JP2018082423A - 適応フィルタ及び適応フィルタの動作方法 - Google Patents

適応フィルタ及び適応フィルタの動作方法 Download PDF

Info

Publication number
JP2018082423A
JP2018082423A JP2017121667A JP2017121667A JP2018082423A JP 2018082423 A JP2018082423 A JP 2018082423A JP 2017121667 A JP2017121667 A JP 2017121667A JP 2017121667 A JP2017121667 A JP 2017121667A JP 2018082423 A JP2018082423 A JP 2018082423A
Authority
JP
Japan
Prior art keywords
filter
determined
offset
time period
filter coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017121667A
Other languages
English (en)
Other versions
JP6928496B2 (ja
Inventor
パーンデー スジャン
Pandey Sujan
パーンデー スジャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
NXP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP BV filed Critical NXP BV
Publication of JP2018082423A publication Critical patent/JP2018082423A/ja
Application granted granted Critical
Publication of JP6928496B2 publication Critical patent/JP6928496B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H21/0043Adaptive algorithms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • B41M3/144Security printing using fluorescent, luminescent or iridescent effects
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/018Audio watermarking, i.e. embedding inaudible data in the audio signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/0009Time-delay networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/23Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03987Equalisation for sparse channels
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H21/00Adaptive networks
    • H03H21/0012Digital adaptive filters
    • H03H2021/007Computation saving measures; Accelerating measures
    • H03H2021/0072Measures relating to the coefficients
    • H03H2021/0074Reduction of the update frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2218/00Indexing scheme relating to details of digital filters
    • H03H2218/08Resource sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03433Arrangements for removing intersymbol interference characterised by equaliser structure
    • H04L2025/03439Fixed structures
    • H04L2025/03445Time domain
    • H04L2025/03471Tapped delay lines
    • H04L2025/03484Tapped delay lines time-recursive
    • H04L2025/0349Tapped delay lines time-recursive as a feedback filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

【課題】リソースシェアリングを用いたタップ重み係数の高速収束を行う適応フィルタ及びその動作方法を提供する。
【解決手段】適応フィルタは、計算ブロック、モニタリングブロック及びオフセット計算ブロックを備える。計算ブロックは、フィルタ係数c(n)を適応収束アルゴリズムに従う反復プロシージャで調整するように構成される。モニタリングブロックは、反復プロシージャの実行中に、決定されたフィルタ係数c(n)の進化をモニタするように構成される。オフセット計算ブロックは、フィルタ係数c(n)のモニタされた変化に基づいてオフセットOFFを第1の時間周期毎に決定し、決定されたフィルタ係数c(n)が定常状態に達しない場合に、決定されたオフセットOFFiを出力するように構成される。計算ブロックは、決定されたオフセットOffを受け取り、決定されたオフセットOffを反復プロシージャに注入するよう構成される。
【選択図】図8a

Description

本発明は概して適応フィルタに関する。本発明は特に、フィルタ係数収束アルゴリズムを実行する計算ブロックのリソースシェアリングを用いる適応フィルタに関する。より詳しくは、本発明はリソースシェアリングを用いる適応フィルタの収束速度を増加するブートストラップ技術に関する。
適応フィルタは2つの信号の関係をリアルタイムに反復的にモデル化しようとする計算装置である。
このような適応フィルタは多くの用途、例えば不要信号成分を除去するために使用されている。(符号間干渉除去用の)エコーキャンセラ/イコライザは適応フィルタの典型的な応用であり、ハイブリッド回路のトランスハイブリッド結合に由来するエコーを適応フィルタの入力信号から導出されるエコーレプリカで除去する。適応フィルタは、多くの場合、マイクロプロセッサ又はDSPチップ等の演算処理装置上で実行される一組のプロセッサ命令として、又はフィールドプログラムゲートアレイ(FPGA)又はセミカスタム又はカスタムVLSI集積回路に実装される一組の論理演算として実現される。
適応フィルタはタップ付き遅延線及びタップ重み係数コントローラを有し、タップ重み係数でそれぞれ重み付けされた加重タップ信号の和を生成する。LMS(最小2乗平均)アルゴリズムのような既知の適応収束アルゴリズムによれば、タップ重み(フィルタ)係数はタップ信号と加重タップ信号の和で表される補正信号の残留誤差との間の相関関係により更新される。
タップ重み係数の高速収束は適応フィルタの設計の一番の関心事である。特にリソースシェアリングを用いる適応フィルタの高速収束は、電力効率のよい実装の観点から、コスト重視のマーケットにとって大きな望みである。
本発明は、添付の請求項に記載するように、適応フィルタにおけるフィルタ係数を調整する反復収束アルゴリズムにオフセットを注入する方法及び前記の方法を実行させるコンピュータ実行可能な命令を有するコンピュータ可読記憶媒体を提供する。本発明のこれらの特徴及び他の特徴は以下に記載する実施形態から明らかされ、これらの実施形態を参照して詳細に説明される。
本明細書に組み込まれ、その一部を成す添付図面は本発明を示し、詳細な説明とともに、本発明の原理を説明し、当業者が本発明を実施し利用することを可能にする。
本発明の一実施形態に係わる、汎用適応フィルタのブロック図を概略的に示す。 本発明の一実施形態に係わる、例示的な適応フィルタのブロック図を概略的に示す。 本発明の一実施形態に係わる、適応フィルタのフィルタ係数を調整する計算モジュールのブロック図を概略的に示す。 本発明の一実施形態に係わる、計算リソースシェアリングを用いる例示的な適応フィルタのブロック図を概略的に示す。 本発明の一実施形態に係わる、計算リソースシェアリングを用いる適応フィルタのフィルタ係数調整用計算モジュールのブロック図を概略的に示す。 本発明の一実施形態に係わる、計算リソースシェアリングを用いる例示的な適応フィルタの調整プロシージャを概略的に示す。 本発明の一実施形態に係る、時間に伴うフィルタ係数の進化を示す概略図である。 本発明の一実施形態に係る、時間に伴うフィルタ係数の進化を示す他の概略図である。 本発明の一実施形態に係る、オフセット注入による時間に伴うフィルタ係数の進化を示す他の概略図である。 本発明の一実施形態に係る、オフセット注入による時間に伴うフィルタ係数の進化を示す他の概略図である。 本発明のいくつかの実施形態に係る、オフセットを注入する方法の概略的流れ図である。 本発明のいくつかの実施形態に係る、オフセットを注入する方法の概略的流れ図である。 本発明のいくつかの実施形態に係る、オフセットを注入する方法の概略的流れ図である。 本発明のいくつかの実施形態に係る、オフセットを注入する方法の概略的流れ図である。 本発明の一実施形態に係る、計算リソースシェアリング及びオフセット注入を用いる例示的な適応フィルタのブロック図を概略的に示す。 本発明の一実施形態に係わる、管理可能な計算リソースシェアリングを用いる例示的な適応フィルタのブロック図を概略的に示す。 11aは、本発明の実施形態に係る、異なる信号セット{s(n-i)}へのタップ遅延信号s(n-i)の割り当てを示すフィルタ係数図を示す。11bは、本発明の実施形態に係る、異なる信号セット{s(n-i)}へのタップ遅延信号s(n-i)の割り当てを示すフィルタ係数図を示す。 本発明の実施形態に係る、異なる信号セット{s(n-i)}へのタップ遅延信号s(n-i)の割り当てを示すフィルタ係数図を示す。
本発明の実施形態を図面を参照して以下に詳細に記載する。図中の同一の素子又は同等の素子は同じ参照番号で示され、その説明は繰り替えされないことに注意されたい。以下に記載する実施形態は当業者が本発明を実施するために必要な情報を提示する。添付図面に照らして下記の記載を読むと、当業者は本発明の概念を理解するとともに、本明細書に具体的に取り組まれていないこれらの概念の応用も理解されよう。これらの概念及び応用は本開示及び添付の請求項の範囲内に含まれる。
さて、図1を参照すると、汎用適応フィルタのブロック図が概略的に示されている。ディジタル入力信号s(n)が適応フィルタ100に供給され、適応フィルタ100は各時刻nにおいてディジタル出力信号y(n)を計算するように構成されている。ディジタル出力信号y(n)はディジタル入力信号s(n)と所謂フィルタ係数ci(n)等の一組のパラメータの関数である。ディジタル出力信号y(n)は応答又は参照信号d(n)と比較され、各時刻nにおいてディジタル出力信号y(n)と参照信号d(n)との差が得られる。この差信号e(n)=d(n)−y(n)は誤差信号と呼ばれ、フィルタ係数ci(n)を適応フィルタ係数収束アルゴリズムに従って適応化するように構成された構成要素に供給される。適応収束アルゴリズムは時刻nのフィルタ係数ci(n)を時刻(n+1)における新たな適応化フィルタ係数ci(n+1)に適応化する(ここで、i=0,...,L-1である)。適応収束アルゴリズムの目的は誤差信号e(n)に基づいてコスト関数を最小化することにある。適応フィルタ100内のパラメータはその設計及び計算実装によって決めることができる。
次に図2を参照すると、本発明の一実施形態に係わる例示的な適応フィルタのブロック図が概略的に示されている。例示的な適応フィルタ100は有限数Lのフィルタ係数c0〜cL-1を備える。係数ベクトルはC(n)=[c0(n),c1(n),...,cL-1(n)]として書き表せる。
入力信号s(n)と出力信号y(n)の関係が線形であるものとすると、適応フィルタは、図2につきここに例示するように、有限インパルス応答(FIR)の形態を取り得る。有限インパルス応答(FIR)フィルタは、L−1個の遅延素子110.1~110.L−1を有するタップ付き遅延線(Z-1で示されている)を備え、各フィルタ係数は倍数詞利得である。出力信号y(n)は、

