JP2018085245A - Short circuit test device for battery and short circuit test method for battery - Google Patents

Short circuit test device for battery and short circuit test method for battery Download PDF

Info

Publication number
JP2018085245A
JP2018085245A JP2016227956A JP2016227956A JP2018085245A JP 2018085245 A JP2018085245 A JP 2018085245A JP 2016227956 A JP2016227956 A JP 2016227956A JP 2016227956 A JP2016227956 A JP 2016227956A JP 2018085245 A JP2018085245 A JP 2018085245A
Authority
JP
Japan
Prior art keywords
battery
short
circuit
circuit test
short circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016227956A
Other languages
Japanese (ja)
Inventor
慶一 加門
Keiichi Kamon
慶一 加門
喜多 房次
Fusaji Kita
房次 喜多
大 西村
Masaru Nishimura
大 西村
桂大 永川
Keita Nagakawa
桂大 永川
田中 俊
Takashi Tanaka
俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lithium Ion Battery Tech And Evaluation Center
LITHIUM ION BATTERY TECHNOLOGY AND EVALUATION CENTER
Original Assignee
Lithium Ion Battery Tech And Evaluation Center
LITHIUM ION BATTERY TECHNOLOGY AND EVALUATION CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lithium Ion Battery Tech And Evaluation Center, LITHIUM ION BATTERY TECHNOLOGY AND EVALUATION CENTER filed Critical Lithium Ion Battery Tech And Evaluation Center
Priority to JP2016227956A priority Critical patent/JP2018085245A/en
Publication of JP2018085245A publication Critical patent/JP2018085245A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a short circuit test device for a battery and a short circuit test method for a battery capable of increasing working safety, and controlling the number of short circuit layers between a cathode active material and an anode active material closely to one layer, and performing accurate safety evaluation.SOLUTION: A short circuit test device for a battery comprises a short circuit occurrence fixture, and the short circuit occurrence fixture comprises a pressing member and a metal cone part arranged at the tip of the pressing member. The pressing member comprises an expansion part expanding more than a bus line of the metal cone part in an outer peripheral direction from a bottom surface part of the metal cone part. Also, the short circuit test method for a battery includes: a process for connecting the battery to a voltage measurement part by using the short circuit test device for a battery; a process for arranging the short circuit occurrence fixture of the short circuit test device for a battery on the battery; a process for causing the short circuit occurrence fixture to move in a battery direction, and for inserting the metal cone part of the short circuit occurrence fixture from a surface of the battery, and for causing the pressing member to press the surface of the battery; and a process for stopping the movement of the short circuit occurrence fixture in the battery direction when the voltage of the battery decreases down to a predetermined voltage.SELECTED DRAWING: Figure 1

Description

本発明は、蓄電デバイスである電池の安全性評価に用いられる、電池用短絡試験装置及び電池の短絡試験方法に関するものである。   The present invention relates to a battery short-circuit test apparatus and a battery short-circuit test method used for safety evaluation of a battery as an electricity storage device.

近年、携帯電話、ノート型パーソナルコンピュータ等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、高容量・高エネルギー密度の二次電池が必要とされるようになってきている。   In recent years, with the development of portable electronic devices such as mobile phones and notebook personal computers, and the practical application of electric vehicles, secondary batteries with high capacity and high energy density have been required.

一方、上記のような二次電池の高容量・高エネルギー密度化といった技術革新に伴い、その安全性を確保することが更に困難となっており、特に微小金属粉等の異物混入、集電体の折れ曲がり、デンドライト等による内部短絡は、安全装置や保護回路では制御できない。よって、このような安全装置や保護回路では制御できない内部短絡における安全性を評価することは非常に重要である。従来、内部短絡における安全性を評価する方法としては、例えば以下の方法が提案されている。   On the other hand, with the technological innovations such as high capacity and high energy density of the secondary battery as described above, it has become more difficult to ensure its safety. The internal short circuit caused by bending or dendrites cannot be controlled by a safety device or a protection circuit. Therefore, it is very important to evaluate safety in an internal short circuit that cannot be controlled by such a safety device or protection circuit. Conventionally, for example, the following method has been proposed as a method for evaluating safety in an internal short circuit.

先ず、特許文献1には、電極群内部の正極と負極が対向する箇所に異物小片を混入させ、加圧子による加圧力で混入部をプレスすることで、正負極間に介在する絶縁層を局所的に破壊する内部短絡安全性評価方法が開示されている。   First, in Patent Document 1, a small piece of foreign material is mixed in a location where the positive electrode and the negative electrode in the electrode group face each other, and the mixed portion is pressed by a pressurizing force by a pressurizer, thereby locally disposing an insulating layer interposed between the positive and negative electrodes. An internal short circuit safety evaluation method that breaks down is disclosed.

また、特許文献2には、内部短絡により発生したガスが外部に排出されることを抑止するために、刺し込み箇所表面に接着性樹脂層を形成させた後、先端あるいは先端付近に導電性部材を備えた絶縁性の棒を内部短絡が発生する深さまで刺し込み、電池内で内部短絡を発生させる安全性評価方法が開示されている。   Further, in Patent Document 2, in order to prevent the gas generated by the internal short circuit from being discharged to the outside, an electrically conductive member is formed at or near the tip after an adhesive resin layer is formed on the surface of the puncture site. A safety evaluation method is disclosed in which an insulative bar having a thickness of 5 is inserted to a depth at which an internal short circuit occurs to generate an internal short circuit in the battery.

更に、非特許文献1である日本工業規格(JIS)C8714(2007)には、携帯電子機器用リチウムイオン蓄電池の単電池及び組電池の安全性試験が開示され、その中に単電池の強制内部短絡試験の方法が制定されている。この強制内部短絡試験法は、充電状態にある電極体を電池外装体から取り出し、その電極体を巻き解き、最外周の正極活物質と負極活物質との間にニッケル片を挿入した後、電極体を捲き直し、その後、ニッケル片挿入部を中心に加圧治具によって加圧することで、正極活物質−負極活物質間の1層の内部短絡を発生させる試験法である。   Furthermore, Japanese Industrial Standard (JIS) C8714 (2007), which is Non-Patent Document 1, discloses a safety test of a unit cell and an assembled battery of a lithium ion storage battery for portable electronic devices, and includes a forced internal of the unit cell. A short-circuit test method has been established. In this forced internal short circuit test method, an electrode body in a charged state is taken out from the battery outer body, the electrode body is unwound, a nickel piece is inserted between the outermost positive electrode active material and the negative electrode active material, and then the electrode This is a test method in which a single layer internal short circuit between the positive electrode active material and the negative electrode active material is generated by re-rolling the body and then pressurizing with a pressurizing jig around the nickel piece insertion portion.

特開2008−270090号公報JP 2008-270090 A 特開2010−250954号公報JP 2010-250954 A

JIS C8714(2007)携帯電子機器用リチウムイオン蓄電池の単電池及び組電池の安全性試験JIS C8714 (2007) Safety test of lithium-ion battery cells and battery packs for portable electronic devices

特許文献1及び非特許文献1に記載の方法は、正極活物質−負極活物質間の1層の内部短絡を発生させる方法であるが、電池を解体して、完全充電した電極体を取り扱うため、作業上の危険を伴う。また、これらの方法で使用する異物小片及びニッケル片の取り扱いは容易な作業ではないため、作業に時間を要する。その場合、作業中に電極体内の電解液が溶媒の揮発により減少し、電池の内部抵抗が増加するために、短絡時に発生する短絡電流も小さくなり、正確な安全性の評価ができない場合もある。   The method described in Patent Document 1 and Non-Patent Document 1 is a method of generating a single-layer internal short circuit between the positive electrode active material and the negative electrode active material, but in order to handle a fully charged electrode body by disassembling the battery. , With work hazards. Moreover, since handling of the foreign material small pieces and nickel pieces used in these methods is not an easy work, the work takes time. In that case, the electrolyte in the electrode body decreases during the work due to the volatilization of the solvent, and the internal resistance of the battery increases, so the short-circuit current that occurs at the time of a short circuit also decreases, and accurate safety evaluation may not be possible. .

一方、特許文献2に記載の方法は、作業の安全性は高いが、先端あるいは先端付近に導電性部材を備えた絶縁性の棒を刺し込むため、正極活物質−負極活物質間の短絡層数が1〜2層ではなく、多層の短絡になる場合がある。これは短絡時に発生するガスにより電極がせり上がり、短絡層数が増加したためである。従って、特許文献2の方法では、短絡層数の制御が困難で、常に一定の条件下での安全性評価が困難である。   On the other hand, although the method described in Patent Document 2 has high work safety, a short-circuit layer between the positive electrode active material and the negative electrode active material is inserted in order to insert an insulating rod having a conductive member at or near the tip. There are cases where the number is not 1 to 2 layers but a multilayer short circuit. This is because the electrode is raised by the gas generated at the time of short circuit, and the number of short circuit layers is increased. Therefore, in the method of Patent Document 2, it is difficult to control the number of short-circuit layers, and it is difficult to always evaluate safety under certain conditions.

本発明の電池用短絡試験装置は、短絡発生治具を含む電池用短絡試験装置であって、前記短絡発生治具は、押圧部材と、前記押圧部材の先端に配置された金属錐体部とを含み、前記押圧部材は、前記金属錐体部の底面部から外周方向に前記金属錐体部の母線よりも更に膨出する張り出し部を含むことを特徴とする。   The battery short-circuit test apparatus according to the present invention is a battery short-circuit test apparatus including a short-circuit generating jig, wherein the short-circuit generating jig includes a pressing member and a metal cone portion disposed at a tip of the pressing member. The pressing member includes an overhanging portion that further bulges from the bottom surface portion of the metal cone portion toward the outer periphery of the bus bar of the metal cone portion.

また、本発明の電池の短絡試験方法は、上記本発明の電池用短絡試験装置を用いる電池の短絡試験方法であって、電池を電圧測定部に接続する工程と、前記電池用短絡試験装置の前記短絡発生治具を前記電池の上に配置する工程と、前記短絡発生治具を電池方向に移動させて、前記短絡発生治具の前記金属錐体部を、前記電池の表面から刺し込むと共に前記押圧部材が前記電池の表面を押圧する工程と、前記電池の電圧が所定の電圧まで低下した時に、前記短絡発生治具の電池方向への移動を停止する工程とを含むことを特徴とする。   The battery short-circuit test method of the present invention is a battery short-circuit test method using the battery short-circuit test apparatus of the present invention, wherein the step of connecting the battery to a voltage measuring unit and the battery short-circuit test apparatus Placing the short-circuit generating jig on the battery; moving the short-circuit generating jig toward the battery; and inserting the metal cone portion of the short-circuit generating jig from the surface of the battery. A step of pressing the surface of the battery by the pressing member; and a step of stopping the movement of the short-circuit generating jig in the battery direction when the voltage of the battery drops to a predetermined voltage. .

本発明によれば、作業の安全性が高く、且つ正極活物質−負極活物質間の短絡層数を1層近くに制御でき、正確な安全性評価が可能な電池用短絡試験装置及び電池の短絡試験方法を提供できる。   According to the present invention, a battery short-circuit test apparatus and a battery having high work safety and capable of controlling the number of short-circuit layers between a positive electrode active material and a negative electrode active material to be close to one layer and enabling accurate safety evaluation. A short circuit test method can be provided.

図1は、本発明に係る実施形態の短絡発生治具の一例を示す模式側面図である。FIG. 1 is a schematic side view showing an example of a short-circuit generating jig according to an embodiment of the present invention. 図2は、本発明に係る実施形態の短絡発生治具の他の例を示す模式側面図である。FIG. 2 is a schematic side view showing another example of the short-circuit generating jig according to the embodiment of the present invention. 図3は、本発明に係る実施形態の短絡発生治具の他の例を示す模式側面図である。FIG. 3 is a schematic side view showing another example of the short-circuit generating jig according to the embodiment of the present invention. 図4は、本発明に係る実施形態の短絡発生治具の他の例を示す模式側面図である。FIG. 4 is a schematic side view showing another example of the short-circuit generating jig according to the embodiment of the present invention. 図5は、本発明に係る実施形態の短絡発生治具を電池に刺し込んだ状態の一例を示す模式要部断面図である。FIG. 5 is a schematic cross-sectional view of an essential part showing an example of a state where the short-circuit generating jig according to the embodiment of the present invention is inserted into a battery. 図6は、本発明に係る実施形態の短絡発生治具を電池に刺し込んだ状態の他の例を示す模式要部断面図である。FIG. 6 is a schematic cross-sectional view of an essential part showing another example of a state where the short-circuit generating jig according to the embodiment of the present invention is inserted into a battery. 図7は、扁平型リチウムイオン二次電池の模式平面図である。FIG. 7 is a schematic plan view of a flat lithium ion secondary battery. 図8は、実施例1の短絡発生治具の模式側面図である。FIG. 8 is a schematic side view of the short-circuit generating jig according to the first embodiment. 図9は、実施例1の短絡試験装置を用いて電池の短絡試験を行う直前の状態を示す模式外観斜視図である。FIG. 9 is a schematic external perspective view showing a state immediately before performing a short circuit test of a battery using the short circuit test apparatus of Example 1. 図10は、実施例2の短絡発生治具の模式側面図である。FIG. 10 is a schematic side view of the short-circuit generating jig according to the second embodiment. 図11は、実施例2の短絡試験装置を用いて電池の短絡試験を行う直前の状態を示す模式外観斜視図である。FIG. 11 is a schematic external perspective view showing a state immediately before a battery short-circuit test is performed using the short-circuit test apparatus of Example 2. 図12は、実施例3の短絡発生治具の模式断面図である。FIG. 12 is a schematic cross-sectional view of the short-circuit generating jig according to the third embodiment. 図13は、比較例1の短絡発生治具の模式側面図である。FIG. 13 is a schematic side view of the short-circuit generating jig of Comparative Example 1. 図14は、比較例2の短絡試験装置を用いて電池の短絡試験を行う直前の状態を示す模式外観斜視図である。14 is a schematic external perspective view showing a state immediately before performing a short circuit test of a battery using the short circuit test apparatus of Comparative Example 2. FIG. 図15は、比較例4の短絡発生治具の模式側面図である。FIG. 15 is a schematic side view of the short-circuit generating jig of Comparative Example 4.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

(電池用短絡試験装置の実施形態)
本実施形態の電池用短絡試験装置は、短絡発生治具を備え、上記短絡発生治具は、押圧部材と、上記押圧部材の先端に配置された金属錐体部とを備え、上記押圧部材は、上記金属錐体部の底面部から外周方向に上記金属錐体部の母線よりも更に膨出する張り出し部を備えている。本実施形態おける上記金属錐体部の母線は、その延長線も含むものであり、以下も同様である。
(Embodiment of battery short-circuit test device)
The battery short-circuit test apparatus according to the present embodiment includes a short-circuit generating jig, and the short-circuit generating jig includes a pressing member and a metal cone portion disposed at a tip of the pressing member. And a protruding portion that further bulges from the bottom surface portion of the metal cone portion in the outer circumferential direction than the bus bar of the metal cone portion. The bus bar of the metal cone part in this embodiment includes its extension line, and the same applies to the following.

