JP4862528B2 - Electrochemical element - Google Patents
Electrochemical element Download PDFInfo
- Publication number
- JP4862528B2 JP4862528B2 JP2006196362A JP2006196362A JP4862528B2 JP 4862528 B2 JP4862528 B2 JP 4862528B2 JP 2006196362 A JP2006196362 A JP 2006196362A JP 2006196362 A JP2006196362 A JP 2006196362A JP 4862528 B2 JP4862528 B2 JP 4862528B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating plate
- end surface
- electrochemical element
- plate
- sealing plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003365 glass fiber Substances 0.000 claims description 75
- 238000007789 sealing Methods 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 31
- 239000000835 fiber Substances 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 22
- 229920005989 resin Polymers 0.000 claims description 22
- 229920001187 thermosetting polymer Polymers 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 16
- 239000004917 carbon fiber Substances 0.000 claims description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 15
- 239000007789 gas Substances 0.000 description 44
- 238000004080 punching Methods 0.000 description 18
- 238000009413 insulation Methods 0.000 description 12
- 239000011255 nonaqueous electrolyte Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000005011 phenolic resin Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000011149 active material Substances 0.000 description 6
- 230000032798 delamination Effects 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000012790 confirmation Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 229910052729 chemical element Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 241001391944 Commicarpus scandens Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910013562 LiCo0.2Ni0.8O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Gas Exhaust Devices For Batteries (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
本発明は密閉型の電気化学素子に関し、特に高エネルギー密度の電気化学素子用の絶縁板に関する。 The present invention relates to a sealed electrochemical device, and more particularly to an insulating plate for a high energy density electrochemical device.
電気化学素子、特に、充放電ができ高エネルギー密度の非水電解質二次電池は、さらなる高エネルギー密度化を目指し、新規な高容量活物質の開発が進められている。具体的には、正極活物質は、リチウムコバルト酸化物からリチウムニッケル酸化物へ、負極活物質は、黒鉛からケイ素やスズなどを含む合金材料へと、開発が進みつつある。 Development of new high-capacity active materials for electrochemical devices, particularly non-aqueous electrolyte secondary batteries with high energy density that can be charged and discharged, is being promoted with the aim of further increasing energy density. Specifically, the positive electrode active material is being developed from lithium cobalt oxide to lithium nickel oxide, and the negative electrode active material is being developed from graphite to an alloy material containing silicon, tin, and the like.
これら活物質を用いた非水電解質二次電池は、通常は、正極と負極とをセパレータを介して積層した電極群をケースに収納し、ケースの開口部を封口板で封口した密閉構造をしている。また、端子機能を有する封口板とケースに、電極群から導出された正負極リードを接続することにより、封口板とケースは正負極のどちらかの端子を兼ねている。このような密閉構造にした場合、次に説明する2つの機構を設ける必要がある。1つ目の機構は、非水電解質二次電池が異常使用され、例えば、異常高温で保存した時に発生するガスをケースの外部へ排出する機能として、ケース内の内圧が所定圧に達した時に作動する排気弁を封口板に内蔵している。2つ目の機構は、電極群と封口板との間に絶縁板を設け、電極群と封口板とが接触しないようにしている。この絶縁板は、ポリエチレン樹脂やポリプロピレン樹脂などのポリオレフィン樹脂からできていたり、骨格材となるガラス繊維と無機添加剤を含ませたフェノール樹脂などの熱硬化性樹脂材料とを積層させた絶縁板が提案されている(例えば、特許文献1参照)。 Non-aqueous electrolyte secondary batteries using these active materials usually have a sealed structure in which an electrode group in which a positive electrode and a negative electrode are stacked via a separator is housed in a case, and the opening of the case is sealed with a sealing plate. ing. Further, by connecting positive and negative leads led from the electrode group to a sealing plate and a case having a terminal function, the sealing plate and the case serve as either positive or negative terminals. When such a sealed structure is used, it is necessary to provide two mechanisms described below. The first mechanism is that when the non-aqueous electrolyte secondary battery is abnormally used, for example, when the internal pressure in the case reaches a predetermined pressure as a function of discharging the gas generated when stored at an abnormally high temperature to the outside of the case. An operating exhaust valve is built in the sealing plate. In the second mechanism, an insulating plate is provided between the electrode group and the sealing plate so that the electrode group and the sealing plate do not come into contact with each other. This insulating plate is made of a polyolefin resin such as polyethylene resin or polypropylene resin, or an insulating plate in which a glass fiber as a skeleton material and a thermosetting resin material such as a phenol resin containing an inorganic additive are laminated. It has been proposed (see, for example, Patent Document 1).
また、異常発生したガスによって電極群が変形し、封口板が有している排気弁までのガスの流路が制約されるのを防ぐため、前記絶縁板は群の変形を抑制し、500℃において、1kgf/mm2以上の内部圧力に耐える耐圧を有する絶縁板が提案されている(例えば、特許文献2参照)。
電気化学素子内で急激に内圧が上昇した場合、内圧によって電極群が封口板側に押し上げられ、電極群と封口板との間に設けた絶縁板が電極群と共に変形し、封口板に内蔵された排気弁を変形させ、排気弁がうまく動作せず、ガスの排出効率が低下することとなる。そのため、電気化学素子内で発生したガスを効率的に封口板に誘導するために、絶縁板は少なくとも開孔を1つ有している必要がある。 When the internal pressure suddenly increases in the electrochemical device, the electrode group is pushed up to the sealing plate side by the internal pressure, and the insulating plate provided between the electrode group and the sealing plate is deformed together with the electrode group and is built in the sealing plate. If the exhaust valve is deformed, the exhaust valve does not operate well, and the gas discharge efficiency decreases. Therefore, in order to efficiently guide the gas generated in the electrochemical element to the sealing plate, the insulating plate needs to have at least one aperture.
また、絶縁板は、ポリエチレン樹脂やポリプロピレン樹脂などのポリオレフィン樹脂からできていたり、骨格材となるガラスクロスと無機添加剤を含ませたフェノール樹脂などの熱硬化性樹脂材料とを積層させてため、射出成型、モールド成型や切削加工によって製造することができる。しかし、ガラスクロスと熱硬化性樹脂とを積層構造にする場合は、生産コストを安くする観点から、打ち抜き加工で製造することが好ましい。 In addition, the insulating plate is made of a polyolefin resin such as polyethylene resin or polypropylene resin, or a glass cloth serving as a skeleton material and a thermosetting resin material such as a phenol resin containing an inorganic additive are laminated, It can be manufactured by injection molding, molding or cutting. However, when the glass cloth and the thermosetting resin are formed in a laminated structure, it is preferable that the glass cloth and the thermosetting resin are manufactured by punching from the viewpoint of reducing the production cost.
ところで、電気化学素子内で急激な温度の上昇に伴って、内圧が上昇した場合、電極群と封口板との間に設けられた絶縁板(例えば、特許文献1のような)が、高熱とガス圧力で変形し、封口板の排気弁から電気化学素子外部へ排出するためのガス流路を遮断してし
まう。それを防ぐために、絶縁板の開孔面積を大きくする必要がある。
By the way, when an internal pressure rises with a rapid rise in temperature in an electrochemical element, an insulating plate (for example, as in Patent Document 1) provided between an electrode group and a sealing plate has high heat. It is deformed by the gas pressure and shuts off the gas flow path for discharging from the exhaust valve of the sealing plate to the outside of the electrochemical element. In order to prevent this, it is necessary to increase the opening area of the insulating plate.
