JP5953977B2 - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP5953977B2
JP5953977B2 JP2012143256A JP2012143256A JP5953977B2 JP 5953977 B2 JP5953977 B2 JP 5953977B2 JP 2012143256 A JP2012143256 A JP 2012143256A JP 2012143256 A JP2012143256 A JP 2012143256A JP 5953977 B2 JP5953977 B2 JP 5953977B2
Authority
JP
Japan
Prior art keywords
input
disk
curved surface
disc
rotary shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012143256A
Other languages
Japanese (ja)
Other versions
JP2014005912A (en
Inventor
豊田 俊郎
俊郎 豊田
井上 英司
英司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012143256A priority Critical patent/JP5953977B2/en
Publication of JP2014005912A publication Critical patent/JP2014005912A/en
Application granted granted Critical
Publication of JP5953977B2 publication Critical patent/JP5953977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Friction Gearing (AREA)
  • Springs (AREA)

Description

この発明は、例えば自動車用の自動変速機として利用するトロイダル型無段変速機の改良に関する。具体的には、押圧装置が発生する押圧力の損失を低く抑えて、伝達効率の良いトロイダル型無段変速機の実現を図るものである。   The present invention relates to an improvement of a toroidal continuously variable transmission used as an automatic transmission for an automobile, for example. Specifically, the loss of the pressing force generated by the pressing device is kept low, and a toroidal continuously variable transmission with good transmission efficiency is realized.

自動車用自動変速機として使用可能なトロイダル型無段変速機が、例えば特許文献1〜3等、多くの刊行物に記載されており、且つ、一部で実施されていて周知である。図8〜9は、このうちの特許文献1に記載された、トロイダル型無段変速機1と遊星歯車式変速機2とを組み合わせる事で、入力軸3と出力軸4との間の速度比(増速比)の調節幅を大きくした無段変速装置の1例を示している。この無段変速装置では、前記入力軸3と前記出力軸4との間に、前記トロイダル型無段変速機1の入力回転軸5と伝達軸6とを、これら両軸3、4と同心に設けている。そして、前記遊星歯車式変速機2のうちの前段ユニット7と中段ユニット8とを前記入力回転軸5と前記伝達軸6との間に掛け渡す状態で、後段ユニット9をこの伝達軸6と前記出力軸4との間に掛け渡す状態で、それぞれ設けている。   Toroidal continuously variable transmissions that can be used as automatic transmissions for automobiles are described in many publications such as Patent Documents 1 to 3, and are well-known and implemented in part. 8 to 9 show the speed ratio between the input shaft 3 and the output shaft 4 by combining the toroidal continuously variable transmission 1 and the planetary gear transmission 2 described in Patent Document 1 among them. An example of a continuously variable transmission with an increased adjustment range of (speed increase ratio) is shown. In this continuously variable transmission, between the input shaft 3 and the output shaft 4, the input rotary shaft 5 and the transmission shaft 6 of the toroidal continuously variable transmission 1 are concentric with the shafts 3 and 4. Provided. In the state where the front stage unit 7 and the middle stage unit 8 of the planetary gear type transmission 2 are spanned between the input rotary shaft 5 and the transmission shaft 6, the rear stage unit 9 is connected to the transmission shaft 6 and the transmission shaft 6. Each is provided in a state of being spanned between the output shaft 4.

又、前記トロイダル型無段変速機1は、1対の入力ディスク10a、10bと、一体型の出力ディスク11と、複数のパワーローラ12a、12bとを備える、ダブルキャビティ型と呼ばれるものである。このうちの各入力ディスク10a、10bは、前記入力回転軸5を介して互いに同心に、且つ、同期した回転を自在として結合されている。又、前記出力ディスク11は、前記両入力ディスク10a、10b同士の間に、これら両入力ディスク10a、10bと同心に、且つ、これら両入力ディスク10a、10bに対する相対回転を可能として支持されている。更に、前記各パワーローラ12a、12bは、前記出力ディスク11の軸方向両側面と前記両入力ディスク10a、10bの軸方向片側面との間に、それぞれ複数個ずつ(図示の例の場合は2個ずつ、合計4個)挟持されている。そして、前記両入力ディスク10a、10bの回転に伴って回転しつつ、これら両入力ディスク10a、10bと前記出力ディスク11との間で動力を伝達する。   The toroidal continuously variable transmission 1 is called a double cavity type including a pair of input disks 10a and 10b, an integrated output disk 11, and a plurality of power rollers 12a and 12b. Of these, the input disks 10a and 10b are concentrically connected to each other via the input rotating shaft 5 and are coupled so as to freely rotate in synchronization. The output disk 11 is supported between the input disks 10a and 10b so as to be concentric with the input disks 10a and 10b and to be rotatable relative to the input disks 10a and 10b. . Further, a plurality of each of the power rollers 12a and 12b is provided between the both axial side surfaces of the output disk 11 and one axial side surface of the both input disks 10a and 10b (2 in the illustrated example). 4 pieces each, a total of 4 pieces). Power is transmitted between the input disks 10a and 10b and the output disk 11 while rotating with the rotation of the input disks 10a and 10b.

又、前記出力ディスク11はその軸方向両端部を、ケーシング13内に、それぞれ1対ずつの支柱14、14と、スラストアンギュラ玉軸受である転がり軸受15、15とにより、回転自在に支持している。又、前記両支柱14、14の両端部近傍に、それぞれ支持板16、16を支持している。そして、これら両支持板16、16同士の間に、それぞれが特許請求の範囲に記載した支持部材である複数のトラニオン17a、17bを、それぞれの両端部に互いに同心に設けた傾転軸18、18を中心とする、揺動及び軸方向(図8〜9の上下方向)の変位を可能に支持している。又、前記各トラニオン17a、17bの内側面(互いに対向する面)に前記各パワーローラ12a、12bを、それぞれ支持軸19、19並びに複数組の転がり軸受を介して、回転並びに前記入力回転軸5の軸方向に関する若干の変位を自在に支持している。そして、前記各パワーローラ12a、12bの周面と、前記両入力ディスク10a、10bの軸方向片側面及び前記出力ディスク11の軸方向両側面とを転がり接触させている。これら各面同士の転がり接触部が、トラクションオイルを介して動力を伝達する、トラクション部となる。   The output disk 11 is rotatably supported at both ends in the axial direction by a pair of support columns 14 and 14 and rolling bearings 15 and 15 which are thrust angular ball bearings. Yes. Further, support plates 16 and 16 are supported in the vicinity of both end portions of the support columns 14 and 14, respectively. And between these both support plates 16, 16, a plurality of trunnions 17a, 17b, each of which is a support member described in the claims, are provided with tilt shafts 18, which are provided concentrically with each other at both ends. 18 is supported so as to be able to swing and displace in the axial direction (vertical direction in FIGS. 8 to 9). Further, the power rollers 12a and 12b are respectively rotated on the inner side surfaces (surfaces facing each other) of the trunnions 17a and 17b via support shafts 19 and 19 and a plurality of sets of rolling bearings, and the input rotary shaft 5 A slight displacement in the axial direction is supported freely. The peripheral surfaces of the power rollers 12a and 12b are brought into rolling contact with the axial side surfaces of the input disks 10a and 10b and the axial side surfaces of the output disk 11. The rolling contact portions between these surfaces serve as traction portions that transmit power via traction oil.

又、前記入力回転軸5の基端部(図8の左端部)を図示しないエンジンのクランクシャフトに、前記入力軸3を介して結合し、このクランクシャフトにより前記入力回転軸5を回転駆動する様にしている。又、この入力回転軸5の基端部と、前記エンジンに近い側(図8の左側)の入力ディスク10aとの間に、油圧式の押圧装置20を設け、前記各トラクション部に、適正な面圧を付与できる様にしている。この押圧装置20は、油圧室21a、21b内への油圧の導入に伴って軸方向寸法を拡張し、この押圧装置20側の入力ディスク10aを前記トロイダル型無段変速機1の軸方向中央側に向け押圧すると同時に、反対側の入力ディスク10bを、前記入力回転軸5を介して、前記トロイダル型無段変速機1の軸方向中央側に向け引っ張る。この結果、前記両入力ディスク10a、10b同士の間隔、延いては、これら両入力ディスク10a、10bの入力側曲面と、前記出力ディスク11の軸方向両側面である出力側曲面との間隔が狭まるので、前記各トラクション部の面圧を高くできる。   Further, a base end portion (left end portion in FIG. 8) of the input rotary shaft 5 is coupled to an engine crankshaft (not shown) via the input shaft 3, and the input rotary shaft 5 is rotationally driven by the crankshaft. Like. Further, a hydraulic pressing device 20 is provided between the base end portion of the input rotating shaft 5 and the input disk 10a on the side close to the engine (left side in FIG. 8), and each traction portion has an appropriate The surface pressure can be applied. The pressing device 20 expands its axial dimension in accordance with the introduction of hydraulic pressure into the hydraulic chambers 21 a and 21 b, and the input disk 10 a on the pressing device 20 side is connected to the axially central side of the toroidal continuously variable transmission 1. At the same time, the opposite input disk 10 b is pulled toward the axially central side of the toroidal continuously variable transmission 1 via the input rotary shaft 5. As a result, the distance between the input disks 10a and 10b, and hence the distance between the input-side curved surfaces of both the input disks 10a and 10b and the output-side curved surfaces that are both side surfaces in the axial direction of the output disk 11 are reduced. Therefore, the surface pressure of each traction part can be increased.

又、前記出力ディスク11に、中空回転軸22の基端部(図8の左端部)をスプライン係合させている。そして、この中空回転軸22を、前記エンジンから遠い側(図8の右側)の入力ディスク10bの内側に挿通して、前記出力ディスク11の回転力を取り出し可能としている。更に、前記中空回転軸22の先端部(図8の右端部)で前記入力ディスク10bの外側面から突出した部分に、前記遊星歯車式変速機2の前段ユニット7を構成する為の、太陽歯車23を固設している。   The output disk 11 is spline-engaged with the base end portion (the left end portion in FIG. 8) of the hollow rotary shaft 22. The hollow rotating shaft 22 is inserted inside the input disk 10b on the far side (right side in FIG. 8) from the engine so that the rotational force of the output disk 11 can be taken out. Further, a sun gear for constituting the front stage unit 7 of the planetary gear type transmission 2 at a portion protruding from the outer surface of the input disk 10b at the tip end portion (right end portion in FIG. 8) of the hollow rotary shaft 22. 23 is fixed.