本実施形態の電池用短絡試験装置は、上記短絡発生治具の上記金属錐体部を電池の表面へ刺し込んで内部短絡を発生させた際に、上記押圧部材の張り出し部が電池の表面を圧迫することができ、電池を短絡させた際に発生するガスによる電池の膨れ及びそれに伴う電極のせり上がりによる短絡層数の増加を抑制でき、正極活物質−負極活物質間の短絡層数を1層近くに制御でき、短絡試験の条件を統一した正確な安全性評価が可能となる。また、本実施形態の電池用短絡試験装置を用いることにより、例えば従来の特許文献1及び非特許文献1に記載の方法とは異なり、電池を解体して完全充電した電極体を取り扱う必要がないため、作業の安全性を高めることができる。更に、電池を解体しないため、電池の解体による電解液溶媒の揮発がなく、電池の内部抵抗の増加を抑制でき、短絡試験の条件の変動がない正確な安全性評価が可能となる。   In the battery short-circuit test apparatus according to the present embodiment, when the metal cone portion of the short-circuit generating jig is inserted into the surface of the battery to generate an internal short-circuit, the protruding portion of the pressing member covers the surface of the battery. It is possible to suppress the increase in the number of short-circuit layers due to the swelling of the battery due to the gas generated when the battery is short-circuited and the accompanying electrode rise, and the number of short-circuit layers between the positive electrode active material and the negative electrode active material can be reduced. It can be controlled to near one layer, and an accurate safety evaluation that unifies the conditions of the short-circuit test becomes possible. Further, by using the battery short-circuit test apparatus according to the present embodiment, unlike the methods described in, for example, the conventional patent document 1 and the non-patent document 1, it is not necessary to handle a fully charged electrode body after disassembling the battery. Therefore, work safety can be improved. Furthermore, since the battery is not disassembled, the electrolyte solvent does not volatilize due to the disassembly of the battery, an increase in the internal resistance of the battery can be suppressed, and an accurate safety evaluation without fluctuations in the conditions of the short-circuit test becomes possible.

上記張り出し部は、上記金属錐体部の軸に対して直行する平面部を備えることが好ましい。これにより、電池の短絡時に、上記平面部が電池の表面を確実に圧迫することができる。また、上記平面部のエッジ部は、曲面からなることが好ましい。これにより、上記エッジ部での短絡を抑制可能となる。   It is preferable that the projecting portion includes a flat portion that is orthogonal to the axis of the metal cone portion. Thereby, the said flat part can press the surface of a battery reliably at the time of a short circuit of a battery. Moreover, it is preferable that the edge part of the said plane part consists of a curved surface. Thereby, a short circuit at the edge portion can be suppressed.

更に、上記張り出し部は、上記金属錐体部に向かって突出する球面部を備えることができる。これによっても、電池の短絡時に、上記球面部が電池の表面を圧迫することができ、更に上記金属錐体部以外の部分での短絡を抑制可能となる。   Further, the overhanging portion may include a spherical portion protruding toward the metal cone portion. This also makes it possible for the spherical portion to press the surface of the battery when the battery is short-circuited, and further to prevent a short-circuit at a portion other than the metal cone portion.

上記短絡発生治具では、上記金属錐体部の下部外周部に、上記押圧部材に接するスペーサーが更に配置されていることが好ましい。上記スペーサーを用いることにより、上記短絡発生治具の上記金属錐体部を電池の表面へ刺し込んで内部短絡を発生させた際に、刺し込み箇所の密閉性を確保して、内部短絡発生時に生じるガスの電池外部への漏出を防止することができる。また、上記スペーサーの厚さを変更することにより、上記金属錐体部の先端露出部の長さの調整が容易となる。更に、上記スペーサーは、上記金属錐体部の底面部から外周方向に上記金属錐体部の母線よりも更に膨出していることが好ましい。これにより、刺し込み箇所の密閉性をより向上できる。   In the short-circuit generating jig, it is preferable that a spacer in contact with the pressing member is further arranged on a lower outer peripheral portion of the metal cone portion. By using the spacer, when the metal cone part of the short-circuit generating jig is inserted into the surface of the battery and an internal short circuit is generated, it is possible to ensure the sealing property of the embedded part and to prevent an internal short circuit from occurring. Leakage of the generated gas to the outside of the battery can be prevented. Further, by changing the thickness of the spacer, the length of the exposed end portion of the metal cone portion can be easily adjusted. Furthermore, it is preferable that the spacer further bulges from the bottom surface of the metal cone portion toward the outer periphery of the bus bar of the metal cone portion. Thereby, the sealing property of the puncture location can be improved more.

上記スペーサーは、ゴム系材料からなることが好ましい。これにより、上記短絡発生治具の電池との密着性を増すことができる。   The spacer is preferably made of a rubber material. Thereby, the adhesiveness with the battery of the said short circuit generation jig | tool can be increased.

本実施形態の電池用短絡試験装置は、電池の電圧測定部及び上記押圧部材の押圧制御部を更に備えることが好ましい。これにより、電池の電圧低下による短絡の発生を正確に把握でき、それにより上記押圧部材の刺し込み移動を停止でき、所定の短絡層数に確実に制御することができる。   It is preferable that the battery short-circuit test apparatus according to the present embodiment further includes a battery voltage measurement unit and a pressing control unit for the pressing member. Thereby, generation | occurrence | production of the short circuit by the voltage drop of a battery can be grasped | ascertained correctly, and the insertion movement of the said press member can be stopped by it, and it can control to the predetermined | prescribed number of short circuit layers reliably.

次に、図面に基づき本実施形態の電池用短絡試験装置に用いる短絡発生治具を詳細に説明する。   Next, a short-circuit generating jig used in the battery short-circuit test apparatus of the present embodiment will be described in detail with reference to the drawings.

図1は、本実施形態の短絡発生治具の一例を示す模式側面図である。図1において、短絡発生治具10は、円筒形の押圧部材11と、押圧部材11の先端に配置された円錐状の金属錐体部12とを備えている。また、押圧部材11は、金属錐体部12の底面部から外周方向に金属錐体部12の母線よりも更に膨出する張り出し部14を備えており、張り出し部14は、金属錐体部12の軸13に対して直行する平面部を備えている。更に、張り出し部14の平面部のエッジ部15は、曲面から形成されている。   FIG. 1 is a schematic side view showing an example of a short-circuit generating jig according to the present embodiment. In FIG. 1, the short-circuit generating jig 10 includes a cylindrical pressing member 11 and a conical metal cone portion 12 disposed at the tip of the pressing member 11. The pressing member 11 includes an overhanging portion 14 that bulges further from the bottom surface of the metal cone portion 12 in the outer circumferential direction than the generatrix of the metal cone portion 12, and the overhanging portion 14 includes the metal cone portion 12. A plane portion perpendicular to the shaft 13 is provided. Furthermore, the edge part 15 of the flat part of the overhang | projection part 14 is formed from the curved surface.

短絡発生治具10の金属錐体部12を電池の表面から刺し込むと共に、押圧部材11により電池を押圧することにより、安全に且つ確実に電池の短絡を発生させることができる。   By inserting the metal cone portion 12 of the short-circuit generating jig 10 from the surface of the battery and pressing the battery by the pressing member 11, it is possible to generate a short circuit of the battery safely and reliably.

図2は、本実施形態の短絡発生治具の他の例を示す模式側面図である。図2において、短絡発生治具20は、円筒形の押圧部材21と、押圧部材21の先端に配置された円錐状の金属錐体部22とを備えている。また、押圧部材21は、金属錐体部22の底面部から外周方向に上記金属錐体部の母線よりも更に膨出する張り出し部24を備えており、張り出し部24は、金属錐体部22の軸23に対して直行する平面部を備えている。更に、金属錐体部22の下部外周部には、押圧部材21に接する円盤状のスペーサー25が配置されている。   FIG. 2 is a schematic side view showing another example of the short-circuit generating jig of the present embodiment. In FIG. 2, the short-circuit generating jig 20 includes a cylindrical pressing member 21 and a conical metal cone portion 22 disposed at the tip of the pressing member 21. The pressing member 21 includes an overhanging portion 24 that further bulges from the bottom surface of the metal cone portion 22 in the outer circumferential direction with respect to the bus bar of the metal cone portion, and the overhanging portion 24 includes the metal cone portion 22. A plane portion perpendicular to the shaft 23 is provided. Further, a disc-shaped spacer 25 that is in contact with the pressing member 21 is disposed on the lower outer peripheral portion of the metal cone portion 22.

短絡発生治具20の金属錐体部22を電池の表面から刺し込むと共に、押圧部材21により電池を押圧することにより、安全に且つ確実に電池の短絡を発生させることができる。また、図2の短絡発生治具20は、スペーサー25を備えているので、金属錐体部22による電池の刺し込み箇所の密閉性を確保できる。   By inserting the metal cone portion 22 of the short-circuit generating jig 20 from the surface of the battery and pressing the battery with the pressing member 21, it is possible to generate a short circuit of the battery safely and reliably. In addition, since the short-circuit generating jig 20 of FIG. 2 includes the spacer 25, it is possible to ensure the sealing performance of the battery insertion portion by the metal cone portion 22.

図3は、本実施形態の短絡発生治具の他の例を示す模式側面図である。図3において、短絡発生治具30は、球形の押圧部材31と、押圧部材31の先端に配置された円錐状の金属錐体部32とを備えている。また、押圧部材31は、金属錐体部32の底面部から外周方向に上記金属錐体部の母線よりも更に膨出する張り出し部33を備えており、張り出し部33は、金属錐体部32に向かって突出する球面部を備えている。   FIG. 3 is a schematic side view showing another example of the short-circuit generating jig of the present embodiment. In FIG. 3, the short-circuit generating jig 30 includes a spherical pressing member 31 and a conical metal cone portion 32 disposed at the tip of the pressing member 31. Further, the pressing member 31 includes an overhanging portion 33 that further bulges from the bottom surface portion of the metal cone portion 32 in the outer circumferential direction with respect to the bus bar of the metal cone portion, and the overhang portion 33 is formed of the metal cone portion 32. A spherical portion protruding toward the surface.

短絡発生治具30の金属錐体部32を電池の表面から刺し込むと共に、押圧部材31により電池を押圧することにより、安全に且つ確実に電池の短絡を発生させることができる。   By inserting the metal cone portion 32 of the short-circuit generating jig 30 from the surface of the battery and pressing the battery by the pressing member 31, it is possible to generate a short circuit of the battery safely and reliably.

図4は、本実施形態の短絡発生治具の他の例を示す模式側面図である。図4において、短絡発生治具40は、球形の押圧部材41と、押圧部材41の先端に配置された円錐状の金属錐体部42とを備えている。また、押圧部材41は、金属錐体部42の底面部から外周方向に上記金属錐体部の母線よりも更に膨出する張り出し部43を備えており、張り出し部43は、金属錐体部42に向かって突出する球面部を備えている。更に、金属錐体部42の下部外周部には、押圧部材41に接する円盤状のスペーサー44が配置されている。   FIG. 4 is a schematic side view showing another example of the short-circuit generating jig of the present embodiment. In FIG. 4, the short-circuit generating jig 40 includes a spherical pressing member 41 and a conical metal cone portion 42 disposed at the tip of the pressing member 41. Further, the pressing member 41 includes an overhanging portion 43 that bulges further from the bottom surface of the metal cone portion 42 in the outer circumferential direction than the generatrix of the metal cone portion, and the overhanging portion 43 includes the metal cone portion 42. A spherical portion protruding toward the surface. Further, a disk-shaped spacer 44 that is in contact with the pressing member 41 is disposed on the lower outer peripheral portion of the metal cone portion 42.