高容量活物質を使用したエネルギー密度が高い電気化学素子は、異常使用時に発生するガス量やガス流速が著しい。ガス量やガス流速に耐えうるために絶縁板の排気効率を向上させるために開孔面積を大きくして、ガスの排気経路を確保する必要がある。その反面、開孔面積を大きくすると、外形の端面と開孔の端面との間が狭くなる可能性がある。 An electrochemical element using a high-capacity active material and having a high energy density has a remarkable gas amount and gas flow rate generated during abnormal use. In order to withstand the amount of gas and the gas flow rate, it is necessary to increase the aperture area and secure the gas exhaust path in order to improve the exhaust efficiency of the insulating plate. On the other hand, if the aperture area is increased, there is a possibility that the space between the end face of the outer shape and the end face of the aperture becomes narrow.
絶縁板の開孔面積を大きくしてガスの排気経路を確保するために、外形の端面と開孔の端面との間が狭くした場合、打ち抜き加工時の剪断応力により絶縁板が受けるダメージは、外形の端面と開孔の端面との間が広い絶縁板に比べて、大きくなる。その結果、絶縁板を打ち抜き加工で作った場合、割れ易くなり生産性が下がることになる。さらに、同じ形状の絶縁板を、切削加工、射出成型、もしくはモールド成型で製造した場合に比べ、打ち抜き加工で製造した場合の方が、打ち抜き加工時の剪断応力により絶縁板は、例えば、特許文献1のような絶縁板は、骨格材としてのガラス繊維が破断したり、ガラス繊維とフェノール樹脂の積層部の層間が剥離したりする。そのため、強度確保のための骨格材がその役目を果たさなくなり、絶縁板の強度は大幅に低下することとなる。このように新たな課題を有している。 If the gap between the end face of the outer shape and the end face of the hole is narrowed in order to increase the opening area of the insulating plate and secure the gas exhaust path, the damage to the insulating plate due to the shear stress during punching is The gap between the end face of the outer shape and the end face of the opening is larger than that of the wide insulating plate. As a result, when the insulating plate is made by punching, it is easy to break and the productivity is lowered. Furthermore, compared to the case where an insulating plate having the same shape is manufactured by cutting, injection molding, or molding, the insulating plate is manufactured by punching due to the shear stress at the time of punching. In the insulating plate 1, the glass fiber as the skeleton material is broken, or the interlayer between the laminated portions of the glass fiber and the phenol resin is peeled off. Therefore, the skeleton material for ensuring the strength does not play its role, and the strength of the insulating plate is greatly reduced. Thus, it has a new problem.
本発明は上記課題を鑑みてなされたものであり、高エネルギー密度の電気化学素子を異常に使用した場合においても、電気化学素子内部のガス流路を遮断することなく、電気化学素子外部に効率的にガス排気ができる電気化学素子を提供することを目的とする。 The present invention has been made in view of the above problems, and even when a high energy density electrochemical element is abnormally used, it is efficient to the outside of the electrochemical element without blocking the gas flow path inside the electrochemical element. An object of the present invention is to provide an electrochemical device that can exhaust gas.
本発明の電気化学素子は、正極と負極とをセパレータを介して積層した電極群を、開口部を有するケースに収納し、前記開口部を封口板で封口した電気化学素子であって、
前記封口板は、前記電気化学素子の内圧が所定の圧力に達した時に、前記電気化学素子内の圧力を前記電気化学素子の外部へ逃がす機能を有する排気弁を有しており、
前記電極群と前記封口板の間に絶縁板を有し、
前記絶縁板は、熱硬化性樹脂からなり、骨格材としてガラス繊維を含んでおり、少なくとも開孔を1つ有しており、
前記ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
The electrochemical element of the present invention is an electrochemical element in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is housed in a case having an opening, and the opening is sealed with a sealing plate,
The sealing plate has an exhaust valve having a function of releasing the pressure in the electrochemical element to the outside of the electrochemical element when the internal pressure of the electrochemical element reaches a predetermined pressure.
Having an insulating plate between the electrode group and the sealing plate;
The insulating plate is made of a thermosetting resin, includes glass fiber as a skeleton material, and has at least one hole.
The glass fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through without any problem.
別の発明の電気化学素子の絶縁板は、熱硬化性樹脂からなり、骨格材として金属繊維を含んでおり、少なくとも開孔を1つ有しており、
前記金属繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
The insulating plate of the electrochemical element of another invention is made of a thermosetting resin, includes a metal fiber as a skeleton material, and has at least one hole.
The metal fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through without any problem.
別の発明の電気化学素子の絶縁板は、熱硬化性樹脂からなり、骨格材として炭素繊維を含んでおり、少なくとも開孔を1つ有しており、
前記炭素繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
The insulating plate of the electrochemical element of another invention is made of a thermosetting resin, includes carbon fiber as a skeleton material, and has at least one hole.
The carbon fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through without any problem.
別の発明の電気化学素子の絶縁板は、熱硬化性樹脂からなり、骨格材としてガラス繊維、金属繊維、および炭素繊維の内少なくとも1種類を含んでおり、かつ少なくとも開孔を1つ有しており、
前記繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距
離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
An insulating plate of an electrochemical element according to another invention is made of a thermosetting resin, includes at least one of glass fiber, metal fiber, and carbon fiber as a skeleton material, and has at least one aperture. And
The fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through.
本発明によれば、高エネルギー密度の電気化学素子を異常に使用した場合においても、電気化学素子内部のガス流路を遮断することなく、電気化学素子内部のガス流路を遮断することなく、電気化学素子外部に効率的にガス排気できる電気化学素子を提供することができる。 According to the present invention, even when a high energy density electrochemical element is abnormally used, without blocking the gas flow path inside the electrochemical element, without blocking the gas flow path inside the electrochemical element, An electrochemical element capable of efficiently exhausting gas to the outside of the electrochemical element can be provided.
第1の発明は、正極と負極とをセパレータを介して積層した電極群を、開口部を有するケースに収納し、前記開口部を封口板で封口した電気化学素子であって、
前記封口板は、前記電気化学素子の内圧が所定の圧力に達した時に、前記電気化学素子内の圧力を前記電気化学素子の外部へ逃がす機能を有する排気弁を有しており、
前記電極群と前記封口板の間に絶縁板を有し、
前記絶縁板は、熱硬化性樹脂からなり、骨格材としてガラス繊維を含んでおり、少なくとも開孔を1つ有しており、
前記ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
The first invention is an electrochemical device in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is housed in a case having an opening, and the opening is sealed with a sealing plate,
The sealing plate has an exhaust valve having a function of releasing the pressure in the electrochemical element to the outside of the electrochemical element when the internal pressure of the electrochemical element reaches a predetermined pressure.
Having an insulating plate between the electrode group and the sealing plate;
The insulating plate is made of a thermosetting resin, includes glass fiber as a skeleton material, and has at least one hole.
The glass fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through without any problem.