一方、前記入力回転軸5の先端部(図8の右端部)で前記中空回転軸22から突出した部分と前記入力ディスク10bとの間に、キャリア24を掛け渡す様に設けて、この入力ディスク10bと前記入力回転軸5とが、互いに同期して回転する様にしている。そして、前記キャリア24の軸方向両側面の円周方向等間隔位置(一般的には3〜4個所位置)に、それぞれがダブルピニオン型である前記遊星歯車式変速機2の前段ユニット7及び中段ユニット8を構成する遊星歯車25〜27を、回転自在に支持している。更に、前記キャリア24の片半部(図8の右半部)周囲にリング歯車28を、回転自在に支持している。又、前記伝達軸6の基端部(図8の左端部)に固設した第二太陽歯車29を、前記リング歯車28の内径側に配置している。   On the other hand, a carrier 24 is provided between the input disk 10b and a portion protruding from the hollow rotation shaft 22 at the tip end portion (right end portion in FIG. 8) of the input rotation shaft 5, and this input disk. 10b and the input rotation shaft 5 rotate in synchronization with each other. Then, the front stage unit 7 and the middle stage of the planetary gear type transmission 2 each of which is a double pinion type at circumferentially equidistant positions (generally 3 to 4 positions) on both sides in the axial direction of the carrier 24. The planetary gears 25 to 27 constituting the unit 8 are rotatably supported. Further, a ring gear 28 is rotatably supported around one half (right half in FIG. 8) of the carrier 24. A second sun gear 29 fixed to the base end portion (left end portion in FIG. 8) of the transmission shaft 6 is disposed on the inner diameter side of the ring gear 28.

又、前記後段ユニット9を構成する第二キャリア30を、前記出力軸4の基端部(図8の左端部)に結合固定している。そして、この第二キャリア30と前記リング歯車28とを、低速用クラッチ31を介して結合している。又、前記伝達軸6の先端寄り(図8の右端寄り)部分に第三太陽歯車32を固設している。又、この第三太陽歯車32の周囲に、第二リング歯車33を配置し、この第二リング歯車33と前記ケーシング13等の固定の部分との間に、高速用クラッチ34を設けている。更に、前記第二リング歯車33と前記第三太陽歯車32との間に配置した複数組の遊星歯車35、36を、前記第二キャリア30に回転自在に支持している。   The second carrier 30 constituting the rear stage unit 9 is coupled and fixed to the base end portion (left end portion in FIG. 8) of the output shaft 4. The second carrier 30 and the ring gear 28 are coupled via a low speed clutch 31. Further, a third sun gear 32 is fixedly provided near the tip of the transmission shaft 6 (near the right end in FIG. 8). A second ring gear 33 is disposed around the third sun gear 32, and a high speed clutch 34 is provided between the second ring gear 33 and a fixed portion such as the casing 13. Further, a plurality of planetary gears 35 and 36 disposed between the second ring gear 33 and the third sun gear 32 are rotatably supported on the second carrier 30.

上述の様に構成する無段変速装置の場合、前記入力回転軸5から1対の入力ディスク10a、10b、及び、各パワーローラ12a、12bを介して一体型の出力ディスク11に伝わった動力は、前記中空回転軸22を通じて取り出される。そして、前記低速用クラッチ31を接続し、前記高速用クラッチ34の接続を断った、所謂低速モードの状態では、前記トロイダル型無段変速機1の変速比(減速比)を変える事により、前記入力回転軸5の回転速度を一定にしたまま、前記出力軸4の回転速度を、所謂ギヤードニュートラル(G/N)と呼ばれる停止状態(変速比無限大の状態)を挟んで正転、逆転に変換自在となる。一方、前記高速用クラッチ34を接続し、前記低速用クラッチ31の接続を断った、所謂高速モードの状態では、前記トロイダル型無段変速機1の変速比を増速側に変化させる(減速比の値を小さくする)程、無段変速装置全体としての速度比(増速比)も増速側に変化する(増速比が大きくなる)。前記低速、高速両モードでの、前記トロイダル型無段変速機1の変速比と前記無段変速装置の速度比との関係、各モード状態でこのトロイダル型無段変速機1を通過するトルクの方向及び大きさ等に就いては従来から広く知られている為、図示並びに詳しい説明は省略する。   In the case of the continuously variable transmission configured as described above, the power transmitted from the input rotary shaft 5 to the integrated output disk 11 via the pair of input disks 10a and 10b and the power rollers 12a and 12b is as follows. , And taken out through the hollow rotary shaft 22. In the so-called low-speed mode in which the low-speed clutch 31 is connected and the high-speed clutch 34 is disconnected, the speed ratio (reduction ratio) of the toroidal continuously variable transmission 1 is changed to change the speed ratio. While the rotation speed of the input rotation shaft 5 is kept constant, the rotation speed of the output shaft 4 is rotated forward and reverse with a so-called geared neutral (G / N) stop state (a state where the gear ratio is infinite) sandwiched therebetween. Conversion is possible. On the other hand, in the so-called high speed mode in which the high speed clutch 34 is connected and the low speed clutch 31 is disconnected, the speed ratio of the toroidal continuously variable transmission 1 is changed to the speed increasing side (speed reduction ratio). The smaller the value of, the more the speed ratio (speed increase ratio) of the continuously variable transmission changes to the speed increase side (the speed increase ratio increases). The relationship between the speed ratio of the toroidal continuously variable transmission 1 and the speed ratio of the continuously variable transmission in both the low speed and high speed modes, and the torque passing through the toroidal continuously variable transmission 1 in each mode state. Since the direction, size, and the like have been widely known, illustration and detailed description are omitted.

何れの運転状態でも、前記押圧装置20の油圧室21a、21b内には、前記トロイダル型無段変速機1を通過するトルク(通過トルク)に応じた油圧を導入して、前記各トラクション部の面圧を適正値に規制する。即ち、この通過トルクが大きい場合には、前記油圧室21a、21b内に導入する油圧を高くして前記押圧装置20が発生する押圧力を大きくし、前記各トラクション部の面圧を高くする。そして、これら各トラクション部で、過大な滑り(グロススリップ)が発生する事を防止する。これに対して、前記通過トルクが小さい場合には、前記油圧室21a、21b内に導入する油圧を低くして前記押圧装置20が発生する押圧力を小さくし、前記各トラクション部の面圧を低くする。そして、これら各トラクション部の転がり抵抗を低く抑える。尚、前記押圧装置20の内部には予圧ばね37を設けて、始動直後、未だ前記油圧室21a、21b内の油圧が立ち上がらない状態でも、前記各トラクション部に必要最低限の面圧を付与できる様にしている。   In any operation state, hydraulic pressure corresponding to the torque (passing torque) passing through the toroidal-type continuously variable transmission 1 is introduced into the hydraulic chambers 21a and 21b of the pressing device 20, and Regulate the contact pressure to an appropriate value. That is, when the passing torque is large, the hydraulic pressure introduced into the hydraulic chambers 21a and 21b is increased to increase the pressing force generated by the pressing device 20, and the surface pressure of each traction portion is increased. Then, excessive slippage (gross slip) is prevented from occurring in each of these traction portions. On the other hand, when the passing torque is small, the hydraulic pressure introduced into the hydraulic chambers 21a and 21b is lowered to reduce the pressing force generated by the pressing device 20, and the surface pressure of each traction portion is reduced. make low. And rolling resistance of each of these traction parts is suppressed low. In addition, a preload spring 37 is provided inside the pressing device 20 so that the necessary minimum surface pressure can be applied to the traction portions even after the start-up, even when the hydraulic pressure in the hydraulic chambers 21a and 21b has not yet risen. Like.

上述の様に、前記押圧装置20が発生する押圧力は、前記トロイダル型無段変速機1の通過トルクに応じて変動し、このトロイダル型無段変速機1の構成各部材の弾性変形量も、この通過トルクの変化に伴って変化する。この結果、前記入力回転軸5に対する前記入力ディスク10aの軸方向位置も、前記通過トルクの変動に伴って変化する。この為に、図8に示した構造では、前記入力回転軸5に対して前記入力ディスク10aを、ボールスプライン38により、互いの間でのトルク伝達を行わせつつ、軸方向に関する相対変位を可能に支持している。   As described above, the pressing force generated by the pressing device 20 varies according to the passing torque of the toroidal continuously variable transmission 1, and the amount of elastic deformation of each component of the toroidal continuously variable transmission 1 also varies. It changes with the change of this passing torque. As a result, the axial position of the input disk 10a with respect to the input rotating shaft 5 also changes as the passing torque varies. For this reason, in the structure shown in FIG. 8, the input disk 10a can be relatively displaced in the axial direction while the input disk 10a is transmitted to the input rotary shaft 5 by the ball spline 38. I support it.

ボールスプライン38は、他の構造に比べて軸方向変位に対する抵抗を低く抑えられる構造ではあるが、前記通過トルクが大きい場合には、各ボールの転動面が、各ボールスプライン溝の内側面に強く押し付けられる。従って、これら各ボールの転動面とこれら各ボールスプライン溝の内側面との当接部の転がり抵抗が大きくなり、前記入力回転軸5に対して前記入力ディスク10aを軸方向に変位させる事に対する抵抗が大きくなる。そして、この抵抗が大きくなる程、前記押圧装置20が発生する押圧力のうち、前記各トラクション部の面圧を上昇させる為に利用される割合が少なくなる。この為、前記各トラクション部でグロススリップが発生するのを抑える為には、前記両油圧室21a、21b内に導入する油圧を十分に高くする必要がある。この油圧を高くする事は、圧油供給用のポンプの駆動力(ポンプロス)が大きくなる事に繋がり、トロイダル型無段変速機1(を組み込んだ無段変速装置)全体としての伝達効率を低下させる原因となる。この点に関しては、特許文献2に記載された構造の場合も同様である。   The ball spline 38 has a structure in which resistance to axial displacement is kept lower than other structures, but when the passing torque is large, the rolling surface of each ball is placed on the inner surface of each ball spline groove. Strongly pressed. Accordingly, the rolling resistance of the contact portion between the rolling surface of each ball and the inner side surface of each ball spline groove is increased, and the input disk 10a is displaced in the axial direction with respect to the input rotating shaft 5. Resistance increases. As the resistance increases, the proportion of the pressing force generated by the pressing device 20 that is used to increase the surface pressure of each traction portion decreases. For this reason, in order to suppress the occurrence of gross slip in each traction section, it is necessary to sufficiently increase the hydraulic pressure introduced into the hydraulic chambers 21a and 21b. Increasing the hydraulic pressure leads to an increase in the driving force (pump loss) of the pump for supplying pressure oil, and the transmission efficiency of the toroidal continuously variable transmission 1 (the continuously variable transmission incorporating it) is reduced. Cause it. This is the same for the structure described in Patent Document 2.

