JP2018152260A - Internal short circuit test method and internal short circuit test device of battery - Google Patents

Internal short circuit test method and internal short circuit test device of battery Download PDF

Info

Publication number
JP2018152260A
JP2018152260A JP2017048122A JP2017048122A JP2018152260A JP 2018152260 A JP2018152260 A JP 2018152260A JP 2017048122 A JP2017048122 A JP 2017048122A JP 2017048122 A JP2017048122 A JP 2017048122A JP 2018152260 A JP2018152260 A JP 2018152260A
Authority
JP
Japan
Prior art keywords
internal short
battery
short circuit
circuit test
test method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017048122A
Other languages
Japanese (ja)
Other versions
JP6900716B2 (en
Inventor
俊彦 萬久
Toshihiko Mankyu
俊彦 萬久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017048122A priority Critical patent/JP6900716B2/en
Publication of JP2018152260A publication Critical patent/JP2018152260A/en
Application granted granted Critical
Publication of JP6900716B2 publication Critical patent/JP6900716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal short circuit test method and an internal short circuit test device capable of restraining internal short circuit, occurring in a battery, conveniently with high repeatability, while preventing the surrounding of a pressurizing part from damaging the cell surface.SOLUTION: In an internal short circuit test method of a battery including a laminate of a positive electrode plate and a negative electrode plate laminated via a separator, where the laminate is housed in an exterior coating, internal short circuit is generated in the battery by compressing the battery by a compression part including a compression plate having a relief shape at least around a compression surface for compressing the battery, and a protrusion protruding from the compression plate by a length corresponding to a prescribed number of internal short circuit layers and piercing the battery.SELECTED DRAWING: Figure 1

Description

本発明は、電池の内部短絡試験法と内部短絡試験装置に関する。   The present invention relates to a battery internal short circuit test method and an internal short circuit test apparatus.

リチウムイオン二次電池などの電池の安全性を評価するための手法、評価試験は各種あるが、その中でも電池の内部に導電性の異物が混入し、それが正極と負極間を短絡させて発生する内部短絡時の挙動を評価する事は、電池メーカーにとっては極めて重要である。   There are various methods and evaluation tests for evaluating the safety of batteries such as lithium ion secondary batteries. Among them, conductive foreign matter is mixed inside the battery, which is caused by short-circuiting between the positive electrode and the negative electrode It is extremely important for battery manufacturers to evaluate the behavior of internal short circuits.

以前より、このような内部短絡を模擬した試験として釘刺し試験が広く行われていた。釘刺し試験は、セル外部から導電性の釘を挿入・貫通させることにより確実に内部短絡を発生させる事が出来るため、ある程度の高い再現性が得られ易く、また、特別に精巧な装置も必要無いため、試験を行うのに大きな障壁が無い。   A nail penetration test has been widely conducted as a test simulating such an internal short circuit. In the nail penetration test, an internal short circuit can be reliably generated by inserting and penetrating a conductive nail from the outside of the cell, so that a certain degree of high reproducibility is easily obtained, and a specially sophisticated device is also required. Because there is no, there is no big barrier to testing.

釘刺し試験は簡便に行うことが出来るという特徴があるものの、通常セル内部で見られる内部短絡現象とは程遠い状態を作るに過ぎない事が以前より問題視されている。つまり、太い釘が表から裏に至るまで貫通する点や、そのために、電極に穴が開く点など、実際の導電性異物起因で起こる内部短絡とは大きく違う状態になる。実際の導電性異物起因で起こる内部短絡は、電極そのものが破れたり、異物が電極を貫通したりすることはあっても、せいぜい1、2層に限られると考えられるが、釘刺し試験ではそのような短絡発生層数の制御は不可能に近い。   Although the nail penetration test has a feature that it can be easily performed, it has been regarded as a problem from the past only to create a state far from the internal short-circuit phenomenon normally observed in a cell. That is, the internal short circuit caused by the actual conductive foreign matter such as a point where a thick nail penetrates from the front to the back and a point where a hole is formed in the electrode is greatly different. The internal short circuit caused by the actual conductive foreign material is considered to be limited to 1 or 2 layers at most even if the electrode itself is torn or the foreign material penetrates the electrode. It is almost impossible to control the number of short-circuited layers.

釘刺し試験は以前より広く行われてきたが、内部短絡を発生させるための釘が電池を貫通するという点において、現実に発生すると考えられる導電性異物起因の内部短絡と大きく状態が異なる。   Although the nail penetration test has been performed more widely than before, the state differs greatly from an internal short circuit caused by a conductive foreign substance that is considered to actually occur in that a nail for generating an internal short circuit penetrates the battery.

特許文献1では、釘先端のような微小な部分のみを刺すことで、実際に起こる現象により近い状態を再現する試験法が提案されている。しかしこの方法でも、加圧子を高度に位置制御するために、加圧力を見地する加圧力測定部、それを位置制御にフィードバックする加圧子制御部、短絡子制御部等が必要であり、非常に複雑・高価な装置になるという課題があった。   Patent Document 1 proposes a test method that reproduces a state closer to a phenomenon that actually occurs by piercing only a minute portion such as the tip of a nail. However, even with this method, in order to control the position of the pressurizer to a high degree, a pressurizing force measuring unit that looks at the pressurizing force, a pressurizer control unit that feeds it back to position control, a short-circuiting control unit, etc. There was a problem of becoming a complicated and expensive device.