絶縁板の製造工程として、絶縁板の元となるガラス繊維と熱硬化性樹脂からなる板を用い、異常使用時に発生するガスが通り抜ける経路となる開孔を打ち抜く工程と、絶縁板を所定の外形形状に打ち抜く工程からなっている。このような工程にすることは、生産性や品質保持の観点から望ましい。その理由は、例えば、所定の外形に打ち抜いてから開孔部を打ち抜こうとした場合、開孔部の位置を精密に決めて打ち抜くためには金型構造が複雑となり、生産性が低下するためである。絶縁板の開孔部を打ち抜いた後に、所定の外形形状に打ち抜く方法は、所定の外径形状に打ち抜いた時点で絶縁板の最終形状となる。そのため、生産性の観点から、所定の外径形状に打ち抜くと同時に、打ち抜き後、絶縁板を金型から下方へ落とすことが望ましい。打ち抜き加工される時に、ガラス繊維を積層した絶縁板の元となる材料は、材料押さえと下型に挟まれた状態で、上型から剪断応力を受ける。上型から押されたその製品は、上型の下方から支えられることがないため、引きちぎられるように変形する。このため、製品の金型近傍の材料は、積層部の層間を境にして剥れる可能性がある。 As a manufacturing process of an insulating plate, a plate made of glass fiber and a thermosetting resin as a base of the insulating plate is used, a step of punching a hole through which a gas generated during abnormal use passes, and an insulating plate having a predetermined outer shape It consists of a process of punching into a shape. Such a process is desirable from the viewpoint of productivity and quality maintenance. The reason is that, for example, when the hole is to be punched after being punched into a predetermined outer shape, the die structure becomes complicated and the productivity is lowered in order to precisely determine the position of the hole and punch the hole. Because. The method of punching into the predetermined outer shape after punching out the opening portion of the insulating plate is the final shape of the insulating plate at the time of punching into the predetermined outer diameter. For this reason, from the viewpoint of productivity, it is desirable that the insulating plate is dropped downward from the mold after being punched into a predetermined outer diameter shape. When the punching process is performed, the material that is the base of the insulating plate on which the glass fibers are laminated is subjected to shear stress from the upper die while being sandwiched between the material presser and the lower die. Since the product pushed from the upper die is not supported from below the upper die, it is deformed so as to be torn off. For this reason, the material in the vicinity of the mold of the product may be peeled off between the layers of the laminated portion.
ガスの排気効率を向上させるために開孔面積を広げた場合、外形の端面と開孔部の端面との間が狭くなり、打ち抜き加工時の剪断応力により、ガラス繊維と熱硬化性樹脂の積層部に層間剥離が生じたり、ガラス繊維が寸断したりする。そのため、絶縁板は強度の面でダメージを受け易くなる。ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あるようにすると、打ち抜き加工時、剪断応力によるダメージを受け難くなるため、金型近傍の絶縁板は、積層部の層間で剥れ難くなる。 When the hole area is widened to improve the gas exhaust efficiency, the gap between the end face of the outer shape and the end face of the hole becomes narrow, and the shearing stress during punching process causes lamination of glass fiber and thermosetting resin. Delamination occurs in the part, or the glass fiber is broken. Therefore, the insulating plate is easily damaged in terms of strength. The glass fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. If there is at least one passing portion, it is difficult to receive damage due to shear stress during the punching process, so that the insulating plate in the vicinity of the mold is hardly peeled between the layers of the laminated portion.
60%よりも大きい位置にガラス繊維があると、ガラス繊維長が短くなるため、長さ当たりに受ける剪断応力が大きくなり、ガラス繊維がダメージを受けやすくなる。したがって、60%以内にガラス繊維を配置することで、絶縁板の機械的強度を保ち、ガス流路の確保ができるようになる。 If the glass fiber is present at a position larger than 60%, the glass fiber length is shortened, so that the shear stress applied per length is increased, and the glass fiber is easily damaged. Therefore, by arranging the glass fiber within 60%, the mechanical strength of the insulating plate can be maintained and the gas flow path can be secured.
ガラス繊維径は4〜20μmが、強度、配合性、および価格などの観点から好ましい。
ガラス繊維径が4μmより小さい場合、絶縁板打ち抜き加工時に剪断応力により寸断する可能性があり、強度の観点から好ましくない。ガラス繊維径が20μmより大きい場合、ガラス繊維の密度が上がらず、強度を上げにくいため好ましくない。次に、ガラス繊維とフェノール樹脂とを積層した板(以下、ガラスフェノール積層板と略す)の製造方法について簡単に述べる。まず、ガラス繊維にフェノール樹脂を含浸したプリプレグを作製し、このプリプレグをガラス繊維の方向が45°〜135°になるように所定の枚数を交互に積層し、加熱加圧して作製する。民生向け駆動電源用途の電気化学素子の場合は、電池の有効体積確保のため2〜5枚を交互に積層し、積層板の厚みを0.1〜1.0mmにすれば良い。高エネルギー密度の正極活物質を使った電気化学素子の場合、例えば、直径18mm、高さ65mm、いわゆる18650サイズの場合、厚み0.2〜0.8mmが好ましい。自動車用の駆動電源やエレベータ等の住宅設備などの駆動用電源用途の電解化学素子の場合は、電気化学素子のサイズの大きさに応じて適宜交互に積層すると良い。このように、ガラス繊維の方向が45°〜135°になるように交互に積層することによって、ガラス繊維の方向を同じ向きにそろえて重ねるより強度のある積層板が得られる。また、積層枚数が3枚以上の奇数枚の場合、ガラス繊維の方向を45°で交互に積層するのが強度の観点から好ましい。積層枚数が2枚の場合はガラス繊維の方向を90°にして積層するのが強度の観点から好ましい。積層枚数が4枚以上の偶数枚の場合、ガラス繊維の方向を45°に交互に積層するのが強度の観点から好ましい。また、製造のし易さの観点からはガラス繊維の方向を90°で交互に積層するのが好ましい。以上のことから、絶縁板を強度もしくは製造のし易さのどちらを選択するから、電気化学素子に求められる性能により決定すると良い。
The glass fiber diameter is preferably 4 to 20 μm from the viewpoint of strength, compoundability, price, and the like.
When the glass fiber diameter is smaller than 4 μm, there is a possibility of breaking by shearing stress at the time of punching the insulating plate, which is not preferable from the viewpoint of strength. When the glass fiber diameter is larger than 20 μm, the density of the glass fiber does not increase and it is difficult to increase the strength. Next, a method for producing a plate in which glass fibers and a phenol resin are laminated (hereinafter abbreviated as a glass phenol laminated plate) will be briefly described. First, a prepreg in which a glass fiber is impregnated with a phenol resin is produced, and a predetermined number of the prepregs are alternately laminated so that the direction of the glass fiber is 45 ° to 135 °, followed by heating and pressing. In the case of an electrochemical element for consumer driving power supply, 2 to 5 sheets may be laminated alternately to ensure the effective volume of the battery, and the thickness of the laminated sheet may be 0.1 to 1.0 mm. In the case of an electrochemical element using a positive energy active material having a high energy density, for example, in the case of a so-called 18650 size having a diameter of 18 mm and a height of 65 mm, a thickness of 0.2 to 0.8 mm is preferable. In the case of an electrolytic chemical element for use in a driving power source such as a driving power source for an automobile or a housing facility such as an elevator, it is preferable to stack them alternately in accordance with the size of the electrochemical element. In this way, by alternately laminating the glass fibers so that the direction of the glass fibers is 45 ° to 135 °, a stronger laminate can be obtained in which the directions of the glass fibers are aligned in the same direction. Further, when the number of laminated sheets is an odd number of 3 or more, it is preferable from the viewpoint of strength to alternately laminate the glass fiber directions at 45 °. When the number of layers is two, it is preferable from the viewpoint of strength to laminate the glass fibers at 90 °. When the number of laminated layers is an even number of 4 or more, it is preferable from the viewpoint of strength to alternately laminate the glass fiber directions at 45 °. Moreover, it is preferable to laminate | stack alternately the direction of glass fiber at 90 degrees from a viewpoint of the ease of manufacture. From the above, since either the strength or the ease of manufacture of the insulating plate is selected, it is preferable to determine it according to the performance required for the electrochemical element.
ガラス繊維は大別して短繊維と長繊維がある。ガラス繊維は主にガラスウールなどとして断熱材など建築材料に使用されることが多い。一方、長繊維は糸状で繊維長が長く、工業材料などとして使用されることが多い。絶縁板の骨格材としてガラス繊維を使用する場合は、糸状の長繊維を使用することが好ましい。 Glass fibers are roughly classified into short fibers and long fibers. Glass fibers are often used for building materials such as heat insulating materials mainly as glass wool. On the other hand, long fibers are thread-like and have a long fiber length, and are often used as industrial materials. When glass fibers are used as the skeleton material of the insulating plate, it is preferable to use thread-like long fibers.