これに対して、特許文献3に記載されている様に、ボールスプラインを入力ディスクの外径側に配置した構造によれば、このボールスプラインの直径が大きくなる分、各ボールの転動面と各ボールスプライン溝の内側面との当接部の面圧を低く抑えられる。そして、これら各当接部の転がり抵抗を低く抑えられて、上述の様な不都合を低減できる。但し、前記ボールスプラインを前記入力ディスクの外径側に配置する構造は、ストロークの確保が難しい。又、通過トルクが大きな場合にボールスプライン部で、軸方向変位に対する抵抗が生じる事に変わりはない為、トロイダル型無段変速機全体としての伝達効率を向上させる面からも、依然として改良の余地がある。   On the other hand, as described in Patent Document 3, according to the structure in which the ball spline is arranged on the outer diameter side of the input disk, the diameter of the ball spline is increased and the rolling surface of each ball is increased. The surface pressure of the contact portion with the inner side surface of each ball spline groove can be kept low. And the rolling resistance of these each contact part can be suppressed low, and the above inconveniences can be reduced. However, the structure in which the ball spline is arranged on the outer diameter side of the input disk makes it difficult to secure a stroke. In addition, when the passing torque is large, there is no change in the resistance against axial displacement at the ball spline, so there is still room for improvement in terms of improving the transmission efficiency of the toroidal continuously variable transmission as a whole. is there.

特開2012−2330号公報JP 2012-2330 A 特開2001−295904号公報JP 2001-295904 A 特開2005−3084号公報JP 2005-3084 A

本発明は、上述の様な事情に鑑み、押圧装置が発生する押圧力の損失を低く抑えて、伝達効率の良いトロイダル型無段変速機を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has been invented to realize a toroidal type continuously variable transmission with good transmission efficiency by suppressing the loss of the pressing force generated by the pressing device.

本発明のトロイダル型無段変速機は何れも、入力回転軸と、入力ディスクと、出力ディスクと、複数個の支持部材と、複数個のパワーローラと、押圧装置と、予圧ばねとを備える。
このうちの入力回転軸は、エンジン、モータ等の駆動源により回転駆動される。
又、前記入力ディスクは、軸方向側面をトロイド曲面である入力側曲面としたもので、前記入力回転軸の一部に、この入力回転軸と同期した回転及びこの入力回転軸の軸方向の変位を可能に支持している。
又、前記出力ディスクは、前記入力側曲面に対向する軸方向側面をトロイド曲面である出力側曲面とし、前記入力ディスクと同心に、且つ、この入力ディスクに対する相対回転を可能に支持している。
又、前記各支持部材は、前記各ディスクの軸方向に関して前記入力側曲面と前記出力側曲面との間部分で、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心として揺動変位可能に配置している。
又、前記各パワーローラは、それぞれ前記各支持部材に回転自在に支持した状態で、互いに対向する前記出力側曲面と前記入力側曲面との間に挟持している。
又、前記押圧装置は、前記各パワーローラの周面と前記出力側、入力側各曲面との転がり接触部であるトラクション部の面圧を確保する為、前記入力ディスクと前記出力ディスクとを互いに近づく方向に押圧する。
更に、前記予圧ばねは、前記入力回転軸と前記入力ディスクとの間に設けたもので、この入力ディスクを前記出力ディスクに向け、軸方向に押圧する事により、前記押圧装置が押圧力を発生しない状態でも前記入力ディスクを前記出力ディスクに向け押圧して、前記各トラクション部に面圧を付与する。
Each of the toroidal continuously variable transmissions of the present invention includes an input rotating shaft, an input disk, an output disk, a plurality of support members, a plurality of power rollers, a pressing device, and a preload spring.
Of these, the input rotation shaft is rotationally driven by a drive source such as an engine or a motor.
Further, the input disk has an input side curved surface that is a toroidal curved surface on the axial direction, and a part of the input rotating shaft is rotated in synchronization with the input rotating shaft and the axial displacement of the input rotating shaft. I support it.
The output disk has an output side curved surface that is a toroidal curved surface in the axial direction facing the input side curved surface, and is supported concentrically with the input disk and capable of relative rotation with respect to the input disk.
Each of the supporting members swings around a tilting axis that is twisted with respect to the central axis of each disk at a portion between the input-side curved surface and the output-side curved surface with respect to the axial direction of each disk. It is arranged so that it can be displaced dynamically.
Each of the power rollers is sandwiched between the output-side curved surface and the input-side curved surface facing each other in a state of being rotatably supported by the respective support members.
In addition, the pressing device secures the surface pressure of the traction portion which is a rolling contact portion between the peripheral surface of each power roller and each curved surface on the output side and the input side in order to connect the input disk and the output disk to each other. Press in the approaching direction.
Further, the preload spring is provided between the input rotating shaft and the input disk, and the pressing device generates a pressing force by pressing the input disk toward the output disk in the axial direction. Even in a state where it is not, the input disk is pressed toward the output disk to apply a surface pressure to each of the traction portions.

特に、本発明のトロイダル型無段変速機に於いては、前記予圧ばねとして全体が円輪状の皿板ばねを使用する。
又、この皿板ばねの内周縁部を前記入力回転軸に、この入力回転軸と同期して回転する様に係止すると共に、この皿板ばねの外径寄り部分を、前記入力ディスクのうちで前記入力側曲面と軸方向反対側部分に、回転力の伝達を可能に係合させる。
そして、前記入力回転軸と前記入力ディスクとの間のトルク伝達を、前記皿板ばねを介して行わせる。
In particular, in the toroidal type continuously variable transmission according to the present invention, a disc-shaped plate spring having an annular shape as a whole is used as the preload spring.
In addition, the inner peripheral edge of the disc spring is locked to the input rotary shaft so as to rotate in synchronization with the input rotary shaft, and the portion closer to the outer diameter of the disc spring is connected to the input disk. Thus, the input side curved surface and the axially opposite side portion are engaged with each other so as to enable transmission of rotational force.
Then, torque transmission between the input rotating shaft and the input disk is performed via the disc spring.

又、本発明のトロイダル型無段変速機のうち、請求項1、2に記載した発明の場合には、前記皿板ばねの外周縁の周方向複数箇所に、径方向外方に突出する係合突片を形成すると共に、前記入力ディスクのうちで前記入力側凹面と軸方向反対側端面の径方向外寄り部分に円筒状の突壁を突設する。
そして、請求項に記載した発明の場合には、この突壁の先端縁部の周方向複数箇所に係合凹部を形成する。
これに対し、請求項に記載した発明の場合には、前記突壁の内周面の周方向複数箇所に係合凹部を形成する。
そして、何れの場合も、前記各係合突片と各係合凹部とを係合させて、前記皿板ばねと前記入力ディスクとの間のトルク伝達を可能とする。
In the toroidal type continuously variable transmission according to the present invention, in the case of the invention described in claims 1 and 2 , the protrusions projecting radially outward at a plurality of circumferential positions on the outer peripheral edge of the disc spring. A mating projecting piece is formed, and a cylindrical projecting wall is projected from a radially outer portion of the input disk on the side opposite to the input side in the axial direction.
In the case of the invention described in claim 1, to form an engagement recess in the peripheral direction a plurality of locations of the distal edges of the projecting walls.
On the other hand , in the case of the invention described in claim 2 , engagement concave portions are formed at a plurality of locations in the circumferential direction of the inner peripheral surface of the protruding wall.
In either case, the engagement protrusions and the engagement recesses are engaged to allow torque transmission between the disc spring and the input disk.

上述の様な請求項1、2に記載した本発明のトロイダル型無段変速機を実施する場合には、例えば請求項3に記載した発明の様に、前記押圧装置を、前記入力回転軸の端部に設けた油圧隔壁と、前記入力ディスクのうちで前記入力側曲面と軸方向反対側端面との間に設けられた油圧室内に油圧を導入する事により押圧力を発生させる油圧式とする。そして、前記皿板ばねを、この油圧室内に配置する。When the toroidal type continuously variable transmission according to the first and second aspects of the present invention described above is implemented, the pressing device is connected to the input rotation shaft as in the third aspect of the invention, for example. It is a hydraulic type that generates a pressing force by introducing hydraulic pressure into a hydraulic chamber provided between the input side curved surface and the axially opposite end surface of the input disk, and a hydraulic partition wall provided at an end portion. . And the said plate spring is arrange | positioned in this hydraulic chamber.
又、例えば請求項4に記載した発明の様に、前記皿板ばねの内周縁部に形成した雌スプライン部と前記入力回転軸の外周面に形成された雄スプライン部とをスプライン係合させて、これら皿板ばねと入力回転軸とを同期して回転させる。Further, for example, as in the invention described in claim 4, a female spline portion formed on the inner peripheral edge portion of the disc spring is engaged with a male spline portion formed on the outer peripheral surface of the input rotating shaft by spline engagement. The plate spring and the input rotary shaft are rotated in synchronization.

又、本発明のトロイダル型無段変速機のうち、請求項に記載した発明の場合には、前記入力回転軸の軸方向両端部に1対の入力ディスクを、それぞれの入力側曲面を互いに対向させた状態で、前記入力回転軸と同期した回転を可能に支持する。
又、この入力回転軸の中間部周囲に、軸方向両側面をそれぞれ出力側曲面とした出力ディスクを、この入力回転軸に対する相対回転を可能に支持する。
又、この入力回転軸のうちの前記押圧装置を設けた側の端部に隣接した状態で、この入力回転軸及び前記両入力ディスクを回転駆動する為の入力軸を、この入力回転軸と同心に配置する。
そして、前記皿板ばねを、この入力軸から、前記入力回転軸及び前記押圧装置側の入力ディスクにトルクを伝達するものとする。
In the toroidal type continuously variable transmission according to the present invention , in the case of the invention described in claim 5 , a pair of input disks are provided at both ends in the axial direction of the input rotation shaft, and the curved surfaces on the input side are connected to each other. In a state of being opposed to each other, the rotation in synchronization with the input rotation shaft is supported.
Further, an output disk having both side surfaces in the axial direction and curved surfaces on the output side is supported around the intermediate portion of the input rotation shaft so as to be able to rotate relative to the input rotation shaft.
The input rotary shaft and the input shaft for rotationally driving both the input disks are concentric with the input rotary shaft in a state adjacent to the end of the input rotary shaft on the side where the pressing device is provided. To place.
And let the said plate spring transmit a torque from this input shaft to the said input rotating shaft and the input disk of the said press apparatus side.

