JP7148222B2 - Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment - Google Patents

Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment Download PDF

Info

Publication number
JP7148222B2
JP7148222B2 JP2017004436A JP2017004436A JP7148222B2 JP 7148222 B2 JP7148222 B2 JP 7148222B2 JP 2017004436 A JP2017004436 A JP 2017004436A JP 2017004436 A JP2017004436 A JP 2017004436A JP 7148222 B2 JP7148222 B2 JP 7148222B2
Authority
JP
Japan
Prior art keywords
internal short
battery
plate
pressurizing
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017004436A
Other languages
Japanese (ja)
Other versions
JP2018113230A (en
Inventor
俊彦 萬久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2017004436A priority Critical patent/JP7148222B2/en
Publication of JP2018113230A publication Critical patent/JP2018113230A/en
Application granted granted Critical
Publication of JP7148222B2 publication Critical patent/JP7148222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、電池の内部短絡試験法と内部短絡試験装置に関する。 The present invention relates to a battery internal short-circuit testing method and an internal short-circuit testing apparatus.

リチウムイオン二次電池などの電池の安全性を評価するための手法、評価試験は各種あるが、その中でも電池の内部に導電性の異物が混入し、それが正極と負極間を短絡させて発生する内部短絡時の挙動を評価する事は、電池メーカーにとっては極めて重要である。 There are various methods and evaluation tests for evaluating the safety of batteries such as lithium-ion secondary batteries. It is extremely important for battery manufacturers to evaluate the behavior during an internal short circuit.

以前より、このような内部短絡を模擬した試験として釘刺し試験が広く行われていた。釘刺し試験は、セル外部から導電性の釘を挿入・貫通させることにより確実に内部短絡を発生させる事が出来るため、ある程度の高い再現性が得られ易く、また、特別に精巧な装置も必要無いため、試験を行うのに大きな障壁が無い。 A nail penetration test has been widely used as a test simulating such an internal short circuit. In the nail penetration test, an internal short circuit can be reliably generated by inserting and penetrating a conductive nail from the outside of the cell. There are no major barriers to testing.

一方、釘刺し試験は簡便に行うことが出来るという特徴があるものの、通常セル内部で見られる内部短絡現象とは程遠い状態を作るに過ぎない事が、以前より問題視されている。つまり、太い釘が表から裏に至るまで貫通する点や、そのために、電極に穴が開く点など、実際の導電性異物起因で起こる内部短絡とは大きく違う状態になる。実際の導電性異物起因で起こる内部短絡は、電極そのものが破れたり、異物が電極を貫通したりすることはあっても、せいぜい1、2層に限られると考えられるが、釘刺し試験ではそのような短絡発生層数の制御は不可能に近い。 On the other hand, although the nail penetration test has the advantage that it can be easily performed, it has long been regarded as a problem that it merely creates a state far from the internal short-circuit phenomenon normally seen inside the cell. In other words, a thick nail penetrates from the front to the back, and a hole is formed in the electrode. Internal short-circuits caused by actual conductive foreign matter are thought to be limited to one or two layers at most, even if the electrode itself breaks or the foreign matter penetrates the electrode. It is nearly impossible to control the number of short-circuited layers.

そこで、最近では、電池から積層体や捲回体を取り出して、実際に導電性異物を極板間に挿入し、その部分を外から加圧して内部短絡を発生させる、強制内部短絡試験のように実際に起こる現象により近い状態を再現する試験法が提案されている。 Therefore, in recent years, a forced internal short circuit test has been developed in which the laminate or wound body is taken out of the battery, a conductive foreign substance is actually inserted between the electrode plates, and an internal short circuit is generated by applying pressure to that part from the outside. A test method has been proposed that reproduces conditions closer to what actually occurs in the field.

以前より広く行われてきた釘刺し試験は、内部短絡を発生させるための釘が電池を貫通するという点において、現実に発生すると考えられる導電性異物起因の内部短絡と大きく状態が異なる。 The nail penetration test, which has been widely used for a long time, differs greatly from the actual internal short circuit due to conductive foreign matter in that the nail penetrates the battery to generate the internal short circuit.

また、強制内部短絡試験は、現実に発生すると考えられる導電性異物起因の内部短絡と非常に近い状態を再現可能な試験ではあるが、電池を解体して異物を挿入するなど非常に手間が掛かる上、異物の場所を正しく加圧することも難しく、そのため再現性に乏しい。また、電池を解体する関係で、ドライルーム(超低湿クリーンルーム)と試験場が近接している必要があり、試験場の制約も受ける。また、微小な電圧低下を監視する必要があるため、精巧な電圧測定部とそれをフィードバックして加圧を止める機構など装置が非常に複雑かつ高価なものになる。 In addition, the forced internal short-circuit test is a test that can reproduce conditions very similar to internal short-circuits caused by conductive foreign matter that are thought to occur in reality, but it is very time-consuming, such as disassembling the battery and inserting the foreign matter. In addition, it is difficult to pressurize the location of the foreign object correctly, and therefore the reproducibility is poor. In addition, the dry room (ultra-low humidity clean room) and the test site must be close to each other in relation to dismantling the battery, and the test site is subject to restrictions. In addition, since it is necessary to monitor a minute voltage drop, the device, such as an elaborate voltage measuring unit and a mechanism for stopping pressurization by feeding it back, becomes very complicated and expensive.