ガラス繊維の材質としては、ソーダガラス、鉛ガラス、硼珪酸ガラスなどが挙げられるが、コストの観点からソーダガラスが好ましい。 Examples of the glass fiber material include soda glass, lead glass, borosilicate glass, and the like, but from the viewpoint of cost, soda glass is preferable.
第2の発明の絶縁板は、熱硬化性樹脂からなり、骨格材として金属繊維を含んでおり、少なくとも開孔を1つ有しており、
前記金属繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
The insulating plate of the second invention is made of a thermosetting resin, includes a metal fiber as a skeleton material, and has at least one opening,
The metal fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through without any problem.
第3の発明の絶縁板は、熱硬化性樹脂からなり、骨格材として炭素繊維を含んでおり、少なくとも開孔を1つ有しており、
前記炭素繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
The insulating plate of the third invention is made of a thermosetting resin, includes carbon fiber as a skeleton material, and has at least one hole.
The carbon fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through without any problem.
第4の発明の絶縁板は、熱硬化性樹脂からなり、骨格材としてガラス繊維、金属繊維、および炭素繊維の内少なくとも1種類を含んでおり、かつ少なくとも開孔を1つ有しており、
前記繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所あることを特徴とする。
The insulating plate of the fourth invention is made of a thermosetting resin, includes at least one of glass fiber, metal fiber, and carbon fiber as a skeleton material, and has at least one aperture.
The fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. It is characterized in that there is at least one place that passes through.
骨格材を金属繊維や炭素繊維にする場合、繊維径、プリプレグを繊維方向が45°〜1
35°になるように所定の枚数を交互に積層することについても同様である。民生向け駆動電源用途の電気化学素子の場合は、電池の有効体積確保のため2〜5枚を交互に積層し、積層板の厚みを0.1〜1.0mmにすれば良い。高エネルギー密度の正極活物質を使った電気化学素子の場合、例えば、直径18mm、高さ65mm、いわゆる18650サイズの場合、厚み0.2〜0.8mmが好ましい。自動車用の駆動電源やエレベータ等の住宅設備などの駆動用電源用途の電解化学素子の場合は、電気化学素子のサイズの大きさに応じて適宜交互に積層すると良い。
When the skeletal material is made of metal fiber or carbon fiber, the fiber diameter and prepreg have a fiber direction of 45 ° to 1 °.
The same applies to the case where a predetermined number of sheets are alternately laminated so as to be 35 °. In the case of an electrochemical element for consumer driving power supply, 2 to 5 sheets may be laminated alternately to ensure the effective volume of the battery, and the thickness of the laminated sheet may be 0.1 to 1.0 mm. In the case of an electrochemical element using a positive energy active material having a high energy density, for example, in the case of a so-called 18650 size having a diameter of 18 mm and a height of 65 mm, a thickness of 0.2 to 0.8 mm is preferable. In the case of an electrolytic chemical element for use in a driving power source such as a driving power source for an automobile or a housing facility such as an elevator, it is preferable to stack them alternately in accordance with the size of the electrochemical element.
また、積層枚数が3枚以上の奇数枚の場合、ガラス繊維の方向を45°で交互に積層するのが強度の観点から好ましい。積層枚数が2枚の場合はガラス繊維の方向を90°にして積層するのが強度の観点から好ましい。積層枚数が4枚以上の偶数枚の場合、ガラス繊維の方向を45°に交互に積層するのが強度の観点から好ましい。また、製造のし易さの観点からはガラス繊維の方向を90°で交互に積層するのが好ましい。以上のことから、絶縁板を強度もしくは製造のし易さのどちらを選択するから、電気化学素子に求められる性能により決定すると良い。 Further, when the number of laminated sheets is an odd number of 3 or more, it is preferable from the viewpoint of strength to alternately laminate the glass fiber directions at 45 °. When the number of layers is two, it is preferable from the viewpoint of strength to laminate the glass fibers at 90 °. When the number of laminated layers is an even number of 4 or more, it is preferable from the viewpoint of strength to alternately laminate the glass fiber directions at 45 °. Moreover, it is preferable to laminate | stack alternately the direction of glass fiber at 90 degrees from a viewpoint of the ease of manufacture. From the above, since either the strength or the ease of manufacture of the insulating plate is selected, it is preferable to determine it according to the performance required for the electrochemical element.
金属繊維や炭素繊維はガラス繊維に比べて、強度の観点では良好である。また、打ち抜き加工時に金属繊維、炭素繊維、およびガラス繊維の切断断面が露出する。そのため、電気導電性のある金属繊維や炭素繊維の場合は、電気化学素子を構成するケースやリードのような金属部品と接触すると短絡する可能性がある。このことを詳述すると、絶縁板の外周の端面が電気化学素子の外部端子を兼ねるケースと接触し、かつ電極群から引き出されたリードが外部端子を兼ねるケースと反対の極であり、絶縁板の開孔部にリードを通す場合、絶縁板の開孔部の端面がリードと接触することとなる。このようなことから、絶縁板の外周の端面か絶縁板の開孔部の端面の内、少なくとも一方を絶縁処理する必要がある。絶縁処理の方法としては、絶縁板の外周および開孔部の端面を樹脂で覆い絶縁化するのが好ましい。 Metal fibers and carbon fibers are better in terms of strength than glass fibers. Moreover, the cut cross section of a metal fiber, carbon fiber, and glass fiber is exposed at the time of stamping. Therefore, in the case of an electrically conductive metal fiber or carbon fiber, there is a possibility of short-circuiting when it comes into contact with a metal part such as a case or a lead constituting the electrochemical element. In detail, the outer peripheral end face of the insulating plate is in contact with the case that also serves as the external terminal of the electrochemical element, and the lead drawn from the electrode group is the opposite pole to the case that also serves as the external terminal. When the lead is passed through the opening, the end surface of the opening of the insulating plate comes into contact with the lead. For this reason, it is necessary to insulate at least one of the end surface of the outer periphery of the insulating plate or the end surface of the opening portion of the insulating plate. As a method for the insulation treatment, it is preferable to insulate by covering the outer periphery of the insulating plate and the end face of the opening with a resin.
骨格材として、ガラス繊維、金属繊維、および炭素繊維を挙げたが、絶縁性の観点からガラス繊維を単独で用いるのが好ましい。 Although glass fiber, metal fiber, and carbon fiber are mentioned as the skeleton material, it is preferable to use glass fiber alone from the viewpoint of insulation.
以下に非水電解質二次電池としての実施例を示すが、本発明の電気化学素子はこの実施例に限られるものではない。 Examples of the nonaqueous electrolyte secondary battery are shown below, but the electrochemical device of the present invention is not limited to these examples.
以下に負極、正極、電極群、絶縁板、および非水電解質二次電池の作製方法について詳細に述べる。絶縁板は、その骨格材としてガラス繊維を単独で用い、ガラス繊維方向が90°で積層枚数を3枚にした場合について述べる。 A method for manufacturing the negative electrode, the positive electrode, the electrode group, the insulating plate, and the nonaqueous electrolyte secondary battery will be described in detail below. The insulating plate will be described in the case where glass fiber is used alone as the skeleton material, the glass fiber direction is 90 °, and the number of laminated sheets is three.