短絡発生治具40の金属錐体部42を電池の表面から刺し込むと共に、押圧部材41により電池を押圧することにより、安全に且つ確実に電池の短絡を発生させることができる。また、図4の短絡発生治具40は、スペーサー44を備えているので、金属錐体部42による電池の刺し込み箇所の密閉性を確保できる。   By inserting the metal cone part 42 of the short-circuit generating jig 40 from the surface of the battery and pressing the battery with the pressing member 41, it is possible to generate a short circuit of the battery safely and reliably. In addition, since the short-circuit generating jig 40 of FIG. 4 includes the spacer 44, it is possible to ensure the sealing performance of the battery insertion portion by the metal cone portion 42.

図1〜図4に示した金属錐体部の材質としては、電池の内部短絡を実現できる材質であれば特に限定されないが、電気抵抗率が100Ω・m以下である導電性材料であることが好ましく、短絡部を形成する金属錐体部の電気抵抗が、電池の内部抵抗と同等となる導電性材料であることが最も好ましい。短絡部の電気抵抗が電池の内部抵抗と同等であると、その短絡部に電流が流れやすくなるため、その短絡部での発熱量が大きくなり、より危険な状態を再現でき、正確な安全性評価が可能となる。   The material of the metal cone portion shown in FIGS. 1 to 4 is not particularly limited as long as it is a material that can realize an internal short circuit of the battery. However, the material may be a conductive material having an electrical resistivity of 100 Ω · m or less. Preferably, it is most preferable that the electrical resistance of the metal cone part forming the short-circuit part is a conductive material that is equivalent to the internal resistance of the battery. If the electrical resistance of the short-circuited part is equivalent to the internal resistance of the battery, current will easily flow through the short-circuited part, so the amount of heat generated in the short-circuited part will increase, and more dangerous conditions can be reproduced, and accurate safety Evaluation is possible.

上記金属錐体部に用いる具体的な導電性材料としては、例えば、鉄、銅、ニッケル、アルミニウム、ステンレス鋼、チタン等の金属材料、金属材料以外の導電性材料である炭素質材料等を用いることができるが、電池製造工程での微小金属粉の混入を模擬する観点より、ニッケルがより好ましい。   Specific examples of the conductive material used for the metal cone portion include metal materials such as iron, copper, nickel, aluminum, stainless steel, and titanium, and carbonaceous materials that are conductive materials other than metal materials. However, nickel is more preferable from the viewpoint of simulating the mixing of fine metal powder in the battery manufacturing process.

また、図1〜図4に示した金属錐体部の形状は、円錐状の部材を用いたが、円錐状に限らず、角錐状でもよいが、角錐の角により電池表面に亀裂が生じる場合があるため、円錐状が好ましい。   The shape of the metal cone portion shown in FIGS. 1 to 4 is a conical member, but is not limited to a conical shape, but may be a pyramid shape, but the battery surface is cracked by the corners of the pyramid. Therefore, a conical shape is preferable.

上記金属錐体部の最適な高さは、短絡試験を行う電池の種類、形状、大きさ等により異なるが、後述する実施例で用いた扁平型リチウムイオン二次電池の場合は、0.38mm以上0.61mm以下であることが好ましい。   The optimum height of the metal cone portion varies depending on the type, shape, size, etc. of the battery to be subjected to the short-circuit test, but in the case of the flat lithium ion secondary battery used in the examples described later, it is 0.38 mm. It is preferable that it is 0.61 mm or less.

図1〜図4に示した押圧部材の材質としては、剛性を有する材質であれば特に限定されず、例えば、セラミックス材料、金属材料等が使用できるが、上記押圧部材を介した電池の放熱を防ぐために、熱伝導率の低いセラミックス材料が好ましい。上記セラミックス材料としては、例えば、ジルコニア、ムライト、コージライト、ステアタイト、β−スポジュメン、チタン酸アルミ、ジルコン等が挙げられる。   The material of the pressing member shown in FIGS. 1 to 4 is not particularly limited as long as it is a rigid material. For example, a ceramic material, a metal material, or the like can be used, but heat dissipation of the battery via the pressing member can be performed. In order to prevent this, a ceramic material having a low thermal conductivity is preferred. Examples of the ceramic material include zirconia, mullite, cordierite, steatite, β-spodumene, aluminum titanate, and zircon.

また、図1〜図4に示した押圧部材の形状は、円筒形又は球形としたが、金属錐体部の底面部から外周方向に上記金属錐体部の母線よりも更に膨出する張り出し部を備え、電池を押圧できる形状であれば、これらの形状に限定されず、角柱形、多角柱形、楕円柱形等を用いることができる。また、押圧部材の形状が球形以外の場合には、金属錐体部の底面部から外周方向に上記金属錐体部の母線よりも更に膨出する張り出し部のエッジ部は、曲面からなることが好ましい。これにより、上記エッジ部での短絡を抑制可能となる。   Moreover, although the shape of the pressing member shown in FIGS. 1 to 4 is a cylindrical shape or a spherical shape, an overhanging portion that further bulges from the bottom surface portion of the metal cone portion toward the outer periphery of the bus bar of the metal cone portion. If it is a shape which can press a battery, it will not be limited to these shapes, A prismatic shape, a polygonal column shape, an elliptical column shape etc. can be used. In addition, when the shape of the pressing member is other than a spherical shape, the edge portion of the protruding portion that further bulges from the bottom surface portion of the metal cone portion in the outer circumferential direction than the generatrix of the metal cone portion may be a curved surface. preferable. Thereby, a short circuit at the edge portion can be suppressed.

図2及び図4に示したスペーサーの材質としては、密着性を有する材質であれば特に限定されず、例えば、例えば、フッ素ゴム、天然ゴム、クロロプレンゴム、シリコンゴム等のゴム系材料、フェノール樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ酢酸樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂等の樹脂系材料等を使用できる。また、上記押圧部材による電池の押圧時におけるスペーサーの変形を抑制する観点より、密着性を有するゴム系材料と、剛性を有する樹脂系材料とを併用し、ゴム系材料からなるスペーサーを外側に配置することがより好ましい。これにより、スペーサーの変形を抑制できると共に、スペーサーの密着性も確保できる。   The spacer material shown in FIGS. 2 and 4 is not particularly limited as long as it is a material having adhesiveness. For example, rubber materials such as fluorine rubber, natural rubber, chloroprene rubber, silicon rubber, and phenol resin are used. Resin-based materials such as acrylic resin, urethane resin, epoxy resin, polyvinyl chloride resin, polyamide resin, polyimide resin, polyacetic acid resin, polystyrene resin, and polyvinyl alcohol resin can be used. In addition, from the viewpoint of suppressing the deformation of the spacer when the battery is pressed by the pressing member, a rubber-based material having adhesion and a resin-based material having rigidity are used in combination, and the spacer made of the rubber-based material is arranged outside. More preferably. Thereby, while being able to suppress a deformation | transformation of a spacer, the adhesiveness of a spacer is also securable.

また、図2及び図4に示したスペーサーの形状は、円盤状としたが、上記押圧部材の底面部と同様の外形を有する形状であれば、円盤状に限定されず、角盤状、楕円盤状等を用いることができる。   Moreover, although the shape of the spacer shown in FIG.2 and FIG.4 was made into the disk shape, if it is a shape which has the same external shape as the bottom face part of the said press member, it will not be limited to a disk shape, a disk shape, an elliptical disk A shape or the like can be used.

本実施形態の電池用短絡試験装置を用いた短絡試験の対象となる電池については、後述する。   A battery that is a target of a short circuit test using the short circuit test apparatus for a battery according to the present embodiment will be described later.

(電池の短絡試験方法の実施形態)
本実施形態の電池の短絡試験方法は、前述の実施形態で説明した電池用短絡試験装置を用いる電池の短絡試験方法であり、電池を電圧測定部に接続する工程と、上記電池用短絡試験装置の上記短絡発生治具を上記電池の上に配置する工程と、上記短絡発生治具を電池方向に移動させて、上記短絡発生治具の上記金属錐体部を、上記電池の表面から刺し込むと共に上記押圧部材が上記電池の表面を押圧する工程と、上記電池の電圧が所定の電圧まで低下した時に、上記短絡発生治具の電池方向への移動を停止する工程とを備えている。
(Embodiment of battery short-circuit test method)
The battery short-circuit test method of the present embodiment is a battery short-circuit test method using the battery short-circuit test apparatus described in the above-described embodiment. The battery short-circuit test apparatus includes a step of connecting the battery to the voltage measuring unit, and the battery short-circuit test apparatus. Placing the short-circuit generating jig on the battery, moving the short-circuit generating jig toward the battery, and inserting the metal cone portion of the short-circuit generating jig from the surface of the battery. And a step of pressing the surface of the battery by the pressing member, and a step of stopping the movement of the short-circuit generating jig in the battery direction when the voltage of the battery drops to a predetermined voltage.

本実施形態の電池の短絡試験方法は、前述の実施形態で説明した電池用短絡試験装置を用いているため、上記短絡発生治具の上記金属錐体部を電池の表面へ刺し込んで内部短絡を発生させた際に、上記押圧部材の張り出し部が電池の表面を圧迫することができ、電池を短絡させた際に発生するガスによる電池の膨れ及びそれに伴う電極のせり上がりによる短絡層数の増加を抑制でき、正極活物質−負極活物質間の短絡層数を1層近くに制御でき、短絡試験の条件を統一した正確な安全性評価が可能となる。また、上記電池用短絡試験装置を用いることにより、例えば従来の特許文献1及び非特許文献1に記載の方法とは異なり、電池を解体して完全充電した電極体を取り扱う必要がないため、作業の安全性を高めることができる。更に、電池を解体しないため、電池の解体による電解液溶媒の揮発がなく、電池の内部抵抗の増加を抑制でき、短絡試験の条件の変動がない正確な安全性評価が可能となる。   Since the battery short-circuit test method of the present embodiment uses the battery short-circuit test apparatus described in the above-described embodiment, the metal cone part of the short-circuit generating jig is inserted into the surface of the battery to cause an internal short circuit. The overhanging portion of the pressing member can press the surface of the battery, and the number of short-circuit layers due to the swelling of the battery due to the gas generated when the battery is short-circuited and the accompanying electrode rise. The increase can be suppressed, the number of short-circuit layers between the positive electrode active material and the negative electrode active material can be controlled to be close to one layer, and an accurate safety evaluation that unifies the conditions of the short-circuit test becomes possible. Further, by using the battery short-circuit test apparatus, unlike the methods described in, for example, the conventional patent document 1 and the non-patent document 1, it is not necessary to handle a fully charged electrode body by disassembling the battery. Can improve the safety. Furthermore, since the battery is not disassembled, the electrolyte solvent does not volatilize due to the disassembly of the battery, an increase in the internal resistance of the battery can be suppressed, and an accurate safety evaluation without fluctuations in the conditions of the short-circuit test becomes possible.

本実施形態の電池の短絡試験方法では、上記電池は、断熱部材の上に配置されることが好ましい。これにより、上記電池が短絡して発熱した際の放熱を抑制でき、実際の短絡時の発熱状況を維持でき、正確な安全性評価が可能となる。   In the battery short-circuit test method of this embodiment, the battery is preferably disposed on a heat insulating member. Thereby, the heat release when the battery is short-circuited to generate heat can be suppressed, the heat generation state at the time of actual short-circuit can be maintained, and accurate safety evaluation can be performed.

上記断熱部材の材質は断熱性が高いものであれば特に限定されず、例えば、セラミックス等の無機材料、フェノール樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリ酢酸樹脂、ポリスチレン樹脂、ポリビニルアルコール樹脂等の有機材料を用いることができる。   The material of the heat insulating member is not particularly limited as long as it has high heat insulating properties. For example, inorganic materials such as ceramics, phenol resin, acrylic resin, urethane resin, epoxy resin, polyvinyl chloride resin, polyamide resin, polyimide resin, Organic materials such as polyacetic acid resin, polystyrene resin, and polyvinyl alcohol resin can be used.

また、本実施形態の電池の短絡試験方法では、上記電池と上記断熱部材との間に、温度測定素子が配置されることが好ましい。即ち、上記電池の下に温度測定素子を配置することにより、温度測定素子が電池の膨れの影響を受けにくくなり、温度測定素子が電極体から大きく離れにくい位置で電極体の温度をより正確に測定可能となる。また、上記断熱部材の上に温度測定素子を配置することにより、上記電池の放熱を抑制した状態での上記電池の温度を正確に測定することができる。   In the battery short-circuit test method of the present embodiment, it is preferable that a temperature measuring element is disposed between the battery and the heat insulating member. That is, by disposing the temperature measuring element under the battery, the temperature measuring element is less affected by the swelling of the battery, and the temperature of the electrode body is more accurately adjusted at a position where the temperature measuring element is not easily separated from the electrode body. It becomes possible to measure. Moreover, by disposing the temperature measuring element on the heat insulating member, it is possible to accurately measure the temperature of the battery in a state where heat dissipation of the battery is suppressed.

前述の実施形態で説明した電池用短絡試験装置を用いる本実施形態の電池の短絡試験方法よる短絡試験の対象となる電池は、正極と、セパレータと、負極とからなる電極対を複数積層して備えている。上記電池の代表的なものとしては、リチウムイオン二次電池が挙げられる。   A battery to be subjected to a short-circuit test by the battery short-circuit test method of the present embodiment using the battery short-circuit test apparatus described in the above-described embodiment is formed by stacking a plurality of electrode pairs each including a positive electrode, a separator, and a negative electrode. I have. A typical example of the battery is a lithium ion secondary battery.

上記リチウムイオン二次電池の形態としては特に限定されず、例えば、コイン形、ボタン形、シート形、積層形、円筒形、扁平形、角形、電気自動車等に用いる大型のもの等のいずれであっても、本実施形態の電池の短絡試験方法を適用できる。   The form of the lithium ion secondary battery is not particularly limited, and may be any one of, for example, a coin shape, a button shape, a sheet shape, a laminated shape, a cylindrical shape, a flat shape, a square shape, a large size used for an electric vehicle, etc. However, the battery short-circuit test method of this embodiment can be applied.

