JP2018081733A - Polishing liquid composition for magnetic disk substrate - Google Patents
Polishing liquid composition for magnetic disk substrate Download PDFInfo
- Publication number
- JP2018081733A JP2018081733A JP2016222412A JP2016222412A JP2018081733A JP 2018081733 A JP2018081733 A JP 2018081733A JP 2016222412 A JP2016222412 A JP 2016222412A JP 2016222412 A JP2016222412 A JP 2016222412A JP 2018081733 A JP2018081733 A JP 2018081733A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- particles
- less
- preferable
- magnetic disk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 245
- 239000000758 substrate Substances 0.000 title claims abstract description 99
- 239000000203 mixture Substances 0.000 title claims abstract description 96
- 239000007788 liquid Substances 0.000 title claims abstract description 81
- 239000002245 particle Substances 0.000 claims abstract description 208
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 106
- 238000000034 method Methods 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000009826 distribution Methods 0.000 claims abstract description 18
- 238000004062 sedimentation Methods 0.000 claims abstract description 12
- 230000001186 cumulative effect Effects 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims description 29
- 239000006061 abrasive grain Substances 0.000 claims description 20
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 15
- 239000000377 silicon dioxide Substances 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 239000002243 precursor Substances 0.000 description 19
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 239000007800 oxidant agent Substances 0.000 description 12
- 239000008119 colloidal silica Substances 0.000 description 10
- 239000003002 pH adjusting agent Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000011164 primary particle Substances 0.000 description 7
- 239000002612 dispersion medium Substances 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 229910018104 Ni-P Inorganic materials 0.000 description 5
- 229910018536 Ni—P Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- 239000012935 ammoniumperoxodisulfate Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007518 final polishing process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- -1 phosphonic acid Organic acids Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
本開示は、磁気ディスク基板用研磨液組成物及びシリカスラリーの製造方法、磁気ディスク基板の製造方法並びに基板の研磨方法に関する。 The present disclosure relates to a polishing composition for a magnetic disk substrate and a method for producing a silica slurry, a method for producing a magnetic disk substrate, and a method for polishing a substrate.
近年、磁気ディスクドライブは小型化・大容量化が進み、高記録密度化が求められている。高記録密度化のためには、単位記録面積を縮小し、弱くなった磁気信号の検出感度を向上させる必要がある。そのため、磁気ヘッドの浮上高さをより低くするための技術開発が進められている。磁気ディスク基板には、磁気ヘッドの低浮上化と記録面積の確保に対応するため、平滑性及び平坦性の向上(表面粗さ、うねり、端面ダレの低減)や表面欠陥低減(残留砥粒、スクラッチ、突起、ピット等の低減)が厳しく要求されている。 In recent years, magnetic disk drives have been reduced in size and capacity, and high recording density has been demanded. In order to increase the recording density, it is necessary to reduce the unit recording area and improve the detection sensitivity of the weakened magnetic signal. For this reason, technical development for lowering the flying height of the magnetic head has been underway. For magnetic disk substrates, the smoothness and flatness are improved (reduction of surface roughness, waviness, and edge sagging) and surface defects are reduced (residual abrasive, Reduction of scratches, protrusions, pits, etc.) is strictly demanded.
このような要求に対して、より平滑で、傷が少ないといった表面品質向上と生産性の向上を両立させる観点から、磁気ディスク基板の製造方法においては、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。一般に、多段研磨方式の最終研磨工程、即ち、仕上げ研磨工程では、表面粗さの低減、スクラッチ、突起、ピット等の傷の低減という要求を満たすために、コロイダルシリカ粒子を含む仕上げ用研磨液組成物が使用され、仕上げ研磨工程より前の研磨工程(粗研磨工程ともいう)では、生産性向上の観点から、アルミナ粒子を砥粒として含む研磨液組成物が使用される。しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりによって、磁気ディスク基板や、磁気ディスク基板に磁性層が施された磁気ディスクの欠陥を引き起こすことがある。 In response to such demands, from the viewpoint of achieving both improvement in surface quality and productivity that are smoother and less scratched, a multi-stage polishing method having two or more stages of polishing processes in the method of manufacturing a magnetic disk substrate Is often adopted. In general, in the final polishing step of the multi-stage polishing method, that is, the final polishing step, a polishing composition for finishing that contains colloidal silica particles in order to satisfy the requirements of reducing surface roughness and scratches such as scratches, protrusions, and pits. In a polishing step (also referred to as a rough polishing step) prior to the final polishing step, a polishing liquid composition containing alumina particles as abrasive grains is used from the viewpoint of improving productivity. However, when alumina particles are used as abrasive grains, the piercing of alumina particles into the substrate may cause defects in the magnetic disk substrate or a magnetic disk having a magnetic layer applied to the magnetic disk substrate.
そこで、アルミナ粒子を含まず、シリカ粒子を砥粒として含有する研磨液組成物が提案されている(特許文献1〜3)。 Then, the polishing liquid composition which does not contain alumina particles but contains silica particles as abrasive grains has been proposed (Patent Documents 1 to 3).
アルミナ粒子に代えてシリカ粒子を砥粒とした従来の研磨液組成物では、アルミナの付着や突き刺さり等によるアルミナの残留が抑制され、研磨後の基板表面の突起欠陥を低減できる。しかし、アルミナ粒子に代えてシリカ粒子を砥粒とした研磨液組成物で粗研磨を行う場合、研磨後の基板表面の長波長うねりが問題となる。そして、粗研磨における長波長うねりを低減させるためには、アルミナ粒子を含む研磨液組成物よりも長時間の研磨時間を要し、生産性が低下するという問題がある。 In a conventional polishing composition in which silica particles are used in place of alumina particles, alumina residue due to alumina adhesion or sticking can be suppressed, and protrusion defects on the substrate surface after polishing can be reduced. However, when rough polishing is performed with a polishing composition comprising silica particles instead of alumina particles, long-wave waviness on the substrate surface after polishing becomes a problem. And in order to reduce the long wavelength wave | undulation in rough | crude grinding | polishing, a polishing time longer than the polishing liquid composition containing an alumina particle is required, and there exists a problem that productivity falls.
そこで、本開示は、砥粒としてシリカ粒子を使用した場合でも、粗研磨における研磨速度を向上でき、粗研磨後の基板表面の長波長うねりを低減できる磁気ディスク基板用研磨液組成物を提供する。 Accordingly, the present disclosure provides a polishing liquid composition for a magnetic disk substrate that can improve the polishing rate in rough polishing and reduce long-wave waviness on the substrate surface after rough polishing even when silica particles are used as abrasive grains. .
本開示は、非球状シリカ粒子A及び水を含み、pHが、0.5以上6.0以下であり、遠心沈降法により得られる重量換算での粒度分布において累積頻度が10%、50%、90%となる粒径をそれぞれD10、D50、D90としたとき、前記非球状シリカ粒子Aは、式(D90−D10)で表されるスパンが180nm以上であり、D50が180nm以上である、磁気ディスク基板用研磨液組成物に関する。 The present disclosure includes non-spherical silica particles A and water, has a pH of 0.5 or more and 6.0 or less, and has a cumulative frequency of 10%, 50% in a particle size distribution in terms of weight obtained by a centrifugal sedimentation method, The non-spherical silica particles A have a span represented by the formula (D90-D10) of 180 nm or more and D50 of 180 nm or more, where the particle diameters of 90% are D10, D50, and D90, respectively. The present invention relates to a polishing liquid composition for disk substrates.