(負極)
負極活物質として塊状人造黒鉛(日立化成(株)製、商品名:MAG−D)96重量部と、結着剤としてスチレンブタジエンゴム(以下、SBRと略す)を水に分散させたディスパージョン溶液を固形分比で3重量部と、増粘剤としてカルボキシメチルセルロース(以下、CMCと略す)(第一工業製薬(株)製)1重量部と、適量の水とを混合し、負極合剤用ペーストを調製した。このペーストを、銅(以下、Cuと略す)箔からなる集電体(厚さ10μm)の両面に塗布し、乾燥後に厚みが170μmになるまで圧延して、幅58mm、長さ600mmの寸法に切断し負極を得た。
(Negative electrode)
Dispersion solution in which 96 parts by weight of bulk artificial graphite (manufactured by Hitachi Chemical Co., Ltd., trade name: MAG-D) as a negative electrode active material and styrene butadiene rubber (hereinafter abbreviated as SBR) as a binder are dispersed in water. 3 parts by weight of a solid content ratio, 1 part by weight of carboxymethyl cellulose (hereinafter abbreviated as CMC) (made by Daiichi Kogyo Seiyaku Co., Ltd.) as a thickener, and an appropriate amount of water are mixed together for a negative electrode mixture A paste was prepared. This paste is applied to both sides of a current collector (
(正極)
正極活物質としてコバルト酸リチウム(以下、LiCoO2と略す)粉末93重量部と、導電剤としてアセチレンブラック(以下、ABと略す)4重量部とを混合した。得られ
た粉末に、結着剤としてポリフッ化ビニリデン(以下、PVDFと略す)のN−メチル−2−ピロリドン(以下、NMPと略す)溶液(呉羽化学工業(株)製、商品品番:#1320)を固形分比で3重量部となるように混合した。得られた混合物に適量のNMPを加えて、正極合剤用ペーストを調製した。このペーストを、アルミニウム(以下、ALと略す)箔からなる集電体(厚さ15μm)の両面に塗布し、乾燥後に、厚み180μmになるまで圧延し、さらに85℃下で十分に乾燥させ、幅57mm、長さ550mmの寸法に切断し正極Aを得た。
(Positive electrode)
93 parts by weight of lithium cobaltate (hereinafter abbreviated as LiCoO 2 ) powder as a positive electrode active material and 4 parts by weight of acetylene black (hereinafter abbreviated as AB) as a conductive agent were mixed. To the obtained powder, an N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) solution of polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder (manufactured by Kureha Chemical Industry Co., Ltd., product number: # 1320). ) Was mixed to a solid content ratio of 3 parts by weight. An appropriate amount of NMP was added to the obtained mixture to prepare a positive electrode mixture paste. This paste was applied to both sides of a current collector (
また、活物質としてLiCo0.2Ni0.8O2を用い、AL箔に対する塗布量を減らすととも圧延も緩やかに行い、単位面積当たりの理論容量および厚みを正極Aに揃えた以外は、正極Aと同様の処方で正極Bを作製した。 In addition, LiCo 0.2 Ni 0.8 O 2 is used as the active material, the amount applied to the AL foil is reduced, rolling is performed slowly, and the theoretical capacity and thickness per unit area are the same as those of the positive electrode A, except that it is the same as the positive electrode A. A positive electrode B was prepared according to the following formulation.
(電極群)
正極Aと上述した負極とをセパレータ(セルガード(株)社製、商品品番:#2320、厚み0.02mm)を介して円筒型に捲回することにより、直径17.6mm、高さ60mmの電極群A(理論容量:2550mAh)を作製した。また、正極Bを用い、電極群Aと同様に電極群Bを作製した。
(Electrode group)
An electrode having a diameter of 17.6 mm and a height of 60 mm is obtained by winding the positive electrode A and the above-described negative electrode into a cylindrical shape via a separator (manufactured by Celgard Co., Ltd., product number: # 2320, thickness 0.02 mm). Group A (theoretical capacity: 2550 mAh) was prepared. Moreover, the electrode group B was produced using the positive electrode B in the same manner as the electrode group A.
(絶縁板)
絶縁板は、次のようにガラス繊維を積層した積層板を打ち抜き加工して絶縁板とした。
(Insulating plate)
The insulating plate was formed by punching a laminated plate in which glass fibers were laminated as follows.
骨格材となるガラス繊維(直径8μm)を直径0.18mmに束ね0.6mmの間隔で配置し、熱硬化性樹脂のフェノール樹脂を含浸させ乾燥したものをシート状にし、これを3枚積層した。ガラス繊維方向が90°方向になるように3枚を交互に積層したものを加熱加圧し、厚みを0.5mmに調整したものを積層板とした。この時の加熱温度は150〜200℃、加圧力は3〜7MPa、時間は60〜150分の範囲が好ましい。
Glass fibers (
絶縁板の開孔部を打ち抜き加工する際、ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心を対称に中心からの距離が半径の30%の位置に、絶縁板の一端面から他端面まで1本ずつ2箇所連続途切れることなく通っているようにしたもの(絶縁板A)、ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の30%の位置に、絶縁板の一端面から他端面まで1本連続途切れることなく通っているようにしたもの(絶縁板B)、ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心を対称に中心からの距離が半径の60%の位置に、絶縁板の一端面から他端面まで1本ずつ2箇所連続途切れることなく通っているようにしたもの(絶縁板C)、ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%の位置に、絶縁板の一端面から他端面まで1本連続途切れることなく通っているようにしたもの(絶縁板D)、ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%の位置と70%の位置に、絶縁板の一端面から他端面まで1本ずつ連続途切れることなく通っているようにしたもの(絶縁板E)、ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心を対称に中心からの距離が半径の70%の位置に、絶縁板の一端面から他端面まで1本ずつ2箇所連続途切れることなく通っているようにしたもの(絶縁板F)、ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の70%の位置に、絶縁板の一端面から他端面まで1本連続途切れることなく通っているようにしたもの(絶縁板G)、ガラス繊維が、絶縁板の一端面から他端面まで1本も連続して通っていないもの(絶縁板H)8種類の絶縁板を作製した。 When punching the opening portion of the insulating plate, the glass fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, the center is symmetrical, and the distance from the center is 30% of the radius. In the position, one piece from the one end surface to the other end surface of the insulating plate is passed continuously without interruption (insulating plate A), the glass fiber is the maximum outside from the one end surface of the insulating plate to the other end surface Parallel to the line that passes through the diameter, the distance from the center is 30% of the radius, and one end of the insulating plate passes from one end surface to the other end without interruption (insulating plate B), glass The fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, symmetrically about the center, at a position 60% of the radius from the center, and from the one end surface to the other end surface of the insulating plate, 1 2 places that pass through each other without interruption (insulation) C) The glass fiber is parallel to the line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and the distance from the center is 60% of the radius, from one end surface to the other end surface of the insulating plate. In this continuous passage (insulating plate D), the glass fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and the distance from the center is 60 of the radius. % And 70% of the insulation plate are passed from one end surface to the other end surface without interruption (insulation plate E), glass fiber from one end surface of the insulation plate to the other. Parallel to the line passing through the maximum outer diameter to the end face, symmetrically about the center, passing through the center of the insulation plate at a position where the distance from the center is 70% of the radius. (Insulating plate F), glass fiber is one of the insulating plates Parallel to the line that passes through the maximum outer diameter from the surface to the other end surface, the distance from the center is 70% of the radius so that it passes continuously from one end surface of the insulating plate to the other end surface without interruption. 8 types of insulating plates (insulating plate G) and those in which no glass fiber passed continuously from one end surface to the other end surface of the insulating plate (insulating plate H) were prepared.