ここで、上記正極の厚さをa、上記セパレータの厚さをb、上記負極の厚さをc、上記電池の表面から、上記正極及び上記負極の両方が活物質を担持して対向する箇所の第1層目の電極対までの厚さをA、上記正極及び上記負極の両方が活物質を担持して対向する箇所の上記電池の表面から第2層目の電極対までの厚さをB、上記短絡発生治具から露出した上記金属錐体部の高さをLとすると、A+a+b≦L<B、又は、A+c+b≦L<Bの関係が成立することが好ましい。これにより、電池の大きさにかかわらず、上記金属錐体部の先端の電池への侵入深さを機械的に制御して、正極活物質−負極活物質間の短絡層数を1層に限定できる。その結果、短絡試験の条件を均一にでき、正確な安全性評価が可能となる。また、上記Lを一定の範囲で大きくすることにより、2層短絡を実現することもできる。   Here, the thickness of the positive electrode is a, the thickness of the separator is b, the thickness of the negative electrode is c, and both the positive electrode and the negative electrode carry active materials from the surface of the battery and face each other. The thickness from the surface of the battery to the second electrode pair at a location where both of the positive electrode and the negative electrode carry active materials and face each other. It is preferable that the relationship of A + a + b ≦ L <B or A + c + b ≦ L <B is satisfied, where L is the height of the metal cone part exposed from the short-circuit generating jig. Thereby, regardless of the size of the battery, the depth of penetration of the metal cone portion into the battery is mechanically controlled, and the number of short-circuit layers between the positive electrode active material and the negative electrode active material is limited to one layer. it can. As a result, the conditions of the short-circuit test can be made uniform, and accurate safety evaluation can be performed. Further, a two-layer short circuit can be realized by increasing L in a certain range.

以下、上記関係について図面を用いて説明する。図5は、本実施形態の短絡発生治具を電池に刺し込んだ状態の一例を示す模式要部断面図である。   Hereinafter, the above relationship will be described with reference to the drawings. FIG. 5 is a schematic cross-sectional view of an essential part showing an example of a state where the short-circuit generating jig of the present embodiment is inserted into a battery.

図5において、電池50は、外側から正極51、セパレータ52、負極53からなる上記第1層目の電極対55、及び、外側から正極51、セパレータ52、負極53からなる上記第2層目の電極対56を備え、更に、図示を省略した電極対を複数備えている。電極対55、56の形態は特に限定されず、板状の電極をセパレータと共に積層した積層電極体であってもよく、長尺状の電極をセパレータと共に巻回した巻回電極体であってもよい。また、図5において、短絡発生治具の押圧部材70に取り付けられた金属錐体部60の先端は、第1層目の電極対55の負極53の表面まで達し、1層短絡を実現している。   In FIG. 5, the battery 50 includes a positive electrode 51, a separator 52, and a negative electrode 53 from the outside, the first layer electrode pair 55 including the positive electrode 51, a separator 52, and a negative electrode 53. An electrode pair 56 is provided, and a plurality of electrode pairs (not shown) are further provided. The form of the electrode pairs 55 and 56 is not particularly limited, and may be a laminated electrode body in which plate-like electrodes are laminated together with separators, or a wound electrode body in which long electrodes are wound together with separators. Good. Further, in FIG. 5, the tip of the metal cone portion 60 attached to the pressing member 70 of the short-circuit generating jig reaches the surface of the negative electrode 53 of the first-layer electrode pair 55 to realize a one-layer short circuit. Yes.

図5において、正極51の厚さをa、セパレータ52の厚さをb、負極53の厚さをc、電池50の表面から第1層目の電極対55までの厚さをA、電池50の表面から第2層目の電極対56までの厚さをB、押圧部材70から露出した金属錐体部60の高さをLとすると、A+a+b≦L<Bの関係が成立しているので、多層短絡を機械的に防止できる。   In FIG. 5, the thickness of the positive electrode 51 is a, the thickness of the separator 52 is b, the thickness of the negative electrode 53 is c, the thickness from the surface of the battery 50 to the first electrode pair 55 is A, and the battery 50. Since the thickness from the surface of the electrode to the second-layer electrode pair 56 is B and the height of the metal cone portion 60 exposed from the pressing member 70 is L, the relationship of A + a + b ≦ L <B is established. Multilayer short circuit can be mechanically prevented.

また、図6は、本実施形態の短絡発生治具を電池に刺し込んだ状態の他の例を示す模式要部断面図である。図6において、電池50は、外側から負極53、セパレータ52、正極51からなる上記第1層目の電極対57、及び、外側から負極53、セパレータ52、正極51からなる上記第2層目の電極対58を備え、更に、図示を省略した電極対を複数備えていること以外は、図5と同様の構成であるため、図6についての詳細な説明は省略する。   FIG. 6 is a schematic cross-sectional view of an essential part showing another example in which the short-circuit generating jig of the present embodiment is inserted into the battery. In FIG. 6, the battery 50 includes a negative electrode 53, a separator 52, and a positive electrode 51 from the outside, and the first layer electrode pair 57 that includes the negative electrode 53, the separator 52, and the positive electrode 51 from the outside. Since the configuration is the same as that of FIG. 5 except that an electrode pair 58 is provided and a plurality of electrode pairs not shown are provided, detailed description of FIG. 6 is omitted.

本実施形態の電池の短絡試験方法において、上記短絡発生治具を電池の方向に移動させて、上記金属錐体部を電池の表面から刺し込む速度は特に限定されないが、最外層の電極対のみの内部短絡発生時点における上記短絡発生治具の停止等の制御が容易である点から、0.5mm/sec以下であることが好ましく、0.3mm/sec以下がより好ましく、0.1mm/sec以下が更に好ましい。   In the battery short-circuit test method of this embodiment, the speed at which the short-circuit generating jig is moved in the direction of the battery and the metal cone portion is inserted from the surface of the battery is not particularly limited, but only the outermost electrode pair. Is preferably 0.5 mm / sec or less, more preferably 0.3 mm / sec or less, and more preferably 0.1 mm / sec. The following is more preferable.

上記短絡発生治具を電池へ刺し込む機構は特に限定されないが、一定の刺し込み速度による動作が可能で且つ任意の位置で停止可能な機構が好ましく、例えば、サーボモータを用いたスクリュー式プレス、メカニカル式プレス、油圧式プレス、エア式プレス等を用いることができる。   The mechanism for inserting the short-circuit generating jig into the battery is not particularly limited, but a mechanism that can be operated at a constant insertion speed and can be stopped at any position is preferable, for example, a screw press using a servo motor, A mechanical press, a hydraulic press, an air press, etc. can be used.

本実施形態の電池の短絡試験方法において、上記電池の電圧が所定の電圧まで低下した時に、上記短絡発生治具の電池方向への移動を停止する工程における上記電池の電圧の低下範囲としては、最外周の電極対のみの1層短絡を実現するためには、0.1V以下であることが好ましく、0.07V以下がより好ましく、0.05V以下が更に好ましい。   In the battery short-circuit test method of the present embodiment, when the battery voltage drops to a predetermined voltage, the battery voltage drop range in the step of stopping the movement of the short-circuit generating jig in the battery direction, In order to realize a one-layer short circuit of only the outermost electrode pair, it is preferably 0.1 V or less, more preferably 0.07 V or less, and even more preferably 0.05 V or less.

本実施形態の電池の短絡試験方法を用いて電池の内部短絡に対する安全性評価をする場合、電池を厳しい条件で評価する目的から、電池を満充電の状態として短絡試験を行うが、短絡試験の環境温度については特に限定されない。一般的には、通常電池の使用で想定される範囲でより厳しい高温に設定することが好ましく、例えば、JIS C 8714(2007)携帯電子機器用リチウムイオン蓄電池の単電池及び組電池の安全性試験では、上限試験温度は45℃と設定されている。   When evaluating the safety against internal short circuit of the battery using the battery short circuit test method of the present embodiment, for the purpose of evaluating the battery under severe conditions, the short circuit test is performed with the battery fully charged. The environmental temperature is not particularly limited. In general, it is preferable to set a higher temperature that is more severe within the range assumed for the use of a normal battery. For example, JIS C 8714 (2007) Safety test of single battery and assembled battery of lithium ion storage battery for portable electronic devices Then, the upper limit test temperature is set to 45 ° C.

また、電池の安全性評価試験においては、一般的に電圧、温度、映像機器による映像等を記録することにより、電圧変化、発熱挙動、電池の外観状況等に基づき安全性レベルを確認することができる。安全性レベルの判定基準としては、試験項目、規格等によって一概ではないが、内部短絡時の電池電圧変化、電池温度、電解液の漏液有無、発煙有無、破裂有無、発火有無等が挙げられ、これら判定基準より安全性レベルを判断することが重要である。   Also, in battery safety evaluation tests, it is generally possible to check the safety level based on voltage changes, heat generation behavior, battery appearance, etc. by recording voltage, temperature, video by video equipment, etc. it can. Judgment standards for safety level are not unclear depending on test items, standards, etc., but include changes in battery voltage, battery temperature, presence or absence of leakage of electrolyte, presence or absence of smoke, presence or absence of explosion, presence or absence of ignition, etc. Therefore, it is important to judge the safety level from these criteria.

また、本実施形態の電池の短絡試験方法における電池の短絡層数については、内部短絡試験後の電池を解体し、正極活物質と負極活物質との間に介在するセパレータの穴によって確認することができる。但し、内部短絡試験において、発煙、破裂、発火等が発生した場合、燃焼や、熱によるセパレータの溶着により、短絡層数を判断することは困難な場合がある。   Further, the number of short-circuit layers of the battery in the battery short-circuit test method of the present embodiment should be confirmed by disassembling the battery after the internal short-circuit test and by a separator hole interposed between the positive electrode active material and the negative electrode active material. Can do. However, in the internal short circuit test, when smoke, rupture, ignition, etc. occur, it may be difficult to determine the number of short circuit layers by combustion or welding of the separator by heat.

本実施形態の電池の短絡試験方法により安全性を評価する電池については、特に限定されるものではないが、その電池容量(mAh)を、正極合剤層と負極合剤層との対向面積(セパレータを介して対向する部分の面積)で除して求められる単位面積当たりの電池容量(以下、「電極対向面積当たりの電池容量」という。)が、3.3mAh/cm2未満であることが、本実施形態の電池の短絡試験方法には適している。上記電極対向面積当たりの電池容量が小さい電池を使用することで、電池の内部短絡時での電極体の発熱による熱を他の電池部材へ逃がしやすくなり、電池表面で温度変化を検知しやすくなるからである。但し、上記電極対向面積当たりの電池容量が小さすぎると、電池のエネルギー密度が低下し発熱自体が小さくなり、安全性レベルに差が見えなくなるため、本実施形態の電池の短絡試験方法により安全性を評価する電池については、上前記電極対向面積当たりの電池容量は、1Ah以上であることが好ましい。 The battery for which safety is evaluated by the battery short-circuit test method of the present embodiment is not particularly limited, but the battery capacity (mAh) is determined by the opposing area between the positive electrode mixture layer and the negative electrode mixture layer ( The battery capacity per unit area (hereinafter referred to as “battery capacity per electrode facing area”) obtained by dividing by the area of the part facing through the separator) is less than 3.3 mAh / cm 2 . It is suitable for the battery short-circuit test method of this embodiment. Use of a battery with a small battery capacity per electrode facing area makes it easier to release heat generated by the electrode body when the battery is internally short-circuited to other battery members, making it easier to detect temperature changes on the battery surface. Because. However, if the battery capacity per electrode facing area is too small, the energy density of the battery is reduced, the heat generation itself is reduced, and the difference in safety level is not visible. As for the battery for evaluating the above, it is preferable that the battery capacity per electrode facing area is 1 Ah or more.

上記電池の外装体の材質は、アルミラミネート、アルミ等に限定されるものではないが、アルミラミネート部材である場合、金属錐体部が侵入して短絡させやすいので、本実施形態の電池の短絡試験方法により安全性を評価するのに好ましい電池形態である。   The material of the battery exterior body is not limited to aluminum laminate, aluminum, or the like, but in the case of an aluminum laminate member, the metal cone part easily enters and short-circuits. It is a preferable battery form for evaluating safety by a test method.

一方、上記電池の外装体がステンレス鋼等の剛性を有する材質の場合、及び外装体の厚さが厚い場合には、外装体から電極体のみを取り出して本実施形態の電池の短絡試験方法を行うことも可能である。これにより、外装体が厚い場合にも電極体を分解することなく低い押圧力で短絡試験することが可能である。   On the other hand, when the battery outer body is made of a material having rigidity such as stainless steel, and when the outer body is thick, only the electrode body is taken out of the outer body and the battery short-circuit test method of this embodiment is performed. It is also possible to do this. Thereby, even when the exterior body is thick, it is possible to perform a short circuit test with a low pressing force without disassembling the electrode body.

以下、実施例に基づいて本発明を詳細に説明する。但し、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

(実施例1)
<測定試料の作製>
測定試料として、図7に示す扁平型リチウムイオン二次電池を次のように作製した。
Example 1
<Preparation of measurement sample>
As a measurement sample, a flat lithium ion secondary battery shown in FIG. 7 was produced as follows.

〔正極の作製〕
先ず、正極活物質であるLiCoO2(日本化学工業社製、"C20F")100質量部と、導電助剤であるアセチレンブラック3質量部と、バインダであるポリフッ化ビニリデン(PVDF)3質量部〔N−メチルピロリドン(NMP)溶液として固形分量を供給〕とを、溶媒であるNMPに均一になるように混合して正極合剤含有ペーストを調製した。次に、得られた正極合剤含有ペーストを、厚みが20μmのアルミニウム箔からなる集電体の両面に、塗布量が正極合剤含有ペーストの固形分量として23.3mg/cm2となるように、間欠塗布して乾燥させた後、カレンダー処理を行って、全厚が160μmになるように正極合剤層の厚みを調整し、長さ485mm、幅56mmになるように切断して正極を作製した。更に、この正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
[Production of positive electrode]
First, 100 parts by mass of LiCoO 2 (Nippon Kagaku Kogyo Co., Ltd., “C20F”) as a positive electrode active material, 3 parts by mass of acetylene black as a conductive additive, and 3 parts by mass of polyvinylidene fluoride (PVDF) as a binder [ The solid content was supplied as an N-methylpyrrolidone (NMP) solution] was mixed uniformly with NMP as a solvent to prepare a positive electrode mixture-containing paste. Next, the obtained positive electrode mixture-containing paste is applied to both surfaces of a current collector made of an aluminum foil having a thickness of 20 μm so that the coating amount is 23.3 mg / cm 2 as the solid content of the positive electrode mixture-containing paste. After intermittent application and drying, calendering is performed, the thickness of the positive electrode mixture layer is adjusted so that the total thickness is 160 μm, and the positive electrode is manufactured by cutting to a length of 485 mm and a width of 56 mm did. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.

〔負極の作製〕
負極活物質である黒鉛(日立化成社製、"MAGE")100質量部と、バインダであるカルボキシメチルセルロース(CMC)1質量部(1質量%の水溶液として固形分量を供給)とスチレン・ブタジエンゴム(SBR)1.5質量部とを、溶媒である比伝導度が2.0×105Ω/cm以上のイオン交換水に混合して負極合剤含有ペーストを調製した。次に、得られた負極合剤含有ペーストを、厚みが16.5μmの銅箔からなる集電体の両面に、塗布量が負極合剤含有ペーストの固形分量として12.7mg/cm2となるように、間欠塗布して乾燥させた後、カレンダー処理を行って、全厚が211μmになるように負極合剤層の厚みを調整し、長さ441mm、幅58mmになるように切断して負極を作製した。更に、この負極の銅箔の露出部にタブを溶接してリード部を形成した。
(Production of negative electrode)
Graphite (manufactured by Hitachi Chemical Co., Ltd., “MAGE”) 100 parts by mass, carboxymethyl cellulose (CMC) 1 part by mass (supplied as a 1% by weight aqueous solution) and styrene-butadiene rubber ( SBR) 1.5 parts by mass was mixed with ion-exchanged water having a specific conductivity of 2.0 × 10 5 Ω / cm or more as a solvent to prepare a negative electrode mixture-containing paste. Next, the applied amount of the obtained negative electrode mixture-containing paste is 12.7 mg / cm 2 as the solid content of the negative electrode mixture-containing paste on both surfaces of a current collector made of a copper foil having a thickness of 16.5 μm. As described above, after intermittent application and drying, calendering is performed, the thickness of the negative electrode mixture layer is adjusted so that the total thickness is 211 μm, and the negative electrode is cut to have a length of 441 mm and a width of 58 mm. Was made. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.

〔セパレータの準備〕
セパレータとしては、厚さ25μmのポリエチレン製微多孔膜を長さ675mm、幅60.5mmに切断したものを準備した。
[Preparation of separator]
As the separator, a polyethylene microporous film having a thickness of 25 μm cut into a length of 675 mm and a width of 60.5 mm was prepared.

〔非水電解液の調製〕
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比1:3の混合溶媒1kgに、1.0molのヘキサフルオロリン酸リチウム(LiPF6)を溶解して混合液を作製し、その混合液100質量部に、更にビニレンカーボネート(VC)を2質量部加えて、非水電解液を調製した。
(Preparation of non-aqueous electrolyte)
A mixed solution is prepared by dissolving 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) in 1 kg of a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) in a volume ratio of 1: 3. 2 parts by mass of vinylene carbonate (VC) was further added to 100 parts by mass of the liquid to prepare a non-aqueous electrolyte.

〔電池の組み立てと充電〕
ドライ雰囲気中で、上記正極と上記負極とを、上記セパレータを介在させつつ重ね、渦巻状に巻回して巻回電極体を作製した。得られた巻回電極体を更に押しつぶして扁平状に成型し、扁平型巻回電極体を得た。この扁平型巻回電極体をアルミニウムラミネートフィルムからなる外装体内に収納し、上記非水電解液を注入した後に封止を行い、電池容量1.2Ahの扁平型リチウムイオン二次電池を作製した。
[Battery assembly and charging]
In a dry atmosphere, the positive electrode and the negative electrode were stacked with the separator interposed therebetween, and wound in a spiral shape to produce a wound electrode body. The obtained wound electrode body was further crushed and formed into a flat shape to obtain a flat type wound electrode body. This flat wound electrode body was housed in an outer package made of an aluminum laminate film, sealed after injecting the non-aqueous electrolyte, and a flat lithium ion secondary battery having a battery capacity of 1.2 Ah was produced.

図7に作製した扁平型リチウムイオン二次電池の模式平面図を示す。図7において、扁平型リチウムイオン二次電池80は、扁平型巻回電極体及び非水電解液が、平面視で矩形のアルミニウムラミネートフィルムからなる外装体81内に収納されている。そして、正極外部端子82及び負極外部端子83が、外装体81の同じ辺から引き出されている。   FIG. 7 shows a schematic plan view of the manufactured flat type lithium ion secondary battery. In FIG. 7, in a flat lithium ion secondary battery 80, a flat wound electrode body and a non-aqueous electrolyte are housed in an outer package 81 made of an aluminum laminate film that is rectangular in plan view. The positive external terminal 82 and the negative external terminal 83 are drawn from the same side of the exterior body 81.

最後に、上記扁平型リチウムイオン二次電池を333mA(1/3C相当のレート)で6時間、4.5Vの定電流定電圧充電を行い、内部短絡試験の測定試料とした。   Finally, the flat lithium ion secondary battery was charged at a constant current and a constant voltage of 4.5 V for 6 hours at a rate of 333 mA (equivalent to 1/3 C), and used as a measurement sample for an internal short circuit test.

<短絡発生治具の作製>
次に、図8に示す短絡発生治具を次のように作製した。
<Fabrication of short-circuit generating jig>
Next, the short-circuit generating jig shown in FIG. 8 was produced as follows.

先ず、図8に示すように、ステンレス鋼製の円柱体(底面の直径:3.4mm、高さ:10mm)からなる押圧部材101を準備した。次に、押圧部材101の先端に設けた直径3mmの穴の中に、ニッケル製の円錐体(底面の直径:3mm、頂角60度)からなる金属錐体部102を取り付けた。   First, as shown in FIG. 8, a pressing member 101 made of a stainless steel cylindrical body (bottom diameter: 3.4 mm, height: 10 mm) was prepared. Next, a metal cone portion 102 made of a nickel cone (bottom diameter: 3 mm, apex angle 60 degrees) was attached in a 3 mm diameter hole provided at the tip of the pressing member 101.

更に、中心に直径3mmの穴を有する円盤状のスペーサー103aとスペーサー103bとを準備した。スペーサー103aは、直径10mm、厚さ1.5mmのベークライト布基材フェノール樹脂積層板で形成した。また、スペーサー103bは、直径10mm、厚さ0.5mmのバイトンゴムで形成した。続いて、スペーサー103a及びスペーサー103bのそれぞれの穴を金属錐体部102に通すことにより、押圧部材101に接するようにスペーサー103a及びスペーサー103bを配置し、積層スペーサー103を形成し、短絡発生治具100を得た。積層スペーサー103を取り付けた後の、積層スペーサーの底面から下方へ突出する金属錐体部102の先端長さは、0.6mmであった。   Further, a disc-shaped spacer 103a and a spacer 103b having a hole with a diameter of 3 mm at the center were prepared. The spacer 103a was formed of a bakelite cloth base phenolic resin laminate having a diameter of 10 mm and a thickness of 1.5 mm. The spacer 103b was made of Viton rubber having a diameter of 10 mm and a thickness of 0.5 mm. Subsequently, by passing the holes of the spacer 103a and the spacer 103b through the metal cone portion 102, the spacer 103a and the spacer 103b are arranged so as to be in contact with the pressing member 101, the laminated spacer 103 is formed, and a short circuit generating jig is formed. 100 was obtained. The tip length of the metal pyramid portion 102 protruding downward from the bottom surface of the laminated spacer after the laminated spacer 103 was attached was 0.6 mm.

<短絡試験装置の作製>
次に、図9に示すように、上記で作製した短絡発生治具100を、縦10mm、横10mm、高さ50mmのアルミニウム製の四角柱部材で形成した治具取付部材90に取り付け、更に、短絡発生治具100を取り付けた治具取付部材90を、東洋システム社製の釘刺し・圧壊試験装置(図示せず。)に取り付けることにより、短絡試験装置を作製した。作製した短絡試験装置は、電池の電圧測定部(図示せず。)及び短絡発生治具100の押圧制御部(図示せず。)を更に備えている。
<Production of short-circuit test equipment>
Next, as shown in FIG. 9, the short-circuit generating jig 100 produced as described above is attached to a jig mounting member 90 formed of an aluminum square pillar member having a length of 10 mm, a width of 10 mm, and a height of 50 mm. A short-circuit test apparatus was manufactured by attaching the jig mounting member 90 to which the short-circuit generating jig 100 was mounted to a nail penetration / crush test apparatus (not shown) manufactured by Toyo System Co., Ltd. The produced short-circuit test apparatus further includes a battery voltage measurement unit (not shown) and a pressing control unit (not shown) of the short-circuit generating jig 100.

<測定試料の配置>
続いて、図9に示すように、先に作製した扁平型リチウムイオン二次電池80(以下、単に電池80という。)を、ベークライト布基材フェノール樹脂積層板からなる断熱部材110の上に配置し、電池80と断熱部材110との間に温度測定素子としてK熱電対120を取り付けた。
<Measurement sample layout>
Subsequently, as shown in FIG. 9, the previously produced flat lithium ion secondary battery 80 (hereinafter simply referred to as battery 80) is disposed on a heat insulating member 110 made of a bakelite cloth base phenolic resin laminate. The K thermocouple 120 was attached as a temperature measuring element between the battery 80 and the heat insulating member 110.

<内部短絡試験の実施>
先ず、電池80を、短絡試験装置の電圧測定部(図示せず。)に接続する。次に、図9に示すように、短絡試験装置の短絡発生治具100を電池80の上に配置する。続いて、25℃の環境下において、短絡発生治具100を電池方向に、0.1mm/secの速度で降下させ、短絡発生治具100の金属錐体部102を電池80の表面から刺し込むと共に押圧部材101が、積層スペーサー103を介して電池80の表面を押圧する。その後、電池80の電圧が0.05V低下した時に、短絡発生治具100の電池方向への降下を停止する。その後、内部短絡後の測定試料の最大温度、電解液の漏液の有無、発煙の有無、破裂の有無、発火の有無を確認した。
<Internal short circuit test>
First, the battery 80 is connected to a voltage measurement unit (not shown) of the short circuit test apparatus. Next, as shown in FIG. 9, the short-circuit generating jig 100 of the short-circuit test apparatus is disposed on the battery 80. Subsequently, under an environment of 25 ° C., the short-circuit generating jig 100 is lowered toward the battery at a speed of 0.1 mm / sec, and the metal cone portion 102 of the short-circuit generating jig 100 is inserted from the surface of the battery 80. At the same time, the pressing member 101 presses the surface of the battery 80 through the laminated spacer 103. Thereafter, when the voltage of the battery 80 decreases by 0.05 V, the descent of the short-circuit generating jig 100 toward the battery is stopped. Then, the maximum temperature of the measurement sample after internal short circuit, the presence or absence of electrolyte leakage, the presence or absence of smoke, the presence or absence of rupture, and the presence or absence of ignition were confirmed.

<内部短絡試験後の電池の解体>
最後に、内部短絡させた電池80を解体し、セパレータを取り出し、穴の開いたセパレータ層数を数えて、内部短絡層数を確認した。
<Disassembly of battery after internal short circuit test>
Finally, the battery 80 short-circuited internally was disassembled, the separator was taken out, the number of separator layers with holes was counted, and the number of internal short-circuit layers was confirmed.

(実施例2)
<測定試料の作製>
測定試料として、実施例1と同様の扁平型リチウムイオン二次電池を作製した。
(Example 2)
<Preparation of measurement sample>
As a measurement sample, the same flat lithium ion secondary battery as in Example 1 was produced.

<短絡発生治具の作製>
次に、図10に示す短絡発生治具を次のように作製した。
<Fabrication of short-circuit generating jig>
Next, the short-circuit generating jig shown in FIG. 10 was produced as follows.

先ず、図10に示すように、ジルコニア製の球体(直径:10mm)からなる押圧部材201を準備した。次に、押圧部材201の先端に設けた直径3mmの穴の中に、ニッケル製の円錐体(底面の直径:3mm、頂角60度)からなる金属錐体部202を取り付けた。   First, as shown in FIG. 10, a pressing member 201 made of a zirconia sphere (diameter: 10 mm) was prepared. Next, a metal cone portion 202 made of a nickel cone (bottom diameter: 3 mm, apex angle 60 degrees) was attached in a 3 mm diameter hole provided at the tip of the pressing member 201.