本開示は、少なくとも非球状シリカ粒子A及び水を配合する工程を有し、遠心沈降法により得られる重量換算での粒度分布において累積頻度が10%、50%、90%となる粒径をそれぞれD10、D50、D90としたとき、前記非球状シリカ粒子Aは、式(D90−D10)で表されるスパンが180nm以上であり、D50が180nm以上である、磁気ディスク基板用研磨液組成物の製造に用いられるシリカスラリーの製造方法に関する。 The present disclosure includes a step of blending at least the non-spherical silica particles A and water, and the particle sizes at which the cumulative frequency is 10%, 50%, and 90% in the particle size distribution in terms of weight obtained by the centrifugal sedimentation method, respectively. When the non-spherical silica particles A are D10, D50, and D90, the span represented by the formula (D90-D10) is 180 nm or more, and D50 is 180 nm or more. The present invention relates to a method for producing a silica slurry used for production.
本開示は、本開示に係る磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む、磁気ディスク基板の製造方法に関する。 The present disclosure relates to a method for manufacturing a magnetic disk substrate, including a step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate according to the present disclosure.
本開示は、本開示に係る磁気ディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含み、前記被研磨基板は、磁気ディスク基板の製造に用いられる基板である、基板の研磨方法に関する。 The present disclosure includes a step of polishing a substrate to be polished using the polishing composition for a magnetic disk substrate according to the present disclosure, wherein the substrate to be polished is a substrate used for manufacturing a magnetic disk substrate. Regarding the method.
本開示によれば、砥粒としてシリカ粒子を使用した場合でも、粗研磨における研磨速度を向上でき、粗研磨後の基板表面の長波長うねりを低減できるという効果が奏されうる。その結果、基板品質が向上した磁気ディスク基板の生産性を向上しうる。 According to the present disclosure, even when silica particles are used as the abrasive grains, it is possible to improve the polishing rate in the rough polishing, and to reduce the long wavelength waviness on the substrate surface after the rough polishing. As a result, the productivity of the magnetic disk substrate with improved substrate quality can be improved.
本開示は、大粒径で、粒径分布がブロード化された非球状シリカ粒子を含有する研磨液組成物を粗研磨に用いることにより、研磨速度を向上でき、長波長うねりを低減できるという知見に基づく。一般に、磁気ディスク基板の製造において、長波長うねりを低減できれば生産性も向上する。 The present disclosure provides the knowledge that the polishing rate can be improved and the long wavelength waviness can be reduced by using a polishing composition containing non-spherical silica particles having a large particle size and a broad particle size distribution for rough polishing. based on. In general, in the manufacture of a magnetic disk substrate, productivity can be improved if long-wave waviness can be reduced.
本開示の効果が発現するメカニズムの詳細は明らかではないが、以下のように推察される。大粒径の非球状シリカ粒子の粒度分布をブロード化することで、大径側の粒子間隙間に小径側の粒子が入り込み、研磨中の研磨パッドと基板の被研磨面との間における砥粒の充填率が高くなると考えられる。そのため、被研磨面に対する砥粒の接触面積の拡大による基板の切削面積の増加、研磨時に基板に印加される研磨荷重の広範囲にわたる均一化等により、研磨速度を維持あるいは向上できると考えられる。さらに、研磨時に研磨パッドと基板との間に起こる振動の大きさを小さくすることができ、長波長うねりを低減できると考えられる。また、大粒径で、粒径分布がブロード化された非球状シリカ粒子を含有する研磨液組成物に球状粒子をさらに含有させた場合、研磨速度をより向上でき、長波長うねりをより低減できると考えられる。ただし、本開示はこれらのメカニズムに限定して解釈されなくてもよい。 Details of the mechanism by which the effects of the present disclosure are manifested are not clear, but are presumed as follows. By broadening the particle size distribution of the large non-spherical silica particles, the small-diameter particles enter between the large-diameter particle gaps, and the abrasive grains between the polishing pad being polished and the surface to be polished of the substrate It is considered that the filling rate of the is increased. For this reason, it is considered that the polishing rate can be maintained or improved by increasing the cutting area of the substrate by increasing the contact area of the abrasive grains with the surface to be polished and by making the polishing load applied to the substrate during polishing over a wide range uniform. Furthermore, it is considered that the magnitude of vibration that occurs between the polishing pad and the substrate during polishing can be reduced, and long-wave waviness can be reduced. Further, when spherical particles are further included in the polishing composition containing non-spherical silica particles having a large particle size and a broad particle size distribution, the polishing rate can be further improved and the long wavelength waviness can be further reduced. it is conceivable that. However, the present disclosure need not be interpreted as being limited to these mechanisms.
すなわち、本開示は、非球状シリカ粒子A及び水を含み、pHが、0.5以上6.0以下であり、遠心沈降法により得られる重量換算での粒度分布において累積頻度が10%、50%、90%となる粒径をそれぞれD10、D50、D90としたとき、前記非球状シリカ粒子Aは、式(D90−D10)で表されるスパンが180nm以上であり、D50が180nm以上である、磁気ディスク基板用研磨液組成物(以下、「本開示に係る研磨液組成物」ともいう)に関する。 That is, the present disclosure includes non-spherical silica particles A and water, has a pH of 0.5 or more and 6.0 or less, and has a cumulative frequency of 10% in a particle size distribution in terms of weight obtained by centrifugal sedimentation. %, 90% of the particle diameter is D10, D50, D90, respectively, the non-spherical silica particles A have a span represented by the formula (D90-D10) of 180 nm or more and D50 of 180 nm or more. And a polishing liquid composition for a magnetic disk substrate (hereinafter also referred to as “polishing liquid composition according to the present disclosure”).
本開示において基板の「うねり」とは、粗さよりも波長の長い基板表面の凹凸をいう。本開示において「長波長うねり」とは、500〜5000μmの波長により観測されるうねりをいう。研磨後の基板表面の長波長うねりが低減されることにより、磁気ディスクドライブにおいて磁気ヘッドの浮上量を低くすることができ、磁気ディスクの記録密度の向上が可能となる。基板表面の長波長うねりは、実施例に記載の方法により測定できる。 In the present disclosure, “undulation” of a substrate refers to irregularities on the surface of the substrate having a wavelength longer than the roughness. In the present disclosure, “long wavelength undulation” refers to undulation observed with a wavelength of 500 to 5000 μm. By reducing long-wave waviness on the substrate surface after polishing, the flying height of the magnetic head in the magnetic disk drive can be reduced, and the recording density of the magnetic disk can be improved. The long wavelength waviness of the substrate surface can be measured by the method described in the examples.
[非球状シリカ粒子A]
本開示に係る研磨液組成物は、非球状シリカ粒子A(以下、「粒子A」ともいう)を含有する。粒子Aは、1種類の非球状シリカ粒子であってもよく、2種類以上の非球状シリカ粒子の組み合わせであってもよい。
[Non-spherical silica particles A]
The polishing liquid composition according to the present disclosure contains non-spherical silica particles A (hereinafter also referred to as “particles A”). The particle A may be one type of non-spherical silica particle or a combination of two or more types of non-spherical silica particles.