特許第5060623号Patent No. 5060623 特開2015-159017号公報JP 2015-159017 A

特許文献1では、釘先端のような微小な部分のみを刺すことで、実際に起こる現象により近い状態を再現する試験法が提案されている。しかしこの方法でも、加圧子を高度に位置制御するために、加圧力を検知する加圧力測定部、それを位置制御にフィードバックする加圧子制御部、短絡子制御部等が必要であり、非常に複雑・高価な装置になるという課題があった。 Patent Literature 1 proposes a test method that reproduces a state closer to what actually occurs by piercing only a minute portion such as the tip of a nail. However, even with this method, in order to control the position of the pressurizer at a high level, it is necessary to have a pressurizing force measuring unit that detects the applied force, a pressurizer control unit that feeds it back to position control, a short circuit control unit, etc. There was a problem of becoming a complicated and expensive device.

また特許文献2の電池試験装置では、図2,図3、(0042)~(0043)に、加圧部42に釘刺し試験用治具44を取り付けることが記載されている。釘刺し試験用治具44には、釘部44aと釘部44aの根元に一体的に形成された基部44cがある。駆動部18によって加圧部42を下降させて釘部44aを電池Bに突き刺すが、釘部44aをどこまで電池Bに突き刺すか、また基部44cが電池Bを加圧するかについては何ら記載がない。そのため特許文献1と同じく、駆動部18の下降距離を測定し、フィードバックしながら行うと思われる。しかしその場合、特許文献1と同様に複雑・高価な装置になるという課題があった。 Further, in the battery testing apparatus of Patent Document 2, FIGS. 2 and 3, (0042) to (0043) describe that a nail penetration test jig 44 is attached to the pressurizing section 42. FIG. The nail penetration test jig 44 has a nail portion 44a and a base portion 44c integrally formed at the base of the nail portion 44a. The drive unit 18 lowers the pressure member 42 to pierce the battery B with the nail 44a, but there is no description as to how far the nail 44a pierces the battery B or whether the base 44c presses the battery B. Therefore, as in Patent Document 1, it is considered that the lowering distance of the drive unit 18 is measured and fed back. However, in that case, there is a problem that the device becomes complicated and expensive as in Patent Document 1.

本発明の目的は、以上述べた問題点を解決し、電池に発生する内部短絡を簡便でしかも再現性の高い試験を行う方法と内部短絡試験装置を提供することである。 SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-described problems and to provide a method and an internal short-circuit testing apparatus for easily and highly reproducibly testing internal short-circuits occurring in batteries.

本発明は、セパレータを介して正極板と負極板が積層された積層物を備え、前記積層物が外装体に収納されている電池の内部短絡試験方法であって、
加圧平板と前記加圧平板から所定の内部短絡層数に対応する長さ突出して固定された突出部を備えた加圧部で前記電池を加圧して、前記電池に内部短絡を発生させることを特徴とする電池の内部短絡試験方法、である。
The present invention provides a battery internal short-circuit test method comprising a laminate in which a positive electrode plate and a negative electrode plate are laminated with a separator interposed therebetween, and the laminate being housed in an outer package,
The battery is pressurized by a pressurizing plate and a pressurizing part provided with a protrusion projecting from the pressurizing plate by a length corresponding to a predetermined number of internal short-circuit layers to generate an internal short circuit in the battery. A battery internal short circuit test method characterized by:

また本発明は、試験対象の電池を載置する架台と、前記架台に設けた脚部と、前記脚部上に設けた機構支持部と、前記機構支持部に支持された送り出し機構と、前記送り出し機構に設けられ、加圧平板と前記加圧平板上に所定の内部短絡層数に対応する長さ突出して固定され前記試験対象の電池を刺す突出部を備えた加圧部と、を備えたことを特徴とする内部短絡試験装置、である。 Further, the present invention includes a base on which a battery to be tested is placed, a leg portion provided on the base, a mechanism support portion provided on the leg portion, a delivery mechanism supported by the mechanism support portion, and the A pressurizing unit provided in a delivery mechanism, comprising a pressurizing plate and a pressurizing unit having a protruding portion fixed on the pressurizing plate so as to protrude by a length corresponding to a predetermined number of internal short-circuit layers and piercing the battery to be tested. An internal short-circuit testing device characterized by:

本発明によれば、電池内部に発生させたい内部短絡の状態を、簡便な方法で再現可能となり、また再現性も高い試験を行う事が可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to reproduce the state of the internal short circuit desired to generate|occur|produce inside a battery by a simple method, and it becomes possible to perform a highly reproducible test.

本発明の実施形態における評価対象の一例である、フィルム外装電池の断面図である。1 is a cross-sectional view of a film-clad battery, which is an example of an object to be evaluated in an embodiment of the present invention; FIG. 本発明の実施形態の加圧部を示す概略斜視図である。FIG. 4 is a schematic perspective view showing a pressurizing section of the embodiment of the present invention; 本発明の実施形態に係る試験装置の構成を概略的に示す構成図である。1 is a configuration diagram schematically showing the configuration of a testing device according to an embodiment of the present invention; FIG. 本発明の実施形態の方法によって、内部短絡を発生させる試験状態のフィルム外装電池の断面図である。FIG. 4 is a cross-sectional view of a film-clad battery under test condition to generate an internal short circuit according to the method of an embodiment of the present invention;

(第1の実施形態)
図1~図4を用いて本発明の第1の実施形態を説明する。
(First embodiment)
A first embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG.

初めに図1に基づいて、本実施形態で評価対象となる電池の一例としてフィルム外装電池の一例を説明する。フィルム外装電池は、例えばリチウムイオン二次電池である。図1では試験セル1と表示している。図1に示すように、発電要素を電解液(不図示)とともにラミネートフィルムからなる外装体3の内部に収容したものである。発電要素は、セパレータ43を介して正極板41と負極板42が積層された積層体を交互に積層している。積層体間にもセパレータ43を挟んでいる。このようにして形成した発電要素を、正極端子と負極端子を除いて外装体3でカバーする。 First, based on FIG. 1, an example of a film-clad battery will be described as an example of a battery to be evaluated in this embodiment. A film-clad battery is, for example, a lithium ion secondary battery. It is indicated as test cell 1 in FIG. As shown in FIG. 1, a power generation element is housed inside an exterior body 3 made of a laminate film together with an electrolytic solution (not shown). The power generation element is formed by alternately laminating a laminate in which the positive electrode plate 41 and the negative electrode plate 42 are laminated with the separator 43 interposed therebetween. A separator 43 is also sandwiched between the laminates. The power generation element formed in this way is covered with the exterior body 3 except for the positive terminal and the negative terminal.

正極板41は、正極集電体の両面に正極活物質を塗布して形成する。正極集電体としては、アルミニウム箔等が使われる。また正極活物質としては、例えば、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、または、コバルト酸リチウム(LiCoO2)等のリチウム複合酸化物からなる正極活物質と、カーボンブラック等の導電助剤と、バインダと、を混合したものを、正極集電体上に塗布し、乾燥及び圧延することにより形成されている。正極集電体と正極活物質は特に限定されない。 The positive electrode plate 41 is formed by applying a positive electrode active material on both sides of a positive current collector. Aluminum foil or the like is used as the positive electrode current collector. The positive electrode active material includes, for example, lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium composite oxide such as lithium cobalt oxide (LiCoO 2 ), carbon black, and the like. and a binder are applied on the positive electrode current collector, dried and rolled. The positive electrode current collector and the positive electrode active material are not particularly limited.

負極板42は、負極集電体の両面に負極活物質を塗布してなる。負極集電体としては、銅箔等が使われる。また負極活物質としては、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素、又は、黒鉛等のような上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、バインダを混合したものを、負極集電体の主面に塗布し、乾燥及び圧延させることにより形成されている。負極集電体と負極活物質は特に限定されない。 The negative electrode plate 42 is formed by applying a negative electrode active material on both sides of a negative electrode current collector. A copper foil or the like is used as the negative electrode current collector. As the negative electrode active material, for example, amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite can be used as the negative electrode active material that occludes and releases lithium ions of the above positive electrode active material, and a binder is added to the negative electrode active material. is applied to the main surface of the negative electrode current collector, followed by drying and rolling. The negative electrode current collector and the negative electrode active material are not particularly limited.

上記負極集電体の長手方向の端縁の一部は、負極活物質層を具備しない延長部44として延びており、その先端が負極端子(タブ2)に接合されている。また図1には示していないが、同様に、上記正極集電体の長手方向の端縁の一部が、正極活物質層を具備しない延長部として延びており、その先端が正極端子に接合されている。 A part of the edge in the longitudinal direction of the negative electrode current collector extends as an extension portion 44 not provided with the negative electrode active material layer, and the tip thereof is joined to the negative electrode terminal (tab 2). Also, although not shown in FIG. 1, a part of the edge in the longitudinal direction of the positive electrode current collector similarly extends as an extension without the positive electrode active material layer, and the tip thereof is joined to the positive electrode terminal. It is

セパレータ43は、正極板41と負極板42との間の短絡を防止すると同時に電解質を保持する機能を有する。セパレータ43は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜からなり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能を有している。なお、セパレータとしては、ポリオレフィン等の単層膜に限られず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造のものや、ポリオレフィン微多孔性膜と有機不織布等を積層したものも用いることができる。セパレータ43の材料、構造は特に限定されない。 The separator 43 has the function of preventing a short circuit between the positive electrode plate 41 and the negative electrode plate 42 and at the same time retaining the electrolyte. The separator 43 is made of, for example, a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP). have a function. The separator is not limited to a monolayer film of polyolefin or the like, and a three-layer structure in which a polypropylene film is sandwiched between polyethylene films, or a laminate of a polyolefin microporous film and an organic non-woven fabric can also be used. The material and structure of the separator 43 are not particularly limited.

また、用いる電解液も特に限定されるものではないが、リチウムイオン二次電池に一般的に使用される電解質として、例えば、有機溶媒にリチウム塩が溶解した非水電解液を用いることができる。 In addition, the electrolyte to be used is not particularly limited, but as an electrolyte generally used in lithium ion secondary batteries, for example, a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent can be used.

なお上述の実施形態では電解液を用いたが、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物等に電解質塩を混合または溶解させた固体状もしくはゲル状電解質等も用いることができる。これらはセパレータを兼ねることもできる。 In the above-described embodiment, an electrolytic solution is used, but a solid electrolyte containing an electrolyte salt, a polymer electrolyte, or a solid or gel electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer compound or the like can also be used. can. These can also serve as separators.

図2に、本実施形態の加圧部10の概略図を示す。 FIG. 2 shows a schematic diagram of the pressure unit 10 of the present embodiment.

加圧部10は、装置に取り付けられるロッド7と、ロッド7に垂直に取り付けられ、評価対象のセルの表面を加圧する加圧平板6、およびセル表面から規定の長さセル内部に突き刺さる突出部5を備えている。突出部5は加圧平板6から所定の内部短絡層数に対応する長さ突出して加圧平板6に固定されている。図2で示した加圧部10を図1で示した試験セル1に図4で示すように突き刺して内部短絡を発生させる。 The pressurizing unit 10 includes a rod 7 attached to the device, a pressurizing plate 6 attached perpendicularly to the rod 7 and pressurizing the surface of the cell to be evaluated, and a projection projecting from the cell surface into the inside of the cell for a specified length. 5. The projecting portion 5 is fixed to the pressing plate 6 so as to protrude from the pressing plate 6 by a length corresponding to the predetermined number of internal short-circuit layers. 2 is pierced into the test cell 1 shown in FIG. 1 as shown in FIG. 4 to generate an internal short circuit.

図3は本実施形態の方法で用いられる内部短絡試験装置20の構成を示す図である。セルを加圧する図2に示す加圧部10と、それを保持し加圧部10の加圧平板6を評価対象である試験セル1の表面に対して垂直方向に加圧するための送り出し機構部21、および試験セル1を載置する架台22を備えている。架台22上に四本の脚部23を備え、四本の脚部23上に機構支持部24を設置する。機構支持部24の下面中央に送り出し機構部21を固定する。送り出し機構部21の先端にロッド7を接続し、ロッド7の先端に図2で述べた圧部10を固定する。加圧平板6と突出部5の材料は例えばステンレスであり、突出部5の形状は円錐形である。なお送り出し機構部21とロッド7を合わせて送り出し機構部としてもよい。 FIG. 3 is a diagram showing the configuration of an internal short-circuit testing device 20 used in the method of this embodiment. A pressurizing unit 10 shown in FIG. 2 for pressurizing the cell, and a sending mechanism unit for holding the pressurizing unit 10 and pressurizing the pressurizing flat plate 6 of the pressurizing unit 10 in the vertical direction against the surface of the test cell 1 to be evaluated. 21 and a pedestal 22 on which the test cell 1 is placed. Four legs 23 are provided on the frame 22 , and a mechanism support part 24 is installed on the four legs 23 . The delivery mechanism portion 21 is fixed to the center of the lower surface of the mechanism support portion 24 . A rod 7 is connected to the tip of the delivery mechanism portion 21, and the pressure portion 10 described with reference to FIG. 2 is fixed to the tip of the rod 7. The pressing plate 6 and the protrusion 5 are made of, for example, stainless steel, and the shape of the protrusion 5 is conical. Note that the delivery mechanism portion 21 and the rod 7 may be combined to form a delivery mechanism portion.

送り出し機構部21は加圧部10の突出部5がセルの内部に入りきり、加圧平板6がセル表面に達する程度の加圧力であれば良く、フィルム外装電池の場合であれば10~30N(ニュートン)あれば十分である。また、加圧平板6がセル表面に達するところで送り出しを停止すれば良いため、送り出し位置の精度も不要である。電池の内部短絡部分は、加圧部10によって常に規定の長さだけ突出部5がセル内部に突き刺さる。そのため突き刺さる長さが常に安定しており、再現性良く実際に起こる内部短絡を模擬可能である。突出部5は電池に突き刺すために釘の先のように尖っている。突出部5だけが電池に刺さるよう、加圧平板6は突出部5に比べて十分大きい寸法を有する。 The feeding mechanism 21 may be applied with a pressure force that allows the protruding portion 5 of the pressure member 10 to fully enter the inside of the cell and the pressure flat plate 6 reaches the surface of the cell. (Newton) is enough. In addition, since it is only necessary to stop the delivery when the pressurizing plate 6 reaches the cell surface, accuracy of the delivery position is not required. At the internal short-circuit portion of the battery, the projecting portion 5 is always pierced into the cell by a specified length by the pressurizing portion 10 . Therefore, the piercing length is always stable, and it is possible to simulate an internal short circuit that actually occurs with good reproducibility. The projecting portion 5 is pointed like a nail to pierce the battery. The pressing plate 6 has dimensions sufficiently larger than the protrusion 5 so that only the protrusion 5 sticks into the battery.

加圧部10でセル表面を加圧する場合に、まず加圧部10の突出部5がセルの表面に達して、その後セルの内部に突き刺さるが、この時の突き刺しの速度に関しては、この後加圧平板6がセル表面に到達した際に大きな衝撃とならない程度に遅い事が望ましい。そのため1mm/sec以下である事が望ましい。 When the pressure unit 10 pressurizes the surface of the cell, the protrusion 5 of the pressure unit 10 first reaches the surface of the cell and then pierces the inside of the cell. It is desirable that the applanation plate 6 is slow enough not to cause a large impact when it reaches the cell surface. Therefore, it is desirable to be 1mm/sec or less.

加圧平板6は突出部5が規定長さだけセル内部に突き刺さるためのストッパーの役であるため、平板の形状は問わない。円形でも楕円形でも長方形でも正方形でも構わない。但し、加圧時に荷重が分散しないようにロッドに対して回転対称であることが望ましい。 Since the pressurizing plate 6 serves as a stopper for the protruding portion 5 to stick into the cell by a specified length, the shape of the plate does not matter. It can be circular, oval, rectangular or square. However, it is desirable to be rotationally symmetrical with respect to the rod so that the load is not distributed during pressurization.

加圧部10の突出部5は電池内部に刺さる事で電池の内部短絡を発生させる。このため、突出部5は導電性材料からなる事が望ましい。また、加圧平板6は荷重に十分耐えられ、変形量が極力少なければどのような材料を用いても良いが、突出部5が常に規定の長さ突出する事が可能なように荷重をかけた場合でも、突出部5自身の変形量が極力少なくなるように寸法・材料を選定するとよい。このような観点から、加圧平板6の形状は一辺が10mm角以上の正方形であり、厚さ10mm以上の金属製であることが望ましい。 The protruding portion 5 of the pressurizing portion 10 sticks into the inside of the battery, thereby causing an internal short circuit of the battery. Therefore, it is desirable that the projecting portion 5 be made of a conductive material. Any material can be used for the pressurizing plate 6 as long as it can withstand the load sufficiently and the amount of deformation is as small as possible. Even in such a case, the dimensions and materials should be selected so that the amount of deformation of the projecting portion 5 itself is minimized. From this point of view, it is desirable that the pressure plate 6 is a square with a side of 10 mm or more and made of metal with a thickness of 10 mm or more.

加圧部10の突出部5の突出長さは、発生させたい内部短絡の短絡抵抗を想定して設定することが望ましく、例えばそれは、短絡が発生する層数によって長さを決める事が出来る。また、短絡抵抗を低くするために、加圧部10を複数設けたり、加圧平板6に複数の突出部5も設けたりするなども可能である。 The protruding length of the protruding portion 5 of the pressurizing portion 10 is desirably set by assuming the short circuit resistance of the internal short circuit to be generated. Further, in order to reduce the short-circuit resistance, it is possible to provide a plurality of pressure members 10 or to provide a plurality of projections 5 on the pressure plate 6 .

本実施形態では、所定の内部短絡状態を再現するように、加圧平板から所定の長さだけ突出した長さで固定された加圧部を用いて、セル表面を加圧する。そのため常に所定の内部短絡状態を再現でき、試験装置には位置制御のための高精度なコントロール機構も不要で、セル電圧の降下検出と加圧動作をリンクさせる必要もなく、実際に起こると想定される内部短絡状態を簡便にしかも再現性良く実現可能である。 In the present embodiment, the cell surface is pressurized using a pressurizing member that protrudes from the pressurizing plate by a predetermined length and is fixed so as to reproduce a predetermined internal short-circuit state. Therefore, a predetermined internal short circuit state can always be reproduced, and the test equipment does not require a highly accurate control mechanism for position control, and there is no need to link cell voltage drop detection and pressurization operation, assuming that it actually occurs. It is possible to easily realize the internal short-circuit state with good reproducibility.