又、請求項に記載した発明場合には、前記皿板ばねの内周縁部に形成した雌スプライン部と前記入力回転軸の外周面に形成された雄スプライン部とをスプライン係合させる。そして、これら皿板ばねと入力回転軸とを同期して回転させる。
又、前記皿板ばねの外周縁の周方向複数箇所に、径方向外方に突出する係合突片を、前記入力ディスクのうちで前記入力側曲面と軸方向反対側端面の径方向外寄り部分に突設した円筒状の突壁の先端縁部の周方向複数箇所に係合凹部を、それぞれ形成する。そして、これら各係合凹部と前記各係合突片とを係合させて、前記皿板ばねと前記入力ディスクとの間のトルク伝達を可能にする。
更に、前記皿板ばねの径方向中間部の周方向複数箇所に前記入力ディスクと反対側に突出する状態で形成した中間係合突片を、前記入力軸の先端部にこの入力軸と同心に設けた駆動円筒部の先端縁の周方向複数箇所に形成した駆動側係合凹部に係合させる。そして、前記入力軸と前記皿板ばねとの間のトルク伝達を可能にする。
Further, in the case of the invention described in claim 5, causes the front Symbol dish plate male spline portion formed in the female spline portion outer peripheral surface of the input rotary shaft formed on the inner periphery of the spring splined . And these plate springs and an input rotating shaft are rotated synchronously.
In addition, engagement protrusions protruding radially outward at a plurality of circumferential positions on the outer peripheral edge of the disc spring are disposed radially outward of the input-side curved surface and the axially opposite end surface of the input disk. Engagement recesses are respectively formed at a plurality of locations in the circumferential direction of the tip edge of the cylindrical projection wall projecting from the portion. Then, the engagement recesses and the engagement protrusions are engaged to enable torque transmission between the disc spring and the input disk.
Furthermore, intermediate engagement protrusions formed in a state of protruding to the opposite side of the input disk at a plurality of circumferential positions of the radial intermediate portion of the disc spring are concentric with the input shaft at the distal end portion of the input shaft. The drive cylinder engagement portion is engaged with drive side engagement recesses formed at a plurality of locations in the circumferential direction of the tip edge of the drive cylinder portion. And torque transmission between the input shaft and the disc spring is made possible.

更に、上述の様な請求項に記載した発明を実施する場合に、例えば請求項に記載した発明の様に、前記入力ディスクに突設した円筒状の突壁を、油圧式の押圧装置を構成する為のシリンダ筒とする。
又、このシリンダ筒に油密に、且つ、このシリンダ筒に対する軸方向の変位を可能に内嵌した油圧隔壁の内径寄り部分を前記入力回転軸に対し、油密に、且つ、前記入力ディスクから離れる方向の変位を阻止した状態で外嵌する。
そして、前記油圧隔壁の軸方向片側面と、前記入力ディスクのうちで前記入力側曲面と軸方向反対側端面との間を油圧室とし、この油圧室内に油圧を導入する事により前記押圧装置に押圧力を発生させる。
Furthermore, when carrying out the invention described in claim 5 as described above, for example, as in the invention described in claim 6 , a cylindrical protruding wall protruding from the input disk is provided as a hydraulic pressing device. It is assumed that the cylinder cylinder is configured.
Further, a portion close to the inner diameter of the hydraulic partition wall fitted in the cylinder tube in an oil-tight manner and capable of axial displacement with respect to the cylinder tube is oil-tight with respect to the input rotary shaft and from the input disk. It fits in a state where displacement in the direction of leaving is prevented.
Then, a hydraulic chamber is formed between one axial side surface of the hydraulic partition and the input side curved surface and the axially opposite end surface of the input disk, and the hydraulic pressure is introduced into the hydraulic chamber to the pressing device. Generate pressing force.

上述の様に構成する本発明のトロイダル型無段変速機によれば、押圧装置が発生する押圧力の損失を低く抑えて、伝達効率の良いトロイダル型無段変速機を実現できる。
即ち、本発明のトロイダル型無段変速機の場合には、入力回転軸と入力ディスクとの間のトルク伝達を、予圧ばねである皿板ばねを介して行う。従って、これら入力回転軸の外周面と入力ディスクの内周面との間に、ボールスプライン等の、トルク伝達の為の構造を設ける必要がない。この為、この様なトルク伝達の為の構造が、前記入力回転軸と前記入力ディスクとの間のトルク伝達時に、これら入力回転軸と入力ディスクとが軸方向に相対変位する事に対する抵抗にはならない。
この結果、前記入力回転軸に対して前記入力ディスクを軸方向に変位させる事に対する抵抗を小さく抑えられて、押圧装置が発生する押圧力の有効利用を図れる。この為、この押圧装置として油圧式のものを使用した場合に、油圧室内に導入する油圧を徒に高くする必要がなく、ポンプロスを低く抑えて、トロイダル型無段変速機全体としての伝達効率を良好にできる。
According to the toroidal continuously variable transmission of the present invention configured as described above, it is possible to realize a toroidal continuously variable transmission with good transmission efficiency while suppressing the loss of the pressing force generated by the pressing device.
That is, in the case of the toroidal type continuously variable transmission according to the present invention, torque transmission between the input rotary shaft and the input disk is performed via a disc spring that is a preload spring. Therefore, it is not necessary to provide a torque transmission structure such as a ball spline between the outer peripheral surface of the input rotating shaft and the inner peripheral surface of the input disk. For this reason, such a structure for torque transmission has resistance against relative displacement between the input rotary shaft and the input disk in the axial direction when torque is transmitted between the input rotary shaft and the input disk. Don't be.
As a result, resistance against displacing the input disk in the axial direction with respect to the input rotation shaft can be suppressed to be small, and effective use of the pressing force generated by the pressing device can be achieved. For this reason, when a hydraulic device is used as this pressing device, it is not necessary to increase the hydraulic pressure introduced into the hydraulic chamber, and the pump loss is kept low, and the transmission efficiency of the entire toroidal continuously variable transmission is improved. Can be good.

本発明の実施の形態の第1例を示す、部分略断面図。The partial schematic sectional drawing which shows the 1st example of embodiment of this invention. この第1例に組み込む、皿板ばねと入力ディスクとを取り出して組み合わせた状態で示す斜視図。The perspective view shown in the state which took out and combined the disc leaf | plate spring and input disk which are integrated in this 1st example. 同じく、分解した状態で示す斜視図。Similarly, the perspective view shown in the state decomposed | disassembled. 本発明の実施の形態の第2例を示す、部分略断面図。The partial schematic sectional drawing which shows the 2nd example of embodiment of this invention. 同第3例を示す、部分略断面図。The partial schematic sectional drawing which shows the 3rd example. 同第4例を示す、部分略断面図。The partial schematic sectional drawing which shows the 4th example. この第4例に組み込む皿板ばねを取り出して示す斜視図。The perspective view which takes out and shows the plate spring incorporated in this 4th example. 本発明の対象となるトロイダル型無段変速機を組み込んだ無段変速装置の縦断側面図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal side view of a continuously variable transmission incorporating a toroidal continuously variable transmission that is an object of the present invention. 図8のA−A断面図。AA sectional drawing of FIG.

[実施の形態の第1例]
図1〜3は、請求項1、3、4に対応する、本発明の実施の形態の第1例を示している。尚、本例を含めて、本発明の特徴は、入力回転軸5と入力ディスク10との間でトルクを伝達する部分の構造を工夫する事により、これら入力回転軸5と入力ディスク10とが軸方向に相対変位する事に対する抵抗を低く抑えて、押圧装置20が発生する押圧力を有効利用できる様にする点にある。その他の部分の構成及び作用は、前述の図8〜9に示した構造を含めて、従来から広く知られている各種トロイダル型無段変速機と同様であるから、本発明の特徴部分以外の図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
1 to 3 show a first example of an embodiment of the present invention corresponding to claims 1 , 3, and 4. The feature of the present invention, including the present example, is that the input rotary shaft 5 and the input disk 10 are separated by devising the structure of the portion that transmits torque between the input rotary shaft 5 and the input disk 10. The point is that the resistance against the relative displacement in the axial direction is kept low, and the pressing force generated by the pressing device 20 can be used effectively. Since the configuration and operation of the other parts are the same as those of various toroidal continuously variable transmissions that have been widely known, including the structures shown in FIGS. The illustration and description will be omitted or simplified, and the following description will focus on the features of this example.

本例のトロイダル型無段変速機では、予圧ばねとして、全体が円輪状の皿板ばね39を使用している。この皿板ばね39は、予圧ばねとして必要な弾性、並びに、前記入力回転軸5と前記入力ディスク10との間でのトルク伝達の為に十分な強度及び剛性を確保できるだけの板厚を有する弾性金属板により、図2〜3に示す様な形状に造っている。即ち、前記皿板ばね39は、軸方向から見た形状が円輪状で、径方向から見た形状がダイヤフラム状に屈曲した主部40と、この主部40の外周縁の円周方向等間隔の複数箇所に、径方向外方に突出する状態で形成した係合突片41、41とから成る。又、前記主部40の中心孔は、内周面に雌スプラインを形成した、スプライン孔42としている。   In the toroidal type continuously variable transmission of the present example, a disc-shaped plate spring 39 having an annular shape as a whole is used as a preload spring. The disc leaf spring 39 has elasticity necessary for a preload spring and has a thickness sufficient to ensure sufficient strength and rigidity for torque transmission between the input rotary shaft 5 and the input disk 10. It is made into a shape as shown in FIGS. That is, the disc plate spring 39 has an annular shape when viewed from the axial direction and a main portion 40 bent in a diaphragm shape when viewed from the radial direction, and an equal circumferential interval between the outer peripheral edges of the main portion 40. And a plurality of engaging protrusions 41 and 41 formed in a state of protruding outward in the radial direction. The central hole of the main portion 40 is a spline hole 42 in which a female spline is formed on the inner peripheral surface.

又、前記入力回転軸5の端部に、前記押圧装置20を構成する為のシリンダ部43を設けている。このシリンダ部43は、前記入力回転軸5の外周面から径方向外方に突出した、外向フランジ状の油圧隔壁44と、この油圧隔壁44の外周縁から前記入力ディスク10の側に折れ曲がった、円筒状の周壁45とから成る。この周壁45の内径は、前記入力ディスク10の外径よりも僅かに大きい。又、この入力ディスク10のうちで、各パワーローラ12a、12b(図9参照)の周面と転がり接触する入力側曲面に対して軸方向反対側端面である、外端面の径方向外寄り部分に、円筒状の突壁46を突設している。そして、この突壁46の先端縁部の周方向等間隔の複数箇所に、それぞれ係合凹部47、47を形成している。これら各係合凹部47、47と前記各係合突片41、41とは、互いに同数としている。又、これら各係合凹部47、47の周方向に関する幅寸法と、前記各係合突片41、41の周方向に関する幅寸法とはほぼ一致させて(同じか、圧入可能な寸法関係として)、これら各係合突片41、41を前記各係合凹部47、47に、がたつきなく内嵌できる様にしている。   Further, a cylinder portion 43 for constituting the pressing device 20 is provided at an end portion of the input rotation shaft 5. The cylinder portion 43 protrudes radially outward from the outer peripheral surface of the input rotary shaft 5 and is bent toward the input disk 10 from the outer peripheral edge of the hydraulic partition wall 44 and the outer peripheral edge of the hydraulic partition wall 44. It consists of a cylindrical peripheral wall 45. The inner diameter of the peripheral wall 45 is slightly larger than the outer diameter of the input disk 10. Further, in the input disk 10, a radially outward portion of the outer end surface that is an end surface on the opposite side in the axial direction with respect to the input side curved surface that is in rolling contact with the peripheral surface of each of the power rollers 12a and 12b (see FIG. 9). In addition, a cylindrical protruding wall 46 protrudes. Engaging recesses 47 and 47 are formed at a plurality of circumferentially equidistant positions on the tip edge of the protruding wall 46, respectively. Each of the engagement recesses 47 and 47 and the engagement protrusions 41 and 41 have the same number. In addition, the width dimension in the circumferential direction of each of the engagement recesses 47 and 47 and the width dimension in the circumferential direction of each of the engagement protrusions 41 and 41 are substantially the same (as the same or as a dimension relationship that can be press-fitted). The engagement protrusions 41 and 41 can be fitted into the engagement recesses 47 and 47 without rattling.

更に、前記入力回転軸5の外周面のうちで、前記シリンダ部43の奥端部に位置する部分に、雄スプライン部48を設けている。この雄スプライン部48の外径は、前記入力回転軸5の中間部乃至先端寄り部分の外径よりも大きくして、この中間部乃至先端寄り部分の外周面を円筒面としたまま、前記雄スプライン部48の加工を行える様にしている。この雄スプライン部48のピッチ、ピッチ円直径、モジュール等の仕様は、前記スプライン孔42との関係で規制し、これらスプライン孔42と雄スプライン部48とを、がたつきなくスプライン係合できる様にしている。   Further, a male spline portion 48 is provided in a portion of the outer peripheral surface of the input rotation shaft 5 that is located at the back end portion of the cylinder portion 43. The outer diameter of the male spline portion 48 is larger than the outer diameter of the intermediate portion or the tip portion of the input rotating shaft 5, and the outer peripheral surface of the intermediate portion or the tip portion is a cylindrical surface. The spline portion 48 can be processed. The specifications of the pitch, pitch circle diameter, module, etc. of the male spline portion 48 are restricted by the relationship with the spline hole 42 so that the spline hole 42 and the male spline portion 48 can be spline engaged without rattling. I have to.

トロイダル型無段変速機を組み立てた状態では、図1〜2に示す様に、前記各係合突片41、41を前記各係合凹部47、47内に嵌合すると共に、図1に示す様に、前記スプライン孔42と雄スプライン部48とをスプライン係合させる。この状態で、前記入力回転軸5と前記入力ディスク10とが、前記皿板ばね39を介して、トルク伝達を可能に組み合わされる。又、この状態で、前記入力ディスク10側に設けた突壁46が、前記シリンダ部43を構成する周壁45の内径側に緩く挿入される。これら突壁46の外周面と周壁45の内周面との間の油密は、外径側シールリング49により図る。尚、この外径側シールリング49は、前記突壁46の外周面と前記周壁45の内周面とのうちの一方の周面に形成した係止溝に係止した状態で、他方の周面に対し摺接させる。又、前記入力ディスク10の内周面と前記入力回転軸5の外周面との間の油密は、内径側シールリング50により図る。この内径側シールリング50に関しては、前記入力回転軸5の外周面と前記入力ディスク10の内周面とのうちの一方の周面に形成した係止溝に係止した状態で、他方の周面に対し摺接させる。   In a state where the toroidal-type continuously variable transmission is assembled, as shown in FIGS. 1 and 2, the engaging protrusions 41 and 41 are fitted in the engaging recesses 47 and 47, as shown in FIG. Similarly, the spline hole 42 and the male spline portion 48 are spline engaged. In this state, the input rotary shaft 5 and the input disk 10 are combined via the disc spring 39 so as to allow torque transmission. In this state, the projecting wall 46 provided on the input disk 10 side is loosely inserted into the inner diameter side of the peripheral wall 45 constituting the cylinder portion 43. Oil tightness between the outer peripheral surface of the projecting wall 46 and the inner peripheral surface of the peripheral wall 45 is achieved by an outer diameter side seal ring 49. The outer diameter side seal ring 49 is engaged with a locking groove formed on one peripheral surface of the outer peripheral surface of the protruding wall 46 and the inner peripheral surface of the peripheral wall 45, and the other peripheral surface. Make sliding contact with the surface. Further, oil tightness between the inner peripheral surface of the input disk 10 and the outer peripheral surface of the input rotating shaft 5 is achieved by an inner diameter side seal ring 50. With respect to the inner diameter side seal ring 50, the other circumferential surface is engaged with a locking groove formed on one peripheral surface of the outer peripheral surface of the input rotating shaft 5 and the inner peripheral surface of the input disk 10. Make sliding contact with the surface.

各構成部材を上述の様に組み合わせる事により、前記入力回転軸5と前記入力ディスク10との間に油圧室21を画成している。そして、この油圧室21内に、前記入力回転軸5内に設けた油圧給排路51を通じて、所定圧の油圧を導入可能とし、油圧式の前記押圧装置20を構成している。前記皿板ばね39は、この押圧装置20の油圧室21内に配置された状態となる。前記油圧給排路51を通じてこの油圧室21内に導入された油圧は、前記皿板ばね39と前記入力ディスク10との間だけでなく、この皿板ばね39と前記入力回転軸5及び前記入力ディスク10との間に存在する隙間を通じて、この皿板ばね39と前記油圧隔壁44との間部分にも導入される。尚、この間部分の油圧の立ち上がり特性を良好にする為に、前記皿板ばね39のうち、前記主部40の一部に透孔を形成する事もできる。   A hydraulic chamber 21 is defined between the input rotary shaft 5 and the input disk 10 by combining the components as described above. A hydraulic pressure of a predetermined pressure can be introduced into the hydraulic chamber 21 through a hydraulic supply / discharge passage 51 provided in the input rotary shaft 5, and the hydraulic pressure device 20 is configured. The disc leaf spring 39 is placed in the hydraulic chamber 21 of the pressing device 20. The hydraulic pressure introduced into the hydraulic chamber 21 through the hydraulic supply / discharge passage 51 is not only between the disc spring 39 and the input disk 10 but also the disc spring 39, the input rotary shaft 5 and the input. It is also introduced into a portion between the disc leaf spring 39 and the hydraulic partition 44 through a gap existing between the disc 10. In addition, in order to improve the rise characteristic of the hydraulic pressure in this portion, a through hole may be formed in a part of the main portion 40 in the disc spring 39.

トロイダル型無段変速機の運転時には、駆動源に繋がる入力軸3により前記入力回転軸5を回転駆動する。すると、この入力回転軸5の回転が、前記皿板ばね39を介して前記入力ディスク10に伝わり、この入力ディスク10が前記入力回転軸5と同期して回転する。この状態で前記油圧室21内に油圧を導入すれば、前記入力ディスク10が出力ディスク11(図8参照)に向け、この油圧に応じた力で押圧される。前記油圧室21内に導入された油圧に基づいて前記押圧装置20が発生する押圧力に基づき、前記入力軸10を前記入力回転軸5に対し軸方向に変位させる事に対する抵抗は、前記内径側、外径側両シールリング49、50の周縁と相手周面との間に作用する摩擦力のみである。そして、この摩擦力は、前記トロイダル型無段変速機の通過トルクが大きくなっても大きくなる事はないし、前述した従来構造の場合に、トルク伝達時にボールスプライン38(図8参照)部分で生じる抵抗よりも遥かに小さい。
この結果、前記入力回転軸5に対して前記入力ディスク10を軸方向に変位させる事に対する抵抗を小さく抑えられて、前記押圧装置20が発生する押圧力の有効利用を図れる。この為、前記油圧室21内に導入する油圧を徒に高くする必要がなく、ポンプロスを低く抑えて、トロイダル型無段変速機全体としての伝達効率を良好にできる。
When the toroidal-type continuously variable transmission is operated, the input rotary shaft 5 is rotationally driven by the input shaft 3 connected to the drive source. Then, the rotation of the input rotation shaft 5 is transmitted to the input disk 10 via the disc spring 39, and the input disk 10 rotates in synchronization with the input rotation shaft 5. If oil pressure is introduced into the oil pressure chamber 21 in this state, the input disk 10 is directed toward the output disk 11 (see FIG. 8) with a force corresponding to the oil pressure. Based on the pressing force generated by the pressing device 20 based on the hydraulic pressure introduced into the hydraulic chamber 21, the resistance against the axial displacement of the input shaft 10 with respect to the input rotating shaft 5 is the inner diameter side. Only the frictional force acting between the peripheral edge of the outer diameter side seal rings 49 and 50 and the mating peripheral surface is provided. The frictional force does not increase even when the passing torque of the toroidal continuously variable transmission increases. In the case of the above-described conventional structure, the frictional force is generated at the ball spline 38 (see FIG. 8) during torque transmission. Much smaller than resistance.
As a result, the resistance against the axial displacement of the input disk 10 with respect to the input rotating shaft 5 can be kept small, and the pressing force generated by the pressing device 20 can be effectively utilized. For this reason, it is not necessary to increase the hydraulic pressure introduced into the hydraulic chamber 21, and the pump loss can be kept low, and the transmission efficiency of the entire toroidal continuously variable transmission can be improved.

[実施の形態の第2例]
図4は、請求項に対応する、本発明の実施の形態の第2例を示している。本例の場合には、入力ディスク10に形成した突壁46の内周面の周方向複数箇所に係合凹部47aを形成している。そして、これら各係合凹部47aと、皿板ばね39の外周縁部の周方向複数箇所に形成した係合突片41とを係合させて、この皿板ばね39と前記入力ディスク10との間のトルク伝達を可能としている。
その他の部分の構成及び作用は、上述した実施の形態の第1例と同様であるから、重複する図示並びに説明は省略する。
[Second Example of Embodiment]
FIG. 4 shows a second example of the embodiment of the invention corresponding to claims 2 to 4 . In the case of this example, engagement concave portions 47 a are formed at a plurality of locations in the circumferential direction on the inner peripheral surface of the protruding wall 46 formed on the input disk 10. Then, the engaging recesses 47a and engaging protrusions 41 formed at a plurality of locations in the circumferential direction of the outer peripheral edge of the disc spring 39 are engaged with each other so that the disc spring 39 and the input disk 10 are engaged with each other. Torque transmission between them.
Since the configuration and operation of the other parts are the same as in the first example of the embodiment described above, overlapping illustrations and descriptions are omitted.

[実施の形態の第3例]
図5も、請求項2〜4に対応する、本発明の実施の形態の第3例を示している。本例の場合には、シリンダ部43a側の周壁45aを、入力ディスク10側の突壁46aの内側に、緩く挿入している。そして、この周壁45aの外周面とこの突壁46aの内周面との間に、外径側シールリング49を装着している。この突壁46aの奥端部内周面で、皿板ばね39の外周縁部に形成した係合突片41を係合させる為の係合凹部47を形成した部分は、前記外径側シールリング49を設置する部分よりも小径としている。従って、前記突壁46aの内周面のうちでこの外径側シールリング49を装着する部分の周方向の形状を、凹凸のない、単なる円形として、この外径側シールリング49によるシール性を確保できる。
その他の部分の構成及び作用は、前述した実施の形態の第1例、或いは、上述した実施の形態の第2例と同様であるから、重複する図示並びに説明は省略する。
[Third example of embodiment]
FIG. 5 also shows a third example of the embodiment of the present invention corresponding to claims 2 to 4 . In the case of this example, the peripheral wall 45a on the cylinder portion 43a side is loosely inserted inside the protruding wall 46a on the input disk 10 side. An outer diameter side seal ring 49 is mounted between the outer peripheral surface of the peripheral wall 45a and the inner peripheral surface of the protruding wall 46a. A portion where an engagement recess 47 for engaging an engagement protrusion 41 formed on the outer peripheral edge of the disc spring 39 is formed on the inner peripheral surface of the rear end portion of the protruding wall 46a is the outer diameter side seal ring. The diameter is smaller than the portion where 49 is installed. Accordingly, the circumferential shape of the portion of the inner peripheral surface of the protruding wall 46a where the outer diameter side seal ring 49 is mounted is simply round without any irregularities, and the sealing performance by the outer diameter side seal ring 49 is improved. It can be secured.
Since the configuration and operation of the other parts are the same as those in the first example of the above-described embodiment or the second example of the above-described embodiment, overlapping illustration and description are omitted.