(非水電解質二次電池)
直径18.30mm、内径17.85mm、高さ68mmの鉄からなる円筒型のケースに電極群Aを収納した後、電極群Aの下面から突出させた負極リードをケースの底面に溶接した。さらに、電極群Aの上面に絶縁板A(電池AA)、絶縁板B(電池AB)、絶縁板C(電池AC)、絶縁板D(電池AD)、絶縁板E(電池AE)、絶縁板F(電池AF)、絶縁板G(電池AG)および絶縁板H(電池AH)を配置し、電極群Aの上面から突出させた正極リードをこれら絶縁板の孔部から通し、作動圧が14.7MPaの排気弁を内蔵した封口板に溶接した。
(Non-aqueous electrolyte secondary battery)
After the electrode group A was stored in a cylindrical case made of iron having a diameter of 18.30 mm, an inner diameter of 17.85 mm, and a height of 68 mm, a negative electrode lead protruding from the lower surface of the electrode group A was welded to the bottom surface of the case. Furthermore, an insulating plate A (battery AA), an insulating plate B (battery AB), an insulating plate C (battery AC), an insulating plate D (battery AD), an insulating plate E (battery AE), an insulating plate are provided on the upper surface of the electrode group A. F (battery AF), insulating plate G (battery AG) and insulating plate H (battery AH) are arranged, and a positive electrode lead protruding from the upper surface of electrode group A is passed through the holes of these insulating plates, and the operating pressure is 14 It welded to the sealing board which incorporated the 7MPa exhaust valve.
また、電池AA〜AGの時と同じケースに電極群Bを収納した後、電極群Bの下面から突出させた負極リードをケースの底面に溶接した。さらに、電極群Bの上面に絶縁板A(電池BA)、絶縁板B(電池BB)、絶縁板C(電池BC)、絶縁板D(電池BD)、絶縁板E(電池BE)、絶縁板F(電池BF)、絶縁板G(電池BG)および絶縁板H(電池BH)を配置し、電極群Aの上面から突出させた正極リードをこれら絶縁板の孔部から通し、作動圧が14.7MPaの排気弁を内蔵した封口板に溶接した。 Moreover, after accommodating the electrode group B in the same case as the batteries AA to AG, the negative electrode lead protruded from the lower surface of the electrode group B was welded to the bottom surface of the case. Furthermore, an insulating plate A (battery BA), an insulating plate B (battery BB), an insulating plate C (battery BC), an insulating plate D (battery BD), an insulating plate E (battery BE), an insulating plate are formed on the upper surface of the electrode group B. F (battery BF), insulating plate G (battery BG) and insulating plate H (battery BH) are arranged, and the positive electrode lead protruding from the upper surface of electrode group A is passed through the holes of these insulating plates, and the operating pressure is 14 It welded to the sealing board which incorporated the 7MPa exhaust valve.
非水溶媒としてエチレンカーボネート(以下、ECと略す)とエチルメチルカーボネート(以下、EMCと略す)とを体積比1:3で混合した溶液に六フッ化リン酸リチウム(以下、LiPF6と略す)を1.2モル/L溶解し、非水電解質を調製した。これらのケース上部の直径を機械加工で縮小した後、調製した非水電解質をケース上部から注入し、ケース上部に封口板を配置してカシメにより封口した。このようにして非水電解質二次電池を作製した。これらを電池AA〜AHおよびBA〜BHとした。 Lithium hexafluorophosphate (hereinafter abbreviated as LiPF 6 ) in a solution obtained by mixing ethylene carbonate (hereinafter abbreviated as EC) and ethyl methyl carbonate (hereinafter abbreviated as EMC) at a volume ratio of 1: 3 as a non-aqueous solvent. Was dissolved at 1.2 mol / L to prepare a non-aqueous electrolyte. After reducing the diameter of the upper part of the case by machining, the prepared nonaqueous electrolyte was injected from the upper part of the case, and a sealing plate was placed on the upper part of the case and sealed with caulking. In this way, a non-aqueous electrolyte secondary battery was produced. These were designated as batteries AA to AH and BA to BH.
図1は本発明の電気化学素子の構成の一例を表す概略図を示しており、図2は封口板で封口する前のケースの開口部の一例を表す概略図を示している。正極と負極とをセパレータを介して積層した電極群3をケース4に収納した後、電極群3の上部に絶縁板2を配置して、封口板1で封口することにより、本発明の電気化学素子が構成される。この絶縁板2には開孔部5aおよび5bが設けられている。絶縁板2に設けた開孔部5aおよび5bは不慮時に急激に発生したガスの抜け道となるため、封口部1に内蔵した排気弁(図示せず)に向かってガスが円滑に誘導されやすくなる。
FIG. 1 shows a schematic diagram showing an example of the configuration of the electrochemical device of the present invention, and FIG. 2 shows a schematic diagram showing an example of an opening of a case before sealing with a sealing plate. After the
これら電池を、定電流500mAで電池の終止電圧4.1Vになるまで定電流充電し、定電流500mAで電池の終止電圧3.0Vの定電流放電を2回繰り返した。その後、絶縁板の強度試験、ガス発生の挙動差の確認試験、およびガス発生時の排気弁の作動確認試験の評価を行った。その評価結果を表1にまとめた。以下に各評価の試験方法について示す。 These batteries were charged with a constant current at a constant current of 500 mA until the final voltage of the battery reached 4.1 V, and a constant current discharge with a constant current of 500 mA and a final voltage of 3.0 V was repeated twice. Thereafter, the strength test of the insulating plate, the confirmation test of the difference in behavior of gas generation, and the operation check test of the exhaust valve at the time of gas generation were evaluated. The evaluation results are summarized in Table 1. The test methods for each evaluation are shown below.
(絶縁板の強度試験)
各絶縁板を5個ずつ抜き取り、図4に示すような内径18mm、穴径15.5mmの容器に絶縁板を置き、先端径10mmの円柱で絶縁板を押し込み、絶縁板が割れるまでの最大強度を測定した。
(Insulation plate strength test)
Pull out 5 pieces of each insulation plate, place the insulation plate in a container with an inner diameter of 18 mm and a hole diameter of 15.5 mm as shown in Fig. 4, push the insulation plate with a cylinder with a tip diameter of 10 mm, and the maximum strength until the insulation plate breaks Was measured.
(ガス発生の挙動差の確認試験)
電極群A、Bそれぞれの電池のガス発生の挙動差を確認するために、それぞれの電極群を代表して電池ADおよびBDを各1個ずつ抜き取り、雰囲気温度25℃で、定電流1500mAで電池の終止電圧が4.2Vになるまで定電流充電を行い、次いで定電圧4.2Vで電池の終止電流が100mAになるまで定電圧充電を行った。この電池を図3に示す耐圧容器内に格納した後、耐圧容器ごと250℃に加熱し、強制的にガスを発生させ、耐圧容器内の温度と圧力変化を測定した。
(Confirmation test for gas generation behavior difference)
In order to confirm the difference in gas generation behavior between the batteries of the electrode groups A and B, the batteries AD and BD are taken out one by one on behalf of the respective electrode groups, and the batteries at an ambient temperature of 25 ° C. and a constant current of 1500 mA. Then, constant current charging was performed until the end voltage of the battery reached 4.2 V, and then constant voltage charging was performed at a constant voltage of 4.2 V until the end current of the battery reached 100 mA. After storing this battery in the pressure vessel shown in FIG. 3, the pressure vessel was heated to 250 ° C. to forcibly generate gas, and the temperature and pressure changes in the pressure vessel were measured.
具体的な測定方法を次に説明する。電池ADもしくはBDの電池を電池6の位置に設置
し、電池6を加熱器8、圧力計9、および温度計10を備えたチャンバー7中に設置した。加熱器8で電池6を加熱し、チャンバー7内の温度が250℃に達したところで温度を一定に保持した。電池6を250℃に曝すことで電池6内に発生したガスは、電池6の排気弁を通して、電池6の外部(すなわち、チャンバー7内)に放出される。チャンバー7内の温度が250℃に達したところから、圧力計9と温度計10のモニターを始め、チャンバー7内の圧力と温度の変化を測定した。
A specific measuring method will be described next. The battery AD or BD was installed at the position of the
理想気体の状態方程式PV=nRT(Pは圧力、Vは体積、nは気体分子のモル数、Rは定数、Tは温度)を用い、20℃におけるガスの排気量に換算した。このガスの排気量の積算量を縦軸に、経過時間を横軸にして図5に示す。 An ideal gas equation of state PV = nRT (P is pressure, V is volume, n is the number of moles of gas molecules, R is a constant, and T is temperature), and is converted to a gas displacement at 20 ° C. FIG. 5 shows the integrated amount of the exhaust amount of the gas on the vertical axis and the elapsed time on the horizontal axis.