なお本実施形態では積層型の電池について述べたが、本発明は捲回型の電池についても適用することができる。また本実施形態ではリチウムイオン電池を対象としたが、他の電池材料を用いた電池でも適用することができる。 In addition, although the laminated type battery is described in the present embodiment, the present invention can also be applied to a wound type battery. In addition, although the lithium-ion battery is targeted in this embodiment, batteries using other battery materials can also be applied.

以下本発明の実施例1を説明する。本実施例では、図3に示した内部短絡試験装置20を用いた。一例として、加圧部10の加圧平板6は一辺10mm、厚さ10mmの立方体であり、中心をロッド7に固定している。突出部5は加圧平板6の電池と対向する面の中央に固定し、先端角が30°で、突出部5の突出長さが1.0mmと0.6mmの二種類用意した。試験セル1は架台22上の加圧部10の真下に固定する。 EXAMPLE 1 Example 1 of the present invention will be described below. In this example, the internal short-circuit testing device 20 shown in FIG. 3 was used. As an example, the pressurizing plate 6 of the pressurizing unit 10 is a cube with a side of 10 mm and a thickness of 10 mm, and the center is fixed to the rod 7 . The protruding portion 5 was fixed to the center of the surface of the pressing plate 6 facing the battery, and had a tip angle of 30° and two types of protruding length of the protruding portion 5 of 1.0 mm and 0.6 mm. The test cell 1 is fixed directly below the pressurizing section 10 on the pedestal 22 .

ラミネート外装電池の電極積層体の積層方向に垂直な方向から加圧部10を垂直に、移動速度0.1mm/secで、最大荷重50Nで加圧した。 The pressure member 10 was pressed vertically from the direction perpendicular to the stacking direction of the electrode stacks of the laminate-sheathed battery at a moving speed of 0.1 mm/sec with a maximum load of 50N.

このような条件で試験した場合の電池の電圧と加圧部に係る荷重を測定した。電池の電圧が30mV以上低下した場合に、内部短絡が生じたと判断し試験を中止した。 The voltage of the battery and the load applied to the pressurized part were measured under these conditions. When the battery voltage dropped by 30 mV or more, it was determined that an internal short circuit had occurred, and the test was stopped.

また試験セル1を2種類準備した。試験セルAは通常の釘刺し試験にパスする安全性の高いセル仕様のものであり、試験セルBは通常の釘刺し試験にて発煙・発火となるセル仕様のものである。以下単にセルA、セルBと略す。なおセルAとセルBではセル構造は共通であり図1、図4で示した構造であるが、使われているセパレータが異なる。セルAは、アラミドなどの耐熱性の高いセパレータを用いており、セルBは通常の、耐熱性の低いPP(ポリプロピレン)などのセパレータを用いている。 Also, two types of test cells 1 were prepared. The test cell A has a high safety cell specification that passes a normal nail penetration test, and the test cell B has a cell specification that smokes and ignites in a normal nail penetration test. They are abbreviated as cell A and cell B hereinafter. Although the cells A and B have the same cell structure as shown in FIGS. 1 and 4, the separators used are different. Cell A uses a separator with high heat resistance such as aramid, and cell B uses a normal separator such as PP (polypropylene) with low heat resistance.

試験結果を表1に示す。
表1

Figure 0007148222000001
Table 1 shows the test results.
Table 1

Figure 0007148222000001

表1で、「結果」の欄の「○」は発煙無し・発火無し、「×」は発煙および発火が起こったことを意味する。突出長さ1mmだと、内部短絡した層数は2層であり、セルAは発煙も発火も無く、良好な結果となった。一方セルAより安全性の低いセルBでは2層の内部短絡が発生し、発煙および発火が起こった。それに対して突出長さ0.6mmでは、セルA,Bとも発煙も発火もなかった。つまり突出長さが短ければ、安全性の高いセルもそうでないセルもいずれも発煙も発火もないが、突出長さが長いと、安全性の高いセルは発煙と発火がないのに対し、安全性が高くないセルは発煙と発火が起こった。 In Table 1, "◯" in the "result" column means that there was no smoke or fire, and "x" means that smoke and fire occurred. When the protrusion length was 1 mm, the number of layers with an internal short circuit was two, and Cell A had neither smoke nor fire, and a good result was obtained. On the other hand, cell B, which is less safe than cell A, had an internal short circuit between two layers, causing smoke and fire. On the other hand, when the projection length was 0.6 mm, neither the cells A nor B emitted smoke or caught fire. In other words, if the protrusion length is short, neither the high-safety cell nor the non-safety cell emits smoke or fire. Smoke and fire occurred in cells that were not highly resistant.

この試験を、セルA,Bに対してそれぞれ十回程度繰り返したが、毎回同じ短絡層数であり、試験結果に再現性があった。 This test was repeated about ten times for cells A and B, and the number of short-circuit layers was the same each time, and the test results were reproducible.