[実施の形態の第4例]
図6〜7は、請求項5、6に対応する、本発明の実施の形態の第4例を示している。本例の場合には、トロイダル型無段変速機として、前述の図8に記載した様に、入力回転軸5の軸方向両端部に1対の入力ディスクを設置したダブルキャビティ型である事を前提とする。そして、前記入力回転軸5に隣接する状態でこの入力回転軸5と同心に配置されており、駆動源により回転駆動される入力軸3の回転を、皿板ばね39aにより、入力回転軸5と入力ディスク10とに伝達させる。結果として、これら入力回転軸5と入力ディスク10とが同期して回転する。
[Fourth Example of Embodiment]
6 to 7 show a fourth example of an embodiment of the present invention corresponding to claims 5 and 6 . In the case of this example, the toroidal continuously variable transmission is a double cavity type in which a pair of input disks are installed at both ends in the axial direction of the input rotating shaft 5 as shown in FIG. Assumption. The rotation of the input shaft 3 that is disposed concentrically with the input rotation shaft 5 in a state adjacent to the input rotation shaft 5 is rotated with the input rotation shaft 5 by a disc spring 39a. It is transmitted to the input disk 10. As a result, the input rotation shaft 5 and the input disk 10 rotate in synchronization.

前記皿板ばね39aの内周縁部は、上述した実施の形態の第1〜3例の場合と同様に、前記入力回転軸5にスプライン係合させている。又、前記皿板ばね39aの外周縁の周方向複数箇所に形成した係合突片41、41を、前記入力ディスク10側に設けた突壁46の先端縁部の周方向複数箇所に形成した係合凹部47に係合させて、前記皿板ばね39aと前記入力ディスク10との間のトルク伝達を可能としている。以上の構成に就いては、前述した実施の形態の第1例と同様である。   The inner peripheral edge of the disc spring 39a is spline-engaged with the input rotary shaft 5 as in the first to third examples of the above-described embodiment. Further, engaging protrusions 41, 41 formed at a plurality of circumferential positions on the outer peripheral edge of the disc spring 39a are formed at a plurality of circumferential positions on the front edge of the protruding wall 46 provided on the input disk 10 side. By engaging with the engaging recess 47, torque transmission between the disc spring 39a and the input disk 10 is enabled. About the above structure, it is the same as that of the 1st example of embodiment mentioned above.

特に、本例の構造の場合には、前記皿板ばね39aの径方向中間部の周方向複数箇所に中間係合突片52、52を、それぞれ前記入力ディスク10と反対側に突出する状態で形成している。又、前記入力軸3の先端部に駆動円筒部53を、この入力軸3と同心に設けており、この駆動円筒部53の先端縁の周方向複数箇所に、駆動側係合凹部54を形成している。そして、これら各駆動側係合凹部54と前記各中間係合突片52、52とを、周方向に関するがたつきを抑えた状態で係合させて、前記入力軸3と前記皿板ばね39aとの間のトルク伝達を可能としている。   In particular, in the case of the structure of the present example, the intermediate engagement protrusions 52 and 52 are protruded to the opposite side of the input disk 10 at a plurality of locations in the circumferential direction of the intermediate portion in the radial direction of the disc spring 39a. Forming. Further, a driving cylindrical portion 53 is provided concentrically with the input shaft 3 at the distal end portion of the input shaft 3, and driving side engaging recesses 54 are formed at a plurality of circumferential positions on the distal end edge of the driving cylindrical portion 53. doing. The drive-side engagement recesses 54 and the intermediate engagement protrusions 52, 52 are engaged with each other in a state where rattling in the circumferential direction is suppressed, and the input shaft 3 and the disc spring 39a are engaged. Torque transmission between them.

更に、本例の場合には、前記突壁46を、油圧式の押圧装置20を構成する為のシリンダ筒としている。そして、このシリンダ筒として機能する突壁46の内周面と前記入力回転軸5の外周面との間に油圧隔壁55を、この突壁46に対する軸方向の変位を可能に内嵌している。又、この油圧隔壁55のうちで、前記入力ディスク10と反対側面のうちの内径寄り部分を、前記入力回転軸5の外周面に形成した段差面56に突き当てて、前記油圧隔壁55が前記入力ディスク10から離れる方向に変位しない様にしている。尚、この油圧隔壁55の外周縁部には外径側シールリング49aを、内周縁部には内径側シールリング50aを、それぞれ装着し、前記油圧隔壁55の内外両周縁部と相手側周面との間の油密保持を図っている。そして、この油圧隔壁55の軸方向片側面(図6の右側面)と前記入力ディスク10との間を油圧室21とし、この油圧室21内に油圧を導入する事により、前記押圧装置20に押圧力を発生させる様にしている。
上述の様な本例の構造によれば、前記入力軸3と前記入力回転軸5との間でトルクを伝達する構造を簡略化できる。
Further, in the case of this example, the protruding wall 46 is a cylinder cylinder for constituting the hydraulic pressing device 20. A hydraulic partition wall 55 is fitted between the inner peripheral surface of the projecting wall 46 functioning as the cylinder cylinder and the outer peripheral surface of the input rotary shaft 5 so as to be capable of axial displacement with respect to the projecting wall 46. . Of the hydraulic partition wall 55, a portion closer to the inner diameter of the side surface opposite to the input disk 10 is abutted against a step surface 56 formed on the outer peripheral surface of the input rotating shaft 5, so that the hydraulic partition wall 55 is It is arranged not to be displaced in the direction away from the input disk 10. An outer diameter side seal ring 49a and an inner diameter side seal ring 50a are mounted on the outer peripheral edge portion and the inner peripheral edge portion of the hydraulic partition wall 55, respectively. To maintain oil tightness. A hydraulic chamber 21 is defined between one axial side surface of the hydraulic partition wall 55 (the right side surface in FIG. 6) and the input disk 10. By introducing hydraulic pressure into the hydraulic chamber 21, A pressing force is generated.
According to the structure of this example as described above, the structure for transmitting torque between the input shaft 3 and the input rotation shaft 5 can be simplified.

本発明のトロイダル型無段変速機は、前述の図8〜9に示した様な、遊星歯車装置と組み合わせて無段変速装置を構成する構造に限らず、遊星歯車装置と組み合わせる事なく、トロイダル型無段変速機単体で使用する構造で実施する事もできる。
又、図示の様なハーフトロイダル型に限らず、フルトロイダル型のトロイダル型無段変速機で実施する事もできる。
更に、請求項に記載した発明を実施する場合に、入力軸の中間部周囲に配置する出力ディスクは、図8に示す様な一体型の構造に限らず、例えば特許文献2、3に記載されている様な、スリーブの両端部に1対の出力ディスクを、それぞれスプライン係合によりこのスリーブと同期して回転する様に設けた構造であっても良い。この場合には、このスリーブと前記両出力ディスクとを組み合わせたユニットが、請求項に記載した出力ディスクに対応する。
The toroidal type continuously variable transmission of the present invention is not limited to the structure that forms the continuously variable transmission in combination with the planetary gear device as shown in FIGS. It can also be implemented with a structure in which the type continuously variable transmission is used alone.
Further, the present invention is not limited to the half toroidal type as shown in the figure, and can be implemented by a full toroidal type toroidal type continuously variable transmission.
Further, when the invention described in claim 5 is carried out, the output disk disposed around the intermediate portion of the input shaft is not limited to the integrated structure as shown in FIG. As shown, a pair of output disks may be provided at both ends of the sleeve so as to rotate in synchronization with the sleeve by spline engagement. In this case, a unit in which the sleeve and the two output disks are combined corresponds to the output disk described in claim 5 .

1 トロイダル型無段変速機
2 遊星歯車式変速機
3 入力軸
4 出力軸
5 入力回転軸
6 伝達軸
7 前段ユニット
8 中段ユニット
9 後段ユニット
10、10a、10b 入力ディスク
11 出力ディスク
12a、12b パワーローラ
13 ケーシング
14 支柱
15 転がり軸受
16 支持板
17a、17b トラニオン
18 傾転軸
19 支持軸
20 押圧装置
21、21a、21b 油圧室
22 中空回転軸
23 太陽歯車
24 キャリア
25 遊星歯車
26 遊星歯車
27 遊星歯車
28 リング歯車
29 第二太陽歯車
30 第二キャリア
31 低速用クラッチ
32 第三太陽歯車
33 第二リング歯車
34 高速用クラッチ
35 遊星歯車
36 遊星歯車
37 予圧ばね
38 ボールスプライン
39、39a 皿板ばね
40 主部
41 係合突片
42 スプライン孔
43、43a シリンダ部
44 油圧隔壁
45、45a 周壁
46、46a 突壁
47、47a 係合凹部
48 雄スプライン部
49、49a 外径側シールリング
50、50a 内径側シールリング
51 油圧給排路
52 中間係合突片
53 駆動円筒部
54 駆動側係合凹部
55 油圧隔壁
56 段差面
DESCRIPTION OF SYMBOLS 1 Toroidal type continuously variable transmission 2 Planetary gear type transmission 3 Input shaft 4 Output shaft 5 Input rotation shaft 6 Transmission shaft 7 Front stage unit 8 Middle stage unit 9 Rear stage unit 10, 10a, 10b Input disk 11 Output disk 12a, 12b Power roller DESCRIPTION OF SYMBOLS 13 Casing 14 Support | pillar 15 Rolling bearing 16 Support plate 17a, 17b Trunnion 18 Tilt shaft 19 Support shaft 20 Pressing device 21, 21a, 21b Hydraulic chamber 22 Hollow rotating shaft 23 Sun gear 24 Carrier 25 Planetary gear 26 Planetary gear 27 Planetary gear 28 Ring gear 29 Second sun gear 30 Second carrier 31 Low speed clutch 32 Third sun gear 33 Second ring gear 34 High speed clutch 35 Planetary gear 36 Planetary gear 37 Preload spring 38 Ball spline 39, 39a Plate spring 40 Main part 41 engagement protrusion 42 Spline hole 43, 43a Cylinder part 44 Hydraulic partition wall 45, 45a Peripheral wall 46, 46a Protruding wall 47, 47a Engaging recess 48 Male spline part 49, 49a Outer diameter side seal ring 50, 50a Inner diameter side seal ring 51 Hydraulic supply / discharge path 52 Intermediate engagement protrusion 53 Drive cylinder portion 54 Drive side engagement recess 55 Hydraulic partition wall 56 Step surface