また特許文献2の電池試験装置では、図2,図3、(0042)〜(0043)に、加圧部42に釘刺し試験用治具44を取り付けることが記載されている。釘刺し試験用治具44には、釘部44aと釘部44aの根元に一体的に形成された基部44cがある。駆動部18によって加圧部42を下降させて釘部44aを電池Bに突き刺すが、釘部44aをどこまで電池Bに突き刺すか、また基部44cが電池Bを加圧するかについては何ら記載がない。そのため特許文献1と同じく、駆動部18の下降距離を測定し、フィードバックしながら行うと思われる。しかしその場合、特許文献1と同様に複雑・高価な装置になるという課題があった。   In addition, in the battery testing apparatus of Patent Document 2, it is described in FIGS. 2, 3, and (0042) to (0043) that a nail penetration test jig 44 is attached to the pressing portion 42. The nail penetration test jig 44 has a nail portion 44a and a base portion 44c formed integrally with the base of the nail portion 44a. The driving unit 18 lowers the pressurizing unit 42 to pierce the battery B with the nail 44a. However, there is no description about how far the nail 44a is inserted into the battery B and how the base 44c pressurizes the battery B. Therefore, as in Patent Document 1, it is considered that the descending distance of the drive unit 18 is measured and performed while feedback. However, in that case, there is a problem that the device becomes complicated and expensive as in Patent Document 1.

特許第5060623号Patent No. 5060623 特開2015-159017号公報JP 2015-159017

そこで、最近では、強制内部短絡試験のように実際に起こる現象により近い状態を再現する試験法が提案されている。この試験は、電池から積層体や捲回体を取り出して、実際に導電性異物(ニッケルの小片)を極板間に挿入し、再度電池に組立て、異物挿入部分を外から加圧して内部短絡を発生させるものである。   Therefore, recently, a test method that reproduces a state closer to a phenomenon that actually occurs, such as a forced internal short circuit test, has been proposed. In this test, the laminate or wound body is taken out from the battery, and a conductive foreign object (a small piece of nickel) is actually inserted between the electrodes, reassembled into the battery, and the foreign object insertion part is pressurized from the outside and shorted internally. Is generated.

強制内部短絡試験は、現実に発生すると考えられる導電性異物起因の内部短絡と非常に近い状態を再現可能な試験ではある。しかし電池を解体して異物を挿入するなど非常に手間が掛かる上、異物の場所を正しく加圧することも難しく、そのため再現性に乏しい。   The forced internal short circuit test is a test that can reproduce a state very close to an internal short circuit caused by a conductive foreign substance that is considered to actually occur. However, it takes much time to disassemble the battery and insert foreign matter, and it is difficult to pressurize the location of the foreign matter correctly, so that reproducibility is poor.

さらに、異物挿入箇所を正しく加圧したとしても、試験装置の加圧部分の端部が角張った形状をしている事から、異物による内部短絡が発生しない場合には、この角の部分でセル表面にダメージを与え、圧壊による内部短絡が発生してしまう。そのため想定した内部短絡状態にならない事もしばしば発生する。被加圧面の法線が加圧方向に対して正しく平行でないと、角の部分がセル表面にダメージを与えることがある。正しく平行でないとは、例えば、電池を試験装置に取り付ける際に傾いてしまった場合や、電極そのものの巻き癖でセル全体がカールしてしまっている場合である。   Furthermore, even if the foreign object insertion point is correctly pressurized, the end of the pressure part of the test device has an angular shape. The surface is damaged and an internal short circuit occurs due to crushing. For this reason, it often happens that the assumed internal short-circuit state does not occur. If the normal of the surface to be pressed is not correctly parallel to the pressing direction, the corner portion may damage the cell surface. For example, the case where the battery is tilted when the battery is attached to the test apparatus or the entire cell is curled due to the curl of the electrode itself.

また、電池を解体する関係で、ドライルーム(超低湿クリーンルーム)と試験場が近接している必要があり、試験場の制約も受ける。また、微小な電圧低下を監視する必要があるため、精巧な電圧測定部とそれをフィードバックして加圧を止める機構など装置が非常に複雑かつ高価なものになる。   In addition, the dry room (ultra-low-humidity clean room) and the test site need to be close to each other in order to disassemble the battery, and the test site is limited. In addition, since it is necessary to monitor a minute voltage drop, a sophisticated voltage measurement unit and a mechanism that feeds back and stops the pressurization are very complicated and expensive.

本発明の目的は、電池に発生する内部短絡を、簡便で、再現性が高く、しかも加圧部分の周囲がセル表面にダメージを与えることも抑制できる内部短絡試験方法と内部短絡試験装置を提供することである。   An object of the present invention is to provide an internal short-circuit test method and an internal short-circuit test apparatus that are simple and highly reproducible for internal short-circuits generated in a battery, and that can suppress damage to the cell surface around the pressurized portion. It is to be.

本発明は、セパレータを介して正極板と負極板が積層された積層物が外装体に収納されている電池の内部短絡試験方法であって、
少なくとも前記電池を加圧する加圧面の周囲に逃げ形状を有する加圧板と前記加圧板から所定の内部短絡層数に対応する長さ突出し、前記電池に突き刺す突出部を備えた加圧部で前記電池を加圧して、前記電池に内部短絡を発生させることを特徴とする電池の内部短絡試験方法である。
The present invention is an internal short-circuit test method for a battery in which a laminate in which a positive electrode plate and a negative electrode plate are laminated via a separator is housed in an exterior body,
At least a pressure plate having a relief shape around a pressure surface that pressurizes the battery, a length corresponding to a predetermined number of internal short-circuit layers from the pressure plate, and a pressure portion including a protrusion portion that pierces the battery, the battery. The battery is subjected to an internal short circuit test method, wherein an internal short circuit is generated in the battery.

また本発明は、試験対象の電池を載置する架台と、
前記架台に設けた脚部と、
前記脚部上に設けた機構支持部と、
前記機構支持部に支持された送り出し機構と、
前記送り出し機構に設けられ、少なくとも前記電池を加圧する加圧面の周囲に逃げ形状を有する加圧板と前記加圧板上に所定の内部短絡層数に対応する長さ突出して固定され前記試験対象の電池を刺す突出部を備えた加圧部、
を備えたことを特徴とする内部短絡試験装置である。
The present invention also includes a mount on which a battery to be tested is placed;
Legs provided on the mount;
A mechanism support provided on the leg,
A delivery mechanism supported by the mechanism support;
A test plate provided in the delivery mechanism and having a relief shape around at least a pressurization surface for pressurizing the battery, and a battery projecting to a length corresponding to a predetermined number of internal short-circuit layers and fixed on the test plate A pressurizing part with a protruding part
It is an internal short circuit test apparatus characterized by comprising.

本発明によれば、電池内部に発生させたい評価に必要な内部短絡の状態を簡便な方法で再現可能となり、しかも加圧部分の周囲がセル表面にダメージを与えることも抑制できる。   According to the present invention, it is possible to reproduce the internal short-circuit state necessary for evaluation to be generated inside the battery by a simple method, and it is possible to suppress damage around the cell surface to the cell surface.

本発明の実施形態における評価対象の一例であるフィルム外装電池の断面図である。It is sectional drawing of the film-clad battery which is an example of the evaluation object in embodiment of this invention. 本発明の実施形態の加圧部の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the pressurization part of embodiment of this invention. 本発明の実施形態に係る試験装置の構成を概略的に示す構成図である。It is a lineblock diagram showing roughly the composition of the test equipment concerning the embodiment of the present invention. 本発明の実施形態の評価方法によって、内部短絡を発生させる試験状態のフィルム外装電池の断面図である。It is sectional drawing of the film-clad battery of the test state which generates an internal short circuit by the evaluation method of embodiment of this invention. 加圧板の図2以外の断面形状を示す図である。It is a figure which shows cross-sectional shapes other than FIG. 2 of a pressurizing plate.

次に、本発明の実施の形態について図面を参照して詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

初めに図1に基づいて、本実施形態で評価対象となる電池の一例としてフィルム外装電池の一例を説明する。フィルム外装電池は、例えばリチウムイオン二次電池である。図1では試験セル1と表示している。図1に示すように、発電要素を電解液(不図示)とともにラミネートフィルムからなる外装体3の内部に収容したものである。発電要素は、セパレータ43を介して正極板41と負極板42が積層された積層体を交互に積層している。積層体間にもセパレータ43を挟んでいる。このようにして形成した発電要素を、正極端子と負極端子を除いて外装体3でカバーする。   First, based on FIG. 1, an example of a film-clad battery will be described as an example of a battery to be evaluated in the present embodiment. The film-clad battery is, for example, a lithium ion secondary battery. In FIG. 1, the test cell 1 is indicated. As shown in FIG. 1, the power generation element is accommodated in an exterior body 3 made of a laminate film together with an electrolytic solution (not shown). The power generation element is formed by alternately stacking stacked bodies in which positive plates 41 and negative plates 42 are stacked with separators 43 interposed therebetween. A separator 43 is also sandwiched between the laminated bodies. The power generation element thus formed is covered with the exterior body 3 except for the positive electrode terminal and the negative electrode terminal.

正極板41は、正極集電体の両面に正極活物質を塗布して形成する。正極集電体としては、アルミニウム箔等が使われる。また正極活物質としては、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、または、コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物からなる正極活物質本体と、カーボンブラック等の導電助剤と、バインダと、を混合したものを、正極集電体の両主面に塗布し、乾燥及び圧延することにより形成されている。なお正極集電体と正極活物質は特に限定されない。 The positive electrode plate 41 is formed by applying a positive electrode active material to both surfaces of the positive electrode current collector. An aluminum foil or the like is used as the positive electrode current collector. Examples of the positive electrode active material include a positive electrode active material body made of a lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium cobaltate (LiCoO 2 ), and carbon black. It is formed by applying a mixture of a conductive additive such as a binder and a binder to both main surfaces of the positive electrode current collector, followed by drying and rolling. Note that the positive electrode current collector and the positive electrode active material are not particularly limited.

負極板42は、負極集電体の両面に負極活物質を塗布してなる。負極集電体としては、銅箔等が使われる。また負極活物質としては、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質本体に、バインダを混合したものを、負極集電体の両主面に塗布し、乾燥及び圧延させることにより形成されている。なお負極集電体と負極活物質は特に限定されない。   The negative electrode plate 42 is formed by applying a negative electrode active material to both surfaces of a negative electrode current collector. A copper foil or the like is used as the negative electrode current collector. Further, as the negative electrode active material, for example, in the negative electrode active material main body that occludes and releases lithium ions of the positive electrode active material, such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite, A mixture of binders is applied to both main surfaces of the negative electrode current collector, and dried and rolled. Note that the negative electrode current collector and the negative electrode active material are not particularly limited.

上記負極集電体の長手方向の端縁の一部は、負極活物質層を具備しない延長部44として延びており、その先端が負極端子(タブ2)に接合されている。また図1には示していないが、同様に、上記正極集電体の長手方向の端縁の一部が、正極活物質層を具備しない延長部として延びており、その先端が正極端子に接合されている。   A part of the edge in the longitudinal direction of the negative electrode current collector extends as an extension 44 that does not include the negative electrode active material layer, and the tip thereof is joined to the negative electrode terminal (tab 2). Although not shown in FIG. 1, similarly, a part of the longitudinal edge of the positive electrode current collector extends as an extended portion that does not include the positive electrode active material layer, and the tip thereof is joined to the positive electrode terminal. Has been.

セパレータ43は、正極板41と負極板42との間の短絡を防止すると同時に電解質を保持する機能を有する。セパレータ43は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜からなり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能を有している。なお、セパレータとしては、ポリオレフィン等の単層膜に限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造のものや、ポリオレフィン微多孔性膜と有機不織布等を積層したものも用いることができる。セパレータ43の材料、構造は特に限定されない。   The separator 43 has a function of holding an electrolyte while preventing a short circuit between the positive electrode plate 41 and the negative electrode plate 42. The separator 43 is made of, for example, a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP). When an overcurrent flows, the pores of the layer are blocked by the heat generation to block the current. It has a function. The separator is not limited to a single-layer film such as polyolefin, but may also be a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric. The material and structure of the separator 43 are not particularly limited.