粒子Aの遠心沈降法による重量換算での平均粒径D50(以下、「平均二次粒子径D2A」ともいう)は、研磨速度向上及び長波長うねり低減の観点から、180nm以上であって、研磨速度向上の観点から、200nm以上が更に好ましく、そして、研磨速度向上及び長波長うねり低減の観点から、500nm以下が好ましく、400nm以下がより好ましく、350nm以下が更に好ましい。本開示において、平均粒径D50とは、遠心沈降法により得られる重量換算での粒度分布において累積頻度が50%となる粒径をいう。具体的には、実施例に記載の測定方法により算出できる。 The average particle diameter D50 in terms of weight by the centrifugal sedimentation method of the particles A (hereinafter also referred to as “average secondary particle diameter D2 A ”) is 180 nm or more from the viewpoint of improving the polishing rate and reducing long wavelength waviness, From the viewpoint of improving the polishing rate, 200 nm or more is more preferable, and from the viewpoint of improving the polishing rate and reducing long wavelength waviness, 500 nm or less is preferable, 400 nm or less is more preferable, and 350 nm or less is more preferable. In the present disclosure, the average particle diameter D50 refers to a particle diameter having a cumulative frequency of 50% in a particle size distribution in terms of weight obtained by a centrifugal sedimentation method. Specifically, it can be calculated by the measurement method described in the examples.
粒子Aのスパン(以下、「スパンSA」ともいう)は、研磨速度向上及び長波長うねり低減の観点から、180nm以上であって、研磨速度向上の観点から、240nm以上が好ましく、360nm以上がより好ましく、そして、研磨速度向上及び長波長うねり低減の観点から、700nm以下が好ましく、600nm以下がより好ましく、500nm以下が更に好ましい。本開示において、スパンSAは、式(D90−D10)により算出される値である。ここで、D10及びD90はそれぞれ、遠心沈降法により得られる重量換算での粒度分布において累積頻度が10%、90%となる粒径をいう。 The span of the particle A (hereinafter also referred to as “span S A ”) is 180 nm or more from the viewpoint of improving the polishing rate and reducing the long wavelength waviness, and is preferably 240 nm or more from the viewpoint of improving the polishing rate, and is 360 nm or more. More preferably, from the viewpoint of improving the polishing rate and reducing long wavelength waviness, 700 nm or less is preferable, 600 nm or less is more preferable, and 500 nm or less is even more preferable. In the present disclosure, the span S A is a value calculated by the equation (D90−D10). Here, D10 and D90 are particle diameters with cumulative frequencies of 10% and 90%, respectively, in the particle size distribution in terms of weight obtained by centrifugal sedimentation.
粒子AのD90は、研磨速度向上の観点から、350nm以上が好ましく、500nm以上がより好ましく、550nm以上が更に好ましく、そして、研磨速度向上及び長波長うねり低減の観点から、1000nm以下が好ましく、800nm以下がより好ましく、700nm以下が更に好ましい。 The D90 of the particle A is preferably 350 nm or more, more preferably 500 nm or more, further preferably 550 nm or more from the viewpoint of improving the polishing rate, and 1000 nm or less is preferable from the viewpoint of improving the polishing speed and reducing long wavelength waviness, and 800 nm. The following is more preferable, and 700 nm or less is still more preferable.
粒子AのD90/D50は、長波長うねり低減の観点から、1.55以上が好ましく、1.60以上がより好ましく、1.70以上が更に好ましく、そして、同様の観点から、3.00以下が好ましく、2.80以下がより好ましく、2.50以下が更に好ましい。 The D90 / D50 of the particle A is preferably 1.55 or more, more preferably 1.60 or more, further preferably 1.70 or more, from the viewpoint of reducing long wavelength waviness, and 3.00 or less from the same viewpoint. Is preferably 2.80 or less, more preferably 2.50 or less.
粒子Aの粒径分布を調整する方法の一実施形態として、例えば、その製造段階における粒子の成長過程において、粒子成長時間、粒子温度、粒子濃度等を調整する方法が挙げられる。粒子Aの粒径分布を調整する方法の他の実施形態として、例えば、その製造段階における粒子の成長過程で新たな核となる粒子を加えることにより所望の粒径分布を持たせる方法、異なる粒径分布を有する2種類以上のシリカ粒子を混合して所望の粒径分布を持たせる方法等が挙げられる。 As one embodiment of the method for adjusting the particle size distribution of the particles A, for example, a method of adjusting the particle growth time, the particle temperature, the particle concentration, etc. in the particle growth process in the production stage can be mentioned. Other embodiments of the method for adjusting the particle size distribution of the particles A include, for example, a method of giving a desired particle size distribution by adding particles serving as new nuclei in the particle growth process in the production stage, and different particles. Examples thereof include a method of mixing two or more kinds of silica particles having a size distribution to give a desired particle size distribution.
粒子AのBET比表面積は、研磨速度向上及び長波長うねり低減の観点から、35m2/g以下が好ましく、30m2/g以下がより好ましく、25m2/g以下が更に好ましく、そして、10m2/g以上が好ましく、15m2/g以上がより好ましく、20m2/g以上が更に好ましい。本開示において、BET比表面積は、窒素吸着法(以下「BET法」ともいう)により算出できる。具体的には、実施例に記載の測定方法により算出できる。 BET specific surface area of the particles A, from the viewpoint of improving the polishing rate and a long wavelength waviness reduction is preferably 35m 2 / g or less, more preferably 30 m 2 / g, still more preferably 25 m 2 / g or less, and, 10 m 2 / G or more is preferable, 15 m 2 / g or more is more preferable, and 20 m 2 / g or more is still more preferable. In the present disclosure, the BET specific surface area can be calculated by a nitrogen adsorption method (hereinafter also referred to as “BET method”). Specifically, it can be calculated by the measurement method described in the examples.
粒子Aの平均球形度は、研磨速度向上及び長波長うねり低減の観点から、0.60以上が好ましく、0.70以上がより好ましく、そして、0.85以下が好ましく、0.80以下がより好ましく、0.75以下が更に好ましい。本開示において、粒子Aの平均球形度は、少なくとも200個の粒子Aの球形度の平均値である。粒子Aの球形度は、例えばTEMによる観察及び画像解析ソフト等を用いて、粒子Aの投影面積Sと投影周囲長Lとを求め、以下の式から算出できる。
球形度=4π×S/L2
The average sphericity of the particles A is preferably 0.60 or more, more preferably 0.70 or more, and preferably 0.85 or less, more preferably 0.80 or less, from the viewpoint of improving the polishing rate and reducing long wavelength waviness. Preferably, 0.75 or less is more preferable. In the present disclosure, the average sphericity of the particles A is an average value of the sphericity of at least 200 particles A. The sphericity of the particle A can be calculated from the following equation by obtaining the projected area S and the projected perimeter L of the particle A using, for example, TEM observation and image analysis software.
Sphericality = 4π × S / L 2
個々の粒子Aの球形度は、前記平均球形度と同様、0.60以上が好ましく、0.70以上がより好ましく、そして、0.85以下が好ましく、0.80以下がより好ましく、0.75以下が更に好ましい。 The sphericity of the individual particles A is preferably 0.60 or more, more preferably 0.70 or more, and preferably 0.85 or less, more preferably 0.80 or less, like the average sphericity. 75 or less is more preferable.