Claims (6)

駆動源により回転駆動される入力回転軸と、この入力回転軸の一部に、この入力回転軸と同期した回転及びこの入力回転軸の軸方向の変位を可能に支持された、軸方向側面をトロイド曲面である入力側曲面とされた入力ディスクと、この入力側曲面に対向する軸方向側面をトロイド曲面である出力側曲面とされ、この入力ディスクと同心に、且つ、この入力ディスクに対する相対回転を可能に支持された出力ディスクと、これら各ディスクの軸方向に関して前記入力側曲面と前記出力側曲面との間部分で、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心として揺動変位可能に配置された複数個の支持部材と、それぞれがこれら各支持部材に回転自在に支持された状態で、互いに対向する前記出力側曲面と前記入力側曲面との間に挟持された複数個のパワーローラと、これら各パワーローラの周面と前記出力側、入力側各曲面との転がり接触部であるトラクション部の面圧を確保する為、前記入力ディスクと前記出力ディスクとを互いに近づく方向に押圧する押圧装置と、前記入力回転軸と前記入力ディスクとの間に設けられてこの入力ディスクを前記出力ディスクに向け、軸方向に押圧する事により、前記押圧装置が押圧力を発生しない状態でも前記入力ディスクを前記出力ディスクに向け押圧して前記各トラクション部に面圧を付与する予圧ばねとを備えたトロイダル型無段変速機に於いて、
この予圧ばねとして全体が円輪状の皿板ばねを使用し、この皿板ばねの内周縁部を前記入力回転軸に、この入力回転軸と同期して回転する様に係止すると共に、この皿板ばねの外径寄り部分を、前記入力ディスクのうちで前記入力側曲面と軸方向反対側部分に、回転力の伝達を可能に係合させる事により、前記入力回転軸と前記入力ディスクとの間のトルク伝達を、前記皿板ばねを介して行わせるものであり、
前記皿板ばねの外周縁の周方向複数箇所に、径方向外方に突出する係合突片を、前記入力ディスクのうちで前記入力側曲面と軸方向反対側端面の径方向外寄り部分に突設した円筒状の突壁の先端縁部の周方向複数箇所に係合凹部を、それぞれ形成し、これら各係合凹部と前記各係合突片とを係合させて、前記皿板ばねと前記入力ディスクとの間のトルク伝達を可能としている事を特徴とするトロイダル型無段変速機。
An input rotary shaft that is rotationally driven by a drive source, and an axial side surface that is supported by a part of the input rotary shaft so as to be able to rotate in synchronization with the input rotary shaft and to be displaced in the axial direction of the input rotary shaft. An input disk that is an input side curved surface that is a toroidal curved surface, and an axial side surface that faces the input side curved surface is an output side curved surface that is a toroidal curved surface, and is concentric with the input disk and relative to the input disk. And an output disk that is supported, and a tilting shaft that is in a twisted position with respect to the central axis of each disk at a portion between the curved surface on the input side and the curved surface on the output side in the axial direction of each disk. A plurality of support members arranged so as to be swingable and displaceable with each of the output side curved surface and the input side curved surface facing each other in a state of being rotatably supported by each of the support members. In order to secure the surface pressure of the traction portion which is a rolling contact portion between the plurality of power rollers sandwiched between the power rollers and the circumferential surfaces of the power rollers and the curved surfaces on the output side and the input side, the input disk and the output A pressing device that presses the disc in a direction approaching each other; and the pressing device that is provided between the input rotation shaft and the input disc and presses the input disc toward the output disc in the axial direction. In a toroidal continuously variable transmission including a preload spring that presses the input disk toward the output disk and applies a surface pressure to each traction portion even in a state where no pressing force is generated,
An annular disc-shaped plate spring is used as the preload spring, and the inner peripheral edge of the disc plate spring is locked to the input rotation shaft so as to rotate in synchronization with the input rotation shaft. A portion close to the outer diameter of the leaf spring is engaged with the input side curved surface and the axially opposite side portion of the input disk so as to be able to transmit a rotational force, whereby the input rotary shaft and the input disk are Between which the torque transmission is performed through the disc spring ,
Engaging protrusions projecting radially outward at a plurality of locations in the circumferential direction of the outer peripheral edge of the disc spring are provided on the radially outer portion of the input disk on the end surface on the side opposite to the input curved surface in the axial direction. Engagement recesses are formed at a plurality of locations in the circumferential direction of the front end edge of the projecting cylindrical projection wall, and the respective engagement recesses and the respective engagement projections are engaged with each other, and the disc spring And a toroidal continuously variable transmission characterized in that torque transmission between the input disk and the input disk is possible .
駆動源により回転駆動される入力回転軸と、この入力回転軸の一部に、この入力回転軸と同期した回転及びこの入力回転軸の軸方向の変位を可能に支持された、軸方向側面をトロイド曲面である入力側曲面とされた入力ディスクと、この入力側曲面に対向する軸方向側面をトロイド曲面である出力側曲面とされ、この入力ディスクと同心に、且つ、この入力ディスクに対する相対回転を可能に支持された出力ディスクと、これら各ディスクの軸方向に関して前記入力側曲面と前記出力側曲面との間部分で、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心として揺動変位可能に配置された複数個の支持部材と、それぞれがこれら各支持部材に回転自在に支持された状態で、互いに対向する前記出力側曲面と前記入力側曲面との間に挟持された複数個のパワーローラと、これら各パワーローラの周面と前記出力側、入力側各曲面との転がり接触部であるトラクション部の面圧を確保する為、前記入力ディスクと前記出力ディスクとを互いに近づく方向に押圧する押圧装置と、前記入力回転軸と前記入力ディスクとの間に設けられてこの入力ディスクを前記出力ディスクに向け、軸方向に押圧する事により、前記押圧装置が押圧力を発生しない状態でも前記入力ディスクを前記出力ディスクに向け押圧して前記各トラクション部に面圧を付与する予圧ばねとを備えたトロイダル型無段変速機に於いて、
この予圧ばねとして全体が円輪状の皿板ばねを使用し、この皿板ばねの内周縁部を前記入力回転軸に、この入力回転軸と同期して回転する様に係止すると共に、この皿板ばねの外径寄り部分を、前記入力ディスクのうちで前記入力側曲面と軸方向反対側部分に、回転力の伝達を可能に係合させる事により、前記入力回転軸と前記入力ディスクとの間のトルク伝達を、前記皿板ばねを介して行わせるものであり、
前記皿板ばねの外周縁の周方向複数箇所に、径方向外方に突出する係合突片を、前記入力ディスクのうちで前記入力側曲面と軸方向反対側端面の径方向外寄り部分に突設した円筒状の突壁の内周面の周方向複数箇所に係合凹部を、それぞれ形成し、これら各係合凹部と前記各係合突片とを係合させて、前記皿板ばねと前記入力ディスクとの間のトルク伝達を可能としている事を特徴とするトロイダル型無段変速機。
An input rotary shaft that is rotationally driven by a drive source, and an axial side surface that is supported by a part of the input rotary shaft so as to be able to rotate in synchronization with the input rotary shaft and to be displaced in the axial direction of the input rotary shaft. An input disk that is an input side curved surface that is a toroidal curved surface, and an axial side surface that faces the input side curved surface is an output side curved surface that is a toroidal curved surface, and is concentric with the input disk and relative to the input disk. And an output disk that is supported, and a tilting shaft that is in a twisted position with respect to the central axis of each disk at a portion between the curved surface on the input side and the curved surface on the output side in the axial direction of each disk. A plurality of support members arranged so as to be swingable and displaceable with each of the output side curved surface and the input side curved surface facing each other in a state of being rotatably supported by each of the support members. In order to secure the surface pressure of the traction portion which is a rolling contact portion between the plurality of power rollers sandwiched between the power rollers and the circumferential surfaces of the power rollers and the curved surfaces on the output side and the input side, the input disk and the output A pressing device that presses the disc in a direction approaching each other; and the pressing device that is provided between the input rotation shaft and the input disc and presses the input disc toward the output disc in the axial direction. In a toroidal continuously variable transmission including a preload spring that presses the input disk toward the output disk and applies a surface pressure to each traction portion even in a state where no pressing force is generated,
An annular disc-shaped plate spring is used as the preload spring, and the inner peripheral edge of the disc plate spring is locked to the input rotation shaft so as to rotate in synchronization with the input rotation shaft. A portion close to the outer diameter of the leaf spring is engaged with the input side curved surface and the axially opposite side portion of the input disk so as to be able to transmit a rotational force, whereby the input rotary shaft and the input disk are Between which the torque transmission is performed through the disc spring ,
Engaging protrusions projecting radially outward at a plurality of locations in the circumferential direction of the outer peripheral edge of the disc spring are provided on the radially outer portion of the input disk on the end surface on the side opposite to the input curved surface in the axial direction. Engagement recesses are formed at a plurality of locations in the circumferential direction of the inner peripheral surface of the projecting cylindrical projection wall, and each of the engagement recesses and each of the engagement projecting pieces are engaged with each other, and the disc spring And a toroidal continuously variable transmission characterized in that torque transmission between the input disk and the input disk is possible .
前記押圧装置が、前記入力回転軸の端部に設けた油圧隔壁と、前記入力ディスクのうちで前記入力側曲面と軸方向反対側端面との間に設けられた油圧室内に油圧を導入する事により押圧力を発生させる油圧式であり、前記皿板ばねがこの油圧室内に配置されている、請求項1〜2のうちの何れか1項に記載したトロイダル型無段変速機。 The pressing device introduces hydraulic pressure into a hydraulic chamber provided between the hydraulic partition provided at the end of the input rotating shaft and the input-side curved surface and the axially opposite end surface of the input disk. The toroidal-type continuously variable transmission according to any one of claims 1 to 2, wherein the toroidal continuously variable transmission is a hydraulic type that generates a pressing force by the pressure and the disc spring is disposed in the hydraulic chamber. 前記皿板ばねの内周縁部に形成した雌スプライン部と前記入力回転軸の外周面に形成された雄スプライン部とをスプライン係合させて、これら皿板ばねと入力回転軸とを同期して回転させる、請求項1〜のうちの何れか1項に記載したトロイダル型無段変速機。 The female spline portion formed on the inner peripheral edge of the disc spring and the male spline portion formed on the outer peripheral surface of the input rotary shaft are spline-engaged to synchronize the disc spring and the input rotary shaft. The toroidal continuously variable transmission according to any one of claims 1 to 3 , wherein the toroidal continuously variable transmission is rotated. 駆動源により回転駆動される入力回転軸と、この入力回転軸の一部に、この入力回転軸と同期した回転及びこの入力回転軸の軸方向の変位を可能に支持された、軸方向側面をトロイド曲面である入力側曲面とされた入力ディスクと、この入力側曲面に対向する軸方向側面をトロイド曲面である出力側曲面とされ、この入力ディスクと同心に、且つ、この入力ディスクに対する相対回転を可能に支持された出力ディスクと、これら各ディスクの軸方向に関して前記入力側曲面と前記出力側曲面との間部分で、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心として揺動変位可能に配置された複数個の支持部材と、それぞれがこれら各支持部材に回転自在に支持された状態で、互いに対向する前記出力側曲面と前記入力側曲面との間に挟持された複数個のパワーローラと、これら各パワーローラの周面と前記出力側、入力側各曲面との転がり接触部であるトラクション部の面圧を確保する為、前記入力ディスクと前記出力ディスクとを互いに近づく方向に押圧する押圧装置と、前記入力回転軸と前記入力ディスクとの間に設けられてこの入力ディスクを前記出力ディスクに向け、軸方向に押圧する事により、前記押圧装置が押圧力を発生しない状態でも前記入力ディスクを前記出力ディスクに向け押圧して前記各トラクション部に面圧を付与する予圧ばねとを備えたトロイダル型無段変速機に於いて、
前記入力ディスクが、前記入力回転軸の軸方向両端部に、それぞれの入力側曲面を互いに対向させた状態で、この入力回転軸と同期した回転を可能に1対支持されており、
前記出力ディスクが、軸方向両側面をそれぞれ出力側曲面としており、前記入力回転軸の中間部周囲に、この入力回転軸に対する相対回転を可能に支持されており、
この入力回転軸のうちで前記押圧装置を設けた側の端部に隣接した状態で、この入力回転軸及び前記両入力ディスクを回転駆動する為の入力軸が、この入力回転軸と同心に配置されており、
前記予圧ばねとして全体が円輪状の皿板ばねを使用し、この皿板ばねの内周縁部を前記入力回転軸に、この入力回転軸と同期して回転する様に係止すると共に、この皿板ばねの外径寄り部分を、前記押圧装置側の入力ディスクのうちで前記入力側曲面と軸方向反対側部分に、回転力の伝達を可能に係合させる事により、前記入力軸から、前記入力回転軸及び前記押圧装置側へのトルク伝達を、前記皿板ばねを介して行わせるものであり、
前記皿板ばねの内周縁部に形成した雌スプライン部と前記入力回転軸の外周面に形成された雄スプライン部とをスプライン係合させて、これら皿板ばねと入力回転軸とを同期して回転させると共に、この皿板ばねの外周縁の周方向複数箇所に、径方向外方に突出する係合突片を、前記押圧装置側の入力ディスクのうちで前記入力側曲面と軸方向反対側端面の径方向外寄り部分に突設した円筒状の突壁の先端縁部の周方向複数箇所に係合凹部を、それぞれ形成し、これら各係合凹部と前記各係合突片とを係合させて、前記皿板ばねと前記押圧装置側の入力ディスクとの間のトルク伝達を可能にしており、この皿板ばねの径方向中間部の周方向複数箇所に前記押圧装置側の入力ディスクと反対側に突出する状態で形成した中間係合突片を、前記入力軸の先端部にこの入力軸と同心に設けた駆動円筒部の先端縁の周方向複数箇所に形成した駆動側係合凹部に係合させて、前記入力軸と前記皿板ばねとの間のトルク伝達を可能にしている事を特徴とするトロイダル型無段変速機。
An input rotary shaft that is rotationally driven by a drive source, and an axial side surface that is supported by a part of the input rotary shaft so as to be able to rotate in synchronization with the input rotary shaft and to be displaced in the axial direction of the input rotary shaft. An input disk that is an input side curved surface that is a toroidal curved surface, and an axial side surface that faces the input side curved surface is an output side curved surface that is a toroidal curved surface, and is concentric with the input disk and relative to the input disk. And an output disk that is supported, and a tilting shaft that is in a twisted position with respect to the central axis of each disk at a portion between the curved surface on the input side and the curved surface on the output side in the axial direction of each disk. A plurality of support members arranged so as to be swingable and displaceable with each of the output side curved surface and the input side curved surface facing each other in a state of being rotatably supported by each of the support members. In order to secure the surface pressure of the traction portion which is a rolling contact portion between the plurality of power rollers sandwiched between the power rollers and the circumferential surfaces of the power rollers and the curved surfaces on the output side and the input side, the input disk and the output A pressing device that presses the disc in a direction approaching each other; and the pressing device that is provided between the input rotation shaft and the input disc and presses the input disc toward the output disc in the axial direction. In a toroidal continuously variable transmission including a preload spring that presses the input disk toward the output disk and applies a surface pressure to each traction portion even in a state where no pressing force is generated,
The input disk is supported in a pair so as to be able to rotate in synchronization with the input rotation shaft in a state where the respective input-side curved surfaces are opposed to each other at both axial ends of the input rotation shaft.
The output disc has both side surfaces in the axial direction as output-side curved surfaces, and is supported around the intermediate portion of the input rotation shaft so as to be able to rotate relative to the input rotation shaft.
The input rotary shaft and the input shaft for rotationally driving both the input disks are arranged concentrically with the input rotary shaft in a state adjacent to the end of the input rotary shaft on the side where the pressing device is provided. Has been
An annular disc spring is used as the preload spring, and the inner peripheral edge of the disc spring is locked to the input rotary shaft so as to rotate in synchronization with the input rotary shaft. By engaging the portion close to the outer diameter of the leaf spring with the input-side curved surface and the axially opposite portion of the input disk on the pressing device side so as to enable transmission of rotational force, from the input shaft, Torque transmission to the input rotation shaft and the pressing device side is performed via the disc spring ,
The female spline portion formed on the inner peripheral edge of the disc spring and the male spline portion formed on the outer peripheral surface of the input rotary shaft are spline-engaged to synchronize the disc spring and the input rotary shaft. At the same time, the engagement protrusions projecting radially outward are provided at a plurality of locations in the circumferential direction of the outer peripheral edge of the disc spring, and the input disk on the pressing device side is opposite to the input curved surface in the axial direction. Engagement recesses are formed at a plurality of circumferential positions on the front edge of the cylindrical projection wall projecting from the radially outward portion of the end surface, and the engagement recesses and the engagement protrusions are engaged with each other. In combination, torque transmission between the disc spring and the input disc on the pressing device side is made possible, and the input disc on the pressing device side is provided at a plurality of circumferential positions in the radial intermediate portion of the disc spring. An intermediate engagement protrusion formed in a state protruding to the opposite side of the Engage with the drive-side engagement recesses formed at multiple locations in the circumferential direction of the tip edge of the drive cylinder provided concentrically with the input shaft at the tip of the shaft, and between the input shaft and the disc spring A toroidal-type continuously variable transmission characterized by enabling torque transmission .
前記押圧装置側の入力ディスクに突設した円筒状の突壁が、油圧式の押圧装置を構成する為のシリンダ筒であり、このシリンダ筒に油密に、且つ、このシリンダ筒に対する軸方向の変位を可能に内嵌した油圧隔壁の内径寄り部分を前記入力回転軸に対し、油密に、且つ、前記押圧装置側の入力ディスクから離れる方向の変位を阻止した状態で外嵌しており、前記油圧隔壁の軸方向片側面と、この押圧装置側の入力ディスクのうちで前記入力側曲面と軸方向反対側端面との間を油圧室とし、この油圧室内に油圧を導入する事により前記押圧装置に押圧力を発生させる、請求項に記載したトロイダル型無段変速機。
A cylindrical projecting wall projecting from the input disk on the pressing device side is a cylinder tube for constituting a hydraulic pressing device. The cylinder tube is oil-tight to the cylinder tube and is axially connected to the cylinder tube. A portion close to the inner diameter of the hydraulic partition wall that is fitted in such a manner as to be capable of being displaced is externally fitted to the input rotation shaft in a state of being oil-tight and preventing displacement in a direction away from the input disk on the pressing device side , A hydraulic chamber is formed between one axial side surface of the hydraulic partition wall and the input disk on the pressing device side between the curved surface on the input side and the end surface on the opposite side in the axial direction, and the pressure is introduced by introducing hydraulic pressure into the hydraulic chamber. The toroidal type continuously variable transmission according to claim 5 , wherein a pressing force is generated in the device.
JP2012143256A 2012-06-26 2012-06-26 Toroidal continuously variable transmission Active JP5953977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143256A JP5953977B2 (en) 2012-06-26 2012-06-26 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143256A JP5953977B2 (en) 2012-06-26 2012-06-26 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2014005912A JP2014005912A (en) 2014-01-16
JP5953977B2 true JP5953977B2 (en) 2016-07-20