また、用いる電解液も特に限定されるものではないが、リチウムイオン二次電池に一般的に使用される電解質として、例えば、有機溶媒にリチウム塩が溶解した非水電解液を用いることができる。   Moreover, although the electrolyte solution to be used is not particularly limited, for example, a non-aqueous electrolyte solution in which a lithium salt is dissolved in an organic solvent can be used as an electrolyte generally used in a lithium ion secondary battery.

なお上述の実施形態では電解液を用いたが、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物等に電解質塩を混合または溶解させた固体状もしくはゲル状電解質等も用いることができる。これらはセパレータを兼ねることもできる。   In the above-described embodiment, the electrolytic solution is used. However, a solid or gel electrolyte obtained by mixing or dissolving a solid electrolyte containing an electrolyte salt, a polymer electrolyte, a polymer compound, or the like may be used. it can. These can also serve as separators.

図2に、本実施形態の加圧部10の概略図を示す。   In FIG. 2, the schematic of the pressurization part 10 of this embodiment is shown.

加圧部10は、装置に取り付けられるロッド7と、ロッド7に垂直に取り付けられ、評価対象のセルの表面を加圧する加圧板6、およびセル表面から規定の長さセル内部に突き刺さる突出部5を備えている。突出部5は加圧板6から所定の内部短絡層数に対応する長さ突出して加圧板6に固定されている。図2で示した加圧部10を図1で示した試験セル1に、図4で示すように法線方向に突き刺して内部短絡を発生させる。   The pressurizing unit 10 is a rod 7 attached to the apparatus, a pressurizing plate 6 that is perpendicularly attached to the rod 7 and pressurizes the surface of the cell to be evaluated, and a projecting portion 5 that stabs into the cell for a predetermined length from the cell surface. It has. The protrusion 5 protrudes from the pressure plate 6 for a length corresponding to a predetermined number of internal short-circuit layers and is fixed to the pressure plate 6. 2 is pierced in the normal direction as shown in FIG. 4 in the test cell 1 shown in FIG. 1 to generate an internal short circuit.

図2に示した加圧板6はセルを加圧する側の周囲に逃げ形状200を形成してある。逃げ形状とは例えば、周囲が突き刺し方向の反対方向に反った形状、または、加圧部の平面部分の周囲に曲面(R)が設けられている形状である。図2では、加圧板6は、セルを加圧する加圧面201がセルと直接接する部分が平面で、加圧面201の周囲全体に突出部5先端と反対方向に曲るRを付けた形状である。なお図2の破線はRを分かりやすく示すためのもので、角(かど)を意味しない。そのためロッド7が法線方向から傾いてに取り付けられてしまって、加圧面が電池の被加圧面に対して正しく平行でなくても、所定の長さ突出部がセル内部に突き刺さすことができ、しかも、加圧面の周囲でセル表面にダメージを与える事がない。従ってその部分での圧壊による短絡が発生する事を防止でき、想定した内部短絡のみを発生させる事が可能となる。   The pressure plate 6 shown in FIG. 2 has a relief shape 200 formed around the side that pressurizes the cell. The relief shape is, for example, a shape in which the periphery is warped in the direction opposite to the piercing direction, or a shape in which a curved surface (R) is provided around the flat portion of the pressing portion. In FIG. 2, the pressure plate 6 has a shape in which a portion where the pressure surface 201 that pressurizes the cell is in direct contact with the cell is a flat surface, and the entire periphery of the pressure surface 201 is bent in a direction opposite to the tip of the protruding portion 5. . Note that the broken lines in FIG. 2 are used to clearly indicate R and do not mean corners. Therefore, even if the rod 7 is attached to be inclined with respect to the normal direction, even if the pressing surface is not correctly parallel to the pressed surface of the battery, the protruding portion of a predetermined length can be inserted into the cell. In addition, the cell surface is not damaged around the pressing surface. Therefore, it is possible to prevent occurrence of a short circuit due to crushing at that portion, and it is possible to generate only an assumed internal short circuit.

加圧板6は図2の形状以外にも、図5(a)、(b)、(c)に示すような断面形状でも良い。つまり矩形の断面を持ち角にRを形成したもの(図5(a))、断面矩形の材料の角部を大きく面取りして端部の断面を三角形にし、更に各角にRを形成したもの(図5(b))でも良い。更に、断面矩形の材料の角部を平面が残るよう面取りし、面取り部分の2つの角部それぞれにRを形成したもの(図5(c))等様々な形状が可能である。   The pressure plate 6 may have a cross-sectional shape as shown in FIGS. 5A, 5B, and 5C in addition to the shape shown in FIG. In other words, a rectangular cross section with an R formed at an angle (FIG. 5 (a)), a corner of a rectangular cross section material is chamfered to make the end cross section a triangle, and an R is formed at each corner. (FIG. 5B) may be used. Further, various shapes are possible, such as a chamfered corner portion of a material having a rectangular cross section so that a flat surface remains and R is formed at each of the two corner portions of the chamfered portion (FIG. 5C).

さらに別の例として、加圧面201全体がセルを加圧する側に凸でしかも半径の大きな球面またはそれに準じた曲面でもよい。球面形状にする場合には、球面の半径は突出部の突出長さよりも十分に大きいことが望ましく、突出長さの少なくとも3倍以上とするのが望ましい。   As yet another example, the entire pressing surface 201 may be a spherical surface having a large radius or a convex surface on the side pressing the cell. In the case of a spherical shape, the radius of the spherical surface is desirably sufficiently larger than the protruding length of the protruding portion, and is preferably at least three times the protruding length.

図3は本実施形態の方法で用いられる内部短絡試験装置20の構成を示す図である。セルを加圧する図2に示す加圧部10と、それを保持し加圧部10の加圧板6を評価対象である試験セル1の表面に対して垂直方向に加圧するための送り出し機構21、および試験セル1を載置する架台22を備えている。架台22上に四本の脚部23を備え、四本の脚部23上に機構支持部24を設置する。機構支持部24の下面中央に送り出し機構部21を固定する。送り出し機構部21の先端にロッド7を接続し、ロッド7の先端に図2で述べた圧部10を固定する。加圧平6と突出部5の材料は例えばステンレスであり、突出部5の形状は円錐形である。なお送り出し機構部21とロッド7を合わせて送り出し機構部としてもよい。   FIG. 3 is a diagram showing the configuration of the internal short-circuit test apparatus 20 used in the method of the present embodiment. A pressurizing unit 10 shown in FIG. 2 that pressurizes the cell, and a delivery mechanism 21 that holds the pressurizing plate 6 of the pressurizing unit 10 in a direction perpendicular to the surface of the test cell 1 to be evaluated, And a gantry 22 on which the test cell 1 is placed. Four legs 23 are provided on the gantry 22, and a mechanism support 24 is installed on the four legs 23. The delivery mechanism unit 21 is fixed to the center of the lower surface of the mechanism support unit 24. The rod 7 is connected to the distal end of the delivery mechanism portion 21, and the pressure portion 10 described in FIG. 2 is fixed to the distal end of the rod 7. The material of the pressure flat 6 and the protrusion 5 is, for example, stainless steel, and the shape of the protrusion 5 is a conical shape. The feed mechanism 21 and the rod 7 may be combined to form a feed mechanism.

送り出し機構部21は加圧部10の突出部5がセルの内部に入りきり、加圧板6がセル表面に達する程度の加圧力であれば良く、フィルム外装電池の場合であれば10〜30N(ニュートン)あれば十分である。また、加圧板6がセル表面に達するところで送り出しを停止すれば良いため、送り出し位置の精度も不要である。電池の内部短絡部分は、加圧部10によって常に規定の長さだけ突出部5がセル内部に突き刺さる。そのため突き刺さる長さが常に安定しており、再現性良く実際に起こる内部短絡を模擬可能である。突出部5は電池に突き刺すために釘の先のように尖っている。突出部5だけが電池に刺さるよう、加圧板6は突出部5に比べて十分大きい寸法を有する。   The delivery mechanism unit 21 may be applied with pressure so that the protruding portion 5 of the pressurizing unit 10 enters the inside of the cell and the pressurizing plate 6 reaches the cell surface. Newton) is enough. Further, since it is only necessary to stop the delivery when the pressure plate 6 reaches the cell surface, the accuracy of the delivery position is not required. In the internal short circuit portion of the battery, the protruding portion 5 is always stuck into the cell by a predetermined length by the pressurizing portion 10. Therefore, the piercing length is always stable, and an internal short circuit that actually occurs can be simulated with good reproducibility. The protrusion 5 is pointed like a nail tip to pierce the battery. The pressure plate 6 has a dimension sufficiently larger than the protrusion 5 so that only the protrusion 5 is stuck in the battery.

加圧部10でセル表面を加圧する場合に、まず加圧部10の突出部5がセルの表面に達して、その後セルの内部に突き刺さるが、この時の突き刺しの速度に関しては、この後加圧板6がセル表面に到達した際に大きな衝撃とならない程度に遅い事が望ましい。そのため1mm/sec以下である事が望ましい。   When pressurizing the cell surface with the pressurizing unit 10, the protruding portion 5 of the pressurizing unit 10 first reaches the surface of the cell and then stabs into the inside of the cell. It is desirable that the pressure plate 6 is slow enough not to cause a large impact when it reaches the cell surface. Therefore, it is desirable that it is 1 mm / sec or less.

加圧板6は突出部5が規定長さだけセル内部に突き刺さるためのストッパーの役であるため、板の加圧方向からの投影形状は問わない。円形でも楕円形でも長方形でも正方形でも構わない。但し、加圧時に荷重が分散しないようにロッドに対して回転対称であることが望ましい。   Since the pressing plate 6 serves as a stopper for the protruding portion 5 to be stabbed into the cell by a specified length, the projected shape from the pressing direction of the plate is not limited. It can be round, oval, rectangular or square. However, it is desirable that it is rotationally symmetric with respect to the rod so that the load is not dispersed during pressurization.

加圧部10の突出部5は電池内部に刺さる事で電池の内部短絡を発生させる。このため、突出部5は導電性材料からなる事が望ましい。また、加圧板6は荷重に十分耐えられ、変形量が極力少なければどのような材料を用いても良いが、突出部5が常に規定の長さ突出する事が可能なように荷重をかけた場合でも、突出部5自身の変形量が極力少なくなるように寸法・材料を選定するとよい。このような観点から、加圧板6は加圧方向からの投影形状として10mm角以上の正方形であり、厚さ10mm以上の金属製であることが望ましい。   The protruding portion 5 of the pressurizing unit 10 pierces the inside of the battery, thereby generating an internal short circuit of the battery. For this reason, it is desirable that the protrusion 5 is made of a conductive material. Further, the pressure plate 6 can sufficiently withstand the load, and any material may be used as long as the deformation amount is as small as possible. However, the load was applied so that the protruding portion 5 can always protrude the specified length. Even in this case, it is preferable to select dimensions and materials so that the deformation amount of the protrusion 5 itself is minimized. From such a viewpoint, it is desirable that the pressure plate 6 is a square of 10 mm square or more as a projected shape from the pressing direction, and is made of metal having a thickness of 10 mm or more.

加圧部10の突出部5の突出長さは、発生させたい内部短絡の短絡抵抗を想定して設定することが望ましく、例えばそれは、短絡が発生する層数によって長さを決める事が出来る。また、短絡抵抗を低くするために、加圧部10を複数設けたりするなども可能である。   The projecting length of the projecting portion 5 of the pressurizing unit 10 is desirably set assuming a short-circuit resistance of an internal short circuit to be generated. For example, the length can be determined by the number of layers in which a short circuit occurs. Moreover, in order to reduce the short-circuit resistance, it is possible to provide a plurality of pressure units 10.

本実施形態では、所定の内部短絡状態を再現するように、加圧板から内部短絡層数に対応する長さだけ突出した加圧部を用いて、セル表面を加圧する。そのため電池の内部短絡部分は、加圧部によって常に規定の長さだけ突出部がセル内部に突き刺さるため、再現性良く実際に起こる内部短絡を模擬可能である。また試験装置には位置制御のための高精度なコントロール機構も不要で、セル電圧の降下検出と加圧動作をリンクさせる必要もない。   In the present embodiment, the cell surface is pressurized using a pressurizing portion that protrudes from the pressure plate by a length corresponding to the number of internal short-circuit layers so as to reproduce a predetermined internal short-circuit state. For this reason, the internal short circuit portion of the battery is able to simulate an internal short circuit that actually occurs with high reproducibility because the protruding portion always stabs into the cell by a predetermined length by the pressurizing portion. Further, the test apparatus does not require a high-precision control mechanism for position control, and it is not necessary to link cell voltage drop detection and pressurization operation.

なお本実施形態では積層型の電池について述べたが、本発明は捲回型の電池についても適用することができる。また本実施形態ではリチウムイオン電池を対象としたが、他の電池材料を用いた電池でも適用することができる。   In the present embodiment, the stacked type battery is described, but the present invention can also be applied to a wound type battery. In this embodiment, a lithium ion battery is targeted, but a battery using other battery materials can also be applied.

また突出部5は複数設けてもよい。   A plurality of protrusions 5 may be provided.

(実施例1)
以下本発明の実施例1を説明する。本実施例では、図3に示されるような内部短絡評価装置を用いた。また、図2に示されるような加圧部10を用いた。具体的には、加圧板6が一辺10mm、厚さ5mm、突出部5の先端角が30°で、突出部5の突出長さが1.0mm、加圧板の加圧面を曲率半径50mmとした。
Example 1
Embodiment 1 of the present invention will be described below. In this example, an internal short-circuit evaluation apparatus as shown in FIG. 3 was used. Moreover, the pressurizing part 10 as shown in FIG. 2 was used. Specifically, the pressure plate 6 has a side of 10 mm, a thickness of 5 mm, the protrusion 5 has a tip angle of 30 °, the protrusion 5 has a protrusion length of 1.0 mm, and the pressure surface of the pressure plate has a radius of curvature of 50 mm. .

ラミネート外装電池の電極積層体の積層方向に垂直な方向から加圧部10を垂直に、移動速度0.1mm/secで、最大荷重50Nで加圧した。   The pressurizing unit 10 was pressed from the direction perpendicular to the stacking direction of the electrode laminate of the laminate-clad battery at a moving speed of 0.1 mm / sec and a maximum load of 50N.

電池情報としては、電池の電圧と加圧部に係る荷重を測定した。電池の電圧が30mV以上低下した場合に、内部短絡が生じたと判断した。ただし、この情報は試験中に試験中止を判断するのには使用せず、試験後、結果の判断としてのみ使用した。   As the battery information, the voltage of the battery and the load related to the pressurizing part were measured. When the voltage of the battery dropped by 30 mV or more, it was determined that an internal short circuit occurred. However, this information was not used to determine test suspension during the test, but only as a result determination after the test.

比較例として、JISC8715-2で規定されている強制内部短絡試験に準拠した方法を用いた試験を行った。   As a comparative example, a test using a method based on a forced internal short circuit test specified in JISC8715-2 was performed.

また試験電池を2種類準備した。セルAは通常の釘刺し試験にパスする安全性の高いセル仕様のものであり、セルBは通常の釘刺し試験にて発煙・発火となるセル仕様のものである。以下単にセルA、セルBと略す。なおセルAとセルBではセル構造は共通であり図1、図4で示した構造であるが、使われているセパレータが異なる。セルAは、アラミドなどの耐熱性の高いセパレータを用いており、セルBは通常の、耐熱性の低いPP(ポリプロピレン)などのセパレータを用いている。   Two types of test batteries were prepared. The cell A has a cell specification with high safety that passes a normal nail penetration test, and the cell B has a cell specification that generates smoke and ignition in a normal nail penetration test. Hereinafter, they are simply referred to as cell A and cell B. Cell A and cell B have the same cell structure and are the structures shown in FIGS. 1 and 4, but the separators used are different. The cell A uses a separator having high heat resistance such as aramid, and the cell B uses a normal separator such as PP (polypropylene) having low heat resistance.

試験結果を表1に示す。
表1

Figure 2018152260
表1で、結果欄の「○」は、発煙・発火ともに無し、「×」は発煙および発火が起こった事を示している。また、電圧低下観察欄は、試験中に取得したセル電圧データから、内部短絡が発生した時に発生するセルの電圧低下が観察されたかどうかを示している。セルの電圧が30mV以上低下していたら、内部短絡が発生していたと判断し、「有り」、電圧低下が30mV未満であったら「無し」とした。試験後のセルの短絡発生部分の観察を実施した結果が内部短絡発生欄であり、観察により判断された、内部短絡の層数を示した。本実施例の方法だと、安全性の高いセルAは、内部短絡が2層発生している場合でも発煙・発火ともに無しという結果になった。それに対し、安全性の低いセルBでは、内部短絡が発生し、その結果、発煙および発火に至った。同様に比較例では、セルAは発煙・発火ともに無しという結果になり、短絡層数も1層短絡していることが確認出来たが、セルの電圧低下はデータからは確認出来なかった。短絡部の電気的抵抗値が大きかったため、セルの電圧低下としては検出されなかったためと考えられる。また、安全性の低いセルBも同様の試験結果であったが、こちらは、試験後のセルを確認したところ、電極間に配置した導電性異物がセパレータを貫通しておらず、セルの内部短絡が発生していない状態であった。 The test results are shown in Table 1.
Table 1
Figure 2018152260
In Table 1, “◯” in the result column indicates that neither smoke nor ignition occurred, and “×” indicates that smoke or ignition occurred. The voltage drop observation column indicates whether or not a cell voltage drop that occurs when an internal short circuit occurs is observed from the cell voltage data acquired during the test. If the cell voltage was reduced by 30 mV or more, it was judged that an internal short circuit had occurred, and “Yes” was determined. The result of having observed the short circuit occurrence part of the cell after a test was an internal short circuit generation column, and showed the number of layers of the internal short circuit judged by observation. According to the method of this example, the highly safe cell A resulted in no smoke or ignition even when two layers of internal short circuit occurred. On the other hand, in cell B with low safety, an internal short circuit occurred, resulting in smoke and fire. Similarly, in the comparative example, it was confirmed that cell A did not emit smoke or ignite, and it was confirmed that the number of short-circuit layers was short-circuited by one layer, but the cell voltage drop could not be confirmed from the data. This is probably because the voltage drop of the cell was not detected because the electrical resistance value of the short-circuit portion was large. Cell B, which is less safe, had the same test results, but here, after confirming the cell after the test, the conductive foreign matter placed between the electrodes did not penetrate the separator, and the inside of the cell There was no short circuit.

同様の試験をセルA、セルBに対して行うと、本実施例の方法だと、毎回同じ短絡層数、結果を得られたが、比較例の方法だと、内部短絡が確認出来る場合と出来ない場合がランダムに発生し、高い再現性が得られなかった。   When the same test was performed on cell A and cell B, the same number of short-circuit layers and results were obtained each time with the method of this example, but the internal short circuit could be confirmed with the method of the comparative example. The case where it was not possible occurred at random and high reproducibility was not obtained.

以上説明したように、本実施例の試験方法によれば、内部短絡を模擬した試験を簡便にしかも再現性良く行う事が出来る。   As described above, according to the test method of the present embodiment, a test simulating an internal short circuit can be performed easily and with good reproducibility.

1 試験セル
2 タブ
3 外装体
41 正極板
42 負極板
43 セパレータ
44 延長部
5 突出部
6 加圧板
7 ロッド
10 加圧部
20 内部短絡試験装置
21 送り出し機構
22 架台
23 脚部
24 機構支持部
200 逃げ形状
201 加圧面
DESCRIPTION OF SYMBOLS 1 Test cell 2 Tab 3 Exterior body 41 Positive electrode plate 42 Negative electrode plate 43 Separator 44 Extension part 5 Protrusion part 6 Pressure plate 7 Rod 10 Pressurization part 20 Internal short-circuit test device 21 Delivery mechanism 22 Base 23 Leg part 24 Mechanism support part 200 Escape Shape 201 Pressurized surface

Claims (10)

セパレータを介して正極板と負極板が積層された積層物が外装体に収納されている電池の内部短絡試験方法であって、
少なくとも前記電池を加圧する加圧面の周囲に逃げ形状を有する加圧板と前記加圧板から所定の内部短絡層数に対応する長さ突出し、前記電池に突き刺す突出部を備えた加圧部で前記電池を加圧して、前記電池に内部短絡を発生させることを特徴とする電池の内部短絡試験方法。
An internal short circuit test method for a battery in which a laminate in which a positive electrode plate and a negative electrode plate are laminated via a separator is housed in an exterior body,
At least a pressure plate having a relief shape around a pressure surface that pressurizes the battery, a length corresponding to a predetermined number of internal short-circuit layers from the pressure plate, and a pressure portion including a protrusion portion that pierces the battery, the battery. The internal short circuit test method for a battery, wherein the internal short circuit is generated in the battery.
前記逃げ形状は、周囲が突き刺し方向とは反対方向に反った形状、または、周囲に曲面が設けられている形状である請求項1に記載の電池の内部短絡試験方法。   The battery internal short-circuit test method according to claim 1, wherein the relief shape is a shape in which the periphery is bent in a direction opposite to the piercing direction or a shape in which a curved surface is provided in the periphery. 前記加圧板は、前記電池と直接接する部分が平面である請求項1または2に記載の内部短絡試験方法。   The internal short-circuit test method according to claim 1, wherein the pressure plate has a flat portion in direct contact with the battery. 前記逃げ形状は、前記加圧面が球面形状である請求項1または2に記載の内部短絡試験方法。   The internal short circuit test method according to claim 1, wherein the relief shape is such that the pressure surface is a spherical shape. 前記加圧板はロッドに接続され、前記加圧板の形状は前記ロッドに対して回転対称である請求項1から4のいずれか一項に記載の内部短絡試験方法。   The internal short circuit test method according to any one of claims 1 to 4, wherein the pressure plate is connected to a rod, and the shape of the pressure plate is rotationally symmetric with respect to the rod. 前記突出部が前記加圧板に複数設けられている請求項1から5のいずれか一項に記載の内部短絡試験方法。   The internal short circuit test method according to any one of claims 1 to 5, wherein a plurality of the protrusions are provided on the pressure plate. 前記加圧板が複数設けられている請求項1から6のいずれか一項に記載の内部短絡試験方法。   The internal short circuit test method according to any one of claims 1 to 6, wherein a plurality of the pressure plates are provided. 試験対象の電池を載置する架台と、
前記架台に設けた脚部と、
前記脚部上に設けた機構支持部と、
前記機構支持部に支持された送り出し機構と、
前記送り出し機構に設けられ、少なくとも前記電池を加圧する加圧面の周囲に逃げ形状を有する加圧板と前記加圧板上に所定の内部短絡層数に対応する長さ突出して固定され前記試験対象の電池を刺す突出部を備えた加圧部、
を備えたことを特徴とする内部短絡試験装置。
A platform on which the battery to be tested is placed;
Legs provided on the mount;
A mechanism support provided on the leg,
A delivery mechanism supported by the mechanism support;
A test plate provided in the delivery mechanism and having a relief shape around at least a pressurization surface for pressurizing the battery, and a battery projecting to a length corresponding to a predetermined number of internal short-circuit layers and fixed on the test plate A pressurizing part with a protruding part
An internal short-circuit test apparatus comprising:
前記逃げ形状は、周囲が突き刺し方向とは反対方向に反った形状、または、周囲に曲面が設けられている形状である請求項8に記載の電池の内部短絡試験装置。   The battery internal short circuit test device according to claim 8, wherein the escape shape is a shape in which the periphery is curved in a direction opposite to the piercing direction or a shape in which a curved surface is provided in the periphery. 前記加圧板は、前記電池と直接接する部分が平面である請求項8または9に記載の内部短絡試験装置。   The internal short circuit test apparatus according to claim 8 or 9, wherein the pressure plate has a flat portion in direct contact with the battery.
JP2017048122A 2017-03-14 2017-03-14 Battery internal short circuit test method and internal short circuit test equipment Active JP6900716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017048122A JP6900716B2 (en) 2017-03-14 2017-03-14 Battery internal short circuit test method and internal short circuit test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017048122A JP6900716B2 (en) 2017-03-14 2017-03-14 Battery internal short circuit test method and internal short circuit test equipment

Publications (2)

Publication Number Publication Date
JP2018152260A true JP2018152260A (en) 2018-09-27
JP6900716B2 JP6900716B2 (en) 2021-07-07

Family

ID=63679648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048122A Active JP6900716B2 (en) 2017-03-14 2017-03-14 Battery internal short circuit test method and internal short circuit test equipment

Country Status (1)

Country Link
JP (1) JP6900716B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021419A (en) * 2017-07-12 2019-02-07 日本電気株式会社 Method and device for testing internal short circuit of battery
CN110672704A (en) * 2019-09-11 2020-01-10 东莞赣锋电子有限公司 Identification method for rapidly judging damage of soft package lithium ion battery aluminum plastic film
CN112462218A (en) * 2020-11-10 2021-03-09 珠海冠宇电池股份有限公司 Battery cell pressurization tool, battery cell voltage-withstanding testing device and voltage-withstanding testing method
CN114035077A (en) * 2021-11-25 2022-02-11 上海兰钧新能源科技有限公司 Battery short circuit test method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164380A (en) * 2012-02-13 2013-08-22 Nissan Motor Co Ltd Conductivity inspection device and method
JP2015159017A (en) * 2014-02-24 2015-09-03 エスペック株式会社 Battery testing device
JP2018085245A (en) * 2016-11-24 2018-05-31 技術研究組合リチウムイオン電池材料評価研究センター Short circuit test device for battery and short circuit test method for battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164380A (en) * 2012-02-13 2013-08-22 Nissan Motor Co Ltd Conductivity inspection device and method
JP2015159017A (en) * 2014-02-24 2015-09-03 エスペック株式会社 Battery testing device
JP2018085245A (en) * 2016-11-24 2018-05-31 技術研究組合リチウムイオン電池材料評価研究センター Short circuit test device for battery and short circuit test method for battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019021419A (en) * 2017-07-12 2019-02-07 日本電気株式会社 Method and device for testing internal short circuit of battery
JP7062891B2 (en) 2017-07-12 2022-05-09 日本電気株式会社 Battery internal short circuit test method and internal short circuit test equipment
CN110672704A (en) * 2019-09-11 2020-01-10 东莞赣锋电子有限公司 Identification method for rapidly judging damage of soft package lithium ion battery aluminum plastic film
CN112462218A (en) * 2020-11-10 2021-03-09 珠海冠宇电池股份有限公司 Battery cell pressurization tool, battery cell voltage-withstanding testing device and voltage-withstanding testing method
CN114035077A (en) * 2021-11-25 2022-02-11 上海兰钧新能源科技有限公司 Battery short circuit test method and system
CN114035077B (en) * 2021-11-25 2024-03-19 上海兰钧新能源科技有限公司 Battery short circuit test method and system

Also Published As

Publication number Publication date
JP6900716B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP7148222B2 (en) Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment
JP6900716B2 (en) Battery internal short circuit test method and internal short circuit test equipment
EP2157653B1 (en) Method for evaluating battery safety under internal short-circuit condition
US10665843B2 (en) Separator-integrated electrode plate and capacitor element
JP7111235B2 (en) Lithium-ion battery evaluation method, lithium-ion battery manufacturing method, and test system
KR100962819B1 (en) Method for evaluating battery safety under internal short-circuit condition, method for producing battery, and method for producing battery pack
DE102018121027B4 (en) METHOD AND DEVICE FOR EVALUATING A BATTERY CELL
JP4373269B2 (en) Winding electrode assembly and secondary battery equipped with the same
KR102161028B1 (en) Fault test device and fault test method of rechargeable battery
US9917337B2 (en) Inspection method for film covered battery
JP2018085245A (en) Short circuit test device for battery and short circuit test method for battery
US11635473B2 (en) Secondary battery for testing internal short, method and apparatus for testing internal short of secondary battery using the same
JP5503183B2 (en) Safety evaluation method for power storage devices
JP2009054300A (en) Internal short circuit evaluation method of battery
JP2017182976A (en) Short circuit evaluation method of secondary battery
JP2019109975A (en) Internal short-circuit test method for battery and internal short-circuit test device
JP7062891B2 (en) Battery internal short circuit test method and internal short circuit test equipment
US20090317702A1 (en) Stacked-Type Lithium Ion Battery
JP2017117628A (en) Battery and internal short circuit safety evaluation method
JP6230170B2 (en) Storage device safety evaluation test method and safety evaluation test apparatus
JP6738541B2 (en) How to smoke an assembled battery
JP6334290B2 (en) Secondary battery inspection method
KR20220040198A (en) Inspecting apparatus and method for secondary battery
KR20230006265A (en) Apparatus and Method for Indentation Test of Secondary Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210531

R150 Certificate of patent or registration of utility model

Ref document number: 6900716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150