更に、中心に直径3mmの穴を有する円盤状のスペーサー203aとスペーサー203bとを準備した。スペーサー203aは、直径10mm、厚さ1.5mmのベークライト布基材フェノール樹脂積層板で形成した。また、スペーサー203bは、直径10mm、厚さ0.5mmのバイトンゴムで形成した。続いて、スペーサー203a及びスペーサー203bのそれぞれの穴を金属錐体部202に通すことにより、押圧部材201に接するようにスペーサー203a及びスペーサー203bを配置し、積層スペーサー203を形成し、短絡発生治具200を得た。積層スペーサー203を取り付けた後の、積層スペーサーの底面から下方へ突出する金属錐体部202の先端長さは、0.6mmであった。   Furthermore, disk-shaped spacers 203a and 203b having a hole with a diameter of 3 mm at the center were prepared. The spacer 203a was formed of a bakelite cloth base phenolic resin laminate having a diameter of 10 mm and a thickness of 1.5 mm. The spacer 203b was formed of Viton rubber having a diameter of 10 mm and a thickness of 0.5 mm. Subsequently, by passing the holes of the spacer 203a and the spacer 203b through the metal cone portion 202, the spacer 203a and the spacer 203b are arranged so as to be in contact with the pressing member 201, the laminated spacer 203 is formed, and a short circuit generating jig is formed. 200 was obtained. The tip length of the metal pyramid portion 202 protruding downward from the bottom surface of the laminated spacer after the laminated spacer 203 was attached was 0.6 mm.

<短絡試験装置の作製>
次に、図11に示すように、上記で作製した短絡発生治具200を、縦10mm、横10mm、高さ50mmのアルミニウム製の四角柱部材で形成した治具取付部材90に取り付け、更に、短絡発生治具200を取り付けた治具取付部材90を、東洋システム社製の釘刺し・圧壊試験装置(図示せず。)に取り付けることにより、短絡試験装置を作製した。作製した短絡試験装置は、電池の電圧測定部(図示せず。)及び短絡発生治具200の押圧制御部(図示せず。)を更に備えている。
<Production of short-circuit test equipment>
Next, as shown in FIG. 11, the short-circuit generating jig 200 produced as described above is attached to a jig mounting member 90 formed of an aluminum square pillar member having a length of 10 mm, a width of 10 mm, and a height of 50 mm. A short-circuit test apparatus was manufactured by attaching the jig mounting member 90 to which the short-circuit generating jig 200 was mounted to a nail penetration / crush test apparatus (not shown) manufactured by Toyo System Co., Ltd. The produced short-circuit test apparatus further includes a battery voltage measurement unit (not shown) and a pressing control unit (not shown) of the short-circuit generating jig 200.

上記短絡試験装置を用いた以外は、実施例1と同様にして、内部短絡試験を実施し、内部短絡試験後の電池を解体して、内部短絡層数を確認した。   An internal short circuit test was performed in the same manner as in Example 1 except that the short circuit test apparatus was used, and the battery after the internal short circuit test was disassembled to confirm the number of internal short circuit layers.

(実施例3)
<測定試料の作製>
測定試料として、実施例1と同様の扁平型リチウムイオン二次電池を作製した。
(Example 3)
<Preparation of measurement sample>
As a measurement sample, the same flat lithium ion secondary battery as in Example 1 was produced.

<短絡発生治具の作製>
次に、図12に示す短絡試験装置を次のように作製した。
<Fabrication of short-circuit generating jig>
Next, the short-circuit test apparatus shown in FIG. 12 was produced as follows.

先ず、図12に示すように、ステンレス鋼製の円柱体(底面の直径:3mm、高さ:10mm)からなる押圧部材301を準備した。次に、押圧部材301の先端に設けた直径2mmの穴の中に、ニッケル製の長さ20mm、直径2mmの釘302を取り付け、ネジ304で固定した。釘302は、押圧部材301からの露出部に円錐体(底面の直径:2mm、頂角30度)からなる金属錐体部302aを備えている。   First, as shown in FIG. 12, a pressing member 301 made of a stainless steel cylindrical body (bottom diameter: 3 mm, height: 10 mm) was prepared. Next, a nickel-made nail 302 having a length of 20 mm and a diameter of 2 mm was attached to a hole having a diameter of 2 mm provided at the tip of the pressing member 301 and fixed with a screw 304. The nail 302 includes a metal cone portion 302a made of a cone (bottom diameter: 2 mm, apex angle 30 degrees) at an exposed portion from the pressing member 301.

更に、中心に直径2mmの穴を有する円盤状のスペーサー303aとスペーサー303bとを準備した。スペーサー303aは、直径10mm、厚さ1.5mmのベークライト布基材フェノール樹脂積層板で形成した。また、スペーサー303bは、直径10mm、厚さ0.5mmのバイトンゴムで形成した。続いて、スペーサー303a及びスペーサー303bのそれぞれの穴を金属錐体部302aに通すことにより、押圧部材301に接するようにスペーサー303a及びスペーサー303bを配置し、積層スペーサー303を形成し、短絡発生治具300を得た。積層スペーサー303を取り付けた後の、積層スペーサーの底面から下方へ突出する金属錐体部302aの先端長さは、0.6mmであった。   Furthermore, disk-shaped spacers 303a and 303b having a hole with a diameter of 2 mm at the center were prepared. The spacer 303a was formed of a bakelite cloth base phenolic resin laminate having a diameter of 10 mm and a thickness of 1.5 mm. The spacer 303b was formed of Viton rubber having a diameter of 10 mm and a thickness of 0.5 mm. Subsequently, by passing the holes of the spacer 303a and the spacer 303b through the metal cone portion 302a, the spacer 303a and the spacer 303b are arranged so as to be in contact with the pressing member 301, the laminated spacer 303 is formed, and a short circuit generating jig is formed. 300 was obtained. After attaching the lamination spacer 303, the tip length of the metal cone portion 302a protruding downward from the bottom surface of the lamination spacer was 0.6 mm.

<短絡試験装置の作製>
次に、作製した短絡発生治具300を、東洋システム社製の釘刺し・圧壊試験装置(図示せず。)に取り付けることにより、短絡試験装置を作製した。作製した短絡試験装置は、電池の電圧測定部(図示せず。)及び短絡発生治具300の押圧制御部(図示せず。)を更に備えている。
<Production of short-circuit test equipment>
Next, the short-circuit generating device 300 was attached to a nail penetration / crushing test device (not shown) manufactured by Toyo System Co., Ltd., thereby manufacturing a short-circuit testing device. The produced short-circuit test apparatus further includes a battery voltage measurement unit (not shown) and a pressing control unit (not shown) of the short-circuit generating jig 300.

上記短絡試験装置を用いた以外は、実施例1と同様にして、内部短絡試験を実施し、内部短絡試験後の電池を解体して、内部短絡層数を確認した。   An internal short circuit test was performed in the same manner as in Example 1 except that the short circuit test apparatus was used, and the battery after the internal short circuit test was disassembled to confirm the number of internal short circuit layers.

(比較例1)
<測定試料の作製>
測定試料として、実施例1と同様の扁平型リチウムイオン二次電池を作製した。
(Comparative Example 1)
<Preparation of measurement sample>
As a measurement sample, the same flat lithium ion secondary battery as in Example 1 was produced.

<短絡発生治具の作製>
次に、図13に示す短絡発生治具を次のように作製した。
<Fabrication of short-circuit generating jig>
Next, the short-circuit generating jig shown in FIG. 13 was produced as follows.

先ず、図13に示すように、アルミニウム製の円柱体(底面の直径:3mm、高さ:50mm)からなる押圧部材401を準備した。次に、押圧部材401の先端に、ニッケル製の円錐体(底面の直径:3mm、高さ:2.6mm、頂角60度)からなる金属錐体部402を取り付けて、短絡発生治具400を得た。   First, as shown in FIG. 13, a pressing member 401 made of an aluminum cylindrical body (bottom diameter: 3 mm, height: 50 mm) was prepared. Next, a metal cone portion 402 made of a nickel cone (bottom diameter: 3 mm, height: 2.6 mm, apex angle 60 degrees) is attached to the tip of the pressing member 401, and the short-circuit generating jig 400. Got.

<短絡試験装置の作製>
次に、作製した短絡発生治具400を、東洋システム社製の釘刺し・圧壊試験装置(図示せず。)に取り付けることにより、短絡試験装置を作製した。作製した短絡試験装置は、電池の電圧測定部(図示せず。)及び短絡発生治具400の押圧制御部(図示せず。)を更に備えている。
<Production of short-circuit test equipment>
Next, the short-circuit test apparatus was produced by attaching the produced short circuit generating jig 400 to a nail penetration / crush test apparatus (not shown) manufactured by Toyo System Co., Ltd. The produced short-circuit test apparatus further includes a battery voltage measurement unit (not shown) and a pressing control unit (not shown) of the short-circuit generating jig 400.

上記短絡試験装置を用いた以外は、実施例1と同様にして、内部短絡試験を実施し、内部短絡試験後の電池を解体して、内部短絡層数を確認した。   An internal short circuit test was performed in the same manner as in Example 1 except that the short circuit test apparatus was used, and the battery after the internal short circuit test was disassembled to confirm the number of internal short circuit layers.

(比較例2)
<測定試料の作製>
測定試料として、実施例1と同様の扁平型リチウムイオン二次電池を作製した。
(Comparative Example 2)
<Preparation of measurement sample>
As a measurement sample, the same flat lithium ion secondary battery as in Example 1 was produced.

<短絡試験装置の作製>
先ず、図14に示すように、実施例1と同様のステンレス鋼製の円柱体(底面の直径:3mm、高さ:10mm)からなる押圧部材101を準備した。次に、図14に示すように、上記で準備した押圧部材101を、縦10mm、横10mm、高さ50mmのアルミニウム製の四角柱部材で形成した治具取付部材90に取り付け、更に、押圧部材101を取り付けた治具取付部材90を、東洋システム社製の釘刺し・圧壊試験装置(図示せず。)に取り付けることにより、短絡試験装置を作製した。作製した短絡試験装置は、電池の電圧測定部(図示せず。)及び押圧部材101の押圧制御部(図示せず。)を更に備えている。
<Production of short-circuit test equipment>
First, as shown in FIG. 14, a pressing member 101 made of a stainless steel cylindrical body (bottom diameter: 3 mm, height: 10 mm) similar to that in Example 1 was prepared. Next, as shown in FIG. 14, the pressing member 101 prepared above is attached to a jig mounting member 90 formed of a square prism member made of aluminum having a length of 10 mm, a width of 10 mm, and a height of 50 mm. By attaching the jig attaching member 90 to which 101 is attached to a nail penetration / crushing test apparatus (not shown) manufactured by Toyo System Co., Ltd., a short-circuit test apparatus was produced. The produced short-circuit test apparatus further includes a battery voltage measuring unit (not shown) and a pressing control unit (not shown) of the pressing member 101.

上記短絡試験装置を用いた以外は、実施例1と同様にして、内部短絡試験を実施し、内部短絡試験後の電池を解体して、内部短絡層数を確認した。   An internal short circuit test was performed in the same manner as in Example 1 except that the short circuit test apparatus was used, and the battery after the internal short circuit test was disassembled to confirm the number of internal short circuit layers.

(比較例3)
<測定試料の作製>
JIS C 8714(2007)に規定する携帯電子機器用リチウムイオン蓄電池の単電池及び組電池の安全性試験の方法に準じて強制内部短絡試験用の測定試料を下記のように作製した。
(Comparative Example 3)
<Preparation of measurement sample>
A measurement sample for a forced internal short-circuit test was prepared as follows in accordance with the method for the safety test of the lithium-ion battery for portable electronic devices as defined in JIS C 8714 (2007).

先ず、実施例1と同様の扁平型リチウムイオン二次電池(以下、単に電池という。)を作製し、上記電池を333mA(1/3C相当のレート)で6時間、4.5Vの定電流定電圧充電を行い、満充電状態とした。   First, a flat-type lithium ion secondary battery (hereinafter simply referred to as a battery) similar to that in Example 1 was prepared, and the battery was fixed at a constant current of 4.5 V at 333 mA (rate corresponding to 1/3 C) for 6 hours. Voltage charging was performed to obtain a fully charged state.

次に、温度25℃、露点−50℃の環境下で上記満充電状態の電池を解体し、取り出した電極体を巻き解き、最外周に露出した正極集電体露出部とセパレータとの間に、L字型のニッケル小片(高さ:0.2mm、幅:0.1mm、一辺:1mm、L字角度:約90度)を上記電池の中心部へニッケル小片の角が巻き込み方向になるよう配置した。続いて、巻き解いた電極体を巻き直し、テープで固定し、ニッケル小片の位置のセパレータ上にマーキングを付した。更に、上記電極体上にマーキング部が中央になるようポリイミドテープ(テープ基材厚み:25μm、テープ幅:10mm)を2枚重ねて貼り付けて、上記電極体をチャック付きポリエチレン製袋に入れ、更にポリエチレン製袋を熱融着して密閉して測定試料とした。その後、この測定試料を密閉式のラミネートパックに入れた。   Next, the battery in a fully charged state is disassembled in an environment of a temperature of 25 ° C. and a dew point of −50 ° C., the taken-out electrode body is unwound, and the positive electrode current collector exposed portion exposed on the outermost periphery is placed between the separator , L-shaped nickel pieces (height: 0.2 mm, width: 0.1 mm, side: 1 mm, L-shaped angle: about 90 degrees) so that the corners of the nickel pieces enter the center of the battery. Arranged. Subsequently, the unwound electrode body was rewound, fixed with tape, and marked on the separator at the position of the nickel piece. Furthermore, two polyimide tapes (tape base material thickness: 25 μm, tape width: 10 mm) were attached to the electrode body so that the marking portion is in the center, and the electrode body was put in a polyethylene bag with a chuck, Further, a polyethylene bag was heat-sealed and sealed to obtain a measurement sample. Thereafter, this measurement sample was put in a hermetic laminate pack.