(ガス発生時の排気弁の作動確認試験)
各電池を20個ずつ抜き取り、ガス発生の挙動差の確認試験と同じ要領で、各電池を充電した。その後、この電池を図3に示す耐圧容器内に格納した後で耐圧容器ごと250℃に加熱し、強制的にガスを発生させた。ガスがケースの外部に放出された後に、耐圧容器内から電池を取り出して外観を検査した。ガスが排気弁を通じて放出されたものを「合格」と認定した。
(Exhaust valve operation confirmation test when gas is generated)
Twenty batteries were withdrawn, and each battery was charged in the same manner as the confirmation test of the difference in behavior of gas generation. Then, after storing this battery in the pressure vessel shown in FIG. 3, the whole pressure vessel was heated to 250 ° C. to forcibly generate gas. After the gas was released to the outside of the case, the battery was taken out from the pressure vessel and the appearance was inspected. Gases released through the exhaust valve were recognized as “pass”.
また、表1のガス発生の挙動差の確認試験結果から、電池AF〜AH、BF〜BHのよ
うに中心からの距離が半径の60%以上の位置にガラス繊維があると排気弁が正常に作動する合格率が極端に低下していることがわかる。該当する電池AGおよびBGを分解して解析したところ、絶縁板2が変形して電極群と排気弁との経路を塞いでいることが確認できた。これは、ガス発生に伴い封口板に向かって移動する電極群に対して、絶縁板の強度が小さいため、絶縁板が変形してしまったと考えられる。
In addition, from the results of the test for confirming the difference in gas generation behavior in Table 1, when the glass fiber is at a position where the distance from the center is 60% or more of the radius as in the batteries AF to AH and BF to BH, the exhaust valve is normally operated. It turns out that the pass rate which operates is extremely lowered. When the corresponding batteries AG and BG were disassembled and analyzed, it was confirmed that the insulating
電極群A、Bともに、絶縁板の一端面から他端面まで1本も連続して通っていない絶縁板Gを用いたときに合格率が極端に低下しているが、中でも電極群Bを用いた電池BGの確率が著しく低かった。この理由として、電池ADおよびBDを用いて測定したガス発生の挙動差が影響したものと考えられる。すなわち、リチウムニッケル複合酸化物は熱分解後のガス発生量が極めて多いので、強度が低下した絶縁板を用いた時の不具合が顕著化したと考えられる。この結果から、電気化学素子として非水電解質二次電池を選択し、かつ正極の活物質としてリチウムニッケル複合酸化物を用いた場合、本発明の効果がより顕著に発揮されることがわかる。 Both the electrode groups A and B have an extremely low pass rate when using one insulating plate G that does not pass continuously from one end surface to the other end surface of the insulating plate. The probability of the battery BG was significantly low. This is considered to be due to the difference in gas generation behavior measured using the batteries AD and BD. That is, since the lithium nickel composite oxide generates a large amount of gas after pyrolysis, it is considered that the problems caused by using an insulating plate with reduced strength became prominent. From this result, it can be seen that when the non-aqueous electrolyte secondary battery is selected as the electrochemical element and the lithium nickel composite oxide is used as the positive electrode active material, the effects of the present invention are more remarkably exhibited.
なお、本実施例では非水電解質二次電池について説明したが、非水電解質二次電池以外にアルカリ蓄電池、鉛蓄電池のような電気化学素子でも同様の効果が得られる。 In addition, although the non-aqueous electrolyte secondary battery was demonstrated in the present Example, the same effect is acquired also in electrochemical elements other than a non-aqueous electrolyte secondary battery, such as an alkaline storage battery and a lead storage battery.
本実施例では、ガラス繊維の方向が90°になるように3枚を交互に積層した絶縁板について説明したが、ガラス繊維の方向が45°〜135°でも、積層枚数が3枚以外の2〜5枚でも同様の効果が得られる。 In the present embodiment, the insulating plate in which three sheets are alternately laminated so that the direction of the glass fiber is 90 ° has been described. However, even if the direction of the glass fiber is 45 ° to 135 °, the number of laminated sheets other than three is 2 The same effect can be obtained with up to 5 sheets.
本実施例では、骨格材としてガラス繊維を単独で用いた場合について説明したが、骨格材が金属繊維や炭素繊維を単独で用いても、ガラス繊維、金属繊維、および炭素繊維の組み合わせを用いても同様の効果が得られる。 In this embodiment, the case where the glass fiber is used alone as the skeleton material has been described. However, even if the skeleton material uses a metal fiber or a carbon fiber alone, a combination of glass fiber, metal fiber, and carbon fiber is used. The same effect can be obtained.
本発明による電気化学素子は、高容量で高信頼性を求められるポータブル電気機器用電源等として有用でありことは当然のことながら、自動車用の駆動電源やエレベータ等の住宅設備などの駆動用電源としても有用である。 The electrochemical device according to the present invention is useful as a power source for portable electric equipment that requires high capacity and high reliability, and is naturally used as a driving power source for automobiles and housing equipment such as elevators. It is also useful.
1 封口板
2 絶縁板
3 電極群
4 ケース
5a 孔部
5b 孔部
6 電池
7 チャンバー
8 加熱器
9 圧力計
10 温度計
11 荷重計
12 装置
DESCRIPTION OF SYMBOLS 1
Claims (4)
前記封口板は、前記電気化学素子の内圧が所定の圧力に達した時に、前記電気化学素子内の圧力を前記電気化学素子の外部へ逃がす機能を有する排気弁を有しており、
前記電極群と前記封口板の間に絶縁板を有し、
前記絶縁板は、熱硬化性樹脂からなり、骨格材としてガラス繊維を含んでおり、少なくとも開孔を1つ有しており、
前記ガラス繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所ある電気化学素子。 The electrochemical element of the present invention is an electrochemical element in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is housed in a case having an opening, and the opening is sealed with a sealing plate,
The sealing plate has an exhaust valve having a function of releasing the pressure in the electrochemical element to the outside of the electrochemical element when the internal pressure of the electrochemical element reaches a predetermined pressure.
Having an insulating plate between the electrode group and the sealing plate;
The insulating plate is made of a thermosetting resin, includes glass fiber as a skeleton material, and has at least one hole.
The glass fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. An electrochemical device having at least one location that passes through without any problem.
前記封口板は、前記電気化学素子の内圧が所定の圧力に達した時に、前記電気化学素子内の圧力を前記電気化学素子の外部へ逃がす機能を有する排気弁を有しており、
前記電極群と前記封口板の間に絶縁板を有し、
前記絶縁板は、熱硬化性樹脂からなり、骨格材として金属繊維を含んでおり、少なくとも開孔を1つ有しており、
前記金属繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所ある電気化学素子。 The electrochemical element of the present invention is an electrochemical element in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is housed in a case having an opening, and the opening is sealed with a sealing plate,
The sealing plate has an exhaust valve having a function of releasing the pressure in the electrochemical element to the outside of the electrochemical element when the internal pressure of the electrochemical element reaches a predetermined pressure.
Having an insulating plate between the electrode group and the sealing plate;
The insulating plate is made of a thermosetting resin, includes a metal fiber as a skeleton material, and has at least one hole.
