JP2018084281A - Toroidal type non-stage transmission - Google Patents

Toroidal type non-stage transmission Download PDF

Info

Publication number
JP2018084281A
JP2018084281A JP2016227562A JP2016227562A JP2018084281A JP 2018084281 A JP2018084281 A JP 2018084281A JP 2016227562 A JP2016227562 A JP 2016227562A JP 2016227562 A JP2016227562 A JP 2016227562A JP 2018084281 A JP2018084281 A JP 2018084281A
Authority
JP
Japan
Prior art keywords
lubricating oil
axial direction
input
disk
spline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016227562A
Other languages
Japanese (ja)
Inventor
大輝 城田
Daiki Shirota
大輝 城田
吉平 松田
Yoshihei Matsuda
吉平 松田
秀幸 今井
Hideyuki Imai
秀幸 今井
謙一郎 田中
Kenichiro Tanaka
謙一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Kawasaki Heavy Industries Ltd
Original Assignee
NSK Ltd
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd, Kawasaki Heavy Industries Ltd filed Critical NSK Ltd
Priority to JP2016227562A priority Critical patent/JP2018084281A/en
Priority to PCT/JP2017/040500 priority patent/WO2018096941A1/en
Publication of JP2018084281A publication Critical patent/JP2018084281A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Abstract

PROBLEM TO BE SOLVED: To realize a structure of a toroidal type non-stage transmission capable of lubricating a spline engagement part of an input rotary shaft and an input side disk efficiently by lubricating-oil.SOLUTION: On such a portion adjacent to the downstream side in connection with the flow direction of lubricant-oil with respect of the flow direction of lubricant oil with respect to a female spline portion 38 formed in a center hole 32 in an input side disk 2d, there is supported and fixed a lubricant-oil blocking member 14 having a smaller inner diameter dimension that the dedendum circle diameter of a male spline tooth constituting a male spline portion 30 formed in the outer circumference of an input rotary shaft 1a.SELECTED DRAWING: Figure 2

Description

本発明は、例えば航空機等で使用される発電機用、ポンプ等の各種産業機械用、車両(自動車)用、建設機械用の自動変速装置等として利用する、トロイダル型無段変速機の改良に関する。   The present invention relates to an improvement of a toroidal continuously variable transmission that is used as an automatic transmission device for generators used in, for example, aircrafts, various industrial machines such as pumps, vehicles (automobiles), and construction machines. .

自動車用変速装置としてトロイダル型無段変速機を使用する事が、特許文献1等の刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献2等の刊行物に記載されて、従来から広く知られている。図10は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の1例を示している。この従来構造の場合、入力回転軸1の軸方向両端寄り部分の周囲に、1対の入力側ディスク2a、2bを、それぞれが断面円弧形のトロイド曲面である軸方向側面(内側面)同士を互いに対向させた状態で、ボールスプライン3、3を介して支持している。これにより、前記1対の入力側ディスク2a、2bを、遠近動可能に、且つ、前記入力回転軸1を介して互いに同期して回転する様にしている。又、この入力回転軸1の軸方向中間部周囲に、この入力回転軸1に対する相対回転を可能に、出力筒4を支持している。又、この出力筒4の外周面には、軸方向中央部に出力歯車5を固設すると共に、軸方向両端部に1対の出力側ディスク6、6を、前記出力筒4と同期した回転を可能に支持している。又、この状態で、それぞれが断面円弧形のトロイド曲面である、前記両出力側ディスク6、6の軸方向側面を、前記両入力側ディスク2a、2bの軸方向側面に対向させている。   The use of a toroidal-type continuously variable transmission as a transmission for an automobile is described in publications such as Patent Document 1 and is partially implemented, and is well known. Further, a structure in which the adjustment range of the gear ratio is widened by combining a toroidal type continuously variable transmission and a planetary gear mechanism is described in publications such as Patent Document 2 and has been widely known. FIG. 10 shows an example of a toroidal-type continuously variable transmission described in these patent documents and widely known in the past. In the case of this conventional structure, a pair of input-side discs 2a and 2b are arranged around the portions near both axial ends of the input rotating shaft 1, and axial side surfaces (inner side surfaces) each of which is a toroidal curved surface having an arcuate cross section. Are supported via ball splines 3 and 3 in a state of facing each other. As a result, the pair of input side disks 2a and 2b are configured to be able to move far and near and to rotate in synchronization with each other via the input rotation shaft 1. Further, an output cylinder 4 is supported around an intermediate portion in the axial direction of the input rotary shaft 1 so as to be able to rotate relative to the input rotary shaft 1. Further, an output gear 5 is fixed to the outer peripheral surface of the output cylinder 4 at the center in the axial direction, and a pair of output side disks 6 and 6 are rotated at both ends in the axial direction in synchronization with the output cylinder 4. I support it. Further, in this state, the axial side surfaces of the output side disks 6 and 6, each of which is a toroidal curved surface having an arc cross section, are opposed to the axial side surfaces of the input side disks 2 a and 2 b.

又、前記両入力側ディスク2a、2bと前記両出力側ディスク6、6との間に、それぞれの周面を部分球状凸面とした複数個のパワーローラ7、7を挟持している。これら各パワーローラ7、7は、トラニオン8、8に回転自在に支持されており、前記両入力側ディスク2a、2bの回転に伴って回転しつつ、これら両入力側ディスク2a、2bから前記両出力側ディスク6、6に動力を伝達する。即ち、トロイダル型無段変速機の運転時には、駆動軸9により片方(図10の左方)の入力側ディスク2aを、機械式の押圧装置10を介して回転駆動する。この結果、前記入力回転軸1の軸方向両端寄り部分に支持された1対の入力側ディスク2a、2bが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ7、7を介して前記両出力側ディスク6、6に伝わり、前記出力歯車5から取り出される。
或いは、上述した説明とは反対に、前記両出力側ディスク6、6の位置に設けた内側ディスクに駆動源の動力を入力し、前記両入力側ディスク2a、2bの位置に設けた1対の外側ディスクから動力を取り出す様に構成する事もできる。
Also, a plurality of power rollers 7 and 7 each having a partially spherical convex surface are sandwiched between the input disks 2a and 2b and the output disks 6 and 6. These power rollers 7 and 7 are rotatably supported by trunnions 8 and 8, and rotate with the rotation of both input side disks 2 a and 2 b, while the both input side disks 2 a and 2 b rotate the both Power is transmitted to the output side disks 6 and 6. That is, during operation of the toroidal-type continuously variable transmission, one input side disk 2a (left side in FIG. 10) is rotationally driven by the drive shaft 9 via the mechanical pressing device 10. As a result, the pair of input-side disks 2a and 2b supported on the axially opposite ends of the input rotating shaft 1 rotate synchronously while being pressed toward each other. The rotation is transmitted to the output side disks 6 and 6 through the power rollers 7 and 7 and is taken out from the output gear 5.
Or, contrary to the above description, the power of the drive source is input to the inner disk provided at the position of the both output side disks 6, 6 and a pair of positions provided at the positions of the both input side disks 2a, 2b. It can also be configured to extract power from the outer disk.

又、前記入力回転軸1の軸方向両端部の近傍で、前記両入力側ディスク2a、2bを軸方向両側から挟む位置に、それぞれ予圧ばね11a、11bを設けている。そして、前記押圧装置10の非作動時(前記駆動軸9の停止時)にも、前記各パワーローラ7、7の周面と、前記入力側、出力側各ディスク2a、2b、6の内側面との転がり接触部(トラクション部)の面圧を、必要最低限だけは確保する様にしている。従って、これら各転がり接触部は、トロイダル型無段変速機の運転開始直後から、過大な滑りを生じる事なく、動力伝達を開始する。   Preload springs 11a and 11b are provided in the vicinity of both end portions in the axial direction of the input rotary shaft 1 at positions where the both input side disks 2a and 2b are sandwiched from both sides in the axial direction. Even when the pressing device 10 is not in operation (when the drive shaft 9 is stopped), the peripheral surfaces of the power rollers 7 and 7 and the inner surfaces of the input side and output side disks 2a, 2b, 6 are provided. The surface pressure of the rolling contact part (traction part) is secured to the minimum necessary. Therefore, these rolling contact portions start power transmission without causing excessive slip immediately after the start of operation of the toroidal continuously variable transmission.

ところで、前記必要最低限の面圧を確保する為の弾力は、前記押圧装置10の内径側に配置した予圧ばね11aにより得る事ができる。前記入力回転軸1の軸方向一端部(先端部)に螺着したローディングナット12と入力側ディスク2bの外側面との間に配置した予圧ばね11bは、前記押圧装置10の急な作動時に加わる衝撃を緩和するものであり、省略できる。そこで、部品点数の低減及び組立作業効率の向上などを図る為に、入力回転軸の軸方向一端部に螺着したローディングナットと入力側ディスクの外側面との間から、予圧ばねを省略すると共に、該入力側ディスクを前記入力回転軸に対して、ボールスプラインを介さずに、スプライン係合により相対回転不能に支持する構造が提案されている(例えば特許文献3参照)。又、ローディングナットを設ける代わりに、入力回転軸の先端部に外向フランジ状の鍔部を設けたり、コッタと呼ばれる係止環を入力回転軸の先端部に係止する構造なども知られている。   By the way, the elasticity for securing the necessary minimum surface pressure can be obtained by the preload spring 11 a disposed on the inner diameter side of the pressing device 10. A preload spring 11b disposed between a loading nut 12 screwed to one axial end portion (tip portion) of the input rotary shaft 1 and the outer surface of the input side disk 2b is applied when the pressing device 10 is suddenly operated. It can alleviate the impact and can be omitted. Therefore, in order to reduce the number of parts and improve the assembly work efficiency, the preload spring is omitted from between the loading nut screwed to one axial end of the input rotation shaft and the outer surface of the input side disk. A structure has been proposed in which the input-side disk is supported relative to the input rotation shaft so as not to be relatively rotatable by spline engagement without using a ball spline (see, for example, Patent Document 3). In addition, instead of providing a loading nut, an outward flange-like flange is provided at the tip of the input rotation shaft, or a structure called a cotter for locking an engagement ring at the tip of the input rotation shaft is also known. .

特開2003−214516号公報JP 2003-214516 A 特開2004−169719号公報JP 2004-169719 A 特開2015−090160号公報JP-A-2015-090160 特開平5−295348号公報JP-A-5-295348 特開平6−313471号公報JP-A-6-313471 特開平7−332589号公報JP-A-7-332589

上述した何れの構造の場合にも、入力回転軸の軸方向一端部外周面に設けた雄スプライン部と、入力側ディスクの中心孔に設けた雌スプライン部とをスプライン係合させて、この入力側ディスクを前記入力回転軸に対して同期した回転を可能に支持しているが、前記雄スプライン部と前記雌スプライン部とのスプライン係合部には、パワーローラによる押し付け力に伴う前記入力側ディスクの弾性変形に起因した応力が集中し易いだけでなく、スプライン係合部に存在する隙間に起因してフレッチング摩耗が生じ易い。従って、トロイダル型無段変速機の長寿命化の為には、前記スプライン係合部を潤滑油により潤滑する事が必要不可欠となる。   In any of the above-described structures, the male spline portion provided on the outer peripheral surface of the axial end of the input rotation shaft and the female spline portion provided in the center hole of the input side disk are spline-engaged, and this input is performed. The side disc is supported so as to be able to rotate in synchronization with the input rotation shaft, but the spline engaging portion between the male spline portion and the female spline portion has the input side accompanying the pressing force by a power roller. Not only is the stress due to the elastic deformation of the disk easily concentrated, but also the fretting wear is likely to occur due to the gaps existing in the spline engaging portion. Therefore, in order to extend the life of the toroidal continuously variable transmission, it is indispensable to lubricate the spline engaging portion with lubricating oil.

ところが、従来構造の場合には、スプライン係合部を効率良く潤滑する事に就いては、特段考慮されていなかった。この為、スプライン係合部に供給された潤滑油の大部分は、遠心力の作用によりスプライン係合部の径方向外方に移動し、入力側ディスクの雌スプライン部を構成する雌スプライン歯の歯底面と入力回転軸の雄スプライン部を構成する雄スプライン歯の歯先面との間に形成される外径側潤滑油流路を通過して排出されており、前記スプライン係合部全体を潤滑する事は困難であった。
尚、本発明に関連するその他の先行技術文献として、特許文献4〜6に記載された発明がある。但し、これら特許文献4〜6に記載された発明は何れも、スプライン係合部を潤滑する潤滑油が外部に漏れる事を防止する為にシール部材を設ける発明であり、シール部材を利用して、スプライン係合部を効率良く潤滑する事を目的とするものではない。
本発明は、上述の様な事情に鑑みて、回転軸と外側ディスクとのスプライン係合部を、潤滑油により効率良く潤滑できる、トロイダル型無段変速機の構造を実現すべく発明したものである。
However, in the case of the conventional structure, no special consideration has been given to efficiently lubricating the spline engaging portion. For this reason, most of the lubricating oil supplied to the spline engaging portion moves radially outward of the spline engaging portion by the action of centrifugal force, and the female spline teeth constituting the female spline portion of the input side disk are moved. It is discharged through the outer diameter side lubricating oil passage formed between the tooth bottom surface and the tooth tip surface of the male spline teeth constituting the male spline portion of the input rotating shaft, and the entire spline engaging portion is It was difficult to lubricate.
As other prior art documents related to the present invention, there are inventions described in Patent Documents 4 to 6. However, any of the inventions described in these Patent Documents 4 to 6 is an invention in which a seal member is provided to prevent the lubricating oil that lubricates the spline engaging portion from leaking to the outside. It is not intended to efficiently lubricate the spline engaging portion.
In view of the above circumstances, the present invention was invented to realize a structure of a toroidal continuously variable transmission that can efficiently lubricate a spline engaging portion between a rotating shaft and an outer disk with lubricating oil. is there.

本発明のトロイダル型無段変速機は、回転軸と、1対の外側ディスクと、内側ディスクと、複数のパワーローラと、潤滑油堰き止め部材とを備える。
このうちの回転軸は、外周面の軸方向一端側部分に雄スプライン部を設けている。
又、前記1対の外側ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向側面同士を対向させた状態で、前記回転軸の軸方向両側部分に、この回転軸と同期した回転を可能に支持されている。
又、前記内側ディスクは、断面円弧形のトロイド曲面である軸方向両側面を前記両外側ディスクの軸方向側面に対向させた状態で、前記回転軸の軸方向中間部周囲に、この回転軸に対する相対回転を可能に支持されたもので、一体、若しくは1対の素子を結合して成る。
又、前記複数のパワーローラは、それぞれ支持部材(例えばトラニオン)に回転自在に支持されたもので、部分球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記1対の外側ディスクの軸方向側面とに当接させている。
又、前記潤滑油堰き止め部材は、全体が円環状に構成され、前記1対の外側ディスクのうち軸方向一端側に設けられた一方の外側ディスクに形成された雌スプライン部を構成する雌スプライン歯の歯底円直径よりも小さな内径寸法(且つ大きな外径寸法)を有しており、前記一方の外側ディスク又は前記回転軸のうち、前記雌スプライン部と前記雄スプライン部とのスプライン係合部を軸方向に通過して潤滑する潤滑油の流れ方向に関してこのスプライン係合部の下流側に隣接する部分に、例えば前記一方の外側ディスク又は前記回転軸と同軸に支持されている。
更に、追加的に押圧装置を設ける場合には、この押圧装置を、前記1対の外側ディスクのうち軸方向他端側に設けられた他方の外側ディスクと、前記回転軸との間に設け、この他方の外側ディスクを軸方向一端側(一方の外側ディスク)に向けて押圧する。この様な押圧装置としては、ローディングカムを組み込んだ機械式、又は、油圧シリンダ及びピストンを備えた油圧式の押圧装置を使用する事ができる。
A toroidal continuously variable transmission according to the present invention includes a rotating shaft, a pair of outer disks, an inner disk, a plurality of power rollers, and a lubricating oil damming member.
Among these, the rotating shaft is provided with a male spline portion at one end portion in the axial direction of the outer peripheral surface.
In addition, the pair of outer disks are synchronized with the rotating shafts on both axial sides of the rotating shaft in a state where the axial side surfaces of the pair of outer disks are each a toroidal curved surface having an arcuate cross section. Supported for rotation.
In addition, the inner disk has a rotating shaft around an axially intermediate portion of the rotating shaft in a state in which both axial side surfaces which are toroidal curved surfaces having an arcuate cross section are opposed to the axial side surfaces of the outer disks. Are supported so as to be capable of relative rotation with respect to each other.
Further, each of the plurality of power rollers is rotatably supported by a support member (for example, trunnion), and each peripheral surface formed as a partial spherical convex surface is formed on the pair of axially opposite side surfaces of the inner disk and the pair of power rollers. It is in contact with the axial side surface of the outer disk.
Further, the lubricating oil damming member is formed in an annular shape as a whole, and a female spline constituting a female spline portion formed on one outer disk provided on one end side in the axial direction of the pair of outer disks. An inner diameter dimension (and a larger outer diameter dimension) smaller than the root diameter of the tooth, and spline engagement between the female spline portion and the male spline portion of the one outer disk or the rotating shaft. A portion adjacent to the downstream side of the spline engaging portion with respect to the flow direction of the lubricating oil that passes through the portion in the axial direction and is lubricated is supported, for example, coaxially with the one outer disk or the rotating shaft.
Furthermore, when providing a pressing device additionally, this pressing device is provided between the other outer disk provided on the other axial end side of the pair of outer disks and the rotating shaft, The other outer disk is pressed toward one axial end (one outer disk). As such a pressing device, a mechanical pressing device incorporating a loading cam or a hydraulic pressing device including a hydraulic cylinder and a piston can be used.

上述の様な本発明を実施する場合には、例えば請求項2に記載した発明の様に、前記潤滑油堰き止め部材の内径寸法を、前記雌スプライン歯の歯先円直径よりも小さくする事ができる。
又、本発明を実施する場合には、前記潤滑油堰き止め部材の内径寸法を、前記雄スプライン部を構成する雄スプライン歯の歯底円直径よりも小さくする事もできる。
When carrying out the present invention as described above, for example, as in the second aspect of the present invention, the inner diameter dimension of the lubricating oil damming member is made smaller than the tip circle diameter of the female spline teeth. Can do.
Moreover, when implementing this invention, the internal diameter dimension of the said lubricating oil damming member can also be made smaller than the root circle diameter of the male spline tooth | gear which comprises the said male spline part.

又、本発明を実施する場合には、例えば請求項3に記載した発明の様に、前記潤滑油堰き止め部材を、前記一方の外側ディスクのうち、前記雌スプライン部の軸方向一端側に隣接する部分に支持する。更に、前記潤滑油堰き止め部材の内径寸法を、前記回転軸のうち、前記雄スプライン部が形成された部分よりも軸方向一端側に存在する部分の外径寸法よりも大きくする事ができる。   When carrying out the present invention, for example, as in the invention described in claim 3, the lubricating oil damming member is adjacent to one axial end of the female spline portion of the one outer disk. Support to the part to be. Further, the inner diameter dimension of the lubricating oil damming member can be made larger than the outer diameter dimension of the portion of the rotating shaft that is located on one end side in the axial direction than the portion where the male spline portion is formed.

以上の様な構成を有する本発明のトロイダル型無段変速機によれば、回転軸と(一方の)外側ディスクとのスプライン係合部を、潤滑油により効率良く潤滑できる。
即ち、本発明の場合には、前記外側ディスク又は前記回転軸のうち、スプライン係合部に対し潤滑油の流れ方向に関して下流側に隣接する部分に、全体が円環状に構成され、前記雌スプライン部を構成する雌スプライン歯の歯底円直径よりも小さな内径寸法を有する、潤滑油堰き止め部材を支持している。
この為、前記潤滑油堰き止め部材により、前記雌スプライン歯の歯底面と前記回転軸に設けられた雄スプライン歯の歯先面との間に形成される外径側潤滑油流路の出口側開口部のうち、少なくとも外径側部分を塞ぐ(堰き止める)事ができる。
従って、前記回転軸の内部に設けられた油路を通じて供給された潤滑油が、遠心力により径方向外方に移動した場合にも、前記外径側潤滑油流路を潤滑油が集中的に通過する事を防止できる(外径側潤滑油流路を通過する潤滑油量を減らす事ができる)。
この結果、本発明によれば、前記外径側潤滑油流路以外の部分に潤滑油を通過させ易くする事ができ、スプライン係合部全体を効率良く潤滑する事が可能になる。
According to the toroidal continuously variable transmission of the present invention having the above-described configuration, the spline engaging portion between the rotating shaft and the (one) outer disk can be efficiently lubricated with the lubricating oil.
That is, in the case of the present invention, a portion of the outer disk or the rotating shaft adjacent to the spline engaging portion on the downstream side with respect to the flow direction of the lubricating oil is configured in an annular shape, and the female spline. The lubricating oil damming member having an inner diameter smaller than the root diameter of the female spline teeth constituting the portion is supported.
Therefore, the outlet side of the outer-diameter side lubricating oil flow path formed between the bottom surface of the female spline teeth and the tip surface of the male spline teeth provided on the rotating shaft by the lubricating oil blocking member. Among the openings, at least the outer diameter side portion can be closed (damped).
Therefore, even when the lubricating oil supplied through the oil passage provided inside the rotating shaft moves radially outward due to centrifugal force, the lubricating oil concentrates on the outer-diameter side lubricating oil passage. It can be prevented from passing (the amount of lubricating oil passing through the outer diameter side lubricating oil passage can be reduced).
As a result, according to the present invention, it is possible to easily allow the lubricating oil to pass through a portion other than the outer diameter side lubricating oil passage, and it is possible to efficiently lubricate the entire spline engaging portion.

又、上述した様な請求項2に記載した発明によれば、前記潤滑油堰き止め部材により、前記外径側潤滑油流路の出口側開口部全体を塞ぐ事ができると共に、前記雌スプライン歯の歯先面と前記雄スプライン歯の歯底面との間に形成される内径側潤滑油流路の出口側開口部のうち、少なくとも外径側部分を塞ぐ事ができる。この為、前記雌スプライン歯と前記雄スプライン歯との歯面同士の間部分に潤滑油を効果的に送り込む事ができ、前記スプライン係合部をより効果的に潤滑する事ができる。   According to the invention described in claim 2 as described above, the lubricating oil damming member can block the entire opening on the outlet side of the outer diameter side lubricating oil flow path, and the female spline teeth. At least the outer diameter side portion of the outlet side opening of the inner diameter side lubricating oil passage formed between the tooth tip surface and the tooth bottom surface of the male spline tooth can be closed. For this reason, lubricating oil can be effectively fed into a portion between the tooth surfaces of the female spline teeth and the male spline teeth, and the spline engaging portion can be more effectively lubricated.

更に、上述した様な請求項3に記載した発明によれば、前記潤滑油堰き止め部材を、前記回転軸の軸方向一端側(先端側)から容易に組み付ける事ができる。この為、前記潤滑油堰き止め部材を新たに設けた事に起因する、トロイダル型無段変速機の組立性の低下を抑制できる。   Furthermore, according to the invention described in claim 3 as described above, the lubricating oil damming member can be easily assembled from one axial end side (front end side) of the rotating shaft. For this reason, it is possible to suppress a decrease in the assemblability of the toroidal continuously variable transmission resulting from the provision of the lubricating oil damming member.

本発明の実施の形態の第1例を示す、トロイダル型無段変速機の断面図。Sectional drawing of the toroidal type continuously variable transmission which shows the 1st example of embodiment of this invention. 同じく図1のA部拡大図。The A section enlarged view of FIG. 1 similarly. 同じく図2のB部拡大図。The B section enlarged view of FIG. 2 similarly. 同じく図3のC矢視図。FIG. 4 is a view taken in the direction of arrow C in FIG. 本発明の実施の形態の第2例を示す、図3に相当する図。The figure equivalent to FIG. 3 which shows the 2nd example of embodiment of this invention. 本発明の実施の形態の第3例を示す、図3に相当する図。The figure equivalent to FIG. 3 which shows the 3rd example of embodiment of this invention. 本発明の実施の形態の第4例を示す、図3に相当する図。The figure equivalent to FIG. 3 which shows the 4th example of embodiment of this invention. 本発明の実施の形態の第5例を示す、図3に相当する図(A)、及び、(A)のD矢視図(B)。The figure (A) equivalent to FIG. 3 which shows the 5th example of embodiment of this invention, and D arrow line view (B) of (A). 本発明の実施の形態の第6例を示す、潤滑油堰き止め部材を取り出して示す正面図。The front view which takes out and shows the lubricating oil damming member which shows the 6th example of embodiment of this invention. 従来構造のトロイダル型無段変速機を示す断面図。Sectional drawing which shows the toroidal type continuously variable transmission of conventional structure.

[実施の形態の第1例]
図1〜4は、本発明の実施の形態の第1例を示している。本例のトロイダル型無段変速機13は、例えば航空機の発電機用として使用される変速機であり、特許請求の範囲に記載した回転軸に相当する入力回転軸1aと、それぞれが特許請求の範囲に記載した外側ディスクに相当する1対の入力側ディスク2c、2dと、特許請求の範囲に記載した内側ディスクに相当する出力側ディスク6aと、複数個のパワーローラ7、7と、図示しない複数個のトラニオンと、油圧式の押圧装置(ローディング装置)10aと、潤滑油堰き止め部材14とを備えている。
[First example of embodiment]
1 to 4 show a first example of an embodiment of the present invention. The toroidal-type continuously variable transmission 13 of this example is a transmission that is used, for example, for an aircraft generator, and each of the input rotary shaft 1a corresponding to the rotary shaft described in the claims, A pair of input side disks 2c and 2d corresponding to the outer disk described in the range, an output side disk 6a corresponding to the inner disk described in the claims, a plurality of power rollers 7 and 7, and not shown A plurality of trunnions, a hydraulic pressing device (loading device) 10a, and a lubricating oil blocking member 14 are provided.

前記入力回転軸1aは、アクチュエータケース15の上側に、1対の支柱16、16と前記出力側ディスク6aとを介して回転のみ可能に支持されている。具体的には、前記入力回転軸1aは、前記両支柱16、16の中間部に設けた支持環部にそれぞれスラストアンギュラ型の玉軸受により回転自在に支持された前記出力側ディスク6aの内径側に、1対のラジアルニードル軸受により回転自在に支持されている。
尚、本明細書及び特許請求の範囲で「軸方向」とは、特に断らない限り、前記入力側回転軸1aの軸方向を言い、図1〜3の左右方向を指す。又、本例の場合には、前記入力回転軸1aの先端側である図1〜3の右側が、特許請求の範囲の軸方向一端側に相当する。
The input rotation shaft 1a is supported on the upper side of the actuator case 15 through a pair of support columns 16 and 16 and the output side disk 6a so as to be rotatable only. Specifically, the input rotary shaft 1a is provided on the inner diameter side of the output side disk 6a rotatably supported by a thrust ring type ball bearing on a support ring portion provided at an intermediate portion between the support columns 16 and 16, respectively. Further, it is rotatably supported by a pair of radial needle bearings.
In the present specification and claims, the “axial direction” refers to the axial direction of the input-side rotary shaft 1a unless otherwise specified, and refers to the horizontal direction in FIGS. Moreover, in the case of this example, the right side of FIGS. 1-3 which is the front end side of the said input rotating shaft 1a is equivalent to the axial direction one end side of a claim.

前記両入力側ディスク2c、2dは、それぞれが断面円弧形のトロイド曲面である互いの軸方向側面(内側面)同士を対向させた状態で、前記入力回転軸1aの軸方向両端寄り部分に、この入力回転軸1aと同期した回転を可能に、且つ、遠近動可能に支持されている。   The two input-side disks 2c and 2d are disposed at portions close to both ends in the axial direction of the input rotation shaft 1a in a state where the axial side surfaces (inner side surfaces) of the toroidal curved surfaces each having a circular arc cross section are opposed to each other. The rotation is synchronized with the input rotation shaft 1a, and is supported so as to be movable in the near and far directions.

この為に、前記両入力側ディスク2c、2dのうち、前記入力回転軸1aの軸方向他端側(基端側)である、図1の左側に設けられた入力側ディスク2cを、前記押圧装置10aを構成するシリンダ17を介して、軸方向の若干の変位を可能に、且つ、前記入力回転軸1aと同期した回転を可能に、この入力側回転軸1aに支持している。前記シリンダ17は、内径側シリンダ素子18の外周縁部と、外径側シリンダ素子19の内周縁部とを結合固定する事により構成されており、このうちの内径側シリンダ素子18を、前記入力回転軸1cの外周面の軸方向他端寄り部分に形成した雄スプライン部に対し、スプライン係合させている。   For this purpose, of the two input side disks 2c and 2d, the input side disk 2c provided on the left side in FIG. 1, which is the other axial end side (base end side) of the input rotary shaft 1a, is pressed. It is supported on the input-side rotary shaft 1a through a cylinder 17 constituting the device 10a so that it can be slightly displaced in the axial direction and can be rotated in synchronization with the input rotary shaft 1a. The cylinder 17 is configured by coupling and fixing an outer peripheral edge portion of the inner diameter side cylinder element 18 and an inner peripheral edge portion of the outer diameter side cylinder element 19, and the inner diameter side cylinder element 18 is connected to the input side. The male spline part formed in the axial direction other end part of the outer peripheral surface of the rotating shaft 1c is engaged with the spline.

又、前記入力回転軸1aのうちで、前記内径側シリンダ素子18を外嵌した部分よりも軸方向他端側部分に係止凹溝20を形成し、この係止凹溝20内に係止環21を係止している。そして、この係止環21の軸方向一端面を、前記内径側シリンダ素子18の内径側部分の軸方向他端面に突き当てて、前記シリンダ17が前記入力側ディスク2cから離れる方向(図1の左側)に変位するのを阻止している。従って、前記内径側シリンダ素子18は、前記入力回転軸1aの軸方向他端寄り部分に対し、トルク伝達を可能に、且つ、軸方向他端側への変位を阻止された状態で、がたつきなく外嵌されている。   Further, a locking groove 20 is formed in the other end portion in the axial direction of the input rotary shaft 1 a than the portion where the inner diameter side cylinder element 18 is fitted, and the locking groove 20 is locked in the locking groove 20. The ring 21 is locked. Then, one axial end surface of the locking ring 21 is abutted against the other axial end surface of the inner diameter side portion of the inner diameter side cylinder element 18 so that the cylinder 17 moves away from the input side disk 2c (in FIG. 1). To the left). Therefore, the inner diameter side cylinder element 18 is rattled in a state where torque can be transmitted to the portion near the other end in the axial direction of the input rotary shaft 1a and displacement to the other end in the axial direction is prevented. It has been fitted outside.

尚、前記係止環21は、複数(例えば2〜4個)の部分円弧状の素子を円周方向に組み合わせて成るもので、前記係止凹溝20に係止した状態で、円環状の前記係止環21を構成している。又、前記係止環21を構成する複数の素子が、前記係止凹溝20から径方向外方に抜け出るのを防止する為、これら各素子の周囲を、抑え環22により覆っている。図示の構造の場合には、エンジン等の動力源により前記抑え環22を回転駆動し、この抑え環22に伝わった駆動トルクを、前記シリンダ17を介して、前記入力回転軸1a、及び、前記入力側ディスク2cに伝達する様に構成している。   The locking ring 21 is formed by combining a plurality of (for example, 2 to 4) partial arc-shaped elements in the circumferential direction. The locking ring 21 is configured. In addition, in order to prevent a plurality of elements constituting the locking ring 21 from coming out radially outward from the locking groove 20, the periphery of each element is covered with a restraining ring 22. In the case of the illustrated structure, the restraining ring 22 is rotationally driven by a power source such as an engine, and the driving torque transmitted to the restraining ring 22 is transmitted via the cylinder 17 to the input rotary shaft 1a and the It is configured to transmit to the input side disk 2c.

更に、前記シリンダ17内には、2枚のピストン板23a、23bを組み付けている。そして、軸方向他端側のピストン板23aと前記シリンダ17の底板部24との間部分、及び、軸方向一端側のピストン板23bと前記入力側ディスク2cとの間部分を、それぞれ油圧室25a、25bとして、ダブルピストン型の前記押圧装置10aを構成している。そして、これら各油圧室25a、25b内に所定圧の油圧を導入する事で、軸方向他端側の前記入力側ディスク2cを、軸方向一端側の前記入力側ディスク2dに向け、前記油圧の大きさに応じた力で押圧可能としている。   Further, two piston plates 23 a and 23 b are assembled in the cylinder 17. Then, a portion between the piston plate 23a on the other end side in the axial direction and the bottom plate portion 24 of the cylinder 17 and a portion between the piston plate 23b on the one end side in the axial direction and the input side disk 2c are respectively provided in the hydraulic chamber 25a. 25b constitutes the double piston type pressing device 10a. Then, by introducing a predetermined hydraulic pressure into each of the hydraulic chambers 25a and 25b, the input-side disk 2c on the other axial end side is directed toward the input-side disk 2d on one axial end side, and the hydraulic pressure is reduced. It can be pressed with a force according to the size.

これに対し、前記両入力側ディスク2c、2dのうち、前記入力回転軸1aの軸方向一端側(先端側)である、図1の右側に設けられた、特許請求の範囲に記載した一方の外側ディスクに相当する入力側ディスク2dは、前記入力側ディスク2cから離れる方向である軸方向一端側への変位を不能に、且つ、前記入力回転軸1aと同期した回転を可能に、この入力側回転軸1aに支持されている。この為に、本例の場合には、前記入力回転軸1aの軸方向一端寄り部分を、軸方向他端側から一端側(図1の左から右側)の順に、小径軸部26と大径軸部27とを軸側段差面28により連続させた段付状に構成している。そして、このうちの小径軸部26の外周面を、前記入力回転軸1aの中心軸に直交する仮想平面に関する断面形状が、歪みのない正円形で、軸方向に関して外径寸法が変化しない内側円筒面部29としている。又、前記大径軸部27の軸方向中間部に、この大径軸部27のうちの残部よりも外径寸法が大きくなった雄スプライン部30を設けている。又、図示の例では、前記大径軸部27のうちで、前記雄スプライン部30の軸方向一端側に隣接する部分に、径方向内方に凹んだ逃げ凹溝31を全周に亙り設けている。又、前記軸側段差面28は、前記入力回転軸1aの中心軸に対して直交する仮想平面上に存在している。   On the other hand, one of the two input-side disks 2c and 2d, which is provided on the right side of FIG. 1 that is one end side (tip side) in the axial direction of the input rotation shaft 1a. The input side disk 2d corresponding to the outer side disk cannot be displaced toward one end in the axial direction, which is a direction away from the input side disk 2c, and can rotate in synchronization with the input rotation shaft 1a. It is supported by the rotating shaft 1a. For this reason, in the case of this example, the portion closer to one end in the axial direction of the input rotary shaft 1a is arranged in order from the other end side in the axial direction to one end side (from left to right in FIG. 1). The shaft portion 27 is configured in a stepped shape in which the shaft side step surface 28 is continuous. Of these, the outer peripheral surface of the small-diameter shaft portion 26 is an inner cylinder whose cross-sectional shape with respect to a virtual plane orthogonal to the central axis of the input rotary shaft 1a is a perfect circular shape without distortion and whose outer diameter does not change in the axial direction. The surface portion 29 is used. Further, a male spline portion 30 having an outer diameter dimension larger than that of the remaining portion of the large diameter shaft portion 27 is provided at an axially intermediate portion of the large diameter shaft portion 27. In the illustrated example, a relief groove 31 that is recessed inward in the radial direction is provided over the entire circumference in a portion of the large-diameter shaft portion 27 adjacent to one end side in the axial direction of the male spline portion 30. ing. The shaft-side step surface 28 exists on a virtual plane orthogonal to the central axis of the input rotation shaft 1a.

又、前記入力側ディスク2dの中心には、前記入力側回転軸1aを挿通する為の、軸方向に貫通した中心孔32が形成されている。この中心孔32は、軸方向他端側から一端側(図1〜3の左から右側)の順に、小径孔部33と中径孔部34とをディスク側段差面35により連続させると共に、この中径孔部34と大径孔部36とをディスク側平坦面37により連続させた段付状に構成している。そして、このうちの中径孔部34の軸方向中間部に、前記雄スプライン部30とスプライン係合可能な雌スプライン部38を設けている。又、前記小径孔部33の内周面を、前記雌スプライン部38の内接円の直径よりも小さな内径寸法を有する外側円筒面部39としている。この外側円筒面部39は、前記入力側ディスク2dの中心軸に直交する仮想平面に関する断面形状が、歪みのない正円形で、軸方向に関して外径寸法が変化しない。又、前記外側円筒面部39の自由状態での内径は、前記内側円筒面部29の自由状態での外径よりも僅かに小さい。又、前記ディスク側段差面35及び前記ディスク側平坦面37は、前記入力側ディスク2dの中心軸に対して直交する仮想平面上に存在している。   A central hole 32 penetrating in the axial direction is formed in the center of the input side disk 2d so as to pass through the input side rotating shaft 1a. The center hole 32 has a small-diameter hole portion 33 and a medium-diameter hole portion 34 that are continued from the other end side in the axial direction to one end side (from left to right in FIGS. The medium-diameter hole 34 and the large-diameter hole 36 are configured in a stepped shape in which the disk-side flat surface 37 is continuous. A female spline portion 38 that can be spline-engaged with the male spline portion 30 is provided at an intermediate portion in the axial direction of the medium diameter hole portion 34. The inner peripheral surface of the small-diameter hole portion 33 is an outer cylindrical surface portion 39 having an inner diameter smaller than the diameter of the inscribed circle of the female spline portion 38. The outer cylindrical surface portion 39 has a cross-sectional shape with respect to a virtual plane orthogonal to the central axis of the input-side disk 2d, which is a regular circular shape without distortion, and the outer diameter dimension does not change in the axial direction. The inner diameter of the outer cylindrical surface portion 39 in a free state is slightly smaller than the outer diameter of the inner cylindrical surface portion 29 in a free state. Further, the disk-side step surface 35 and the disk-side flat surface 37 exist on a virtual plane orthogonal to the central axis of the input-side disk 2d.

トロイダル型無段変速機13の組み立て状態では、前記入力回転軸1aの外周面に形成した軸側段差面28と前記入力側ディスク2dの内周面に形成したディスク側段差面35とを軸方向に当接させる事で、前記入力側回転軸1aに対する前記入力側ディスク2dの軸方向に関する位置決めを図った状態で、前記雄スプライン部30と前記雌スプライン部38とをスプライン係合させると共に、前記内側円筒面29と前記外側円筒面部39とを締り嵌めにより嵌合(圧入、インロー嵌合)させる。この様な構成により、前記入力側ディスク2dを、前記入力回転軸1aの軸方向一端寄り部分に対し、軸方向一端側への変位を阻止した状態で、この入力回転軸1aと同期した回転を可能に支持している。   In the assembled state of the toroidal-type continuously variable transmission 13, an axial side step surface 28 formed on the outer peripheral surface of the input rotary shaft 1a and a disk side step surface 35 formed on the inner peripheral surface of the input side disc 2d are axially arranged. The male spline portion 30 and the female spline portion 38 are spline-engaged with each other in a state where the input side disk 2d is positioned with respect to the input side rotation shaft 1a. The inner cylindrical surface 29 and the outer cylindrical surface portion 39 are fitted (press-fit, inlay fitting) by interference fitting. With such a configuration, the input side disk 2d is rotated in synchronization with the input rotary shaft 1a in a state in which the input side disc 2d is prevented from being displaced toward one end side in the axial direction with respect to a portion near the one end of the input rotary shaft 1a. I support it as possible.

又、前記雄スプライン部30と前記雌スプライン部38とのスプライン係合部40に対し潤滑油を供給する為、前記入力回転軸1aの内部に、軸方向に伸長した主潤滑油流路41を設けると共に、この主潤滑油流路41の軸方向一部から径方向に分岐する状態で副潤滑油流路42を設けている。そして、この副潤滑油流路42の下流側端部を、前記入力側回転軸1aの大径軸部27の外周面のうち、前記雄スプライン部30が設けられた部分から軸方向他側に外れた部分に開口させている。この為、本例の場合には、前記入力回転軸1aの主潤滑油流路41に送り込まれた潤滑油は、図3に矢印で示す様に、前記副潤滑油流路42を通じて、前記入力側回転軸1aの外周面と前記入力側ディスク2dの内周面との間部分のうち、前記スプライン係合部40の軸方向他端側に隣接する状態で設けられた環状保油空間43に送り込まれる。そして、この環状保油空間43を通過した潤滑油は、前記スプライン係合部40を軸方向他端側から一端側(図1〜3の左側から右側)に向けて通過する事で、このスプライン係合部40を潤滑する。尚、本例の場合、前記環状保油空間43に供給された潤滑油は、前記内側円筒面29と前記外側円筒面部39との圧入部(嵌合部)により、軸方向他側への油漏れが防止されている為、前記スプライン係合部40に効率良く供給する事ができる。   Further, in order to supply lubricating oil to the spline engaging portion 40 of the male spline portion 30 and the female spline portion 38, a main lubricating oil passage 41 extending in the axial direction is provided inside the input rotary shaft 1a. The auxiliary lubricating oil passage 42 is provided in a state where the main lubricating oil passage 41 branches in a radial direction from a part of the axial direction of the main lubricating oil passage 41. Then, the downstream end portion of the sub-lubricating oil passage 42 is moved from the portion where the male spline portion 30 is provided to the other side in the axial direction on the outer peripheral surface of the large-diameter shaft portion 27 of the input-side rotary shaft 1a. Open in the detached part. For this reason, in the case of this example, the lubricating oil fed into the main lubricating oil passage 41 of the input rotary shaft 1a passes through the auxiliary lubricating oil passage 42 as shown by the arrow in FIG. In an annular oil retaining space 43 provided in a state adjacent to the other axial end side of the spline engaging portion 40 in a portion between the outer peripheral surface of the side rotating shaft 1a and the inner peripheral surface of the input side disk 2d. It is sent. The lubricating oil that has passed through the annular oil retaining space 43 passes through the spline engaging portion 40 from the other end in the axial direction toward one end (from the left side to the right side in FIGS. 1 to 3). The engaging portion 40 is lubricated. In the case of this example, the lubricating oil supplied to the annular oil retaining space 43 is supplied to the other side in the axial direction by a press-fitting portion (fitting portion) between the inner cylindrical surface 29 and the outer cylindrical surface portion 39. Since leakage is prevented, the spline engaging portion 40 can be efficiently supplied.

特に本例の場合には、前記スプライン係合部40を効率良く潤滑する事を目的として、前記入力側ディスク2dに対し、前記潤滑油堰き止め部材14を支持固定している。この潤滑油堰き止め部材14は、弾性材製で、全体を円輪板状に構成されており、前記入力側ディスク2dの中心孔32のうち、前記雌スプライン部38の軸方向一端側に隣接した部分に支持固定されている。より具体的には、前記潤滑油堰き止め部材14は、前記中心孔32を構成する中径孔部34のうち、前記雌スプライン部38の軸方向一端側に隣接した部分に形成された係止溝44に、その外径側部分を係止している。この為、前記潤滑油堰き止め部材14は、前記スプライン係合部40に対して、潤滑油の流れ方向に関して下流側に隣接する部分に支持されている。又、この状態で、前記潤滑油堰き止め部材14の軸方向他側面は、前記雌スプライン部38の軸方向一端面に当接している。但し、本例の場合には、前記軸側段差面28と前記ディスク側段差面35とを軸方向に当接させた状態で、前記スプライン係合部40を構成する前記雄スプライン部30の軸方向一端面を、前記雌スプライン部38の軸方向一端面よりも軸方向他側に位置させている為、前記潤滑油堰き止め部材14の軸方向他側面と前記雄スプライン部30の軸方向一端面との間には、軸方向に関する僅かな隙間45が全周に亙り形成された状態となる。   Particularly in the case of this example, the lubricating oil damming member 14 is supported and fixed to the input side disk 2d for the purpose of efficiently lubricating the spline engaging portion 40. The lubricating oil damming member 14 is made of an elastic material, and is configured in a circular plate shape as a whole, and is adjacent to one axial end of the female spline portion 38 in the center hole 32 of the input side disk 2d. It is supported and fixed to the part. More specifically, the lubricating oil damming member 14 is a latch formed in a portion adjacent to one end side in the axial direction of the female spline portion 38 in the medium diameter hole portion 34 constituting the center hole 32. An outer diameter side portion of the groove 44 is locked. For this reason, the lubricating oil blocking member 14 is supported by a portion adjacent to the downstream side with respect to the spline engaging portion 40 in the flow direction of the lubricating oil. Further, in this state, the other axial side surface of the lubricating oil damming member 14 is in contact with one axial end surface of the female spline portion 38. However, in the case of this example, the shaft of the male spline portion 30 constituting the spline engaging portion 40 in a state where the shaft side step surface 28 and the disk side step surface 35 are in contact with each other in the axial direction. Since one end surface in the direction is positioned on the other side in the axial direction with respect to the one end surface in the axial direction of the female spline portion 38, the other axial direction side surface of the lubricating oil damming member 14 and the axial direction of the male spline portion 30 are the same. Between the end faces, a slight gap 45 in the axial direction is formed over the entire circumference.

又、図4に示した様に、前記潤滑油堰き止め部材14のうち、外径寸法Dは、前記雌スプライン部38を構成する雌スプライン歯46、46の歯底円直径df46よりも十分に大きく、内径寸法dは、前記雄スプライン部30を構成する雄スプライン歯47、47の歯底円直径df47よりも小さい。この為、前記潤滑油堰き止め部材14のうち、外周縁部Oは、前記雌スプライン歯46、46の歯底円よりも径方向外側に位置しており、内周縁部Iは、前記雄スプライン歯47、47の歯底円よりも径方向内側に位置している。 Further, as shown in FIG. 4, of the lubricating oil damming member 14, the outer diameter D is sufficiently than the tooth bottom circle diameter df 46 of the internal spline 46, 46 which constitutes the female spline portion 38 The inner diameter dimension d is smaller than the root circle diameter df 47 of the male spline teeth 47, 47 constituting the male spline portion 30. For this reason, in the lubricating oil damming member 14, the outer peripheral edge O is located radially outside the root circle of the female spline teeth 46, 46, and the inner peripheral edge I is the male spline. The teeth 47 and 47 are located radially inward from the root circle.

従って、前記潤滑油堰き止め部材14は、前記雌スプライン歯46、46の歯底面と前記雄スプライン歯47、47の歯先面との間に形成(画成)される、断面略矩形状(又は三角形状)の外径側潤滑油流路48、48の軸方向一端側(出口側)開口部の軸方向一端側に隣接した部分に位置している。この為、前記各外径側潤滑油流路48、48の軸方向一端側(出口側)開口部は、径方向外側から内側に亙る全範囲が、前記潤滑油堰き止め部材14の外径側部分により軸方向に塞がれた(堰き止められた)状態となる。但し、本例の場合には、前記潤滑油堰き止め部材14の軸方向他側面と前記雄スプライン部30の軸方向一端面との間に、前記隙間45を設けている為、前記各外径側潤滑油流路48、48を通過する潤滑油は、軸方向一端側(出口側)開口部から全く排出されなくなるわけではなく、前記隙間45を通じて少しずつ排出する事が可能である。   Therefore, the lubricating oil blocking member 14 is formed (defined) between the tooth bottom surface of the female spline teeth 46 and 46 and the tooth tip surface of the male spline teeth 47 and 47. (Or a triangular shape) of the outer-diameter-side lubricating oil passages 48, 48 is located at a portion adjacent to one axial end of the opening (exit side) opening in the axial direction. For this reason, the axially one end side (outlet side) opening of each of the outer diameter side lubricating oil passages 48, 48 has the entire range extending from the outer side in the radial direction to the inner side of the lubricating oil damming member 14. The portion is blocked (damped) in the axial direction by the portion. However, in the case of this example, since the gap 45 is provided between the other axial side surface of the lubricating oil damming member 14 and the one axial end surface of the male spline portion 30, each outer diameter is The lubricating oil that passes through the side lubricating oil passages 48, 48 is not completely discharged from the opening on the one axial end side (exit side), but can be discharged little by little through the gap 45.

又、同様に、前記潤滑油堰き止め部材14は、前記雌スプライン歯46、46の歯先面と前記雄スプライン歯47、47の歯底面との間に形成(画成)される、断面略逆三角形状(又は矩形状)の内径側潤滑油流路49、49の軸方向一端側(出口側)開口部の軸方向一端側に隣接した部分に位置している。この為、前記各内径側潤滑油流路49、49の軸方向一端側(出口側)開口部は、径方向外側から内側に亙る全範囲が、前記潤滑油堰き止め部材14の内径側部分により軸方向に塞がれた(堰き止められた)状態となる。但し、本例の場合には、前記潤滑油堰き止め部材14の軸方向他側面と前記雄スプライン部30の軸方向一端面との間に、前記隙間45を設けている為、前記各内径側潤滑油流路49、49を通過する潤滑油は、軸方向一端側(出口側)開口部から全く排出されなくなるわけではなく、前記隙間45を通じて少しずつ排出する事が可能である。   Similarly, the lubricating oil blocking member 14 is formed (defined) between the tooth tip surfaces of the female spline teeth 46 and 46 and the tooth bottom surfaces of the male spline teeth 47 and 47. It is located in the part adjacent to the axial direction one end side of the axial direction one end side (outlet side) opening part of the internal diameter side lubricating oil flow paths 49 and 49 of reverse triangle shape (or rectangular shape). For this reason, the axially one end side (exit side) opening of each of the inner diameter side lubricating oil passages 49, 49 has a whole range extending from the outer side in the radial direction to the inner side by the inner diameter side portion of the lubricating oil damming member 14. It becomes a state of being blocked (dammed) in the axial direction. However, in the case of this example, the gap 45 is provided between the other axial side surface of the lubricating oil damming member 14 and the one axial end surface of the male spline portion 30, so that each inner diameter side The lubricating oil passing through the lubricating oil passages 49, 49 is not completely discharged from the opening on the one axial end side (outlet side), but can be discharged little by little through the gap 45.

更に、本例の場合には、前記潤滑油堰き止め部材14の内径寸法dを、自由状態及び組み付け状態の何れの場合にも、前記入力回転軸1aの大径軸部27のうち、前記雄スプライン部30を設けた部分よりも軸方向一端側部分(先端側部分、図1〜3の右側部分)の外径寸法D27よりも大きく設定している。これにより、組み付け状態で、前記潤滑油堰き止め部材14の内周面と前記入力回転軸1a(逃げ凹溝31)の外周面との間には、潤滑油を軸方向一端側へと通過させる為の隙間が設けられている。又、前記潤滑油堰き止め部材14の外径寸法Dは、前記入力側ディスク2dの中心孔32のうち、中径孔部34(係止溝44が設けられた部分から外れた部分)の内径寸法d34よりも大きく、大径孔部36の内径寸法よりも小さく設定されている。 Furthermore, in the case of this example, the inner diameter dimension d of the lubricating oil damming member 14 is set to the male diameter portion 27 of the large-diameter shaft portion 27 of the input rotary shaft 1a in both the free state and the assembled state. It is set to be larger than the outer diameter dimension D 27 of the axial one end side portion (the tip side portion, the right side portion in FIGS. As a result, in the assembled state, the lubricating oil is passed between the inner peripheral surface of the lubricating oil damming member 14 and the outer peripheral surface of the input rotating shaft 1a (the escape groove 31) toward one end in the axial direction. A clearance is provided for this purpose. The outer diameter dimension D of the lubricating oil damming member 14 is the inner diameter of the medium-diameter hole portion 34 (the portion removed from the portion where the locking groove 44 is provided) in the center hole 32 of the input side disk 2d. It is set to be larger than the dimension d 34 and smaller than the inner diameter dimension of the large-diameter hole portion 36.

以上の様な構成を有する本例のトロイダル側無段変速機13を組み立てる場合には、前記入力側ディスク2d、前記出力側ディスク6a、前記入力側ディスク2c、及び、前記押圧装置10aの順で、前記入力回転軸1aの軸方向他端側から挿入し、該入力側回転軸1aに対して組み付ける。尚、本例の場合、前記入力側ディスク2dを、前記入力側回転軸1aの軸方向一端寄り部分に取り付ける際に、前記内側円筒面29と前記外側円筒面部39との嵌合部により、前記入力側ディスク2dの芯出しを行う事ができる為、前記雌スプライン部38を前記雄スプライン部30に対し容易にスプライン係合させる事ができる。   When assembling the toroidal continuously variable transmission 13 of this example having the above-described configuration, the input side disk 2d, the output side disk 6a, the input side disk 2c, and the pressing device 10a are arranged in this order. And inserted from the other axial end of the input rotary shaft 1a and assembled to the input rotary shaft 1a. In the case of this example, when the input side disk 2d is attached to a portion near one end in the axial direction of the input side rotating shaft 1a, the fitting portion between the inner cylindrical surface 29 and the outer cylindrical surface portion 39 causes the Since the input side disk 2d can be centered, the female spline portion 38 can be easily splined to the male spline portion 30.

更に、本例の場合には、前記潤滑油堰き止め部材14を、前記入力回転軸1aの軸方向一端側から組み付ける。具体的には、前記潤滑油堰き止め部材14を、前記入力回転軸1aの周囲部分を軸方向一端側から他端側に移動させて、その外径側部分を前記入力側ディスク2dの中心孔32に設けられた係止溝44に係止する。尚、前記中心孔32のうち、前記中径孔部34の内側を通過させるには、例えば、前記潤滑油堰き止め部材14を、その外径側部分が内径側部分よりも軸方向一端側に位置する様に傾斜させる(捻る)事で、外径寸法を前記中径孔部34の内径寸法よりも小さくしたり、或いは、前記潤滑油堰き止め部材14全体を弾性的に縮径する事で、外径寸法を前記中径孔部34の内径寸法よりも小さくする。   Further, in the case of this example, the lubricating oil damming member 14 is assembled from one axial end side of the input rotary shaft 1a. Specifically, the lubricating oil damming member 14 is moved around the input rotary shaft 1a from one end side in the axial direction to the other end side, and the outer diameter side portion is moved to the center hole of the input side disk 2d. It is locked in a locking groove 44 provided in 32. In order to pass the inside of the medium diameter hole 34 in the center hole 32, for example, the lubricating oil damming member 14 is arranged such that the outer diameter side portion is closer to one end in the axial direction than the inner diameter side portion. By tilting (twisting) so as to be positioned, the outer diameter dimension is made smaller than the inner diameter dimension of the medium-diameter hole portion 34, or the entire lubricating oil damming member 14 is elastically reduced in diameter. The outer diameter is made smaller than the inner diameter of the medium diameter hole 34.

以上の様な構成を有する本例のトロイダル型無段変速機13によれば、前記入力回転軸1aと前記入力側ディスク2dとのスプライン係合部40を、潤滑油により効率良く潤滑できる。
即ち、本例の場合には、前記入力側ディスク2dのうち、前記雌スプライン部38に対し潤滑油の流れ方向に関して下流側に隣接する部分に、全体が円環状に構成された、前記潤滑油堰き止め部材14を支持しており、この潤滑油堰き止め部材14の内径寸法dを、前記雌スプライン歯46、46の歯底円直径df46、及び、歯先円直径da46、並びに、前記雄スプライン歯47、47の歯底円直径df47よりも小さくしている(d<df47<da46<df46)。この為、本例の場合には、前記潤滑油堰き止め部材14により、前記各外径側潤滑油流路48、48及び前記各内径側潤滑油流路49、49の軸方向一端側(出口側)開口部全体を、軸方向に塞ぐ事ができる。従って、前記入力側回転軸1aの内部に設けられた主潤滑油流路41、副潤滑油流路42、環状保油空間43を通じて供給された潤滑油が、遠心力の作用により径方向外側に移動した場合にも、前記各外径側潤滑油流路48、48を潤滑油が集中的に通過する事を防止できる(外径側潤滑油流路48、48を通過する潤滑油量を減らす事ができる)。又、本例の場合には、前記各内径側潤滑油流路49、49を潤滑油が集中的に通過する事もできる為、前記雌スプライン歯46、46と前記雄スプライン歯47、47との歯面同士の間部分に潤滑油を効果的に送り込む事ができ、前記スプライン係合部40を効果的に潤滑する事ができる。
According to the toroidal type continuously variable transmission 13 of the present example having the above-described configuration, the spline engaging portion 40 between the input rotary shaft 1a and the input side disk 2d can be efficiently lubricated with lubricating oil.
That is, in the case of this example, the lubricating oil, which is formed in an annular shape as a whole in a portion adjacent to the female spline portion 38 on the downstream side with respect to the flow direction of the lubricating oil in the input side disk 2d. The damming member 14 is supported, and the inner diameter d of the lubricating oil damming member 14 is set to a root circle diameter df 46 , a tip circle diameter da 46 of the female spline teeth 46, 46 , and the above-mentioned The male spline teeth 47 are smaller than the root diameter df 47 of the teeth 47 (d <df 47 <da 46 <df 46 ). Therefore, in the case of this example, the lubricating oil damming member 14 causes the outer diameter side lubricating oil passages 48 and 48 and the inner diameter side lubricating oil passages 49 and 49 to be at one end side in the axial direction (outlet). Side) The entire opening can be closed in the axial direction. Accordingly, the lubricating oil supplied through the main lubricating oil passage 41, the auxiliary lubricating oil passage 42, and the annular oil retaining space 43 provided inside the input side rotating shaft 1a is radially outward by the action of centrifugal force. Even in the case of movement, it is possible to prevent the lubricating oil from intensively passing through the outer diameter side lubricating oil channels 48, 48 (the amount of lubricating oil passing through the outer diameter side lubricating oil channels 48, 48 is reduced). Can do it). Further, in the case of this example, since the lubricating oil can intensively pass through the respective inner diameter side lubricating oil passages 49, 49, the female spline teeth 46, 46 and the male spline teeth 47, 47 Thus, the lubricating oil can be effectively fed into the portion between the tooth surfaces, and the spline engaging portion 40 can be effectively lubricated.

更に、本例のトロイダル型無段変速機13の場合には、前記潤滑油堰き止め部材14を、前記入力回転軸1aの軸方向一端側(先端側)から容易に組み付ける事ができる。この為、前記潤滑油堰き止め部材14を新たに設けた事に起因する、前記トロイダル型無段変速機13の組立性の低下を抑制できる。   Furthermore, in the case of the toroidal type continuously variable transmission 13 of this example, the lubricating oil damming member 14 can be easily assembled from the one end side (tip side) in the axial direction of the input rotary shaft 1a. For this reason, it is possible to suppress a decrease in the assemblability of the toroidal continuously variable transmission 13 due to the provision of the lubricating oil damming member 14.

[実施の形態の第2例]
本発明の実施の形態の第2例に就いて、図5を参照しつつ説明する。本例の特徴は、入力側ディスク2dに対する潤滑油堰き止め部材14aの固定方法にある。即ち、本例の場合には、前記潤滑油堰き止め部材14aを、前記入力側ディスク2dに対して、止め輪50を利用して支持固定している。
[Second Example of Embodiment]
A second example of the embodiment of the present invention will be described with reference to FIG. The feature of this example is the method of fixing the lubricating oil damming member 14a to the input side disk 2d. That is, in the case of this example, the lubricating oil damming member 14a is supported and fixed to the input side disk 2d by using a retaining ring 50.

この為に、本例の場合には、前記入力側ディスク2dの中心孔32を構成する中径孔部34のうち、雌スプライン部38の軸方向一端側に隣接する部分に、前記実施の形態の第1例の場合の様な、前記潤滑油堰き止め部材14aの外径側部分を係止する為の係止溝44(図1〜3参照)は形成せずに、軸方向中間部に前記止め輪50を係止する為の係止溝44aを形成している。又、本例の場合、前記潤滑油堰き止め部材14aを、弾性材製又は金属製とし、その外径寸法を、前記中径孔部34(のうち雌スプライン部38よりも軸方向一端側部分)の内径寸法よりも僅かに小さく設定している。これに対し、前記止め輪50は、例えば欠円環状(C字形状)で、比較的に容易に縮径可能に構成されている。   For this reason, in the case of the present embodiment, in the middle diameter hole portion 34 constituting the center hole 32 of the input side disk 2d, the portion adjacent to one end side in the axial direction of the female spline portion 38 is used in the above embodiment. No locking groove 44 (see FIGS. 1 to 3) for locking the outer diameter side portion of the lubricating oil damming member 14a, as in the case of the first example of FIG. A locking groove 44a for locking the retaining ring 50 is formed. Further, in the case of this example, the lubricating oil damming member 14a is made of an elastic material or metal, and the outer diameter of the lubricating oil damming member 14a is a portion on the one end side in the axial direction from the female spline portion 38 of the medium diameter hole portion 34 ) Is set slightly smaller than the inner diameter dimension. On the other hand, the retaining ring 50 is, for example, in the shape of a ring shape (C shape) and can be reduced in diameter relatively easily.

以上の様な構成を有する本例の場合、前記潤滑油堰き止め部材14aを、前記中径孔部34の内側を通過させる場合にも、この潤滑油堰き止め部材14aを傾斜させたり、弾性変形させずに済む。尚、前記止め輪50を前記係止溝44aに係止する為には、この止め輪50を、前記中径孔部34の内側を通過させる必要があるが、この止め輪50は、前記潤滑油堰き止め部材14aの様に内径寸法を小さくする必要性がない。この為、前記止め輪50を、前記中径孔部34を通過させて前記係止溝44aに係止する作業は容易に行える。従って、本例の場合には、トロイダル型無段変速機13の組立作業効率を向上させる事ができる。
その他の構成及び作用効果に就いては、前記実施の形態の第1例の場合と同様である。
In the case of this example having the above-described configuration, the lubricating oil damming member 14a is inclined or elastically deformed even when the lubricating oil damming member 14a passes through the inside of the medium diameter hole 34. You do n’t have to. In order to lock the retaining ring 50 in the retaining groove 44a, it is necessary to pass the retaining ring 50 through the inside of the medium-diameter hole 34. There is no need to reduce the inner diameter dimension unlike the oil damming member 14a. For this reason, the operation of locking the retaining ring 50 in the locking groove 44a through the medium diameter hole 34 can be easily performed. Therefore, in the case of this example, the assembly work efficiency of the toroidal type continuously variable transmission 13 can be improved.
About another structure and an effect, it is the same as that of the case of the 1st example of the said embodiment.

[実施の形態の第3例]
本発明の実施の形態の第3例に就いて、図6を参照しつつ説明する。本例の特徴も、入力側ディスク2dに対する潤滑油堰き止め部材14bの固定方法にある。即ち、本例の場合には、前記潤滑油堰き止め部材14bを、前記入力側ディスク2dに対して、固定用ねじ51を利用して支持固定している。
[Third example of embodiment]
A third example of the embodiment of the present invention will be described with reference to FIG. The feature of this example is also in the fixing method of the lubricating oil damming member 14b to the input side disk 2d. That is, in the case of this example, the lubricating oil damming member 14b is supported and fixed to the input disk 2d by using the fixing screw 51.

この為に、本例の場合には、前記入力側ディスク2dの中心孔32を構成する中径孔部34のうち、軸方向一端部に雌スプライン部38aを形成している。そして、前記潤滑油堰き止め部材14bを、前記中心孔32を構成するディスク側平坦面37に対して、複数本の前記固定用ねじ51により支持固定している。具体的には、前記潤滑油堰き止め部材14bの外径寄り部分を軸方向に挿通した前記固定用ねじ51の軸方向他端部(先端部)を、前記ディスク側平坦面37に対し螺合している。又、本例の場合には、前記潤滑油堰き止め部材14bを、金属製とし、その外径寸法を、前記中径孔部34(のうち雌スプライン部38aよりも軸方向他端側部分)の内径寸法よりも十分に大きく設定している。   Therefore, in the case of this example, a female spline portion 38a is formed at one axial end portion of the medium diameter hole portion 34 constituting the center hole 32 of the input side disk 2d. The lubricating oil blocking member 14 b is supported and fixed to the disk-side flat surface 37 constituting the center hole 32 by a plurality of fixing screws 51. Specifically, the other axial end portion (tip portion) of the fixing screw 51 inserted in the axial direction through a portion near the outer diameter of the lubricating oil blocking member 14 b is screwed into the disk-side flat surface 37. doing. In the case of this example, the lubricating oil damming member 14b is made of metal, and the outer diameter of the lubricating oil damming member 14b is the medium diameter hole 34 (of the other end in the axial direction from the female spline 38a). Is set to be sufficiently larger than the inner diameter dimension.

以上の様な構成を有する本例の場合には、図示しない工具(例えばドライバ)を用いて前記入力側ディスク2dの軸方向一端側から前記潤滑油堰き止め部材14bを容易に支持固定する事ができる為、トロイダル型無段変速機13の組立作業効率の向上を図れる。更に、組立完了後の状態で、前記潤滑油堰き止め部材14bを外部から視認し易い為、この潤滑油堰き止め部材14bの組み付け忘れを防止する事もできる。
その他の構成及び作用効果に就いては、前記実施の形態の第1例の場合と同様である。
In the case of this example having the above-described configuration, the lubricating oil damming member 14b can be easily supported and fixed from one axial end side of the input side disk 2d using a tool (not shown) such as a driver. Therefore, the assembly work efficiency of the toroidal type continuously variable transmission 13 can be improved. Further, since the lubricating oil damming member 14b is easily visible from the outside after the assembly is completed, it is possible to prevent forgetting to assemble the lubricating oil damming member 14b.
About another structure and an effect, it is the same as that of the case of the 1st example of the said embodiment.

[実施の形態の第4例]
本発明の実施の形態の第4例に就いて、図7を参照しつつ説明する。本例の特徴も、入力側ディスク2dに対する潤滑油堰き止め部材14cの固定方法にある。即ち、本例の場合には、前記潤滑油堰き止め部材14cを、前記入力側ディスク2dに対して、圧入する事により直接支持固定している。
[Fourth Example of Embodiment]
A fourth example of the embodiment of the present invention will be described with reference to FIG. The feature of this example is also in the fixing method of the lubricating oil damming member 14c to the input side disk 2d. That is, in the case of this example, the lubricating oil damming member 14c is directly supported and fixed by press-fitting into the input side disk 2d.

この為に、本例の場合には、前記入力側ディスク2dの中心孔32を構成する中径孔部34のうち、雌スプライン部38の軸方向一端側に隣接する部分に、前記実施の形態の第1例の場合の様な、前記潤滑油堰き止め部材14aの外径側部分を係止する為の係止溝44(図1〜3参照)は形成せずに、前記雌スプライン部38が設けられた部分よりも軸方向一端側部分を、内径寸法が軸方向に亙り変化しない嵌合円筒面52としている。又、本例の場合には、前記潤滑油堰き止め部材14cを、弾性材製又は金属製とし、その外径寸法を、前記嵌合円筒面52の内径寸法よりも僅かに大きくしている。   For this reason, in the case of the present embodiment, in the middle diameter hole portion 34 constituting the center hole 32 of the input side disk 2d, the portion adjacent to one end side in the axial direction of the female spline portion 38 is used in the above embodiment. As in the case of the first example, the female spline portion 38 is formed without forming a locking groove 44 (see FIGS. 1 to 3) for locking the outer diameter side portion of the lubricating oil damming member 14a. A portion on one end side in the axial direction from the portion provided with is a fitting cylindrical surface 52 whose inner diameter dimension does not change in the axial direction. In the case of this example, the lubricating oil damming member 14 c is made of an elastic material or metal, and its outer diameter is slightly larger than the inner diameter of the fitting cylindrical surface 52.

以上の様な構成を有する本例の場合には、工具等を使用せずに、前記潤滑油堰き止め部材14cを弾性変形させつつ、前記入力側ディスク2dの軸方向一端側から前記嵌合円筒面部52に押し込む事で、前記潤滑油堰き止め部材14cを前記入力側ディスク2dに対し容易に支持固定する事ができる。この為、本例の場合にも、トロイダル型無段変速機13の組立作業効率の向上を図れる。又、本例の場合にも、組立完了後の状態で、前記潤滑油堰き止め部材14cを外部から視認し易い為、この潤滑油堰き止め部材14cの組み付け忘れを防止する事もできる。尚、嵌合円筒面の内径寸法を軸方向一端側に向かう程小さくする事で、潤滑油による押圧力に拘らず、潤滑油堰き止め部材が軸方向一端側に変位する事を有効に防止する事もできる。
その他の構成及び作用効果に就いては、前記実施の形態の第1例の場合と同様である。
In the case of this example having the above-described configuration, the fitting cylinder is inserted from one end in the axial direction of the input side disk 2d while elastically deforming the lubricating oil damming member 14c without using a tool or the like. By pushing into the surface portion 52, the lubricating oil blocking member 14c can be easily supported and fixed to the input side disk 2d. For this reason, also in the case of this example, the assembly work efficiency of the toroidal-type continuously variable transmission 13 can be improved. Also in the case of this example, since the lubricating oil damming member 14c is easily visible from the outside after the assembly is completed, it is possible to prevent forgetting to attach the lubricating oil damming member 14c. In addition, by reducing the inner diameter of the fitting cylindrical surface toward the one end in the axial direction, it is possible to effectively prevent the lubricating oil damming member from being displaced toward the one end in the axial direction regardless of the pressing force by the lubricating oil. You can also do things.
About another structure and an effect, it is the same as that of the case of the 1st example of the said embodiment.

[実施の形態の第5例]
本発明の実施の形態の第5例に就いて、図8を参照しつつ説明する。本例の特徴は、潤滑油堰き止め部材14dを、入力側ディスク2eではなく、入力側回転軸1bに支持した点にある。即ち、本例の場合には、前記潤滑油堰き止め部材14dを、前記入力回転軸1bの外周面のうち、雄スプライン部30が設けられた部分の軸方向一端側に隣接する部分に、締り嵌めにより嵌合固定(圧入)している。又、この状態で、前記潤滑油堰き止め部材14dの外周面と前記入力側ディスク2eの中径孔部34との間には微小隙間を設けている。この為、前記潤滑油堰き止め部材14dは、前記中径孔部34に対して隙間嵌めとなっている。
[Fifth Example of Embodiment]
A fifth example of the embodiment of the present invention will be described with reference to FIG. The feature of this example is that the lubricating oil blocking member 14d is supported not on the input side disk 2e but on the input side rotating shaft 1b. That is, in this example, the lubricating oil damming member 14d is fastened to a portion of the outer peripheral surface of the input rotary shaft 1b adjacent to one end in the axial direction of the portion where the male spline portion 30 is provided. It is fitted and fixed (press-fit) by fitting. In this state, a minute gap is provided between the outer peripheral surface of the lubricating oil damming member 14d and the medium diameter hole 34 of the input side disk 2e. For this reason, the lubricating oil damming member 14 d is a clearance fit with the medium diameter hole 34.

又、本例の場合、前記潤滑油堰き止め部材14dを、弾性材製又は金属製とし、その内周面に、径方向外方に向けて凹んだ通油凹溝52、52を円周方向に関して等間隔に複数設けている。これら各通油凹溝52、52は、前記潤滑油堰き止め部材14dの内周面に軸方向全長に亙り設けられている。又、本例の場合には、前記各通油凹溝52、52の断面形状を略半円形状としており、これら各通油凹溝52、52の底部を通る外接円の直径を、前記入力側ディスク2eに設けられた雌スプライン部38を構成する雌スプライン歯46の歯先円直径よりも小さくしている。この様な構成を有する前記潤滑油堰き止め部材14dは、前記入力回転軸1bの軸方向一端側から容易に組み付ける事ができる。   In the case of this example, the lubricating oil damming member 14d is made of an elastic material or metal, and oil passage grooves 52, 52 that are recessed radially outward are formed on the inner circumferential surface thereof in the circumferential direction. Are provided at equal intervals. These oil passage grooves 52, 52 are provided over the entire length in the axial direction on the inner peripheral surface of the lubricating oil damming member 14d. In the case of this example, the cross-sectional shape of each oil passage groove 52, 52 is substantially semicircular, and the diameter of the circumscribed circle passing through the bottom of each oil passage groove 52, 52 is the input value. It is made smaller than the diameter of the tip circle of the female spline teeth 46 constituting the female spline portion 38 provided on the side disk 2e. The lubricating oil damming member 14d having such a configuration can be easily assembled from one axial end side of the input rotary shaft 1b.

以上の様な構成を有する本例の場合には、前記潤滑油堰き止め部材14dにより、前記雌スプライン歯46の歯底面と前記雄スプライン部30を構成する雄スプライン歯47の歯先面との間に形成される、断面略矩形状(又は三角形状)の外径側潤滑油流路48(図4参照)の軸方向一端側(出口側)開口部全体を、軸方向に塞ぐ事ができる。又、前記潤滑油堰き止め部材14dにより、前記雌スプライン歯46の歯先面と前記雄スプライン歯47の歯底面との間に形成される、断面略逆三角形状(又は矩形状)の内径側潤滑油流路49(図4参照)の軸方向一端側(出口側)開口部のうち、軸方向に関して前記各通油凹溝52、52と重畳しない部分を、軸方向に塞ぐ事ができる。   In the case of this example having the above-described configuration, the lubricating oil damming member 14 d causes the bottom surface of the female spline teeth 46 and the tip surface of the male spline teeth 47 constituting the male spline portion 30 to be formed. The entire opening at one end side (outlet side) in the axial direction of the outer diameter side lubricating oil passage 48 (see FIG. 4) having a substantially rectangular (or triangular) cross section formed therebetween can be closed in the axial direction. . Further, the lubricating oil damming member 14d forms a substantially inverted triangular (or rectangular) inner diameter side formed between the tip surface of the female spline tooth 46 and the bottom surface of the male spline tooth 47. Of the opening on the one end side (outlet side) in the axial direction of the lubricating oil flow path 49 (see FIG. 4), a portion that does not overlap with the oil passage grooves 52, 52 in the axial direction can be blocked in the axial direction.

従って、前記入力側回転軸1bの内部を通じて供給された潤滑油が、遠心力の作用により径方向外側に移動した場合にも、前記各外径側潤滑油流路48を潤滑油が集中的に通過する事を防止できる(外径側潤滑油流路48を通過する潤滑油量を減らす事ができる)。又、前記各内径側潤滑油流路49を潤滑油が集中的に通過する事もできる為、前記雌スプライン歯46と前記雄スプライン歯47との歯面同士の間部分に潤滑油を効果的に送り込む事ができ、スプライン係合部40を効果的に潤滑する事ができる。又、本例の場合、前記潤滑油堰き止め部材14dの軸方向他端面と前記雄スプライン部30の軸方向一端面との間の隙間45に排出された潤滑油は、前記各通油凹溝52、52を通じて、軸方向一端側に排出される。   Accordingly, even when the lubricating oil supplied through the inside of the input side rotating shaft 1b moves radially outward due to the action of centrifugal force, the lubricating oil concentrates on each outer diameter side lubricating oil flow path 48. It can be prevented from passing (the amount of lubricating oil passing through the outer diameter side lubricating oil passage 48 can be reduced). Further, since the lubricating oil can intensively pass through each of the inner diameter side lubricating oil flow paths 49, the lubricating oil is effectively applied to the portion between the tooth surfaces of the female spline teeth 46 and the male spline teeth 47. The spline engaging portion 40 can be effectively lubricated. In the case of this example, the lubricating oil discharged into the gap 45 between the other axial end surface of the lubricating oil blocking member 14d and the one axial end surface of the male spline portion 30 It is discharged to one end side in the axial direction through 52 and 52.

又、図示は省略するが、前記潤滑油堰き止め部材14dの軸方向他端面と前記雌スプライン部38の軸方向一端面との間部分{図8(A)中に破線で囲んだ部分}には、図示しないOリング等のシール部材を挟持し、前記隙間45に排出された潤滑油が、前記潤滑油堰き止め部材14dの外周面と前記入力側ディスク2eの中径孔部34との間に流れ込む事を防止する構成を採用する事ができる。この様なシール部材を設ける場合には、前記潤滑油堰き止め部材14dの軸方向他端面と前記雌スプライン部38の軸方向一端面とのうちの何れか一方に軸方向に開口したシール用凹溝(切り欠き)を設ける事ができる。
その他の構成及び作用効果に就いては、前記実施の形態の第1例の場合と同様である。
Although not shown, a portion between the other end surface in the axial direction of the lubricating oil blocking member 14d and one end surface in the axial direction of the female spline portion 38 {a portion surrounded by a broken line in FIG. 8A}. Is sandwiching a sealing member such as an O-ring (not shown), and the lubricating oil discharged into the gap 45 is between the outer peripheral surface of the lubricating oil damming member 14d and the medium diameter hole 34 of the input side disk 2e. It is possible to adopt a configuration that prevents the air from flowing into the device. In the case of providing such a seal member, a seal recess opened in the axial direction on one of the other axial end surface of the lubricating oil damming member 14d and one axial end surface of the female spline portion 38 is provided. Grooves (notches) can be provided.
About another structure and an effect, it is the same as that of the case of the 1st example of the said embodiment.

[実施の形態の第6例]
本発明の実施の形態の第6例に就いて、図9を参照しつつ説明する。本例の特徴は、潤滑油堰き止め部材14eとして、図9に示した様な、断面円形又は断面矩形の金属製の線材を少なくとも1巻以上(図示の例では1巻)して成る金属円環材を使用する点にある。
[Sixth Example of Embodiment]
A sixth example of the embodiment of the present invention will be described with reference to FIG. The feature of this example is a metal circle formed of at least one turn (1 turn in the illustrated example) of a metal wire having a circular cross section or a rectangular cross section as shown in FIG. 9 as the lubricating oil blocking member 14e. It is in the point of using a ring material.

以上の様な構成を有する本例の場合には、前記潤滑油堰き止め部材14eの製造コストの低減を図る事ができる。又、この潤滑油堰き止め部材14eは、比較的小さな力で弾性変形させる事が可能である為、取付作業効率の向上を図る事もできる。
その他の構成及び作用効果に就いては、前記実施の形態の第1例の場合と同様である。
In the case of this example having the above-described configuration, it is possible to reduce the manufacturing cost of the lubricating oil damming member 14e. In addition, since the lubricating oil damming member 14e can be elastically deformed with a relatively small force, the mounting work efficiency can be improved.
About another structure and an effect, it is the same as that of the case of the 1st example of the said embodiment.

本発明は、図示の様なハーフトロイダル型に限らず、フルトロイダル型のトロイダル型無段変速機で実施する事もできる。又、本発明を実施する場合に、入力側ディスク(外側ディスク)及び回転軸に対する潤滑油堰き止め部材の支持構造に関しては、上述した様な実施の形態の各例の構造に限定されず、従来から知られた各種の支持構造を採用する事ができる。又、潤滑油堰き止め部材の形状に就いても、前記実施の形態の各例の形状に限定されず、その機能を確保できる限り、その他の形状を採用する事ができる。又、前記実施の形態の各例では、1対の外側ディスクを、動力を入力する入力側ディスクとし、内側ディスクを、動力を出力する出力側ディスクとした場合に就いて説明したが、本発明を実施する場合には、これとは反対に、内側ディスクを、動力を入力する入力側ディスクとし、1対の外側ディスクを、動力を出力する出力側ディスクとする事もできる。更に、前述した実施の形態の各例の構造は、適宜組み合わせて実施する事が可能である。   The present invention is not limited to the half toroidal type as shown in the figure, and can be implemented by a full toroidal type toroidal continuously variable transmission. In carrying out the present invention, the support structure of the lubricating oil damming member with respect to the input side disk (outer disk) and the rotating shaft is not limited to the structure of each example of the embodiment as described above. Various support structures known from can be adopted. Further, the shape of the lubricating oil blocking member is not limited to the shape of each example of the above embodiment, and other shapes can be adopted as long as the function can be secured. In each example of the above embodiment, the case where the pair of outer disks are input side disks for inputting power and the inner disk is an output side disk for outputting power has been described. On the contrary, the inner disk may be an input side disk for inputting power, and the pair of outer disks may be an output side disk for outputting power. Furthermore, the structures of the examples of the above-described embodiments can be implemented in appropriate combination.

1、1a、1b 入力回転軸
2a、2b、2c、2d、2e 入力側ディスク
3 ボールスプライン
4 出力筒
5 出力歯車
6、6a 出力側ディスク
7 パワーローラ
8 トラニオン
9 駆動軸
10、10a 押圧装置
11a、11b 予圧ばね
12 ローディングナット
13 トロイダル側無段変速機
14、14a〜14e 潤滑油堰き止め部材
15 アクチュエータケース
16 支柱
17 シリンダ
18 内径側シリンダ素子
19 外径側シリンダ素子
20 係止凹溝
21 係止環
22 抑え環
23a、23b ピストン板
24 底板部
25a、25b 油圧室
26 小径軸部
27 大径軸部
28 軸側段差面
29 内側円筒面部
30 雄スプライン部
31 逃げ凹溝
32 中心孔
33 小径孔部
34 中径孔部
35 ディスク側段差面
36 大径孔部
37 ディスク側平坦面
38、38a 雌スプライン部
39 外側円筒面部
40 スプライン係合部
41 主潤滑油流路
42 副潤滑油流路
43 環状保油空間
44 係止溝
43 環状保油空間
44 係止溝
45 隙間
46 雌スプライン歯
47 雄スプライン歯
48 外径側潤滑油流路
49 内径側潤滑油流路
50 止め輪
51 固定用ねじ
52 通油凹溝
DESCRIPTION OF SYMBOLS 1, 1a, 1b Input rotary shaft 2a, 2b, 2c, 2d, 2e Input side disk 3 Ball spline 4 Output cylinder 5 Output gear 6, 6a Output side disk 7 Power roller 8 Trunnion 9 Drive shaft 10, 10a Pressing device 11a, 11b Preload spring 12 Loading nut 13 Toroidal side continuously variable transmission 14, 14a-14e Lubricating oil damming member 15 Actuator case 16 Strut 17 Cylinder 18 Inner diameter side cylinder element 19 Outer diameter side cylinder element 20 Locking groove 21 Locking ring 22 Retaining ring 23a, 23b Piston plate 24 Bottom plate portion 25a, 25b Hydraulic chamber 26 Small-diameter shaft portion 27 Large-diameter shaft portion 28 Axial step surface 29 Inner cylindrical surface portion 30 Male spline portion 31 Escape groove 32 Central hole 33 Small-diameter hole portion 34 Medium diameter hole 35 Disc side step surface 36 Large diameter hole 37 D Disk side flat surface 38, 38a Female spline part 39 Outer cylindrical surface part 40 Spline engaging part 41 Main lubricating oil flow path 42 Sub lubricating oil flow path 43 Annular oil retaining space 44 Engaging groove 43 Annular oil retaining space 44 Engaging groove 45 Clearance 46 Female spline teeth 47 Male spline teeth 48 Outer diameter side lubricating oil flow path 49 Inner diameter side lubricating oil flow path 50 Retaining ring 51 Fixing screw 52 Oil passage groove

Claims (3)

外周面の軸方向一端側部分に雄スプライン部が設けられた回転軸と、
断面円弧形の軸方向側面同士を対向させた状態で、前記回転軸と同期した回転を可能にこの回転軸にそれぞれ支持された1対の外側ディスクと、
断面円弧形の軸方向両側面を前記1対の外側ディスクの軸方向側面に対向させた状態で、前記回転軸の軸方向中間部周囲にこの回転軸に対する相対回転を可能に支持された内側ディスクと、
前記内側ディスクの軸方向両側面と前記1対の外側ディスクの軸方向側面とにそれぞれの周面を当接させた複数のパワーローラと、
全体が円環状に構成され、前記1対の外側ディスクのうち軸方向一端側に設けられた一方の外側ディスクに形成された雌スプライン部を構成する雌スプライン歯の歯底円直径よりも小さな内径寸法を有しており、前記一方の外側ディスク又は前記回転軸のうち、前記雌スプライン部と前記雄スプライン部とのスプライン係合部を軸方向に通過して潤滑する潤滑油の流れ方向に関してこのスプライン係合部の下流側に隣接する部分に支持された潤滑油堰き止め部材と、を備えるトロイダル型無段変速機。
A rotating shaft provided with a male spline portion on one end side in the axial direction of the outer peripheral surface;
A pair of outer disks each supported by the rotary shaft to be able to rotate in synchronization with the rotary shaft in a state where the axial side surfaces of the arcuate cross section are opposed to each other;
An inner side that is supported so as to be capable of relative rotation with respect to the rotational axis around an axially intermediate portion of the rotating shaft with both axial side surfaces of the arcuate cross section facing the axial side surface of the pair of outer disks. A disc,
A plurality of power rollers having respective circumferential surfaces abutting against both axial side surfaces of the inner disk and axial side surfaces of the pair of outer disks;
An inner diameter smaller than the diameter of the root circle of the female spline teeth constituting the female spline portion formed on one outer disk provided on one axial end side of the pair of outer disks. A dimension of the one outer disk or the rotating shaft, and the direction of the lubricating oil flowing through the spline engaging portion between the female spline portion and the male spline portion in the axial direction is lubricated. A toroidal continuously variable transmission comprising: a lubricating oil damming member supported by a portion adjacent to the downstream side of the spline engaging portion.
前記潤滑油堰き止め部材の内径寸法が、前記雌スプライン歯の歯先円直径よりも小さい、請求項1に記載したトロイダル型無段変速機。   2. The toroidal continuously variable transmission according to claim 1, wherein an inner diameter dimension of the lubricating oil blocking member is smaller than a tip diameter of the female spline teeth. 前記潤滑油堰き止め部材が、前記一方の外側ディスクのうち、前記雌スプライン部の軸方向一端側に隣接する部分に支持されており、前記潤滑油堰き止め部材の内径寸法が、前記回転軸のうち、前記雄スプライン部が形成された部分よりも軸方向一端側に存在する部分の外径寸法よりも大きい、請求項1に記載したトロイダル型無段変速機。   The lubricating oil damming member is supported on a portion of the one outer disk adjacent to one end side in the axial direction of the female spline portion, and the inner diameter dimension of the lubricating oil damming member is equal to that of the rotating shaft. The toroidal continuously variable transmission according to claim 1, wherein the outer diameter dimension of a portion existing on one end side in the axial direction is larger than a portion where the male spline portion is formed.
JP2016227562A 2016-11-24 2016-11-24 Toroidal type non-stage transmission Pending JP2018084281A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016227562A JP2018084281A (en) 2016-11-24 2016-11-24 Toroidal type non-stage transmission
PCT/JP2017/040500 WO2018096941A1 (en) 2016-11-24 2017-11-09 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227562A JP2018084281A (en) 2016-11-24 2016-11-24 Toroidal type non-stage transmission

Publications (1)

Publication Number Publication Date
JP2018084281A true JP2018084281A (en) 2018-05-31

Family

ID=62195598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227562A Pending JP2018084281A (en) 2016-11-24 2016-11-24 Toroidal type non-stage transmission

Country Status (2)

Country Link
JP (1) JP2018084281A (en)
WO (1) WO2018096941A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117027681B (en) * 2023-10-07 2023-12-12 山东巨辉石油科技有限公司 Safety joint with self-locking function for oil field

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261472A (en) * 2007-04-14 2008-10-30 Nsk Ltd Toroidal type continuously variable transmission
JP5935473B2 (en) * 2012-04-17 2016-06-15 日本精工株式会社 Toroidal continuously variable transmission
JP6110215B2 (en) * 2013-06-03 2017-04-05 日本精工株式会社 Toroidal continuously variable transmission
JP6252227B2 (en) * 2014-02-18 2017-12-27 日本精工株式会社 Toroidal continuously variable transmission

Also Published As

Publication number Publication date
WO2018096941A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
US6612961B2 (en) Forward-reverse rotation device for a continuously variable transmission
US8617026B2 (en) Face spline clutch
JP6117991B2 (en) Toroidal continuously variable transmission
JP2018084281A (en) Toroidal type non-stage transmission
JP4200728B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP4774828B2 (en) Toroidal continuously variable transmission
JP6587975B2 (en) Support structure for rotating member
JP4696537B2 (en) Toroidal continuously variable transmission
JP5045805B2 (en) Toroidal continuously variable transmission
JP2005351294A (en) Continuously variable transmission
JP6252227B2 (en) Toroidal continuously variable transmission
JP2016020733A (en) Continuously variable transmission
JP6705735B2 (en) Toroidal type continuously variable transmission
JP4501527B2 (en) Toroidal continuously variable transmission
JP7459771B2 (en) Toroidal type continuously variable transmission
JP6766382B2 (en) Toroidal continuously variable transmission
JP4547968B2 (en) Continuously variable transmission
JP6493346B2 (en) Continuously variable transmission for vehicle
JP4929977B2 (en) Toroidal continuously variable transmission
JP4606124B2 (en) Continuously variable transmission
JP6561572B2 (en) Toroidal continuously variable transmission
JP5953977B2 (en) Toroidal continuously variable transmission
JP2024029999A (en) differential device
JP5982326B2 (en) Toroidal continuously variable transmission
JP2018096429A (en) Toroidal type continuously variable transmission