<加圧治具の作製>
先ず、加圧部材として、縦10mm、横10mm、厚さ30mmのステンレス鋼製の角柱体を準備し、その角柱体の先端に、縦10mm、横10mm、厚さ2mmのニトリルゴム板を取り付け、更にその上に縦10mm、横10mm、厚さ2mmのアクリル樹脂板を取り付けて、加圧治具を作製した。
<Production of pressure jig>
First, as a pressure member, a prismatic body made of stainless steel having a length of 10 mm, a width of 10 mm, and a thickness of 30 mm was prepared, and a nitrile rubber plate having a length of 10 mm, a width of 10 mm, and a thickness of 2 mm was attached to the tip of the prismatic body, Further, an acrylic resin plate having a length of 10 mm, a width of 10 mm, and a thickness of 2 mm was attached thereon to produce a pressure jig.

<加圧装置の作製>
次に、実施例1で用いた縦10mm、横10mm、高さ50mmのアルミニウム製の四角柱部材で形成した治具取付部材の先端に、上記で作製した加圧治具を取り付け、更に、加圧治具を取り付けた治具取付部材を、東洋システム社製の釘刺し・圧壊試験装置(図示せず。)に取り付けることにより、加圧装置を作製した。作製した加圧装置は、電池の電圧測定部(図示せず。)及び加圧治具の加圧制御部(図示せず。)を更に備えている。
<Production of pressure device>
Next, the pressure jig produced above was attached to the tip of a jig attachment member formed of a square prism member made of aluminum having a length of 10 mm, a width of 10 mm, and a height of 50 mm used in Example 1, and further added A pressurizing device was produced by attaching the jig mounting member with the pressure jig attached to a nail penetration / crushing test device (not shown) manufactured by Toyo System Co., Ltd. The produced pressurizing device further includes a battery voltage measuring unit (not shown) and a pressurizing control unit (not shown) of the pressurizing jig.

<測定試料の配置>
上記密閉式のラミネートパックから上記測定試料(ポリエチレン製袋入り電極体)を取り出し、上記測定試料を、ベークライト布基材フェノール樹脂積層板からなる断熱部材の上に配置し、上記測定試料と断熱部材との間に温度測定素子としてK熱電対を取り付けた。
<Measurement sample layout>
The measurement sample (polyethylene bag-containing electrode body) is taken out from the sealed laminate pack, the measurement sample is placed on a heat insulating member made of a bakelite cloth base material phenolic resin laminate, and the measurement sample and the heat insulating member are arranged. A K thermocouple was attached as a temperature measuring element.

<内部短絡試験の実施>
先ず、上記測定試料を、加圧装置の電圧測定部(図示せず。)に接続する。次に、加圧装置を上記測定試料の上記マーキング部の上に配置する。続いて、25℃の環境下において、加圧装置を上記測定試料方向に、0.1mm/secの速度で降下させ、上記測定試料の上記マーキング部を加圧して内部短絡を発生させた。その後、内部短絡により上記測定試料の電圧が0.05V低下した時に、加圧装置の降下を停止した。その後、内部短絡後の測定試料の最大温度、電解液の漏液有無、発煙有無、破裂有無、発火有無を確認した。
<Internal short circuit test>
First, the said measurement sample is connected to the voltage measurement part (not shown) of a pressurization apparatus. Next, a pressurizing device is disposed on the marking portion of the measurement sample. Subsequently, in an environment of 25 ° C., the pressure device was lowered toward the measurement sample at a speed of 0.1 mm / sec, and the marking portion of the measurement sample was pressurized to generate an internal short circuit. Thereafter, when the voltage of the measurement sample decreased by 0.05 V due to an internal short circuit, the descent of the pressurizing device was stopped. Thereafter, the maximum temperature of the measurement sample after the internal short circuit, the presence or absence of leakage of the electrolyte, the presence or absence of smoke, the presence or absence of rupture and the presence or absence of ignition were confirmed.

<内部短絡試験後の測定試料の解体>
最後に、内部短絡させた上記測定試料(電極体)を解体し、セパレータを取り出し、穴の開いたセパレータ層数を数えて、内部短絡層数を確認した。
<Disassembly of measurement sample after internal short circuit test>
Finally, the measurement sample (electrode body) short-circuited internally was disassembled, the separator was taken out, the number of separator layers with holes was counted, and the number of internal short-circuit layers was confirmed.

(比較例4)
<測定試料の作製>
測定試料として、実施例1と同様の扁平型リチウムイオン二次電池を作製した。
(Comparative Example 4)
<Preparation of measurement sample>
As a measurement sample, the same flat lithium ion secondary battery as in Example 1 was produced.

<短絡発生治具の作製>
次に、図15に示す短絡発生装置を次のように作製した。
<Fabrication of short-circuit generating jig>
Next, the short circuit generator shown in FIG. 15 was produced as follows.

先ず、図15に示すように、セラミックス製の円柱体(底面の直径:3mm、高さ:70mm)からなる絶縁性の押圧部材501を準備した。次に、押圧部材501の先端が角度60度の円錐形になるように加工した後、先端から1mmの部分を削り、その部分に高さ1mm、角度60度のニッケル製の円錐体からなる金属錐体部502を取り付けて、短絡発生治具500を得た。図15において、押圧部材501は、金属錐体部502の母線の延長線503よりも外側に膨出していない。   First, as shown in FIG. 15, an insulating pressing member 501 made of a ceramic cylinder (bottom diameter: 3 mm, height: 70 mm) was prepared. Next, after processing the tip of the pressing member 501 so that it has a conical shape with an angle of 60 degrees, a portion of 1 mm from the tip is cut, and a metal made of a nickel cone having a height of 1 mm and an angle of 60 degrees The cone part 502 was attached and the short circuit generation jig | tool 500 was obtained. In FIG. 15, the pressing member 501 does not bulge outward from the extended line 503 of the bus bar of the metal cone portion 502.

<短絡試験装置の作製>
次に、作製した短絡発生治具500を、東洋システム社製の釘刺し・圧壊試験装置(図示せず。)に取り付けることにより、短絡試験装置を作製した。作製した短絡試験装置は、電池の電圧測定部(図示せず。)及び短絡発生治具500の押圧制御部(図示せず。)を更に備えている。
<Production of short-circuit test equipment>
Next, the short-circuit test apparatus was produced by attaching the produced short-circuit generating jig 500 to a nail penetration / crush test apparatus (not shown) manufactured by Toyo System Co., Ltd. The produced short-circuit test apparatus further includes a battery voltage measurement unit (not shown) and a pressing control unit (not shown) of the short-circuit generating jig 500.

上記短絡試験装置を用いた以外は、実施例1と同様にして、内部短絡試験を実施し、内部短絡試験後の電池を解体して、内部短絡層数を確認した。   An internal short circuit test was performed in the same manner as in Example 1 except that the short circuit test apparatus was used, and the battery after the internal short circuit test was disassembled to confirm the number of internal short circuit layers.

以上の実施例1〜3及び比較例1〜4の短絡後の測定試料の最大温度、電解液の漏液の有無、発煙の有無、破裂の有無、発火の有無、短絡層数を表1に示す。上記測定試料の試験開始温度は25℃である。   Table 1 shows the maximum temperature of the measurement samples after the short circuit in Examples 1 to 3 and Comparative Examples 1 to 4, the presence or absence of electrolyte leakage, the presence or absence of smoke, the presence or absence of explosion, the presence or absence of ignition, and the number of short-circuit layers. Show. The test start temperature of the measurement sample is 25 ° C.

Figure 2018085245
Figure 2018085245

本発明の実施形態に係る短絡試験装置を用いた実施例1〜3では、内部短絡による測定試料の温度上昇を確認できたが、上記測定試料では、漏液、発煙、破裂、発火は観察されなかった。また、実施例1〜3の短絡層数は、全て1層であった。これは、用いた短絡発生治具の金属錐体部の先端部の高さが適切であったためと考えられる。   In Examples 1 to 3 using the short circuit test apparatus according to the embodiment of the present invention, it was confirmed that the temperature of the measurement sample was increased due to the internal short circuit, but in the measurement sample, leakage, smoke generation, bursting, and ignition were observed. There wasn't. Moreover, all the short circuit layers of Examples 1-3 were one layer. This is presumably because the height of the tip of the metal cone part of the short-circuit generating jig used was appropriate.

比較例1では、内部短絡による測定試料の漏液、発煙、破裂、発火は確認されなかったが、内部短絡による上記測定試料の温度上昇が大きかった。また、比較例1の短絡層数は3層であった。これは、用いた短絡発生治具の押圧部材が張り出し部を備えていなかったため、短絡発生後に測定試料の表面を圧迫することができず、電極のせり上がりにより短絡数が増加したためか、又は、上記短絡発生治具の刺し込み深さを制御できず、3層目まで上記短絡発生治具が達したためと考えられる。   In Comparative Example 1, no leakage, smoke, rupture, or ignition of the measurement sample due to the internal short circuit was confirmed, but the temperature increase of the measurement sample due to the internal short circuit was large. Moreover, the number of short-circuit layers in Comparative Example 1 was three. This is because the pressing member of the short-circuit generating jig used did not have an overhanging part, so that the surface of the measurement sample could not be pressed after the occurrence of a short circuit, and the number of short circuits increased due to the rising of the electrode, or This is probably because the insertion depth of the short-circuit generating jig could not be controlled and the short-circuit generating jig reached the third layer.

比較例2では、内部短絡による測定試料の漏液、発煙、破裂、発火が全て確認され、上記測定試料の温度上昇が500℃を超え、発熱量が非常に大きくなった。このため、短絡後の上記測定試料の解体が困難であり、短絡層数の確認はできなかった。これは、比較例2で用いた短絡試験装置は、金属錐体部を備えていなかったため、短絡層数の制御ができずに上記現象に至ったと考えられる。   In Comparative Example 2, leakage, smoke generation, bursting, and ignition of the measurement sample due to an internal short circuit were all confirmed, the temperature increase of the measurement sample exceeded 500 ° C., and the calorific value was very large. For this reason, it was difficult to disassemble the measurement sample after the short circuit, and the number of short circuit layers could not be confirmed. This is probably because the short-circuit test apparatus used in Comparative Example 2 did not include the metal cone portion, and thus the number of short-circuit layers could not be controlled, and the above phenomenon was reached.

比較例3では、内部短絡による測定試料の発煙、破裂、発火は確認されず、短絡層数は1層であったが、内部短絡による上記測定試料の温度上昇は確認できず、上記測定試料の漏液が確認された。これは、比較例3では、外装体から電極体を取り出したため、電極体内の電解液が溶媒の揮発により減少し、上記測定試料の内部抵抗が増加し、短絡時に発生する短絡電流も小さくなり、上記測定試料の温度上昇が発生しなかったものと考えられる。また、比較例3では、外装体から電極体を取り出すという危険を伴う試験方法であった。   In Comparative Example 3, smoke, rupture, and ignition of the measurement sample due to internal short circuit were not confirmed, and the number of short circuit layers was one layer, but the temperature increase of the measurement sample due to internal short circuit could not be confirmed, and the measurement sample Leakage was confirmed. This is because, in Comparative Example 3, the electrode body was taken out from the exterior body, so the electrolyte in the electrode body decreased due to volatilization of the solvent, the internal resistance of the measurement sample increased, and the short circuit current generated at the time of the short circuit also decreased. It is considered that the temperature rise of the measurement sample did not occur. Moreover, in the comparative example 3, it was the test method accompanied by the danger of taking out an electrode body from an exterior body.

比較例4では、内部短絡による測定試料の漏液、発煙、破裂、発火は確認されなかったが、内部短絡による上記測定試料の温度上昇が大きかった。また、比較例4の短絡層数は3層であった。これは、用いた短絡発生治具の押圧部材が、金属錐体部の母線の延長線よりも外側に膨出する張り出し部を備えていなかったため、短絡発生後に測定試料の表面を圧迫することができず、電極のせり上がりにより短絡数が増加したためか、又は、上記短絡発生治具の刺し込み深さを制御できず、3層目まで上記短絡発生治具が達したためと考えられる。   In Comparative Example 4, no leakage, smoke, rupture, or ignition of the measurement sample due to the internal short circuit was confirmed, but the temperature increase of the measurement sample due to the internal short circuit was large. Moreover, the number of short-circuit layers in Comparative Example 4 was three. This is because the pressing member of the short-circuit generating jig used did not have an overhanging portion that bulges outward from the extension of the bus bar of the metal cone portion, so that the surface of the measurement sample may be pressed after the occurrence of the short-circuit. This is probably because the number of short circuits has increased due to the rising of the electrodes, or the insertion depth of the short circuit generating jig cannot be controlled and the short circuit generating jig has reached the third layer.

本発明の電池用短絡試験装置を用いることにより、作業の安全性が高く、且つ正極活物質−負極活物質間の短絡層数を1層近くに制御でき、正確な安全性評価が可能な電池の短絡試験方法を実施でき、本発明は、電池の研究開発、技術開発等における産業上の利用可能性は高く、産業上非常に有益である。   By using the battery short-circuit test apparatus of the present invention, the battery is highly safe in operation, and the number of short-circuit layers between the positive electrode active material and the negative electrode active material can be controlled to be close to one, and accurate safety evaluation can be performed. Therefore, the present invention is highly useful in industry in battery research and development, technology development, etc., and is very useful in industry.