The metal fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. An electrochemical device having at least one location that passes through without any problem.
前記封口板は、前記電気化学素子の内圧が所定の圧力に達した時に、前記電気化学素子内の圧力を前記電気化学素子の外部へ逃がす機能を有する排気弁を有しており、
前記電極群と前記封口板の間に絶縁板を有し、
前記絶縁板は、熱硬化性樹脂からなり、骨格材として炭素繊維を含んでおり、少なくとも開孔を1つ有しており、
前記炭素繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所ある電気化学素子。 The electrochemical element of the present invention is an electrochemical element in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is housed in a case having an opening, and the opening is sealed with a sealing plate,
The sealing plate has an exhaust valve having a function of releasing the pressure in the electrochemical element to the outside of the electrochemical element when the internal pressure of the electrochemical element reaches a predetermined pressure.
Having an insulating plate between the electrode group and the sealing plate;
The insulating plate is made of a thermosetting resin, includes carbon fiber as a skeleton material, and has at least one hole.
The carbon fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. An electrochemical device having at least one location that passes through without any problem.
前記封口板は、前記電気化学素子の内圧が所定の圧力に達した時に、前記電気化学素子内の圧力を前記電気化学素子の外部へ逃がす機能を有する排気弁を有しており、
前記電極群と前記封口板の間に絶縁板を有し、
前記絶縁板は、熱硬化性樹脂からなり、骨格材としてガラス繊維、金属繊維、および炭素繊維の内少なくとも1種類を含んでおり、かつ少なくとも開孔を1つ有しており、
前記繊維が、絶縁板の一端面から他端面までの最大外径を通る線と平行で、中心からの距離が半径の60%以内に、絶縁板の一端面から他端面まで1本連続途切れることなく通っている箇所が少なくとも1箇所ある電気化学素子。
The electrochemical element of the present invention is an electrochemical element in which an electrode group in which a positive electrode and a negative electrode are laminated via a separator is housed in a case having an opening, and the opening is sealed with a sealing plate,
The sealing plate has an exhaust valve having a function of releasing the pressure in the electrochemical element to the outside of the electrochemical element when the internal pressure of the electrochemical element reaches a predetermined pressure.
Having an insulating plate between the electrode group and the sealing plate;
The insulating plate is made of a thermosetting resin, includes at least one of glass fiber, metal fiber, and carbon fiber as a skeleton material, and has at least one hole.
The fiber is parallel to a line passing through the maximum outer diameter from one end surface to the other end surface of the insulating plate, and one continuous cut from the one end surface to the other end surface of the insulating plate is within 60% of the radius from the center. An electrochemical element that has at least one passing point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006196362A JP4862528B2 (en) | 2006-07-19 | 2006-07-19 | Electrochemical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006196362A JP4862528B2 (en) | 2006-07-19 | 2006-07-19 | Electrochemical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008027635A JP2008027635A (en) | 2008-02-07 |
JP4862528B2 true JP4862528B2 (en) | 2012-01-25 |
Family
ID=39118079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006196362A Active JP4862528B2 (en) | 2006-07-19 | 2006-07-19 | Electrochemical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4862528B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5379866B2 (en) * | 2009-12-04 | 2013-12-25 | パナソニック株式会社 | Sealed secondary battery |
JP2014053262A (en) * | 2012-09-10 | 2014-03-20 | Panasonic Corp | Sealed secondary battery |
CN110226248B (en) | 2017-03-27 | 2022-11-15 | 松下控股株式会社 | Secondary battery |
KR102509709B1 (en) * | 2017-04-26 | 2023-03-15 | 주식회사 엘지에너지솔루션 | Insulating Member and Cylindrical Battery Cell Comprising Insulating Member |
CN110168793B (en) * | 2017-04-27 | 2022-05-31 | 株式会社Lg化学 | Insulating member, method of manufacturing the same, and method of manufacturing cylindrical battery including the same |
WO2018199604A1 (en) * | 2017-04-27 | 2018-11-01 | 주식회사 엘지화학 | Insulating member, method for manufacturing insulating member, and method for manufacturing cylindrical battery comprising insulating member |
KR102288850B1 (en) * | 2017-11-01 | 2021-08-12 | 주식회사 엘지에너지솔루션 | The Secondary Battery And The Insulator For Secondary Battery |
WO2019152531A1 (en) * | 2018-01-31 | 2019-08-08 | Keracel, Inc. | Hybrid solid-state cell with a sealed anode structure |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853951A (en) * | 1981-09-26 | 1983-03-30 | Yutaka Raito Kogyosho:Kk | Preparation of raw material for thermosetting synthetic resin using remaining material of fiber-reinforced thermosetting synthetic resin material |
JP3288448B2 (en) * | 1992-11-20 | 2002-06-04 | 旭化成株式会社 | Non-aqueous electrolyte battery |
JP3327366B2 (en) * | 1994-12-26 | 2002-09-24 | 住友ベークライト株式会社 | Manufacturing method of laminated board |
JPH08174736A (en) * | 1994-12-26 | 1996-07-09 | Sumitomo Bakelite Co Ltd | Laminated sheet |
JP3402088B2 (en) * | 1996-09-24 | 2003-04-28 | 新神戸電機株式会社 | Manufacturing method of phenolic resin molded product with protrusion |
JP4200589B2 (en) * | 1999-06-02 | 2008-12-24 | ソニー株式会社 | Non-aqueous electrolyte secondary battery |
US6548155B1 (en) * | 2000-07-19 | 2003-04-15 | Johns Manville International, Inc. | Fiber glass mat |
JP2003238709A (en) * | 2002-02-22 | 2003-08-27 | Risho Kogyo Co Ltd | Reinforcing material for flexible printed wiring board |
KR100561297B1 (en) * | 2004-09-09 | 2006-03-15 | 삼성에스디아이 주식회사 | Lithium secondary battery |
-
2006
- 2006-07-19 JP JP2006196362A patent/JP4862528B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008027635A (en) | 2008-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4862528B2 (en) | Electrochemical element | |
EP3075019B1 (en) | Lithium-ion secondary battery and manufacturing method thereof | |
US9337459B2 (en) | Sealed secondary battery | |
US10535851B2 (en) | Cylindrical lithium-ion cell | |
KR20080041657A (en) | Battery pack | |
KR20090096349A (en) | Closed type battery | |
KR102268405B1 (en) | Top Insulator For Secondary Battery And The Method For Manufacturing Thereof | |
CN111799440A (en) | Nonaqueous electrolyte secondary battery | |
US20100247991A1 (en) | Battery and method for producing the same | |
JPWO2013031056A1 (en) | Square battery | |
KR102288850B1 (en) | The Secondary Battery And The Insulator For Secondary Battery | |
JP5099880B2 (en) | Lithium ion secondary battery and assembled battery of lithium ion secondary battery | |
KR20080114770A (en) | Electrochemical element | |
KR20200053782A (en) | Battery internal short circuit inductive device, battery having the same, and battery internal short circuit safety evaluating method | |
JP2019121541A (en) | Nonaqueous electrolyte secondary battery | |
JP2007087801A (en) | Lithium ion secondary battery | |
US9231270B2 (en) | Lithium-ion battery | |
JP5098285B2 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
JP2013089441A (en) | Electrode group for battery and battery using the same | |
US20240154280A1 (en) | Cylindrical non-aqueous electrolyte secondary battery | |
JP5122169B2 (en) | Electrochemical element | |
CN114514646B (en) | secondary battery | |
CN116210109A (en) | Secondary battery | |
CN111799441A (en) | Nonaqueous electrolyte secondary battery | |
KR20150071251A (en) | Electrode assembly comprising coating layer different kind of separators for improving safety and lithium secondary batteries comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090515 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111011 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4862528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |