JP6880690B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6836600B2 (en) Hot stamping material
JP4724780B2 (en) Aluminum-plated steel sheet for rapid heating hot press, manufacturing method thereof, and rapid heating hot pressing method using the same
JP4644314B2 (en) Hot-dip Zn-Al-Mg-Si-Cr alloy-plated steel with excellent corrosion resistance
JP5444650B2 (en) Plated steel sheet for hot press and method for producing the same
EP2794950B1 (en) Hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures and method of manufacturing the same
JP4786769B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2021509437A (en) Plated steel sheet for hot press forming, forming members using this, and manufacturing method thereof
JP6011724B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP6687177B1 (en) Method for producing Al-based plated stainless steel sheet and ferritic stainless steel sheet
WO2006112517A1 (en) Process for galvanizing
CN103261466A (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
JP4264373B2 (en) Method for producing molten Al-based plated steel sheet with few plating defects
JP6880690B2 (en) Method for manufacturing molten Zn-Al-Mg-based galvanized steel sheet and molten Zn-Al-Mg-based plated steel sheet
JP3566262B2 (en) Hot-dip Al-Zn alloy plated steel sheet excellent in workability and method for producing the same
JP2008255391A (en) HOT-DIP Al-BASE-PLATED SHEET STEEL SUPERIOR IN CORROSION RESISTANCE AFTER HAVING BEEN WORKED, AND MANUFACTURING METHOD THEREFOR
JP7186301B2 (en) Plated steel material with excellent plating adhesion and corrosion resistance, and method for producing the same
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP7393553B2 (en) Aluminum alloy plated steel sheet with excellent workability and corrosion resistance and its manufacturing method
JP7393551B2 (en) Aluminum alloy plated steel sheet with excellent workability and corrosion resistance and its manufacturing method
JP5320899B2 (en) Alloyed hot-dip galvanized steel sheet with excellent plating adhesion
JP2022130469A (en) Method for manufacturing coated steel sheet
JP3563063B2 (en) Lubricant-coated hot-dip Al-Zn alloy-plated steel sheet excellent in workability and corrosion resistance and method for producing the same
JP2020105554A (en) Alloyed hot-dip galvanized film
KR101629260B1 (en) Composition for hot dipping bath
JPH09202952A (en) High workability galvanized steel sheet and its production

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191009

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210419

R151 Written notification of patent or utility model registration

Ref document number: 6880690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151