10、20、30、40 短絡発生治具
11、21、31、41 押圧部材
12、22、32、42 金属錐体部
13、23 軸
14、24、33、43 張り出し部
15 エッジ部
25、44 スペーサー
50 電池
51 正極
52 セパレータ
53 負極
55、56、57、58 電極対
60 金属錐体部
70 押圧部材
80 扁平型リチウムイオン二次電池
81 外装体
82 正極外部端子
83 負極外部端子
90 治具取付部材
100、200 短絡発生治具
101、201 押圧部材
102、202 金属錐体部
103、203 積層スペーサー
103a、103b、203a、203b スペーサー
110 断熱部材
120 K熱電対
300 短絡発生治具
301 押圧部材
302 釘
302a 金属錐体部
303 積層スペーサー
303a、303b スペーサー
400 短絡発生治具
401 押圧部材
402 金属錐体部
500 短絡発生治具
501 押圧部材
502 金属錐体部
10, 20, 30, 40 Short-circuit generating jig 11, 21, 31, 41 Press member 12, 22, 32, 42 Metal cone portion 13, 23 Shaft 14, 24, 33, 43 Overhang portion 15 Edge portion 25, 44 Spacer 50 Battery 51 Positive electrode 52 Separator 53 Negative electrode 55, 56, 57, 58 Electrode pair 60 Metal cone portion 70 Press member 80 Flat lithium ion secondary battery 81 Exterior body 82 Positive electrode external terminal 83 Negative electrode external terminal 90 Jig mounting member 100, 200 Short-circuit generating jig 101, 201 Press member 102, 202 Metal cone part 103, 203 Laminated spacer 103a, 103b, 203a, 203b Spacer 110 Thermal insulation member 120 K Thermocouple 300 Short-circuit generating jig 301 Press member 302 Nail 302a Metal cone part 303 Laminate spacer 303a, 303b Over 400 short circuit jig 401 pressing member 402 metal cone portion 500 short circuit jig 501 pressing member 502 metal cone section

Claims (12)

短絡発生治具を含む電池用短絡試験装置であって、
前記短絡発生治具は、押圧部材と、前記押圧部材の先端に配置された金属錐体部とを含み、
前記押圧部材は、前記金属錐体部の底面部から外周方向に前記金属錐体部の母線よりも更に膨出する張り出し部を含むことを特徴とする電池用短絡試験装置。
A short-circuit test apparatus for a battery including a short-circuit generating jig,
The short-circuit generating jig includes a pressing member, and a metal cone portion disposed at a tip of the pressing member,
The short circuit test apparatus for a battery, wherein the pressing member includes a projecting portion that further bulges from the bottom surface portion of the metal cone portion toward the outer periphery of the bus bar of the metal cone portion.
前記張り出し部は、前記金属錐体部の軸に対して直行する平面部を含む請求項1に記載の電池用短絡試験装置。   The battery short-circuit test apparatus according to claim 1, wherein the projecting portion includes a flat portion that is orthogonal to the axis of the metal cone portion. 前記平面部のエッジ部が、曲面からなる請求項2に記載の電池用短絡試験装置。   The short circuit test apparatus for a battery according to claim 2, wherein an edge portion of the flat portion is a curved surface. 前記張り出し部は、前記金属錐体部に向かって突出する球面部を含む請求項1に記載の電池用短絡試験装置。   The short circuit test apparatus for a battery according to claim 1, wherein the projecting portion includes a spherical portion projecting toward the metal cone portion. 前記金属錐体部の下部外周部に、前記押圧部材に接するスペーサーが更に配置されている請求項1〜4のいずれか1項に記載の電池用短絡試験装置。   The battery short-circuit test apparatus according to claim 1, wherein a spacer in contact with the pressing member is further disposed on a lower outer peripheral portion of the metal cone portion. 前記スペーサーは、前記金属錐体部の底面部から外周方向に前記金属錐体部の母線よりも更に膨出している請求項5に記載の電池用短絡試験装置。   The battery short-circuit test apparatus according to claim 5, wherein the spacer further bulges from a bottom surface portion of the metal cone portion in an outer circumferential direction with respect to a bus bar of the metal cone portion. 前記スペーサーは、ゴム系材料からなる請求項5又は6に記載の電池用短絡試験装置。   The battery short-circuit testing apparatus according to claim 5 or 6, wherein the spacer is made of a rubber-based material. 電池の電圧測定部及び前記押圧部材の押圧制御部を更に含む請求項1〜7のいずれか1項に記載の電池用短絡試験装置。   The battery short-circuit test apparatus according to claim 1, further comprising a battery voltage measurement unit and a pressing control unit for the pressing member. 請求項1〜8のいずれか1項に記載の電池用短絡試験装置を用いる電池の短絡試験方法であって、
電池を電圧測定部に接続する工程と、
前記電池用短絡試験装置の前記短絡発生治具を前記電池の上に配置する工程と、
前記短絡発生治具を電池方向に移動させて、前記短絡発生治具の前記金属錐体部を、前記電池の表面から刺し込むと共に前記押圧部材が前記電池の表面を押圧する工程と、
前記電池の電圧が所定の電圧まで低下した時に、前記短絡発生治具の電池方向への移動を停止する工程とを含むことを特徴とする電池の短絡試験方法。
A battery short-circuit test method using the battery short-circuit test apparatus according to any one of claims 1 to 8,
Connecting the battery to the voltage measurement unit;
Arranging the short-circuit generating jig of the battery short-circuit test apparatus on the battery;
Moving the short-circuit generating jig in the battery direction, piercing the metal cone part of the short-circuit generating jig from the surface of the battery and pressing the surface of the battery with the pressing member;
And a step of stopping the movement of the short-circuit generating jig in the battery direction when the voltage of the battery drops to a predetermined voltage.
前記電池は、断熱部材の上に配置される請求項9に記載の電池の短絡試験方法。   The said battery is a short circuit test method of the battery of Claim 9 arrange | positioned on a heat insulation member. 前記電池と前記断熱部材との間に、温度測定素子が配置される請求項10に記載の電池の短絡試験方法。   The battery short-circuit test method according to claim 10, wherein a temperature measuring element is disposed between the battery and the heat insulating member. 前記電池は、正極と、セパレータと、負極とからなる電極対を複数積層して含み、
前記正極の厚さをa、前記セパレータの厚さをb、前記負極の厚さをc、前記電池の表面から、前記正極及び前記負極の両方が活物質を担持して対向する箇所の第1層目の電極対までの厚さをA、前記正極及び前記負極の両方が活物質を担持して対向する箇所の前記電池の表面から第2層目の電極対までの厚さをB、前記短絡発生治具から露出した前記金属錐体部の高さをLとすると、
A+a+b≦L<B、又は、A+c+b≦L<Bの関係が成立する請求項9〜11のいずれか1項に記載の電池の短絡試験方法。
The battery includes a plurality of electrode pairs including a positive electrode, a separator, and a negative electrode,
The thickness of the positive electrode is a, the thickness of the separator is b, the thickness of the negative electrode is c, and from the surface of the battery, both the positive electrode and the negative electrode carry active materials and face each other. A thickness to the electrode pair of the layer is A, B is a thickness from the surface of the battery to the electrode pair of the second layer at the place where both the positive electrode and the negative electrode carry the active material and face each other, When the height of the metal cone exposed from the short-circuit generating jig is L,
The battery short-circuit test method according to claim 9, wherein a relationship of A + a + b ≦ L <B or A + c + b ≦ L <B is established.
JP2016227956A 2016-11-24 2016-11-24 Short circuit test device for battery and short circuit test method for battery Pending JP2018085245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016227956A JP2018085245A (en) 2016-11-24 2016-11-24 Short circuit test device for battery and short circuit test method for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227956A JP2018085245A (en) 2016-11-24 2016-11-24 Short circuit test device for battery and short circuit test method for battery

Publications (1)

Publication Number Publication Date
JP2018085245A true JP2018085245A (en) 2018-05-31

Family

ID=62238512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227956A Pending JP2018085245A (en) 2016-11-24 2016-11-24 Short circuit test device for battery and short circuit test method for battery

Country Status (1)

Country Link
JP (1) JP2018085245A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113230A (en) * 2017-01-13 2018-07-19 日本電気株式会社 Internal short circuit test method and internal short circuit test device of battery
JP2018152260A (en) * 2017-03-14 2018-09-27 日本電気株式会社 Internal short circuit test method and internal short circuit test device of battery
CN109030557A (en) * 2018-10-15 2018-12-18 南京航空航天大学 A kind of electric automobile power battery temperature control plate testing device for heat transferring performance and method
JP2019021419A (en) * 2017-07-12 2019-02-07 日本電気株式会社 Method and device for testing internal short circuit of battery
JP2019114506A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Evaluation method, evaluation jig for power storage device, and manufacturing method for power storage device
JP2020191181A (en) * 2019-05-20 2020-11-26 トヨタ自動車株式会社 Evaluation method of power storage device, metal piece, jig set, and manufacturing method of power storage device
CN112448071A (en) * 2019-09-03 2021-03-05 飞尔金株式会社 Capsule type fire extinguishing device for preventing battery explosion and battery with capsule type fire extinguishing device
CN112763919A (en) * 2021-02-02 2021-05-07 江苏塔菲尔新能源科技股份有限公司 Method and system for detecting internal short circuit abnormality of power battery
US11404727B2 (en) 2018-11-02 2022-08-02 Lg Energy Solution, Ltd. Method for evaluating internal short of secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113230A (en) * 2017-01-13 2018-07-19 日本電気株式会社 Internal short circuit test method and internal short circuit test device of battery
JP2018152260A (en) * 2017-03-14 2018-09-27 日本電気株式会社 Internal short circuit test method and internal short circuit test device of battery
JP7062891B2 (en) 2017-07-12 2022-05-09 日本電気株式会社 Battery internal short circuit test method and internal short circuit test equipment
JP2019021419A (en) * 2017-07-12 2019-02-07 日本電気株式会社 Method and device for testing internal short circuit of battery
JP2019114506A (en) * 2017-12-26 2019-07-11 トヨタ自動車株式会社 Evaluation method, evaluation jig for power storage device, and manufacturing method for power storage device
CN109030557A (en) * 2018-10-15 2018-12-18 南京航空航天大学 A kind of electric automobile power battery temperature control plate testing device for heat transferring performance and method
CN109030557B (en) * 2018-10-15 2023-08-08 南京航空航天大学 Device and method for testing heat transfer performance of temperature control plate of power battery of electric automobile
US11404727B2 (en) 2018-11-02 2022-08-02 Lg Energy Solution, Ltd. Method for evaluating internal short of secondary battery
JP7147684B2 (en) 2019-05-20 2022-10-05 トヨタ自動車株式会社 Method for evaluating power storage device, metal piece, and method for manufacturing power storage device
JP2020191181A (en) * 2019-05-20 2020-11-26 トヨタ自動車株式会社 Evaluation method of power storage device, metal piece, jig set, and manufacturing method of power storage device
CN112448071A (en) * 2019-09-03 2021-03-05 飞尔金株式会社 Capsule type fire extinguishing device for preventing battery explosion and battery with capsule type fire extinguishing device
CN112763919A (en) * 2021-02-02 2021-05-07 江苏塔菲尔新能源科技股份有限公司 Method and system for detecting internal short circuit abnormality of power battery
CN112763919B (en) * 2021-02-02 2024-01-09 江苏正力新能电池技术有限公司 Method and system for detecting short circuit abnormality in power battery

Similar Documents

Publication Publication Date Title
JP2018085245A (en) Short circuit test device for battery and short circuit test method for battery
JP5209896B2 (en) Battery internal short-circuit safety evaluation method
JP5060623B2 (en) Battery internal short circuit evaluation device
KR100962819B1 (en) Method for evaluating battery safety under internal short-circuit condition, method for producing battery, and method for producing battery pack
JP5503183B2 (en) Safety evaluation method for power storage devices
JP2009054300A (en) Internal short circuit evaluation method of battery
JP2011044332A (en) Laminated outer package power storage device
JP3821434B2 (en) Battery electrode group and non-aqueous electrolyte secondary battery using the same
JP2009009812A (en) Evaluation method of separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP4862528B2 (en) Electrochemical element
JP4588714B2 (en) Electrochemical batteries with improved safety
JP2008171579A (en) Lithium-ion secondary battery, and battery pack of lithium-ion secondary battery
JP7100798B2 (en) Non-aqueous electrolyte secondary battery
JP2019114506A (en) Evaluation method, evaluation jig for power storage device, and manufacturing method for power storage device
KR20100070194A (en) Dismantler of cylindrical secondary battery
KR101310486B1 (en) Seal tape and secondary battery comprising the same
KR20140072794A (en) Non-aqueous electrolyte rechargeable battery pack
JP3700683B2 (en) Non-aqueous electrolyte secondary battery
JP2002343439A (en) Secondary battery and mobile apparatus mounted with the same
JP2005310619A (en) Lithium-ion secondary battery
CN114467205A (en) Electrode assembly and related battery, device, manufacturing method and manufacturing device thereof
JP2005123058A (en) Nonaqueous electrolyte secondary battery
CN217768425U (en) Pole piece, battery monomer, battery and power consumption device
JP2005222744A (en) Nonaqueous electrolyte battery
JP2005085674A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219