として書き表せる。ここで、S(n)=[s(n),s(n-1),...,s(n-L+1)]は入力信号ベクトルである。
図2に示すように、適応フィルタは、各タップ遅延信号s(n-i)をそれぞれのフィルタ係数ci(n)と乗算するL個の乗算器130.0〜130.L−1(ここでi=0〜L−1である)と、加重出力信号寄与分yi(n)を加算するL−1個の加算器140.2〜140.Lとを備える。適応フィルタは更にL個のタップ遅延信号s(n-1)及びL個のフィルタ係数ci(n)を記憶する少なくとも2L個の記憶場所を備える。
適応フィルタのフィルタ係数を調整する適応収束アルゴリズムは適応フィルタのそれぞれの使用ケースに対して選択されたコスト関数を最小化するように実行される。フィルタ係数ci(n)の調整は反復プロシージャで実行される。

C(n+1)=C(n)+μ(n)・G(e(n),S(n),Φ(n))

ここで、G(e(n)、S(n),Φ(n))は非線形ベクトル関数であり、μ(n)は所謂ステップサイズであり、e(n)は誤差信号であり、S(n)は入力信号ベクトルである。Φ(n)は入力信号、誤差信号及び/又はフィルタ係数の特性の関連情報を記述するために使用し得る状態のベクトルである。
適応フィルタは係数調整モジュール125を備え、このモジュールは上述した適応収束アルゴリズムを実行する。少なくとも誤差信号e(n)及び入力信号ベクトルS(n)は係数調整モジュール125に入力され、このモジュールは更にフィルタ係数ci(n)を記憶し、記憶したフィルタ係数ci(n)を出力信号y(n)の生成のために出力する少なくともL個の記憶場所を備え得る。更に、係数調整モジュール125内で実行される適応収束アルゴリズムにより要求されるパラメータ、例えばステップサイズμ(n)を予め決定又は設定することができる。
あるクラスの適応フィルタでは最小2乗平均(LMS)関数を用いて、誤差信号e(n)(所望の信号と実際の信号との間の差)の最小2乗平均の生成に関連するフィルタ係数を見つけることによって所望のフィルタを再現している。これは、フィルタ係数が現在時刻の誤差信号に基づいてのみ適応化される確率的勾配降下法である。
特に、LMSアルゴリズムはフィルタ係数を見つけるために確率的勾配降下法に基づいており、この方法は次のように要約し得る。
C(n+1)=C(n)+μ・e(n)・S(n)
i(n+1)=ci(n)+μ・e(n)・s(n-i)
ここで、C(n)=[c0(n),c1(n),...,cL-1(n)]、S(n)=[s(n),s(n-1),...,s(n-L+1)]、μはステップサイズ及びLはフィルタの次数である。
フィルタ係数はフィルタ係数の初期値Cinit(n)=[c0 init(n),c1 init(n),...,cL-1 init(n)]から出発して反復プロシージャで決定される。初期値は予め決定される。非限定的な例では、フィルタ係数の初期値ci init(n)はゼロ、即ち、Ci init(n)=[0,0,...,0]=zeros(L)に設定し得るが、非ゼロ初期値に設定してもよい。LMSアルゴリズムは正確な期待値を使用しないので、フィルタ係数は絶対的な意味で最適収束値に到達しないで、平均的に収束し得る。フィルタ係数は少量だけ変化し得るが、それらは収束値を中心に変化する。ステップサイズμの値は適切に選択すべきである。以下において、その最適収束値を中心に少量だけ変化するフィルタ係数を定常状態に達したフィルタ係数とみなす。
LMS計算ブロック120.0〜120.L−1は図2に示す適応フィルタの各フィルタ係数ci(n)ごとに配置される。このようなLMS計算ブロック120.0~120.L−1は、図3に概略的なブロック図で例示するように、例えば2つの乗算器、一つの加算器及び一つのメモリ記憶場所を備える。図3の計算モジュールは単なる例示であり、本願を限定する意図はない。
図4を参照すると、本発明の一実施形態に係る他の例示的な適応フィルタのブロック図が概略的に示されている。図4に示す適応フィルタは、実装の複雑さ及びコストを低減するために、固定の計算リソースシェアリングを利用する。図4の例示的な適応フィルタは本発明のコンセプトの基礎であるリソースシェアリング技術を紹介するために説明される。フィルタ係数の調整を実行するために使用される計算リソースは適応フィルタのフィルタ係数ci(n)の間で共用される。フィルタ係数ci(n)の一部分のみが現在時刻、例えば時刻nに調整され、フィルタ係数ci(n)の残りの部分は維持され、後の時刻、例えば時刻n+1に調整される。ここで、nは以下で更に詳述されるサンプリングインデックスを示すものと理解されたい。
説明のために、図4に概略的に示す例示的な適応フィルタはL=6のフィルタ次数を有する適応フィルタであり、これは、タップ付き遅延線は5つの遅延線110.1〜110.5を有し、6つのタップ遅延信号s(n-i)を出力することを意味し、これらの信号は6つのフィルタ係数ci(n)で乗算(重み付け)される。例示的な適応フィルタは更にLMS計算ブロック120.1,120.3及び120.5を備え、ここでLMS計算ブロック120.1,120.3及び120.5の各々はフィルタ係数ci(n)の2つの異なる係数を調整するために設けられている。LMS計算ブロック120.1はフィルタ係数c0(n)及びc1(n)を調整するために設けられ、構成されている。LMS計算ブロック120.3はフィルタ係数c2(n)及びc3(n)を調整するために設けられ、構成されている。LMS計算ブロック120.5はフィルタ係数c4(n)及びc5(n)を調整するために設けられ、構成されている。各タップ遅延信号s(n-i)及び関連フィルタ係数ci(n)は計算ブロック120の一つに固定的に割り当てられ、この計算ブロックは固定的に一以上の他のタップ遅延信号s(n-i)及び関連フィルタ係数ci(n)で共用される。各計算ブロック120は実装されたフィルタ係数収束アルゴリズムに従って2以上の関連フィルタ係数を調整する計算を実行するために適時に共用される。
次に図5を参照すると、LMS計算ブロック120.1、120.3及び120.5のようなLMS計算ブロックは、図5に概略的なブロック図で例示するように、2つの乗算器、一つの加算器及び2つのメモリ記憶場所を備える。1つのフィルタ係数を調整する計算は1サイクルで実行し得る。従って、各フィルタ係数は第2サイクル毎に更新され、収束速度はそれぞれのシェアリング係数k=2に従って半分になる。
図6を参照すると、図4の計算リソースシェアリングを用いる例示的な適応フィルタの調整プロシージャが概略的に示されている。時刻nにおいて、タップ遅延信号s(n-i)(i=0,2,4)がLMS計算ブロック120.1、120.3及び120.5のそれぞれに供給され、ここで第1部分のフィルタ係数ci(n)(i=0,2,4)が調整される。残りのフィルタ係数を含む第2部分ci(n)(i=1,3,5)は維持され、例えばci(n)=ci(n-1)(i=1,3,5)になる。時刻n+1において、タップ遅延信号s(n+1-i)(i=1,3,5)がLMS計算ブロック120.1,120.3及び120.5のそれぞれに供給され、ここで第2部分のフィルタ係数ci(n)(i=1,3,5)が調整される。第1部分のフィルタ係数ci(n+1)(i=0,2,4)は維持され、例えばci(n+1)=ci(n)(i=0,2,4)になる。時刻n+2において、タップ遅延信号s(n+2-i)(i=0,2,4)がLMS計算ブロック120.1,120.3及び120.5のそれぞれに供給され、ここで第2部分のフィルタ係数ci(n+2)(i=0,2,4)が調整される。第1部分のフィルタ係数ci(n+2)(i=1,3,5)は維持され、例えばci(n+2)=ci(n+1)(i=1,3,5)になる。調整プロシージャは次の時間ステップn=n+1ごとに上述したように交互に続けられる。
これは、計算リソースシェアリングを使用すると、各フィルタ係数はk回の反復ごとに(ここではk=2)更新されることを意味する。一般的に、計算リソースシェアリングは高いkの値で実行することができ、この値は以後シェアリング係数kとして示し、kは整数であり、k>1である。LMS計算ブロックの数はフィルタ次数L=6をシェアリング係数K=2で割った数、L/k=3になる。例示的な適応フィルタは3つのLMS計算ブロック120.1,120.3及び120.5を備える。
当業者であれば、上述のリソースシェアリング方式は本発明の概念の理解を高めるための単なる例示にすぎず、本発明を限定する意図はないことを理解されよう。
適応フィルタにおける適応フィルタのフィルタ係数の調整は適応収束アルゴリズムを実行するように構成された計算ブロックを必要とする。各計算ブロックは1つのフィルタ係数の調整プロシージャを1サイクルで実行することができる。従って、伝統的な適応フィルタの計算ブロックの数は適応フィルタの次数L又はタップ付き遅延線により供給されるタップ遅延信号s(n-i)の数に相当する。計算リソースシェアリングを用いる適応フィルタでは、計算ブロックの数は適応フィルタの次数Lより少なくなる。それに応じてフィルタ係数のサブセットのみが1サイクルで調整される。本発明の一例では、フィルタ係数の数は各サブセットのフィルタ係数の数の整数倍になる。この整数倍はシェアリング係数kに相当する。
図5及び図6に概略的に示し、説明したように、計算リソースシェアリングを利用すると、フィルタ係数ci(n)の収束時間が増加する。フィルタ係数ci(n)の収束時間は、調整プロシージャが、その最適収束値を中心に少量だけ変化するほぼ一定のフィルタ係数ci(n)の値、言い換えれば定常状態に達したフィルタ係数ci(n)の値をもたらすのに要する期間に相当する。
収束速度の低下は図7a及び図7bを参照して更に説明され、これらの図は上述したLMSアルゴリズムのような適応収束アルゴリズムに従って時間とともに更新されるフィルタ係数ci(n)の進化をリソースシェアリングがある場合とない場合について示す。説明の便宜上、フィルタ係数ci(n)のほぼ直線状の進化が概略的に示されている。一般的に、フィルタ係数ci(n)の進化は適用する適応収束アルゴリズムに依存する。パラメータkは上述したシェアリング係数kに相当する。一方では計算リソースシェアリングを用いない収束モジュールで実行され、他方ではシェアリング係数kの計算リソースシェアリングを用いる収束モジュールで実行された適応収束アルゴリズムに基づいて決定されたフィルタ係数ci(n)の経時的な進化を比較すると、フィルタ係数ci(n)の経時的な進化により決まる曲線の勾配は相違する。計算リソースシェアリングを使用すると、決定される曲線の勾配はほぼシェアリング係数kだけ減少する。従って、収束速度は計算リソースシェアリングを使用するとき大きく低下する。
収束速度を改善するために、フィルタ係数ci(n)の上述した進化に基づいてオフセットが決定される。決定されたオフセットは所定の時点でフィルタ係数ci(n)に注入される。決定されたオフセットの注入は、フィルタ係数ci(n)が収束値を中心に変化し、フィルタ係数ci(n)が定常状態に達したことを示すとき、停止される。
オフセットOffiはフィルタ係数ci(n)の差分値に基づいて決定される。差分値Δiは時間周期N・Tsで決定され、ここでTsは適応フィルタのサンプリング時間及びfsはサンプリング周波数(Ts=1/fs)であり、Nは所定の整数値N≧1であり、
差分値Δiはn=0で決定され、ここでnはサンプリング時間Tsに関するサンプリングインデックスである。サンプリングインデックスn=0は係数調整プロシージャの開始を示す。
差分値Δiは更に、Offiの可能な注入後に、時間周期M・N・Ts毎に決定される。従って、差分値Δi j(j)はn=j・M・Nにおいて決定され、ここでj=1,2,3,...(t=n・Ts)である。従って、
各時間周期M・N・Tsにおいて、フィルタ係数ci(n)の進化の現在の勾配が所定の閾値より低くければ、オフセットOffiがフィルタ係数ci(n)に加算される。所定の閾値より低いフィルタ係数ci(n)の進化の現在の勾配は最適収束値を中心として僅かに変化するフィルタ係数ci(n)を示すものとみなせる。
オフセットOffi(j)は差分値Δi j(j)とシェアリング係数kに基づいて決定される。
上述のベクトル表現を使用すると、オフセットOffiは次のように書き表せる。

ここで、
従って、オフセットは次のようの書き表せ、

その注入は次のように書き表せる。
図10cに概略的に示されるように、
t=1・M・N・Ts:ci(n)=ci(n)+Offi(0)、ここでn=1・M・N及びj=0;
t=2・M・N・Ts:ci(n)=ci(n)+Offi(1)、ここでn=2・M・N及びj=1;
t=3・M・N・Ts:ci(n)=ci(n)+Offi(2)、ここでn=3・M・N及びj=2;
t=4・M・N・Ts:ci(n)=ci(n)+Offi(3)、ここでn=4・M・N及びj=3;
...
t=(j+1) ・M・N・Ts:ci(n)=ci(n)+Offi(j)、ここでn=(j+1)・M・N及び
更に続く

そうでなければ、ci(n+1)=ci(n)+μ・e(n)・s(n-i)
適応収束アルゴリズムは各サイクルで実行されるが、オフセットは適応収束アルゴリズムの反復サイクルより大きい周期で周期的に注入される。
上述した時点(j+1)・M・N・Ts(j=0,1,2,..)におけるフィルタ係数ci(n)の進化の現在の勾配が正である場合にオフセットOffi(j)が加算される。他方、勾配が負である場合には、オフセットOffi(j)が減算される。以下で述べるように、この勾配は所定の時間周期に関して決定された差分商により近似することができ、所定の時間周期は注入周期より短くしてもよい。
図7dは、時間に伴うフィルタ係数ci(n)の値の進化を例示する概略図を示す。オフセットは、フィルタ係数ci(n)の値がその最適収束値に実質的に(例えば近似的に)達するまで、周期的に加算される。図10dは、計算リソースシェアリングとオフセット注入を用いる適応フィルタの場合の時間に伴うフィルタ係数ci(n)の値の進化(実線)、計算リソースシェアリングを用いるがオフセット注入を用いない適応フィルタの場合の時間に伴うフィルタ係数ci(n)の値の進化(破線)、及び計算リソースシェアリングを用いない適応フィルタの場合の時間に伴うフィルタ係数ci(n)の値の進化(二点鎖線)を示す。
オフセットの周期的注入は図7dでよく認識することができる。オフセットの注入はフィルタ係数ci(n)の値の進化に段部を形成する。オフセットの注入と注入の間の部分では、フィルタ係数ci(n)の値の進化は計算リソースシェアリングを用いるがオフセット注入を用いない適応フィルタで調整されるフィルタ係数ci(n)の値の進化にほぼ一致する。オフセット注入を用いるフィルタ係数ci(n)の値の進化特性は、以下の記載から、特に図8a〜8dを参照して以下に記載する流れ図からよく理解される
計算リソースシェアリングとオフセット注入を用いる適応フィルタの収束速度は計算リソースシェアリングを用いない適応フィルタの収束速度にほぼ相当する。計算リソースシェアリングを用いるがオフセット注入を用いない適応フィルタの収束速度はかなり低くなる。
次に図8aを参照すると、計算リソースシェアリングを用いる適応フィルタの収束速度を改善する方法の例示的な実施形態を示す概略的な流れ図が示されている。計算リソースシェアリングを用いる適応フィルタの例は先に詳細に記載した。
フィルタ係数ci(n)の収束速度の改善は所定の時間周期で加算又は減算されるオフセット値Offi(j)によって得られる。オフセット値Offi(j)の加算又は減算はフィルタ係数ci(n)の進化の現在の勾配により決まり、特に加算又は減算はその勾配が正(フィルタ係数が上昇中)又は負(フィルタ係数が低下中)であるかによって決まる。オフセット値Offi(j)は周期的に決定される差分値Δi(j)に基づく(ここで、jは周期のインデックスである)。
この方法はサンプリング時間Ts及びサンプリングインデックスnに関して実行され、ここで時間t=n・Ts及びn=0,1,2...である。
初期ステップS100において、適応収束アルゴリズムが初期化され、第1の時間周期T1及び第2の時間周期T2に関する値が指定される。一般的には、サンプリングインデックスnはn=n0に設定され、フィルタ係数ci(n)の初期値はci(n)=ci init(n)に設定される。一例では、サンプルインデックスnはn0=0に設定される。一例では、フィルタ係数ci(n)の初期値はci(n)=0に設定される。シェアリング係数kは計算リソースシェアリングを用いる適応フィルタの実装により予め決定される。フィルタ係数ci(n)が定常状態に達したかどうかの決定を可能にするための閾値THが指定される。
第1の時間周期T1は2つのパラメータN及びMに関して決定され、ここでN及びMは整数でありN>1,M>1である。第2の時間周期T2はパラメータNに関して決定される。例えば、第2の時間周期T2=N・Tsである。一例では、パラメータNはシェアリング係数kより大きい(N>k)。第2の時間周期T2は第1の時間周期T1内にM回起こる。
ステップS110において、サンプルインデックスが1だけ増加する(n=n+1)。
ステップS120において、フィルタ係数ci(n)の進化がモニタされる。この進化は時間とともに進化するフィルタ係数ci(n)の値の変化に基づいてモニタされる。例えば、特に第2の時間周期T2に対するフィルタ係数ci(n)の値から勾配が決定される。
ステップS130において、オフセットをフィルタ係数ci(n)の反復計算に注入するかどうか決定される。特に、このようなオフセットは各第1の時間周期T1にのみ注入される。詳しくは、オフセットはフィルタ係数ci(n)が定常状態に達しない場合、例えばモニタされた勾配の絶対値が所定の閾値を超え、フィルタ係数ci(n)が依然として最適収束値から大きく相違していることを示すとみなせる場合、にのみ注入される。注入されるオフセットはモニタされた勾配及び更にはシェアリング係数に依存する。
ステップS140において、フィルタ係数ci(n)の計算が反復される。本例によれば、フィルタ係数ci(n)はLMSアルゴリズム:
i(n+1)=ci(n)+μ・e(n)・s(n-1)
を用いて実行される。
ステップサイズμは初期ステップで予め決定される。完全のために、ステップサイズμはサンプルインデックスnに依存する可変パラメータ:μ=μ(n)とし得る。
次に図8bを参照すると、フィルタ係数ci(n)の進化のモニタリング方法の一例を示す概略流れ図が示されている。
ステップS200において、フィルタ係数ci(n)が第1の時間周期T内のフィルタ係数ci(n)の進化に基づいてモニタされる。例えば、勾配又は差分値が少なくとも各第1の時間周期Tの開始時に決定される。勾配又は差分値は、例えば第2の時間周期T中のフィルタ係数ci(n)の値の変化から決定される。
ステップ210において、第2の時間周期Tが経過したかどうか決定される。例えば、現在のサンプルインデックスnがNの倍数であり且つnがゼロでなければ(n>0)、次の条件
n mod N=0
で第2の時間周期Tが経過したことが示される。
第2の時間周期Tが経過した場合には、勾配又は差分値がステップS220において決定される。この勾配は時間/サンプリングインデックスの経過に伴うフィルタ係数ci(n)の変化に基づいて決定される。一例では、この勾配ci′は、サンプルインデックスn及びn−Nにおけるフィルタ係数ci(n)及びフィルタ係数ci(n-N)の値に基づいて次式で決定される。
代わりに、上述の勾配と等価な値とみなせる差分値Δiを決定してもよい。
Δi=ci(n)−ci(n-N)=N・ci′(n)
ステップ230において、決定された勾配ci′又は変化分Δiが第1の時間周期Tの開始時、例えば第1の時間周期Tにおける第2の時間周期Tの最初の発生時に関連するかどうか決定される。
(n−N)mod(N・M)=0
決定された勾配又は差分値が第1の時間周期Tの開始時に関連する場合には、勾配ci′又は変化分ΔiはステップS240において後の利用のために格納することができる。格納された勾配ci′又は変化分Δiはオフセットを決定するために使用される。
ステップS250において、フィルタ係数ci(n)の進化のモニタリングは完了する。
次に図8cを参照すると、オフセットの注入方法の一例を示す概略流れ図が示されている。
ステップS300において、フィルタ係数ci(n)が定常状態に達しなければ、フィルタ係数ci(n)の反復計算にオフセットの注入が実行される。
ステップS310において、第1の時間周期Tが経過したかどうか決定される。例えば、現在のサンプルインデックスnがN・Mの倍数であり且つnがゼロでなければ(n>0)、次の条件
n mod(N・M)=0
で第1の時間周期T1が経過したことが示される。
第1の時間周期Tが経過した場合、オフットOffiがステップS320において決定される。オフセットOffiは、第1の時間周期Tにおけるフィルタ係数ci(n)の進化を考慮するために、格納された勾配ci*又は変化分Δi*に基づいて決定される。オフセットOffiは更に、適応フィルタの計算リソースシェアリングによる収束速度の減少を考慮するために、シェアリング係数に基づいて決定される。例えば、
Offi=(k−1)・ci*・M・N;又は
Offi=(k−1)・Δi*・M
上述したように、オフセットOffiは、フィルタ係数ci(n)が定常状態に達しない場合にフィルタ係数ci(n)の反復計算に注入される。
ステップS330において、現在の勾配ci′または現在の差分値Δiが所定の閾値THと比較される。現在の勾配ci′は例えば異なる時点、例えばn及び(n−N)の時点におけるフィルタ係数ci(n)に基づく差分商から決定される。一例では、現在の勾配ci′はフィルタ係数ci(n)のモニタリングに関する前ステップで決定された勾配である。一例では、現在の差分値Δiはフィルタ係数ci(n)のモニタリングに関する前ステップで決定された差分値である。
|ci′|<TH、又は
|Δi|<THΔ
ここで、本例ではTHΔ≒TH・Nである。
現在の勾配ci′又は現在の差分値Δiの絶対値が所定の閾値(それぞれTH及びTHΔ)より小さい場合には、フィルタ係数ci(n)は定常状態に達し、最適収束値を中心にわずかに変化するだけであるとみなされる。この場合にはオフセットOffiは注入されない。
他方、現在の勾配ci′又は現在の差分値Δiの絶対値が所定の閾値(それぞれTH及びTHΔ)より大きい場合には、ステップS340においてオフセットOffiがフィルタ係数ci(n)の反復計算に注入される。例えば、
i(n)=ci(n)+Offi
ステップS350において、オフセットの注入は完了する。
次に図8dを参照すると、オフセットの注入方法の他の例を示す概略流れ図が示されている。
ステップS300′において、フィルタ係数ci(n)が定常状態に達しなければフィルタ係数ci(n)の反復計算にオフセットの注入が実行される。
ステップS310において、第1の時間周期Tが経過したかどうか決定される。第1の時間周期Tが経過した場合、オフットOffiがステップS320において決定される。
ステップS330において、現在の勾配ci′または現在の変化分Δiが所定の閾値TH(それぞれTH及びTHΔ)と比較される。
現在の勾配ci′又は現在の差分値Δiの絶対値が所定の閾値より小さい(又は等しい)場合には、フィルタ係数ci(n)は定常状態に達し、最適収束値を中心にわずかに変化するだけであるとみなされる。この場合にはオフセットOffiは注入されない。
他方、現在の勾配ci′又は現在の差分値Δiの絶対値が所定の閾値より大きい場合には、オフセットOffiがフィルタ係数ci(n)の反復計算に注入される。
ステップS310〜330は図8cについて説明したそれぞれのステップに対応する。不要な説明の繰り返しは省略した。
ステップS360において、時間に伴うフィルタ係数ci(n)の進化が上昇挙動を示すのか下降挙動を示すのか決定される。フィルタ係数ci(n)が時間とともに上昇するのか下降するのかは、現在の勾配ci′又は現在の差分値Δiから決定することができる。現在の勾配ci′又は現在の差分値Δiが0より大きい場合には、フィルタ係数ci(n)は時間とともに上昇し、他方、現在の勾配ci′又は現在の差分値Δiが0より小さい場合には、フィルタ係数ci(n)は時間とともに下降する。
i′,Δi>0:上昇又はci′,Δi<0:下降
フィルタ係数ci(n)が時間とともに上昇する場合、ステップS370においてオフセットOffiが加算される。
i(n)=ci(n)+Offi
フィルタ係数ci(n)が時間とともに下降する場合、ステップS380においてオフセットOffiが減算される。
i(n)=ci(n)−Offi
ステップS390において、オフセットの注入は完了される。
次に図9を参照すると、本発明の一実施形態に係わる別の例示的な適応フィルタのブロック図が概略的に示されている。図9に示す適応フィルタはフィルタ次数Lを有し、実装の複雑さ及びコストを低減するために、計算リソースシェアリングを利用する。
フィルタ次数Lによれば、タップ付き遅延線はL−1個の遅延素子110.1〜110.L−1を有し、L個のタップ遅延信号s(n−i),i=0,...,L−1,を供給する。
図9の例示的な適応フィルタはシェアリング係数k=3を有する。これは、各3つのフィルタ係数c(n)に対して1つの計算ブロックが設けられることを意味する。従って、この例示的な適応フィルタはL/k個の計算ブロック120.1〜120.L/kを備える。各サイクルにおいて、L/k個のフィルタ係数のサブセットが調整される。
LMS計算ブロック120.1は例えばフィルタ係数c(n)〜c(n)を調整するために使用され、LMS計算ブロック120.L/kは例えばフィルタ係数cL-1(n)〜cL-3(n)を調整するために使用される。当業者なら、図9の例示的な計算リソースシェアリング適応フィルタは計算リソースシェアリング適応フィルタのほんの一例にすぎず、本願はこれに限定されることを意図していないことは理解されよう。
本適応フィルタは更に、各タップ遅延信号s(n−i)をそれぞれのフィルタ係数c(n)と乗算するL個の乗算器130(ここで、i=0〜L−1)と、出力信号y(n)を得るために加重出力信号y(n)を加算するL−1個の加算器140を備える。本適応フィルタは更に、L個のフィルタ係数c(n)を記憶する少なくともL個の記憶場所を備える。
本適応フィルタは更に、フィルタ係数c(n)にアクセスし、フィルタ係数c(n)の進化をモニタするように構成されたモニタリングブロック200を備える。特に、モニタリングブロック200は図8a及び8bに示す流れ図を参照して先に具体的に説明したようなモニタリング方法を実行するように構成される。
本適応フィルタは更に、オフセット計算ブロック210を備え、この計算ブロックはモニタリングブロック200からフィルタ係数c(n)の値の進化に関する情報を受信し、周期的タイムスケールでフィルタ係数c(n)に対するオフセット値Offを計算し、計算したオフセット値Offをフィルタ係数c(n)の調整プロシージャに注入するように構成されている。特に、オフセット計算ブロック210は、図8a,8c及び8dに示す流れ図を参照して先に具体的に説明したモニタリング方法を実行するように構成される。
オフセット注入は、フィルタ係数を調整するLMS(最小2乗平均)アルゴリズムに限定されると理解すべきではなく、このアルゴリズムに関しては収束速度を改善する方法が先に例示的に説明されている。LMSアルゴリズムは最急降下プロシージャの近似に基づくアルゴリズムのファミリー全体の一つにすぎない。アルゴリズムのファミリーは更に、例えばサイン−エラー(sign-error)
アルゴリズム、(sign-delta)サイン−デルタアルゴリズム、サイン−サイン(sign-sign)アルゴリズム、ゼロ−フォーシング(zero-forcing)アルゴリズム及びパワー・トゥ・ツー量子化(power-to-two quantized)アルゴリズムを含む。最急降下プロシージャは平均2乗誤差(MSE)コスト関数に基づき、適応FIRフィルタに有用であるとして示されている。しかしながら、非MSE基準に基づく他のアルゴリズムも知られている。例示したオフセット注入は反復的に決定されるフィルタ係数に対して上述した一般形態で適用可能である。
次に図10を参照すると、本発明の一実施形態に係わる更に他の例示的な適応フィルタのブロック図が概略的に示されている。図10に示す適応フィルタは管理可能な計算リソースシェアリングを利用する。
この例示的な適応フィルタは複数の計算ブロック260を備える。特に、計算ブロック260の数は実装又は設計段階で決定される。計算ブロック260の各々は1つのフィルタ係数ci(n)の調整プロシージャを1サイクルで実行し得る。調整プロシージャは適応収束アルゴリズムに従って実行される。計算ブロック260はそれに応じて構成される。計算ブロック260は1以上のタップ遅延信号s(n-i)に固定的に割り当てられない。この適応フィルタ内にはシンボルルーティングロジック300が設けられ、このルーティングロジックは任意のタップ遅延信号s(n-i)を任意の計算ブロック260に選択的に経路指定するように設定可能である。従って、計算ブロック260の各々を1サイクルにて1つのタップ遅延信号s(n-1)に自由に割り当てることができる。
計算ブロック260の管理のために、計算ブロック260の各々は複数wのクラスタ250.jの一つに割り当てられ、ここで、j=1,..,wであり、wは正の非ゼロ整数である。複数のクラスタ250.1〜250.wの各々はCj個の計算ブロック260の個別セットを備え、ここでj=1,...,wである。各クラスタ250.1〜250.w内に含まれる計算ブロック260.jの数は異なってもよい。例えば、クラスタ250.2はC2個の計算ブロックCB260.2.1〜260.2.C2のセットを備え、クラスタ250.wはCw個の計算ブロックCB260.w.1〜260.w.Cwのセットを備える。
シンボルルーティングロジック300は複数wセットのタップ遅延信号{s(n-i)}.1〜{s(n-i)}.wの各セットをクラスタ250.1〜250.wに経路指定する。タップ遅延信号の各セット{s(n-i)}はMj個のタップ遅延信号s(n-i)を備え、ここでj=1,...,wである。各セットを構成するタップ遅延信号s(n-i)の数は異なってもよい。例えば、第1セット{s(n-i)}のタップ遅延信号s(n-i)はクラスタ250.1に転送され,M1個のタップ遅延信号s(n-i)を含み、第2セット{s(n-i)}のタップ遅延信号s(n-i)はクラスタ250.2に転送され,M2個のタップ遅延信号s(n-i)を含み、第wセット{s(n-i)}のタップ遅延信号s(n-i)はクラスタ250.wに転送され,Mw個のタップ遅延信号s(n-i)を含む。
タップ遅延信号のセット{s(n-i)}.1〜{s(n-i)}.wの数はクラスタ250.1〜250.wの数に相当する。
フィルタ係数ci(n)は係数メモリ格納部270に格納され、計算ブロック260はこの格納部にアクセスしてそれぞれの格納位置からそれぞれのフィルタ係数ci(n)を読み出し、更新されたフィルタ係数ci(n)をそれぞれの格納位置に書き込む。
各計算ブロック260のクラスタ250.1〜250.wのそれぞれへの割り当て及び計算ブロック260の動作はクラスタコントローラブロック320で制御される。クラスタコントローラブロック320は、計算ブロック260を個別に及び/又は集団的にターンオン/オフするように構成される。クラスタコントローラブロック320は更に、計算ブロック260がシンボルルーティングロジック300によりそれらに供給されるタップ遅延信号s(n-i)に対応する所要のフィルタ係数ci(n)にアクセスすることを可能にするよう構成される。
タップ遅延信号s(n-1)の経路指定はルーティングコントローラブロック310で制御され、このコントローラブロックはシンボルルーティングロジック300を適宜設定する。ルーティングコントローラブロック310は各タップ遅延信号s(n-i)をタップ遅延信号のセット{s(n-i)}.1〜{s(n-i)}.wの一つに割り当てるように設定される。ルーティングコントローラブロック310はシンボルルーティングロジック300を、タップ遅延信号の各セット{s(n-i)}.1〜{s(n-i)}.wをクラスタ250.1〜250.wのそれぞれに経路指定するように設定する。タップ遅延信号の各セット{s(n-i)}.1〜{s(n-i)}.wはクラスタ250.1〜250.wの一つに割り当てられる。各クラスタ250.1〜250.wはタップ遅延信号セット{s(n-i)}.1〜{s(n-i)}.wの一つのセットのタップ遅延信号s(n-i)を受信する。
ルーティングコントローラブロック310及びクラスタコントローラブロック320はモニタリングブロック200からの情報を受信し、このモニタリングブロックは係数メモリ270にアクセスし、フィルタ係数ci(n)の進化をモニタするように構成される。モニタリングブロック200はフィルタ係数ci(n)の進化に関する情報をルーティングコントローラブロック310及びクラスタコントローラブロック320に供給することができる。これらのブロックは受信した情報に基づいて例示の適応フィルタを動的に動作するよう構成されている。
本発明の一実施形態に係わる、管理可能な計算リソースシェアリングを用いる適応フィルタの動作は、例示的なフィルタ係数プロットを示す図11a及び図11bを参照して更に説明される。
図11aのフィルタ係数のプロット図に例示されるように、フィルタ係数ci(n)は優勢な係数及びあまり優勢でない係数又は高い貢献及び低い貢献を有するフィルタ係数ci(n)を含む。図示の例示的なプロット図では、優勢なフィルタ係数が(全60タップの)30番タップの周囲のタップに位置する。残りのフィルタ係数はあまり優勢でないとみなせる。優勢なフィルタ係数はあまり優勢でないフィルタ係数より低い収束速度を有することが理解され得る。更に、優勢なフィルタ係数の収束を短縮することは適応フィルタの全体動作を向上することも理解され得る。更に、優勢なフィルタ係数の出力信号y(n)への貢献はあまり優勢でないフィルタ係数の出力信号y(n)への貢献より大きい。
管理可能なリソースシェアリングは、性能要件を低い電力消費で満たしつつ、上記の考察を適応フィルタの動作において考慮することができる。
シンボルルーティングロジック300は、タップ付き遅延線により各サンプリングサイクルで発生される総数Lのタップ遅延信号s(n-i)をw個のタップ遅延信号セット{s(n-i)}.1〜{s(n-i)}.wに区分化することができる。各信号セットは異なる数のタップ遅延信号s(n-i)を含んでよい。総数Lのタップ遅延信号s(n-i)は、例えば5つのセット400.1〜400.5に区分化され、各セットは異なる数の連続するタップ遅延信号{s(n-i)}を含み、ここでi=i1,...,i2であり、i1及びi2は整数で、i1<i2、0<i1、2<L−1であり、Lは適応フィルタの次数である。
総数Lのタップ遅延信号s(n-1)は、モニタされ、仮定され又は期待される出力信号y(n)への貢献レベルに基づいて区分化し得る。総数Lのタップ遅延信号s(n-1)は、モニタされ、仮定され又は期待される関連フィルタ係数ci(n)の値に基づいて区分化し得る。最初に、タップ遅延信号s(n-i)の信号セットへの区分化は予め決定することができ、例えばフィルタ係数の初期値をゼロに設定するときは、例えばタップ遅延信号s(n-i)はほぼ同数のタップ遅延信号s(n-i)を有する信号セットに均等に割り当てることができる。最初にフィルタ係数調整を初期非ゼロ値から開始するとき、タップ遅延信号s(n-i)の異なる信号セットへの割り当ては初期非ゼロ値に基づくものとすることができ、初期非ゼロ値はそれぞれのタップ遅延信号s(n-1)の貢献レベル又は有意レベルを表すものとしてよい。適応フィルタの動作中は、総数Lのタップ遅延信号s(n-i)は、例えばフィルタ係数ci(n)のモニタ値に応答して区分化することができる。
図11aに例示されるように、最初の信号セット400.1及び最後の信号セット400.5は最小量の値のフィルタ係数ci(n)と関連する遅延信号s(n-i)を含む。第3の信号セット400.3は最高量の値のフィルタ係数ci(n)と関連するタップ遅延信号s(n-i)を含む。第2の信号セット400.2及び第4の信号セット400.4は中間量の値のフィルタ係数ci(n)と関連するタップ遅延信号s(n-i)を含む。
信号セットの各々はクラスタ、ここでは5つの信号セットに応じて5つのクラスタ、の一つと関連する。例えば、クラスタ1は第3の信号セット400.3と関連する。計算ブロックは5つのクラスタのそれぞれに割り当てられる。クラスタに割り当てられる計算ブロックの数は異ならせてもよい。しかし、以上の記載から理解されるように、クラスタの計算性能を決める重要な因子が個々のシェアリング係数kiにより与えられ、ここでi=1〜wであり、wはクラスタの数である。シェアリング係数kiは、クラスタiに割り当てられるタップ遅延信号及びフィルタ係数ci(n)の数とクラスタiに割り当てられる計算ブロックの数の比である。異なるクラスタのシェアリング係数kiは互いに異ならせてもよい。
タップ遅延信号s(n-i)の割り当てはフィルタ係数ci(n)の量値に適用される一以上の閾値レベル又はフィルタ係数ci(n)の初期値に基づいて実行してもよい。タップ遅延信号の異なるセットへの割り当てはフィルタ係数ci(n)の正規化値に基づいてもよい。フィルタ係数ci(n)の正規化値は互換性を向上し得る。図11aに例示される5つの信号セットへのタップ遅延信号s(n-i)の割り当てはフィルタ係数ci(n)の量値に適用される2つの閾値の結果である。フィルタ係数ci(n)の量値又は正規化値はタップ遅延信号s(n-i)の信号セットへの割り当てに使用し得る。
本発明の一例では、あまり優勢でないフィルタ係数を有する信号セットが割り当てられるクラスタはより優勢なフィルタ係数ci(n)を有する信号セットが割り当てられるクラスタより高いシェアリング係数で動作させることができる。
クラスタコントローラブロック320は計算ブロックをクラスタに割り当てるように構成される。最初に、計算ブロックは初期割り当てスキームに従ってクラスタに割り当てることができ、例えば、計算ブロックはほぼ同数の計算ブロックを備えるクラスタに均等に割り当てることができる。適応フィルタの動作中、計算ブロックの割り当ては、例えばフィルタ係数ci(n)のモニタされた貢献レベル及び/又は収束レベルに応答して適応させることができる。
図11bに更に例示されるように、タップ遅延信号s(n-i)はフィルタ係数ci(n)の正規化値に適用される2つの閾値レベル(低閾値及び高閾値)に基づいて3つの信号セット400.1,400.2及び400.3に割り当てることができる。N個の閾値はN+1個のフィルタ係数値の(部分)範囲又は部分値域を規定する。
タップ遅延信号は、それぞれのフィルタ係数ci(n)の値のN+1の部分値域への割り当てに基づいてN+1の信号セット(N+1の部分値域の数に対応する)の一つに割り当てられる。したがって、各信号セットは連続するタップ遅延信号s(n-i)の1つ、2つ又はそれより多くのサブセットを備え得る。ここでは、信号セット400.1及び400.2は各々タップ遅延信号s(n-i)の2つの連続するサブセットを備え、信号セット400.3は連続するタップ遅延信号s(n-i)の一つのサブセットを備える。3つの信号セット400.1〜400.3の各々は3つのクラスタの一つに割り当てられる。
3つのクラスタの各々に割り当てられる計算ブロックの数は更に、それぞれの信号セットのフィルタ係数ci(n)の正規化値に基づいて選択することができる。ある信号セットのフィルタ係数ci(n)の正規化値が他の信号セットに比較して低い場合には、少数の計算ブロックがそれぞれのクラスタに割り当てられ、これは低い値を有する信号セットのフィルタ係数ci(n)は高いシェアリング係数kを用いて調整されることを意味する。ある信号セットのフィルタ係数ci(n)の正規化値が他の信号セットに比較して高い場合には、多数の計算ブロックがそれぞれのクラスタに割り当てられ、これは高い値を有する信号セットのフィルタ係数ci(n)は低いシェアリング係数kを用いて調整されることを意味する。ある信号セットのフィルタ係数ci(n)の正規化値が他の信号セットに比較して中間である場合には、中間数の計算ブロックがそれぞれのクラスタに割り当てられ、これは中間の値を有する信号セットのフィルタ係数ci(n)は中間のシェアリング係数kを用いて調整されることを意味する。
図11bに戻り説明すると、クラスタ1は信号セット400.3のタップ遅延信号s(n-i)に対応するフィルタ係数ci(n)を調整するために多数の計算ブロックを備えることができる。クラスタ3は信号セット400.1のタップ遅延信号s(n-i)に対応するフィルタ係数ci(n)を調整するために少数の計算ブロックを備えることができる。信号セット400.1は2つのサブセットを備える。クラスタ2は信号セット400.2のタップ遅延信号s(n-i)に対応するフィルタ係数ci(n)を調整するために中間数の計算ブロックを備えることができる。信号セット400.2は2つのサブセットを備える。
次に図12を参照すると、一以上のクラスタの計算ブロックの動作をクラスタコントローラブロック320により無効化することができる。クラスタコントローラブロック320は計算ブロックの動作を個別に及び/又は集団的に有効化又は無効化するよう構成される。一以上のクラスタの計算ブロックの無効化は、フィルタ係数ci(n)の経時的な進化をモニタするように構成されたモニタリングブロック200に応答して実行することができる。フィルタ係数ci(n)の進化のモニタリングに基づいて、モニタリングブロック200はフィルタ係数ci(n)が定常状態に達するときを検出することができる。
例えば、調整プロシージャのために一つのクラスタに割り当てられたフィルタ係数ci(n)が定常状態に達した場合には、そのクラスタの計算ブロックは節電のために少なくとも一時的に無効にすることができる。特に、クラスタの計算ブロックは所定のオフ期間Toffに亘って無効にされ、その後無効にされた計算ブロックは再び動作状態に投入される。
以上の説明からよく理解されるように、提案の設計の設定可能なリソースシェアリングを用いる適応フィルタはタップ遅延信号s(n-i)及びフィルタ係数ci(n)の設定可能なサブセットに対して計算能力を柔軟に動的に割り当てることができる。それによって、調整プロシージャを適応収束アルゴリズムに従って実行するために使用される計算ブロックの利用可能な計算能力を、実装された計算ブロックの全数を経済的な数に低減しながら効率的に使用することができる。
図10には示されていないが、上記の記載から、前述のオフセット注入技術は図10−12について記載した設定可能な計算リソースシェアリングを用いる適応フィルタに適用可能であることはよく理解されよう。特に、オフセット注入は個別のシェアリング係数k(j=1,...,w)を有する各クラスタ250.1〜250.wに有効である。従って、注入すべきオフセットは個別のフィルタ係数c(n)の進化と一つのクラスタ250.jのシェアリング係数kとに基づいて決定することができ、そのクラスタで個別のフィルタ係数c(n)の収束プロシージャが実行される。オフセット計算ブロック210はモニタリングブロック200及びフィルタ係数メモリ270とともに配置し得る。モニタリングブロック200は更に、上述したように、オフセット計算ブロック210を有効化してフィルタ係数c(n)に対するオフセットOffを決定するように設定される。計算されたオフセットOffはフィルタ係数メモリ270へのアクセスを介して適応収束アルゴリズムに周期的に注入することができる。シェアリング係数kはルーティングコントローラブロック310及びクラスタコントローラブロック320により供給される情報から決定することができる。この情報は例えば各信号セット{(s(n−i)}内のタップ遅延信号の数及び各クラスタ250.1〜250.w内の計算ブロック260の数を示す。
当業者なら、情報及び信号は様々な異なるテクノロジー及び技術の何れかを用いて表すことができる。例えば、以上の記載を通して言及されるデータ、命令、コマンド、情報、信号、ビット、シンボル、及びチップは電圧、電流、電磁波、磁場又は磁性粒子、光場又は光子、又はそれらの任意の組み合わせによって表すことができる。
当業者なら更に、様々な例示の論理ブロック、モジュール、回路、及び本明細書の開示と関連して記載されたアルゴリズムステップは、電子的ハードウェア、コンピュータソフトウェア、又は両者の組み合わせとして実装することができる。このハードウェアとソフトウェアの互換性を説明するために、様々な例示的コンポーネント、ブロック、モジュール、回路、及びステップは以上ではそれらの機能的表現で一般的に記載されている。このような機能は特定の用途及びシステム全体に課される設計制約に依存してハードウェア又はソフトウェアとして実装される。当業者なら記載の機能を各特定の用途に対して様々に実装することができるが、このような実装の決定は本発明の範囲からの逸脱をもたらすものと解釈すべきではない。
以上の説明と関連して記載された様々な例示のブロック、モジュール、及び回路は、本明細書に記載された機能を実行するように設計された汎用プロセッサ、ディジタル信号プロセッサ(DSP)、特定用途集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)又は他のプログラマブル論理デバイス、ディスクリートゲート又はトランジスタロジック、ディスクリートハードウェアコンポーネント、又はそれらの任意の組み合わせによって実装又は実行することができる。汎用プロセッサはマイクロプロセッサとし得るが、代わりに任意の通常のプロセッサ、コントローラ、又はステートマシンとしてもよい。プロセッサはコンピュータ装置の組み合わせ、例えばDSPとマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと連動する一以上のマイクロプロセッサ、又は任意の他のこのような構成として実装してもよい。
本明細書の開示と関連して記載された方法又はアルゴリズムのステップは直接的にハードウェアに、プロセッサで実行されるソフトウェアに、又は両者の組み合わせに具体化することができる。ソフトウェアモジュールはRAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムーバブルディスク、CDROM、又は従来知られている任意の他の形態の記憶媒体内に常駐させてよい。例示の記憶媒体は、プロセッサがその記憶媒体から情報を読み出すこと及びその記憶媒体に情報を書き込むことができるように、プロセッサに結合される。代わりに、記憶媒体はプロセッサに一体化してもよい。プロセッサと記憶媒体はASIC内に常駐させてよい。ASICはユーザ端末に常駐させてよい。代わりに、プロセッサと記憶媒体はユーザ端末内に個別のコンポーネントとして常駐させてよい。
一以上の例示的な設計では、記載した機能はハードウェアに、ソフトウェアに、ファームウェアに、又はそれらの任意の組み合わせに実装してよい。ソフトウェアに実装する場合には、それらの機能は一以上の命令又はコードとしてコンピュータ可読媒体に記憶するか、送信することができる。コンピュータ可読媒体はコンピュータ記憶媒体と、一つの場所から他の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む通信媒体の両方を含む。記憶媒体は汎用又は専用コンピュータによりアクセスし得る任意の利用可能な媒体としてよい。一例として、限定ではないが、このようなコンピュータ可読媒体は、RAM,ROM、EEPROM,CD−ROMストレージ又は他の光ディスクストレージ、磁気ディスク又は他の磁気ストレージ装置、又は命令又はデータ構造の形態の所望のプログラムコードを担持又は記憶するために使用でき且つ汎用又は専用コンピュータ又は汎用又は専用プロセッサによりアクセスし得る任意の他の媒体を含み得る。また、如何なる接続もコンピュータ可読媒体と言える。例えば、ソフトウェアがウェブサイト、サーバ、又は他のリモートソースから、同軸ケーブル、光ファイバケーブル、ツイストペア、ディジタル加入者線(DSL)を用いて又は赤外線、無線及びマイクロ波などの無線技術を用いて送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、又は赤外線、無線及びマイクロ波などの無線技術は媒体の定義に含まれる。本明細書で使用するディスク(disk及びdisc)は、コンパクトディスク(compact disc:CD)、レーザディスク(laser disc)、光ディスク(optical disc)、ディジタルバーサタイルディスク(digital versatile disc:DVD)、フロッピーディスク(floppy disk)及びブルーレイディスク(blu−ray disc)(disk通常データを磁気的に再生するが、discはデータをレーザで光学的に再生する)を含む。上記の組み合わせもコンピュータ可読媒体の範囲に含まれる。
本発明の以上の説明は当業者に本発明の利用又は使用を可能にするために与えられている。本発明に対する様々な変更が当業者に容易に明らかであり、本明細書に特定された一般的な原理は本発明の精神又は範囲から逸脱することなく他の変更に提供可能である。従って、本発明は本明細書に記載した例及び設計に限定されず、本明細書に開示される原理及び新規な特徴と一致する最も広い範囲を許容することが意図されている。
100: 適応フィルタ
110: 遅延素子Z-1
110.1: 遅延素子Z-1
110.5: 遅延素子Z-1
110.L−1: 遅延素子Z-1
120: 計算ブロック/LMS計算ブロック
120.1: 計算ブロック
120.3: 計算ブロック
120.5: 計算ブロック
120.L−1: 計算ブロック
125: 係数調整モジュール
130: 乗算器
130.0: 乗算器
130.L−1: 乗算器
140: 加算器
140.2: 加算器
140.L: 加算器
200: モニタリングブロック
210: オフセット計算ブロック
230: クラスタコントローラ
250: クラスタ/計算ブロックのクラスタ
250.1: クラスタ/計算ブロックのクラスタ
250.2: クラスタ/計算ブロックのクラスタ
250.j: クラスタ/計算ブロックのクラスタ
250.w: クラスタ/計算ブロックのクラスタ
260: 計算ブロック
260.1: 計算ブロック
260.2: 計算ブロック
260.j: 計算ブロック
260.w: 計算ブロック
260.1.1: 計算ブロック
260.1.C1: 計算ブロック
260.2.C2: 計算ブロック
260.w.1: 計算ブロック
260.w.Cw: 計算ブロック
270: メモリストレージ/フィルタ係数メモリ
300: ルーティングロジック/シンボルルーティングロジック
310: ルーティングコントローラ/ルーティングコントローラブロック
320: クラスタコントローラ/クラスタコントローラブロック
400: 信号セット/タップ遅延信号のセット
400.1: 信号セット/タップ遅延信号のセット
400.2: 信号セット/タップ遅延信号のセット
400.3: 信号セット/タップ遅延信号のセット
400.4: 信号セット/タップ遅延信号のセット
400.5: 信号セット/タップ遅延信号のセット

Claims (15)

  1. リソースシェアリングを用いる適応フィルタ(100)のフィルタ係数の反復決定にオフセットを注入する方法であって、前記方法は、
    フィルタ係数c(n)を適応収束アルゴリズムに従って反復プロシージャで調整する(120,120.1〜120.L/k)ステップ(S140)と、
    前記反復プロシージャ中に、
    決定されたフィルタ係数c(n)の進化をモニタするステップ(S120,S200)と、
    前記フィルタ係数c(n)のモニタされた変化に基づいてオフセットOFFを決定するステップ(S130,S300)と、
    前記決定されたフィルタ係数c(n)が定常状態に達しない場合に、前記決定されたオフセットOFFiを第1の時間周期T1毎に前記反復プロシージャに注入するステップ(S130,S340)と、
    を備える、方法。
  2. 前記決定されたフィルタ係数c(n)の進化をモニタするステップは、前記決定されたフィルタ係数c(n)の進化を第2の時間周期T2でモニタするステップ(S210,S200)を備え、前記第1の時間周期T1は前記第2の時間周期T2の整数倍である、請求項1記載の方法。
  3. 前記第2の時間周期T2は、サンプリング周期Tsの整数N倍、即ちT2=N・T、N>1であり、
    前記第1の時間周期T1は第2の時間周期T2の整数M倍、即ちT1=M・T2,M>1である、請求項2記載の方法。
  4. 前記決定されたフィルタ係数c(n)の変化に関する値を各第1の時間周期T1の開始時に決定するステップ(S240)を更に備え、
    前記オフセットを決定するステップは、決定された前記変化に関する値と前記変化に関する値を前記第1の時間周期T1にマッピングするスケール係数とに基づいて前記オフセットOffiを決定するステップ(s320)を備える、請求項1−3の何れかに記載の方法。
  5. 前記決定されたフィルタ係数c(n)の変化に関する現在値を各第1の時間周期T1の終了時に決定するステップ(S220)、及び
    前記決定されたフィルタ係数c(n)が定常状態に達したかどうかを決定するために前記現在値を閾値と比較するステップ(S330)
    を更に備える、請求項1‐4のいずれかに記載の方法。
  6. 前記変化に関する値及び/又は前記変化に関する現在値は、勾配値、差分商値及び差分値の一つである、請求項1記載の方法。
  7. 前記適応フィルタ(100)はフィルタ次数Lを有し、
    前記適応フィルタは、前記フィルタ係数c(n)を調整する複数の計算ブロック(120,120.1〜120.L/k)を備え、前記計算ブロックの数はフィルタ次数Lより小数であり、前記計算ブロックはk個の異なるフィルタ係数c(n)の間でシェアされ、ここでkはシェアリング係数を規定し、前記オフセットOffを決定するステップ(S320)は前記決定された変化に関する値と前記シェアリング係数kとに基づいて決定するステップを備える、請求項1記載の方法。
  8. リソースシェアリングを用いる適応フィルタであって、前記フィルタは、
    フィルタ係数c(n)を適応収束アルゴリズムに従って反復プロシージャで調整するように構成された少なくとも一つの計算ブロック(120,120.1〜120.L/k)と、
    前記反復プロシージャ中に決定された前記フィルタ係数の進化をモニタする(S120,S200)ように構成されたモニタリングブロック(200)と、
    モニタされた前記フィルタ係数c(n)の変化に基づいてオフセットOffを第1の時間周期T1毎に決定し、決定されたフィルタフィルタ係数c(n)が定常状態に達した場合に決定されたオフセットOffを前記計算ブロックに出力するように構成されたオフセット計算ブロック(210)を備え、
    前記計算ブロック(120,120.1〜120.L/k)は決定されたオフセットOffを受け取り、決定されたオフセットOffを前記反復プロシージャに注入するように構成されている、
    適応フィルタ。
  9. 前記モニタリングブロック(200)は更に前記決定されたフィルタ係数c(n)の進化を第2の時間周期T2でモニタする(ステップS220)ように構成され、前記第1の時間周期T1は前記第2の時間周期T2の整数倍である、請求項7記載の適応フィルタ。
  10. 前記第2の時間周期T2は、サンプリング周期Tsの整数N倍、即ちT2=N・T、N>1であり、
    前記第1の時間周期T1は第2の時間周期T2の整数M倍、即ちT1=M・T2,M>1である、請求項7又は8記載の適応フィルタ。
  11. 前記モニタリングブロック(200)は更に、前記決定されたフィルタ係数c(n)の変化に関する値を各第1の時間周期T1の開始時に決定するように構成され、
    前記オフセット計算ブロック(210)は更に、決定された前記変化に関する値と前記変化に関する値を前記第1の時間周期T1にマッピングするスケール係数とに基づいて前記オフセットOFFiを決定するように構成されている、請求項7−10の何れかに記載の適応フィルタ。
  12. 前記モニタリングブロック(200)は更に、前記決定されたフィルタ係数c(n)の変化に関する現在値を各第1の時間周期T1の終了時に決定し、
    前記決定されたフィルタ係数c(n)が定常状態に達したかどうかを決定するために前記現在値を閾値と比較するように構成されている、請求項7‐11の何れかに記載の方法。
  13. 前記変化に関する値及び/又は前記変化に関する現在値は、勾配値、差分商値及び差分値の一つである、請求項7−12の何れかに記載の方法。
  14. 前記適応フィルタ(100)はフィルタ次数Lを有し、
    前記適応フィルタは複数の計算ブロックを備え、前記計算ブロックの数はフィルタ次数Lより小数であり、前記計算ブロックの少なくとも一つは、一つのフィルタ係数c(n)を前記反復プロシージャの1サイクルで調整するように構成され且つk個の異なるフィルタ係数の間で適時に共用され、調整する前記計算ブロックはk個の異なるフィルタ係数c(n)の間でシェアされ、ここでkはシェアリング係数を定義し、前記オフセット計算ブロックは、前記オーディオOffを前記決定された変化に関する値と前記シェアリング係数とに基づいて決定するよう構成されている、請求項7−13の何れかに記載の方法。
  15. 一以上の処理装置によって実行されるとき、前記一以上の処理装置に請求項1−7の何れかに記載の方法を行わせる命令を含むコンピュータ可読媒体を備えたコンピュータプログラム製品。
JP2017121667A 2016-11-18 2017-06-21 適応フィルタ及び適応フィルタの動作方法 Active JP6928496B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16199563.4A EP3324543B1 (en) 2016-11-18 2016-11-18 Adaptive filter and method of operating an adaptive filter
EP16199563.4 2016-11-18