粒子Aの平均短径は、研磨速度向上の観点から、160nm以上が好ましく、180nm以上がより好ましく、185nm以上が更に好ましく、そして、研磨速度向上及び長波長うねり低減の観点から、500nm以下が好ましく、450nm以下がより好ましく、400nm以下が更に好ましい。本開示において、粒子Aの平均短径は、少なくとも200個の粒子Aの短径の平均値である。粒子Aの短径は、例えばTEMによる観察及び画像解析ソフト等を用いて、投影された粒子Aの画像に外接する最小の長方形を描いたときの、前記長方形の短辺の長さである。 The average minor axis of the particles A is preferably 160 nm or more, more preferably 180 nm or more, further preferably 185 nm or more from the viewpoint of improving the polishing rate, and preferably 500 nm or less from the viewpoint of improving the polishing speed and reducing long wavelength waviness. 450 nm or less is more preferable, and 400 nm or less is still more preferable. In the present disclosure, the average minor axis of the particles A is an average value of the minor axes of at least 200 particles A. The minor axis of the particle A is the length of the short side of the rectangle when a minimum rectangle circumscribing the projected image of the particle A is drawn using, for example, TEM observation and image analysis software.
粒子Aの平均一次粒子径D1Aは、研磨速度向上及び長波長うねり低減の観点から、100nm以上が好ましく、120nm以上がより好ましく、150nm以上が更に好ましく、そして、長波長うねり低減の観点から、400nm以下が好ましく、300nm以下がより好ましく、250nm以下が更に好ましい。本開示において、粒子Aの平均一次粒子径D1Aは、電子顕微鏡(TEM)観察画像において円相当径として求められる粒子径の数平均値である。具体的には、実施例に記載の測定方法により算出できる。 The average primary particle diameter D1 A of the particles A is preferably 100 nm or more, more preferably 120 nm or more, still more preferably 150 nm or more, from the viewpoint of improving the polishing rate and reducing the long wavelength waviness, and from the viewpoint of reducing the long wavelength waviness, 400 nm or less is preferable, 300 nm or less is more preferable, and 250 nm or less is still more preferable. In the present disclosure, the average primary particle diameter D1A of the particles A is a number average value of particle diameters obtained as an equivalent circle diameter in an electron microscope (TEM) observation image. Specifically, it can be calculated by the measurement method described in the examples.
粒子Aとしては、例えば、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等が挙げられる。研磨速度向上及び長波長うねり低減の観点から、粒子Aとしては、コロイダルシリカが好ましく、下記の特定の形状をもったコロイダルシリカがより好ましい。 Examples of the particles A include colloidal silica, fumed silica, and surface-modified silica. From the viewpoint of improving the polishing rate and reducing long wavelength waviness, the particle A is preferably colloidal silica, and more preferably colloidal silica having the following specific shape.
粒子Aの形状は、研磨速度向上及び長波長うねり低減の観点から、例えば、粒子Aの二次粒子径よりも粒径が小さいシリカ粒子を前駆体粒子として、複数の前駆体粒子が、凝集又は融着した形状が挙げられる。粒子Aは、同様の観点から、金平糖型のシリカ粒子Aa、異形型のシリカ粒子Ab、及び異形かつ金平糖型のシリカ粒子Acから選ばれる少なくとも1種のシリカ粒子であることが好ましく、異形型のシリカ粒子Abがより好ましい。 From the viewpoint of improving the polishing rate and reducing long wavelength waviness, the shape of the particles A is, for example, silica particles having a particle diameter smaller than the secondary particle diameter of the particles A as precursor particles, and a plurality of precursor particles are aggregated or A fused shape is mentioned. From the same point of view, the particle A is preferably at least one silica particle selected from a confetti-type silica particle Aa, a deformed-type silica particle Ab, and a deformed and confetti-type silica particle Ac. Silica particles Ab are more preferable.
本開示において、金平糖型のシリカ粒子Aa(以下、「粒子Aa」ともいう)は、球状の粒子表面に特異な疣状突起を有するシリカ粒子をいう(図1参照)。粒子Aaは、好ましくは、最も大きい前駆体粒子a1と、粒径が前駆体粒子a1の1/5以下である1個以上の前駆体粒子a2とが、凝集又は融着した形状である。粒子Aaは、好ましくは粒径の小さい複数の前駆体粒子a2が粒径の大きな1個の前駆体粒子a1に一部埋没した状態である。粒子Aaは、例えば、特開2008−137822号公報に記載の方法により、得られうる。前駆体粒子の粒径は、TEM等による観察画像において1個の前駆体粒子内で測定される円相当径、すなわち、前駆体粒子の投影面積と同じ面積である円の直径として求められうる。シリカ粒子Ab及びシリカ粒子Acにおける前駆体粒子の粒径も同様に求めることができる。 In the present disclosure, confetti-type silica particles Aa (hereinafter, also referred to as “particles Aa”) refer to silica particles having unique hook-shaped protrusions on the surface of spherical particles (see FIG. 1). The particle Aa preferably has a shape in which the largest precursor particle a1 and one or more precursor particles a2 having a particle size of 1/5 or less of the precursor particle a1 are aggregated or fused. The particles Aa are preferably in a state in which a plurality of precursor particles a2 having a small particle size are partially embedded in one precursor particle a1 having a large particle size. The particles Aa can be obtained, for example, by the method described in JP 2008-137822 A. The particle diameter of the precursor particles can be obtained as an equivalent circle diameter measured in one precursor particle in an observation image by TEM or the like, that is, the diameter of a circle having the same area as the projected area of the precursor particles. The particle diameters of the precursor particles in the silica particles Ab and the silica particles Ac can be obtained in the same manner.
本開示において、異形型のシリカ粒子Ab(以下、「粒子Ab」ともいう)は、2個以上の前駆体粒子、好ましくは2個以上10個以下の前駆体粒子が凝集又は融着した形状のシリカ粒子をいう(図2参照)。粒子Abは、好ましくは、最も小さい前駆体粒子の粒径を基準にして、粒径が1.5倍以内の2個以上の前駆体粒子が、凝集又は融着した形状である。粒子Abは、例えば、特開2015−86102号公報に記載の方法により、得られうる。 In the present disclosure, irregular-shaped silica particles Ab (hereinafter also referred to as “particles Ab”) have a shape in which two or more precursor particles, preferably two or more and ten or less precursor particles are aggregated or fused. This refers to silica particles (see FIG. 2). The particle Ab preferably has a shape in which two or more precursor particles having a particle size of 1.5 times or less are aggregated or fused on the basis of the particle size of the smallest precursor particle. The particles Ab can be obtained, for example, by the method described in JP-A-2015-86102.
本開示において、異形かつ金平糖型のシリカ粒子Ac(以下、「粒子Ac」ともいう)は、前記粒子Abを前駆体粒子c1とし、最も大きい前駆体粒子c1と、粒径が前駆体粒子c1の1/5以下である1個以上の前駆体粒子c2とが、凝集又は融着した形状である。 In the present disclosure, irregular and confetti-type silica particles Ac (hereinafter also referred to as “particles Ac”) have the particle Ab as the precursor particle c1, the largest precursor particle c1, and the particle size of the precursor particle c1. It is a shape in which one or more precursor particles c2 which are 1/5 or less are aggregated or fused.
粒子Aは、例えば、粒子Aa、Ab及びAcから選ばれる1種以上を含むことができる。粒子A中の粒子Aa、Ab、及びAcの合計量は、研磨速度向上及び長波長うねり低減の観点から、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上が更により好ましく、実質的に100質量%が更により好ましい。 The particle A can include, for example, one or more selected from particles Aa, Ab, and Ac. The total amount of the particles Aa, Ab, and Ac in the particles A is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more, from the viewpoint of improving the polishing rate and reducing the long wavelength waviness. 90% by mass or more is even more preferable, and substantially 100% by mass is even more preferable.
粒子Aは、研磨速度向上及び長波長うねりの低減の観点から、火炎溶融法、ゾルゲル法、及び粉砕法で製造されたものでもよいが、珪酸アルカリ水溶液を出発原料とする粒子成長法(以下、「水ガラス法」ともいう)により製造されたシリカ粒子であることが好ましい。粒子Aの使用形態としては、スラリー状であることが好ましい。 The particles A may be produced by a flame melting method, a sol-gel method, and a pulverization method from the viewpoint of improving the polishing rate and reducing the long wavelength waviness. Silica particles produced by “water glass method”) are preferred. The usage form of the particles A is preferably a slurry.
研磨液組成物中の粒子Aの含有量は、研磨速度向上及び長波長うねり低減の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上が更に好ましく、2質量%以上が更により好ましく、そして、経済性の観点から、30質量%以下が好ましく、25質量%以下がより好ましく、20質量%以下が更に好ましく、15質量%以下が更により好ましい。 The content of the particles A in the polishing liquid composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more, from the viewpoint of improving the polishing rate and reducing long wavelength waviness. Preferably, 2% by mass or more is still more preferable, and from the viewpoint of economy, 30% by mass or less is preferable, 25% by mass or less is more preferable, 20% by mass or less is further preferable, and 15% by mass or less is even more preferable. .
[球状シリカ粒子B]
本開示に係る研磨液組成物は、長波長うねり低減の観点から、球状シリカ粒子B(以下、「粒子B」ともいう)をさらに含有することが好ましい。粒子Bは、1種類の球状シリカ粒子であってもよく、2種類以上の球状シリカ粒子の組み合わせであってもよい。
[Spherical silica particles B]
The polishing composition according to the present disclosure preferably further contains spherical silica particles B (hereinafter also referred to as “particles B”) from the viewpoint of reducing long wavelength waviness. The particle B may be one type of spherical silica particle or a combination of two or more types of spherical silica particles.
粒子Bの遠心沈降法による重量換算での平均粒径D50(以下、「平均二次粒子径D2B」ともいう)は、研磨速度向上及び長波長うねり低減の観点から、20nm以上が好ましく、50nm以上がより好ましく、90nm以上が更に好ましく、そして、同様の観点から、200nm以下が好ましく、180nm以下がより好ましく、160nm以下が更に好ましい。粒子Bの平均粒径D50(平均二次粒子径D2B)は、粒子Aの平均粒径D50と同じ方法で算出できる。 The average particle diameter D50 in terms of weight by the centrifugal sedimentation method of the particles B (hereinafter, also referred to as “average secondary particle diameter D2 B ”) is preferably 20 nm or more from the viewpoint of improving the polishing rate and reducing long wavelength waviness, and 50 nm. The above is more preferable, 90 nm or more is further preferable, and from the same viewpoint, 200 nm or less is preferable, 180 nm or less is more preferable, and 160 nm or less is still more preferable. The average particle diameter D50 (average secondary particle diameter D2 B ) of the particle B can be calculated by the same method as the average particle diameter D50 of the particle A.
粒子Bの平均粒径D50は、研磨速度向上及び長波長うねり低減の観点から、粒子Aの平均粒径D50よりも小さいことが好ましい。粒子Aの平均粒径D50に対する粒子Bの平均粒径D50の比B/Aは、研磨速度向上の観点から、0.12以上が好ましく、0.20以上がより好ましく、0.30以上が更に好ましく、そして、研磨速度向上及び長波長うねり低減の観点から、0.85以下が好ましく、0.80以下がより好ましく、0.70以下が更に好ましい。 The average particle diameter D50 of the particles B is preferably smaller than the average particle diameter D50 of the particles A from the viewpoint of improving the polishing rate and reducing long wavelength waviness. The ratio B / A of the average particle diameter D50 of the particles B to the average particle diameter D50 of the particles A is preferably 0.12 or more, more preferably 0.20 or more, and further preferably 0.30 or more from the viewpoint of improving the polishing rate. Preferably, from the viewpoint of improving the polishing rate and reducing long wavelength waviness, 0.85 or less is preferable, 0.80 or less is more preferable, and 0.70 or less is even more preferable.
粒子Bのスパン(以下、「スパンSB」ともいう)は、研磨速度向上及び長波長うねり低減の観点から、10nm以上が好ましく、30nm以上がより好ましく、100nm以上が更に好ましく、そして、同様の観点から、500nm以下が好ましく、450nm以下がより好ましく、400nm以下が更に好ましい。本開示において、スパンSBは、スパンSAと同じ方法で測定できる。 The span of the particle B (hereinafter also referred to as “span S B ”) is preferably 10 nm or more, more preferably 30 nm or more, still more preferably 100 nm or more, from the viewpoint of improving the polishing rate and reducing long wavelength waviness, and the same From the viewpoint, 500 nm or less is preferable, 450 nm or less is more preferable, and 400 nm or less is even more preferable. In the present disclosure, span S B can be measured in the same manner as span S A.
粒子BのスパンSBは、研磨速度向上及び長波長うねり低減の観点から、粒子AのスパンSAよりも小さいことが好ましい。粒子Aと粒子Bとのスパンの差は、式(SA−SB)により算出される値であって、研磨速度向上の観点から、250nm以上が好ましく、260nm以上がより好ましく、340nm以上が更に好ましく、そして、研磨速度向上及び長波長うねり低減の観点から、700nm以下が好ましく、600nm以下がより好ましく、550nm以下が更に好ましい。 Span S B particles B, from the viewpoint of improving the polishing rate and a long wavelength waviness reduction, preferably less than the span S A particle A. The difference in span between the particles A and the particles B is a value calculated by the formula (S A −S B ), and is preferably 250 nm or more, more preferably 260 nm or more, and more preferably 340 nm or more from the viewpoint of improving the polishing rate. Further, from the viewpoint of improving the polishing rate and reducing long wavelength waviness, it is preferably 700 nm or less, more preferably 600 nm or less, and still more preferably 550 nm or less.