Family

ID=50103817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143256A Active JP5953977B2 (en) 2012-06-26 2012-06-26 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5953977B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108488332B (en) * 2018-06-15 2024-04-19 姜新兵 Variable speed drive

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19542072C2 (en) * 1995-11-11 1998-07-02 Trw Fahrwerksyst Gmbh & Co Clutch spring element
JP2004239383A (en) * 2003-02-07 2004-08-26 Toyota Motor Corp Disk/roller type continuously variable transmission with improved hydraulic pressure feed mechanism
JP5051438B2 (en) * 2007-07-24 2012-10-17 日本精工株式会社 Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP2014005912A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP3714226B2 (en) Toroidal continuously variable transmission
US8617026B2 (en) Face spline clutch
JP6117991B2 (en) Toroidal continuously variable transmission
JP2011149481A (en) Toroidal type continuously variable transmission
JP3885650B2 (en) Continuously variable transmission
JP2003307266A (en) Continuously variable transmission
JP5023030B2 (en) Friction clutch fastening mechanism and differential device including the mechanism
JP5953977B2 (en) Toroidal continuously variable transmission
JP4774828B2 (en) Toroidal continuously variable transmission
EP3029356A1 (en) Toroidal continuously variable transmission
JP5045805B2 (en) Toroidal continuously variable transmission
JP4696537B2 (en) Toroidal continuously variable transmission
JP4496857B2 (en) Toroidal continuously variable transmission
JP4930249B2 (en) Continuously variable transmission
JP2007303562A (en) Belt type continuously variable transmission
JP4929977B2 (en) Toroidal continuously variable transmission
JP4826409B2 (en) Continuously variable transmission
JP2013167344A (en) Toroidal type continuously variable transmission
JP4867931B2 (en) Continuously variable transmission
JP2008082357A (en) Continuously variable transmission
JP6705735B2 (en) Toroidal type continuously variable transmission
JP3164081B2 (en) Transmission ratio infinitely variable transmission
JP6311452B2 (en) Toroidal continuously variable transmission
JP2008175215A (en) Continuously variable transmission device
JP2012193794A (en) Friction roller type reduction gear and electric vehicle drive unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R150 Certificate of patent or registration of utility model

Ref document number: 5953977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150