Publications (2)

Publication Number Publication Date
JP2018082423A true JP2018082423A (ja) 2018-05-24
JP6928496B2 JP6928496B2 (ja) 2021-09-01

Family

ID=57485295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121667A Active JP6928496B2 (ja) 2016-11-18 2017-06-21 適応フィルタ及び適応フィルタの動作方法

Country Status (4)

Country Link
US (1) US10363765B2 (ja)
EP (1) EP3324543B1 (ja)
JP (1) JP6928496B2 (ja)
CN (1) CN108075746B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057813A (ja) * 2019-09-30 2021-04-08 アンリツ株式会社 エンファシス付加装置、エンファシス付加方法及び誤り率測定装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8300798B1 (en) 2006-04-03 2012-10-30 Wai Wu Intelligent communication routing system and method
EP3324542B1 (en) 2016-11-18 2019-10-23 Nxp B.V. Adaptive filter with manageable resource sharing
US10917074B2 (en) * 2019-03-29 2021-02-09 Bose Corporation Subband adaptive filter for systems with partially acausal transfer functions
CN113643689B (zh) * 2021-07-02 2023-08-18 北京华捷艾米科技有限公司 一种数据滤波方法和相关设备

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0366160A1 (en) 1986-01-18 1990-05-02 Hewlett-Packard Limited Non intrusive channel impairment analyser
JPH03154512A (ja) * 1989-11-13 1991-07-02 Nec Corp 適応ディジタルフィルタ
DE69227752T2 (de) 1991-06-20 1999-07-22 Motorola, Inc., Schaumburg, Ill. Einrichtung zur einstellung von signalpunkten, entzerrerverstärkungen und dergleichen
JP2734952B2 (ja) 1993-12-16 1998-04-02 日本電気株式会社 Cdma基地局受信装置
JPH08250981A (ja) * 1995-03-09 1996-09-27 Fujitsu Ltd フィルタ係数の推定装置
US5777913A (en) * 1995-12-27 1998-07-07 Ericsson Inc. Resolution enhancement of fixed point digital filters
US5777910A (en) * 1996-11-19 1998-07-07 Thomson Multimedia S.A. Sparse equalization filter adaptive in two dimensions
US5946351A (en) 1996-12-27 1999-08-31 At&T Corporation Tap selectable decision feedback equalizer
US6108681A (en) 1998-02-27 2000-08-22 Philips Electronics North America Corporation System for sharing resources in a digital filter
US7120656B1 (en) 2000-10-04 2006-10-10 Marvell International Ltd. Movable tap finite impulse response filter
US20020150155A1 (en) * 2001-02-26 2002-10-17 Itzhak Florentin Convergence speed, lowering the excess noise and power consumption of equalizers
US7218682B2 (en) 2002-02-12 2007-05-15 Itt Manufacturing Enterprises, Inc. Methods and apparatus for synchronously combining signals from plural transmitters
JP4392153B2 (ja) * 2002-07-17 2009-12-24 パナソニック株式会社 波形等化装置
US7499513B1 (en) * 2004-12-23 2009-03-03 Xilinx, Inc. Method and apparatus for providing frequency synthesis and phase alignment in an integrated circuit
FR2899052B1 (fr) * 2006-03-22 2009-04-24 Imra Europ Sas Soc Par Actions Filtre adaptatif pour un recepteur de signal de communication
US8285772B2 (en) 2008-02-04 2012-10-09 Realtek Semiconductor Corp. Order adaptive finite impulse response filter and operating method thereof
JP5358021B2 (ja) 2009-06-03 2013-12-04 エレクトロビット・システム・テスト・オサケユキテュア オーバーザエアー試験システム
US20110013685A1 (en) * 2009-07-14 2011-01-20 Advanced Receiver Technologies, Llc Channel and Equalization Coefficient Based Timing Recovery
US9001883B2 (en) * 2011-02-16 2015-04-07 Mediatek Inc Method and apparatus for slice common information sharing
PL2725797T3 (pl) * 2011-06-23 2019-01-31 Huawei Technologies Co., Ltd. Urządzenie do dekodowania przesunięcia, urządzenie do kodowania przesunięcia, urządzenie do filtrowania obrazu i struktura danych
KR20130075888A (ko) 2011-12-28 2013-07-08 삼성전자주식회사 무선통신 시스템에서 등화기 수신기 및 동작 방법
US9385929B2 (en) * 2013-02-26 2016-07-05 Cisco Technology, Inc. Methods and devices for performing dynamic droop compensation
US9154187B2 (en) * 2013-05-24 2015-10-06 Nxp B.V. System and method for operating a filter for echo cancellation
EP2869077B1 (en) * 2013-10-30 2017-06-14 Nxp B.V. Offset compensation for zero-crossing detection
US20160044394A1 (en) * 2014-08-07 2016-02-11 Nxp B.V. Low-power environment monitoring and activation triggering for mobile devices through ultrasound echo analysis
EP3324542B1 (en) 2016-11-18 2019-10-23 Nxp B.V. Adaptive filter with manageable resource sharing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057813A (ja) * 2019-09-30 2021-04-08 アンリツ株式会社 エンファシス付加装置、エンファシス付加方法及び誤り率測定装置

Also Published As

Publication number Publication date
CN108075746B (zh) 2023-04-07
US20180141363A1 (en) 2018-05-24
JP6928496B2 (ja) 2021-09-01
EP3324543A1 (en) 2018-05-23
CN108075746A (zh) 2018-05-25
EP3324543B1 (en) 2020-01-08
US10363765B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
JP2018082423A (ja) 適応フィルタ及び適応フィルタの動作方法
JP6948169B2 (ja) 管理可能なリソースシェアリングを用いる適応フィルタ
Reddy et al. An approach for FIR filter coefficient optimization using differential evolution algorithm
JP7009020B2 (ja) 学習方法、学習システム、学習装置、方法、適用装置、及びコンピュータプログラム
JP2016127599A5 (ja)
do Prado et al. Sparsity-aware distributed adaptive filtering algorithms for nonlinear system identification
CN113796016B (zh) 符号判定装置和符号判定方法
CN110581711B (zh) 均衡器和包括均衡器的发送器
US10692527B1 (en) Target parameter adaptation
Coppola et al. Generations of correlation averages
Choo et al. Two's complement computation sharing multiplier and its applications to high performance DFE
WO2015081530A1 (en) Pattern-based coefficient adaptation operation for decision feedback equalization
JP2007221629A (ja) 適応等化器
Sangeeta et al. Investigations on pipeline optimized adaptive fir filter architecture for audio de-noising
WO2012104828A1 (en) A method and apparatus for hierarchical adaptive filtering
TWI478504B (zh) 可降低運算量的自適應濾波電路
Magesh et al. Implementation of Programmable Finite Impulse Response Filter Using Modified Computation Sharing Multiplier for Hearing Aids
US9215115B1 (en) Apparatus and method for improved integration circuitry in decision feedback equalization
JP2016219860A (ja) 未知伝達系推定装置、未知伝達系推定方法、およびプログラム
US10056887B2 (en) Apparatus and method for controlling a delay circuit
TWI353724B (en) Transversal filter
CN117792836A (zh) 最大似然序列的检测电路、检测方法、装置和电子设备
JP2023171028A (ja) 受信装置、受信方法、受信プログラム及び送信装置
JP2022063923A (ja) 演算処理装置、方法及びプログラム
JP3683523B2 (ja) 最尤系列推定装置および最尤系列推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210806

R150 Certificate of patent or registration of utility model

Ref document number: 6928496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250