以上説明したように本実施例の試験方法によれば、内部短絡を模擬した試験を簡便にしかも再現性良く行うことができる。 As described above, according to the test method of this embodiment, a test simulating an internal short circuit can be easily performed with good reproducibility.

1 試験セル
2 タブ
3 外装体
5 突出部
6 加圧平板
7 ロッド
10 加圧部
20 内部短絡試験装置
21 送り出し機構部
22 架台
23 脚部
24 機構支持部
41 正極板
42 負極板
43 セパレータ
44 延長部
REFERENCE SIGNS LIST 1 test cell 2 tab 3 exterior body 5 protruding portion 6 pressurizing plate 7 rod 10 pressurizing portion 20 internal short-circuit test device 21 delivery mechanism portion 22 base 23 leg portion 24 mechanism support portion 41 positive electrode plate 42 negative electrode plate 43 separator 44 extension portion

Claims (7)

セパレータを介して正極板と負極板が積層された積層物を備え、前記積層物が外装体に収納されている電池の内部短絡試験方法であって、
加圧平板と前記加圧平板から所定の内部短絡層数に対応する長さ突出して固定された突出部を備えた加圧部で前記電池を加圧して、前記電池に内部短絡を発生させ、前記加圧平板が前記電池の表面に達するところで前記加圧部の送り出しを停止することを特徴とする電池の内部短絡試験方法であって、
前記加圧平板が複数設けられている電池の内部短絡試験方法。
An internal short circuit test method for a battery comprising a laminate in which a positive electrode plate and a negative electrode plate are laminated with a separator interposed therebetween, the laminate being housed in an outer package,
generating an internal short circuit in the battery by pressurizing the battery with a pressurizing plate and a pressurizing unit provided with a protruding part fixed by protruding from the pressurizing plate by a length corresponding to a predetermined number of internal short-circuit layers ; A battery internal short circuit test method characterized in that the feeding of the pressure unit is stopped when the pressure plate reaches the surface of the battery,
An internal short-circuit test method for a battery provided with a plurality of the pressurizing plates.
前記突出部だけが前記電池に刺さるよう前記加圧平板は前記突出部に比べて十分大きい請求項1に記載の内部短絡試験方法。 2. The internal short-circuit testing method according to claim 1, wherein said pressure plate is sufficiently larger than said projection so that only said projection penetrates said battery. 前記加圧平板はロッドに接続され、前記加圧平板の形状は前記ロッドに対して回転対称である請求項1または2に記載の内部短絡試験方法。 3. The internal short-circuit testing method according to claim 1, wherein the pressure plate is connected to a rod, and the shape of the pressure plate is rotationally symmetrical with respect to the rod. 前記突出部が前記加圧平板に複数設けられている請求項1から3のいずれか一項に記載の内部短絡試験方法。 4. The internal short-circuit testing method according to claim 1, wherein a plurality of said protrusions are provided on said pressure flat plate. 試験対象の電池を載置する架台と、前記架台に設けた脚部と、前記脚部上に設けた機構支持部と、前記機構支持部に支持された送り出し機構と、前記送り出し機構に設けられ、
加圧平板と前記加圧平板上に所定の内部短絡層数に対応する長さ突出して固定され前記試験対象の電池を刺す突出部を備えた加圧部と、を備えたことを特徴とする内部短絡試験装置であって、
前記加圧平板が複数設けられ、前記送り出し機構は、前記加圧平板が前記電池の表面に達するところで前記加圧部の送り出しを停止する内部短絡試験装置。
a base on which a battery to be tested is mounted; legs provided on the base; a mechanism support provided on the legs; a delivery mechanism supported by the mechanism support; ,
A pressurizing plate, and a pressurizing part having a protruding part fixed on the pressurizing plate so as to protrude by a length corresponding to a predetermined number of internal short-circuit layers to pierce the battery to be tested. An internal short-circuit test device,
An internal short-circuit testing apparatus, wherein a plurality of said pressure plates are provided, and said delivery mechanism stops delivery of said pressure member when said pressure plates reach the surface of said battery .
前記加圧平板はロッドに接続され、前記加圧平板の形状は前記ロッドに対して回転対称である請求項5に記載の内部短絡試験装置。 6. The internal short-circuit testing apparatus according to claim 5, wherein said pressing plate is connected to a rod, and the shape of said pressing plate is rotationally symmetrical with respect to said rod. 前記突出部が前記加圧平板に複数設けられている請求項5または6に記載の内部短絡試験装置。 7. The internal short-circuit testing apparatus according to claim 5, wherein a plurality of said protrusions are provided on said pressing flat plate.
JP2017004436A 2017-01-13 2017-01-13 Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment Active JP7148222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017004436A JP7148222B2 (en) 2017-01-13 2017-01-13 Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017004436A JP7148222B2 (en) 2017-01-13 2017-01-13 Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment

Publications (2)

Publication Number Publication Date
JP2018113230A JP2018113230A (en) 2018-07-19
JP7148222B2 true JP7148222B2 (en) 2022-10-05

Family

ID=62911269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017004436A Active JP7148222B2 (en) 2017-01-13 2017-01-13 Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment

Country Status (1)

Country Link
JP (1) JP7148222B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6791104B2 (en) * 2017-11-29 2020-11-25 トヨタ自動車株式会社 Evaluation method of power storage device, manufacturing method of power storage device, and test system
JP7147684B2 (en) * 2019-05-20 2022-10-05 トヨタ自動車株式会社 Method for evaluating power storage device, metal piece, and method for manufacturing power storage device
CN111600058A (en) * 2020-06-03 2020-08-28 东莞市爱康电子科技有限公司 Battery processing detection device
JP7453203B2 (en) 2021-11-09 2024-03-19 トヨタ自動車株式会社 Evaluation method of power storage device and manufacturing method of power storage device
KR20230082260A (en) * 2021-12-01 2023-06-08 주식회사 엘지에너지솔루션 Device and method for causing a short circuit inside the battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327616A (en) 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd Battery evaluation apparatus
JP2012215537A (en) 2011-03-25 2012-11-08 Sharp Corp Safety evaluation test method, safety evaluation test device, and destructive measuring instrument with thermocouple
JP2015159017A (en) 2014-02-24 2015-09-03 エスペック株式会社 Battery testing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223329B2 (en) * 2007-12-26 2013-06-26 Tdk株式会社 Electrochemical element evaluation method and electrochemical element evaluation apparatus
JP5060623B2 (en) * 2009-01-19 2012-10-31 パナソニック株式会社 Battery internal short circuit evaluation device
JP2015158442A (en) * 2014-02-25 2015-09-03 エスペック株式会社 Battery testing apparatus
JP2018085245A (en) * 2016-11-24 2018-05-31 技術研究組合リチウムイオン電池材料評価研究センター Short circuit test device for battery and short circuit test method for battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327616A (en) 2004-05-14 2005-11-24 Matsushita Electric Ind Co Ltd Battery evaluation apparatus
JP2012215537A (en) 2011-03-25 2012-11-08 Sharp Corp Safety evaluation test method, safety evaluation test device, and destructive measuring instrument with thermocouple
JP2015159017A (en) 2014-02-24 2015-09-03 エスペック株式会社 Battery testing device

Also Published As

Publication number Publication date
JP2018113230A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP7148222B2 (en) Battery Internal Short Circuit Test Method and Internal Short Circuit Test Equipment
JP6900716B2 (en) Battery internal short circuit test method and internal short circuit test equipment
US8444717B2 (en) Method for evaluating battery safety under internal short-circuit condition, battery and battery pack whose safety is identified by internal short-circuit safety evaluation method, and method for producing the same
JP5060623B2 (en) Battery internal short circuit evaluation device
US10665843B2 (en) Separator-integrated electrode plate and capacitor element
US8163409B2 (en) Evaluation method for safety upon battery internal short circuit, evaluation device for safety upon battery internal short circuit, battery, battery pack, and manufacturing method for battery and battery pack
DE102018121027B4 (en) METHOD AND DEVICE FOR EVALUATING A BATTERY CELL
CN100524895C (en) Secondary battery employing battery case of high strength
KR102401805B1 (en) Method of evaluating power storage device, method of manufacturing power storage device, and test system
US20150260797A1 (en) Insulation failure inspecting apparatus, insulation failure inspecting method using same, and method for manufacturing electrochemical cell
US9917337B2 (en) Inspection method for film covered battery
JP2018085245A (en) Short circuit test device for battery and short circuit test method for battery
JP6631792B2 (en) Secondary battery short-circuit evaluation method
KR20080073661A (en) Method for evaluating battery safety under internal short-circuit condition, battery, battery pack, method for producing battery, and method for producing battery pack
JP2009054300A (en) Internal short circuit evaluation method of battery
JP2019109975A (en) Internal short-circuit test method for battery and internal short-circuit test device
JP7062891B2 (en) Battery internal short circuit test method and internal short circuit test equipment
US20090317702A1 (en) Stacked-Type Lithium Ion Battery
JP2017117628A (en) Battery and internal short circuit safety evaluation method
JP6334290B2 (en) Secondary battery inspection method
JP6230170B2 (en) Storage device safety evaluation test method and safety evaluation test apparatus
US20230420752A1 (en) Method for generating smoke in cell pack
EP4243193A1 (en) Device and method for inducing internal short circuit in battery
KR20220040198A (en) Inspecting apparatus and method for secondary battery
JP2020191181A (en) Evaluation method of power storage device, metal piece, jig set, and manufacturing method of power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210609

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210616

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210622

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210730

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210810

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211021

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211025

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220322

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220531

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220802

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220830

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R151 Written notification of patent or utility model registration

Ref document number: 7148222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151