本開示において、粒子Bの平均球形度は、研磨速度向上及び長波長うねりの低減の観点から、0.86以上が好ましく、0.88以上がより好ましく、そして、同様の観点から、1.00以下であり、0.95以下が好ましい。粒子Bの平均球形度は、粒子Aの平均球形度と同じ方法で算出できる。個々の粒子Bの球形度は、前記平均粒径度と同様、0.86以上が好ましく、0.88以上がより好ましく、そして、1.00以下であり、0.95以下が好ましい。 In the present disclosure, the average sphericity of the particles B is preferably 0.86 or more, more preferably 0.88 or more, and 1.00 from the same viewpoint from the viewpoint of improving the polishing rate and reducing the long wavelength waviness. Or less, preferably 0.95 or less. The average sphericity of the particle B can be calculated by the same method as the average sphericity of the particle A. The sphericity of each individual particle B is preferably 0.86 or more, more preferably 0.88 or more, and is 1.00 or less, preferably 0.95 or less, like the average particle size.
粒子Bの平均短径は、研磨速度向上及び長波長うねり低減の観点から、30nm以上が好ましく、45nm以上がより好ましく、85nm以上が更に好ましく、そして、200nm以下が好ましく、150nm以下がより好ましく、130nm以下が更に好ましい。粒子Bの平均短径は、粒子Aの平均短径と同じ方法で算出できる。 The average minor axis of the particles B is preferably 30 nm or more, more preferably 45 nm or more, further preferably 85 nm or more, more preferably 200 nm or less, and more preferably 150 nm or less, from the viewpoint of improving the polishing rate and reducing long wavelength waviness. More preferably, it is 130 nm or less. The average minor axis of the particle B can be calculated by the same method as the average minor axis of the particle A.
粒子Bの平均短径は、研磨速度向上及び長波長うねり低減の観点から、粒子Aの平均短径よりも小さいことが好ましい。粒子Bの平均短径に対する粒子Aの平均短径の比(粒子Aの平均短径)/(粒子Bの平均短径)は、1.0超が好ましく、1.5以上がより好ましく、2.0以上が更に好ましく、2.5以上が更に好ましく、3.0以上が更に好ましく、そして、30.0以下が好ましく、15.0以下がより好ましく、10.0以下が更に好ましく、7.0以下が更に好ましく、4.0以下が更に好ましい。 The average minor axis of the particles B is preferably smaller than the average minor axis of the particles A from the viewpoint of improving the polishing rate and reducing long wavelength waviness. The ratio of the average minor axis of particle A to the average minor axis of particle B (average minor axis of particle A) / (average minor axis of particle B) is preferably more than 1.0, more preferably 1.5 or more, and 2 0.0 or more is more preferable, 2.5 or more is more preferable, 3.0 or more is more preferable, 30.0 or less is preferable, 15.0 or less is more preferable, 10.0 or less is further preferable, and 7. 0 or less is more preferable, and 4.0 or less is more preferable.
粒子Bの平均一次粒子径D1Bは、研磨速度向上及び長波長うねり低減の観点から、35nm以上が好ましく、40nm以上がより好ましく、50nm以上が更に好ましく、そして、同様の観点から、150nm以下が好ましく、120nm以下がより好ましく、100nm以下が更に好ましい。粒子Bの平均一次粒子径D1Bは、粒子Aの平均一次粒子径D1Aと同じ方法で算出できる。 The average primary particle diameter D1 B of the particles B is preferably 35 nm or more, more preferably 40 nm or more, still more preferably 50 nm or more, and more preferably 150 nm or less from the viewpoint of improving the polishing rate and reducing long wavelength waviness. Preferably, 120 nm or less is more preferable, and 100 nm or less is still more preferable. The average primary particle diameter D1 B of the particles B can be calculated by the same method as the average primary particle diameter D1 A of the particles A.
粒子Bとしては、例えば、コロイダルシリカ、フュームドシリカ、表面修飾したシリカ等が挙げられる。粒子Bとしては、例えば、一般的に市販されているコロイダルシリカが該当し得る。研磨速度向上及び長波長うねりの低減の観点から、粒子Bとしては、コロイダルシリカが好ましい。 Examples of the particles B include colloidal silica, fumed silica, and surface-modified silica. As the particle B, for example, commercially available colloidal silica may be applicable. From the viewpoint of improving the polishing rate and reducing long wavelength waviness, the particles B are preferably colloidal silica.
粒子Bは、研磨速度向上及び長波長うねり低減の観点から、火炎溶融法、ゾルゲル法、及び粉砕法で製造されたものでもよいが、水ガラス法により製造されたシリカ粒子であることが好ましい。粒子Bの使用形態としては、スラリー状であることが好ましい。 The particles B may be produced by a flame melting method, a sol-gel method, and a pulverization method from the viewpoint of improving the polishing rate and reducing long wavelength waviness, but are preferably silica particles produced by a water glass method. The usage form of the particles B is preferably a slurry.
本開示に係る研磨液組成物が粒子Bを含有する場合、研磨液組成物中の粒子Bの含有量は、研磨速度向上及び長波長うねり低減の観点から、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上が更に好ましく、そして、経済性の観点から、20.0質量%以下が好ましく、15.0質量%以下がより好ましく、10.0質量%以下が更に好ましい。 When the polishing liquid composition according to the present disclosure contains the particles B, the content of the particles B in the polishing liquid composition is preferably 0.1% by mass or more from the viewpoint of improving the polishing rate and reducing long wavelength waviness, 0.5 mass% or more is more preferable, 1.0 mass% or more is still more preferable, and 20.0 mass% or less is preferable from a viewpoint of economical efficiency, 15.0 mass% or less is more preferable, 10.0 A mass% or less is more preferable.
本開示に係る研磨液組成物が粒子A及び粒子Bを含有する場合、研磨液組成物中の粒子Bの含有量に対する粒子Aの含有量の比A/Bは、研磨速度向上及び長波長うねり低減の観点から、10/90以上が好ましく、20/80以上がより好ましく、50/50以上が更に好ましく、70/30以上が更に好ましく、そして、同様の観点から、90/10以下が好ましく、85/15以下がより好ましい。粒子Bが2種類以上の球状シリカ粒子の組み合わせの場合、粒子Bの含有量はそれらの合計の含有量をいう。粒子Aの含有量も同様である。 When the polishing liquid composition according to the present disclosure contains the particles A and the particles B, the ratio A / B of the content of the particles A to the content of the particles B in the polishing liquid composition is an improvement in polishing rate and long wavelength waviness. From the viewpoint of reduction, 10/90 or more is preferable, 20/80 or more is more preferable, 50/50 or more is more preferable, 70/30 or more is more preferable, and from the same viewpoint, 90/10 or less is preferable, 85/15 or less is more preferable. When the particle B is a combination of two or more kinds of spherical silica particles, the content of the particle B refers to the total content thereof. The same applies to the content of the particles A.
本開示に係る研磨液組成物が粒子A及び粒子B以外のシリカ粒子を含有する場合、研磨液組成物中のシリカ粒子全体に対する粒子Aと粒子Bとの合計の含有量は、研磨速度向上及び長波長うねり低減の観点から、98.0質量%以上が好ましく、98.5質量%以上がより好ましく、99.0質量%以上が更に好ましく、99.5質量%以上が更により好ましく、99.8質量%以上が更により好ましく、実質的に100質量%が更により好ましい。 When the polishing liquid composition according to the present disclosure contains silica particles other than the particles A and the particles B, the total content of the particles A and the particles B with respect to the entire silica particles in the polishing liquid composition increases the polishing rate and From the viewpoint of reducing long wavelength waviness, 98.0% by mass or more is preferable, 98.5% by mass or more is more preferable, 99.0% by mass or more is further preferable, 99.5% by mass or more is further more preferable, and 99. 8% by mass or more is even more preferable, and substantially 100% by mass is even more preferable.
[pH調整剤]
本開示に係る研磨液組成物は、研磨速度向上、長波長うねり低減、及びpHを調整する観点から、pH調整剤を含有することが好ましい。pH調整剤としては、同様の観点から、酸及び塩から選ばれる1種以上が好ましい。
[PH adjuster]
The polishing composition according to the present disclosure preferably contains a pH adjusting agent from the viewpoint of improving the polishing rate, reducing long wavelength waviness, and adjusting the pH. As a pH adjuster, 1 or more types chosen from an acid and a salt are preferable from the same viewpoint.
酸としては、例えば、硝酸、硫酸、亜硫酸、過硫酸、塩酸、過塩素酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、ポリリン酸、アミド硫酸等の無機酸;有機リン酸、有機ホスホン酸等の有機酸;等が挙げられる。中でも、研磨速度向上及び長波長うねり低減の観点から、リン酸、硫酸及び1−ヒドロキシエチリデン−1,1−ジホスホン酸から選ばれる少なくとも1種が好ましく、硫酸及びリン酸から選ばれる少なくとも1種がより好ましく、硫酸が更に好ましい。 Examples of the acid include inorganic acids such as nitric acid, sulfuric acid, sulfurous acid, persulfuric acid, hydrochloric acid, perchloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, polyphosphoric acid, and amidosulfuric acid; organic phosphoric acid and organic phosphonic acid Organic acids such as, and the like. Among these, at least one selected from phosphoric acid, sulfuric acid, and 1-hydroxyethylidene-1,1-diphosphonic acid is preferable, and at least one selected from sulfuric acid and phosphoric acid is preferable from the viewpoint of improving the polishing rate and reducing long-wave waviness. More preferred is sulfuric acid.
塩としては、例えば、上記の酸と、金属、アンモニア及びアルキルアミンから選ばれる少なくとも1種との塩が挙げられる。上記金属の具体例としては、周期表の1〜11族に属する金属が挙げられる。これらの中でも、研磨速度の向上及び長波長うねり低減の観点から、上記の酸と、1族に属する金属又はアンモニアとの塩が好ましい。 As a salt, the salt of said acid and at least 1 sort (s) chosen from a metal, ammonia, and an alkylamine is mentioned, for example. Specific examples of the metal include metals belonging to Groups 1 to 11 of the periodic table. Among these, from the viewpoint of improving the polishing rate and reducing long wavelength waviness, a salt of the above acid with a metal belonging to Group 1 or ammonia is preferable.
研磨液組成物中のpH調整剤の含有量は、研磨速度を大幅に損なうことなく長波長うねりを低減する観点から、0.001質量%以上が好ましく、0.01質量%以上がより好ましく、0.05質量%以上が更に好ましく、0.1質量%以上が更により好ましく、そして、同様の観点から、5.0質量%以下が好ましく、4.0質量%以下がより好ましく、3.0質量%以下が更に好ましく、2.5質量%以下が更により好ましい。 The content of the pH adjusting agent in the polishing liquid composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more, from the viewpoint of reducing long wavelength waviness without significantly impairing the polishing rate. 0.05% by mass or more is more preferable, 0.1% by mass or more is further more preferable, and from the same viewpoint, 5.0% by mass or less is preferable, 4.0% by mass or less is more preferable, 3.0% The mass% or less is further preferable, and the 2.5 mass% or less is even more preferable.
[酸化剤]
本開示に係る研磨液組成物は、研磨速度向上及び長波長うねり低減の観点から、酸化剤を含有してもよい。酸化剤としては、同様の観点から、例えば、過酸化物、過マンガン酸又はその塩、クロム酸又はその塩、ペルオキソ酸又はその塩、酸素酸又はその塩、硝酸類、硫酸類等が挙げられる。これらの中でも、過酸化水素、硝酸鉄(III)、過酢酸、ペルオキソ二硫酸アンモニウム、硫酸鉄(III)及び硫酸アンモニウム鉄(III)から選ばれる少なくとも1種が好ましく、研磨速度向上の観点、被研磨基板の表面に金属イオンが付着しない観点及び入手容易性の観点から、過酸化水素がより好ましい。これらの酸化剤は、単独で又は2種以上を混合して使用してもよい。
[Oxidant]
The polishing liquid composition according to the present disclosure may contain an oxidizing agent from the viewpoint of improving the polishing rate and reducing long wavelength waviness. Examples of the oxidizing agent include peroxide, permanganic acid or a salt thereof, chromic acid or a salt thereof, peroxo acid or a salt thereof, oxygen acid or a salt thereof, nitric acid, sulfuric acid, and the like from the same viewpoint. . Among these, at least one selected from hydrogen peroxide, iron nitrate (III), peracetic acid, ammonium peroxodisulfate, iron sulfate (III) and ammonium iron sulfate (III) is preferable. Hydrogen peroxide is more preferred from the viewpoint of preventing metal ions from adhering to the surface and the viewpoint of availability. These oxidizing agents may be used alone or in admixture of two or more.
研磨液組成物中の酸化剤の含有量は、研磨速度向上の観点から、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が更に好ましく、そして、研磨速度向上及び長波長うねり低減の観点から、4.0質量%以下が好ましく、2.0質量%以下がより好ましく、1.5質量%以下が更に好ましい。 The content of the oxidizing agent in the polishing liquid composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.1% by mass or more, from the viewpoint of improving the polishing rate. From the viewpoint of improving the polishing rate and reducing long wavelength waviness, 4.0% by mass or less is preferable, 2.0% by mass or less is more preferable, and 1.5% by mass or less is more preferable.
[水]
本開示に係る研磨液組成物は、媒体として水を含有する。水としては、蒸留水、イオン交換水、純水及び超純水等が挙げられる。研磨液組成物中の水の含有量は、粒子A、粒子B、並びに、必要に応じて含有される上記pH調整剤、酸化剤、及び後述するその他の任意成分の残余とすることができる。
[water]
The polishing liquid composition according to the present disclosure contains water as a medium. Examples of water include distilled water, ion exchange water, pure water, and ultrapure water. The content of water in the polishing liquid composition can be the remainder of the particles A, the particles B, and the pH adjusting agent, the oxidizing agent, and other optional components described later, if necessary.
[その他の任意成分]
本開示に係る研磨液組成物は、必要に応じてその他の任意成分を含有してもよい。他の任意成分としては、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。前記その他の任意成分は、本開示の効果を損なわない範囲で研磨液組成物中に含有されることが好ましく、研磨液組成物中の前記その他の任意成分の含有量は、0質量%以上が好ましく、0質量%超がより好ましく、0.1質量%以上が更に好ましく、そして、10質量%以下が好ましく、5質量%以下がより好ましい。
[Other optional ingredients]
The polishing liquid composition according to the present disclosure may contain other optional components as necessary. Examples of other optional components include a thickener, a dispersant, a rust inhibitor, a basic substance, a polishing rate improver, a surfactant, and a polymer compound. The other optional component is preferably contained in the polishing liquid composition within a range not impairing the effects of the present disclosure, and the content of the other optional component in the polishing liquid composition is 0% by mass or more. Preferably, more than 0% by mass is more preferable, 0.1% by mass or more is further preferable, 10% by mass or less is preferable, and 5% by mass or less is more preferable.
[アルミナ砥粒]
本開示に係る研磨液組成物は、突起欠陥の低減の観点から、アルミナ砥粒の含有量が、0.1質量%以下が好ましく、0.05質量%以下がより好ましく、0.02質量%以下が更に好ましく、アルミナ砥粒を実質的に含まないことが更に好ましい。本開示において「アルミナ砥粒を実質的に含まない」とは、アルミナ粒子を含まないこと、砥粒として機能する量のアルミナ粒子を含まないこと、又は、研磨結果に影響を与える量のアルミナ粒子を含まないこと、を含みうる。研磨液組成物中のアルミナ粒子の含有量は、研磨液組成物中の砥粒全量に対し、2質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましく、実質的に0質量%であることが更により好ましい。
[Alumina abrasive]
In the polishing liquid composition according to the present disclosure, the content of alumina abrasive grains is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, from the viewpoint of reducing protrusion defects, and 0.02% by mass. The following is more preferable, and it is further preferable that the alumina abrasive grains are not substantially contained. In the present disclosure, “substantially free of alumina abrasive grains” means that no alumina particles are contained, no alumina particles functioning as abrasive grains, or an amount of alumina particles that affect the polishing result. May not be included. The content of alumina particles in the polishing liquid composition is preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, based on the total amount of abrasive grains in the polishing liquid composition. Even more preferably, it is substantially 0% by weight.
[pH]
本開示に係る研磨液組成物のpHは、研磨速度向上、及び長波長うねり低減の観点から、0.5以上であり、0.7以上が好ましく、0.9以上がより好ましく、1.0以上が更に好ましく、1.2以上が更により好ましく、1.4以上が更により好ましく、そして、同様の観点から、6.0以下であり、4.0以下が好ましく、3.0以下がより好ましく、2.5以下が更に好ましく、2.0以下が更により好ましい。pHは、前述のpH調整剤を用いて、調整することが好ましい。上記のpHは、25℃における研磨液組成物のpHであり、pHメータを用いて測定でき、好ましくは、pHメータの電極を研磨液組成物へ浸漬して2分後の数値である。
[PH]
The pH of the polishing composition according to the present disclosure is 0.5 or higher, preferably 0.7 or higher, more preferably 0.9 or higher, from the viewpoint of improving the polishing rate and reducing long wavelength waviness, and more preferably 1.0 or higher. The above is more preferable, 1.2 or more is still more preferable, 1.4 or more is still more preferable, and from the same viewpoint, it is 6.0 or less, 4.0 or less is preferable, and 3.0 or less is more Preferably, 2.5 or less is further preferable, and 2.0 or less is even more preferable. It is preferable to adjust pH using the above-mentioned pH adjuster. The above pH is the pH of the polishing composition at 25 ° C. and can be measured using a pH meter, and is preferably a value two minutes after the electrode of the pH meter is immersed in the polishing composition.
[研磨液組成物の製造方法]
本開示に係る研磨液組成物は、例えば、粒子Aを含むシリカスラリーと、更に所望により、pH調整剤、酸化剤及びその他の成分とを公知の方法で配合し、pHを0.5以上6.0以下とすることにより製造できる。前記シリカスラリーは、粒子Bをさらに含んでもよい。例えば、本開示に係る研磨液組成物は、少なくとも粒子A及び水を配合してなり、pHが0.5以上6.0以下である研磨液組成物とすることができる。したがって、本開示は、少なくとも粒子A及び水を配合する工程を含む、研磨液組成物の製造に用いられるシリカスラリーの製造方法に関する。さらに、本開示は、少なくとも粒子A及び水を配合する工程を含み、必要に応じてpHを0.5以上6.0以下に調整する工程を含む、研磨液組成物の製造方法(以下、「本開示に係る研磨液組成物の製造方法」ともいう)に関する。さらに、本開示において「配合する」とは、粒子A及び水、並びに必要に応じて粒子B、pH調整剤、酸化剤及びその他の成分から選ばれる少なくとも1種を同時に又は任意の順に混合することを含む。前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本開示に係る研磨液組成物の製造方法における各成分の配合量は、上述の本開示に係る研磨液組成物中の各成分の含有量と同じとすることができる。
[Method for producing polishing composition]
The polishing composition according to the present disclosure is prepared by, for example, blending a silica slurry containing the particles A and, if desired, a pH adjusting agent, an oxidizing agent and other components by a known method, and adjusting the pH to 0.5 or more and 6 It can be manufactured by setting it to 0.0 or less. The silica slurry may further include particles B. For example, the polishing liquid composition according to the present disclosure can be a polishing liquid composition comprising at least particles A and water and having a pH of 0.5 or more and 6.0 or less. Therefore, this indication is related with the manufacturing method of the silica slurry used for manufacture of polishing liquid composition including the process of blending at least particles A and water. Further, the present disclosure includes a step of blending at least the particles A and water, and a step of adjusting the pH to 0.5 or more and 6.0 or less as necessary (hereinafter referred to as “a polishing liquid composition production method”). Also referred to as “a method for producing a polishing liquid composition according to the present disclosure”. Furthermore, in the present disclosure, “mixing” means mixing particles A and water, and if necessary, at least one selected from particles B, a pH adjuster, an oxidizing agent and other components simultaneously or in any order. including. The said mixing | blending can be performed using mixers, such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill, for example. The compounding quantity of each component in the manufacturing method of the polishing liquid composition which concerns on this indication can be made the same as content of each component in the above-mentioned polishing liquid composition which concerns on this indication.
本開示に係る研磨液組成物の製造方法は、シリカ粒子の分散性の観点から、好ましくは以下の工程を有する。
工程1:水と、pH調整剤と、任意で酸化剤を混合し、pH6.0以下の分散媒を調製する工程
工程2:前記分散媒と、粒子Aを含むシリカスラリーとを、混合する工程
工程1において、得られる分散媒のpHは、研磨液組成物のpHが所望の値となるように調整されることが好ましい。
The manufacturing method of the polishing liquid composition according to the present disclosure preferably includes the following steps from the viewpoint of dispersibility of silica particles.
Step 1: Step of mixing water, a pH adjuster, and optionally an oxidizing agent to prepare a dispersion medium having a pH of 6.0 or less Step 2: Step of mixing the dispersion medium and silica slurry containing particles A In step 1, the pH of the resulting dispersion medium is preferably adjusted so that the pH of the polishing composition becomes a desired value.
本開示において「研磨液組成物中の各成分の含有量」とは、研磨液組成物を研磨に使用する時点での前記各成分の含有量をいう。したがって、本開示に係る研磨液組成物が濃縮物として作製された場合には、前記各成分の含有量はその濃縮分だけ高くなりうる。 In the present disclosure, the “content of each component in the polishing liquid composition” refers to the content of each component at the time when the polishing liquid composition is used for polishing. Therefore, when the polishing liquid composition according to the present disclosure is prepared as a concentrate, the content of each component can be increased by the concentration.
[研磨液キット]
本開示は、研磨液組成物を製造するためのキットであって、前記粒子Aを含むシリカスラリーが容器に収納された容器入りスラリーを含む、研磨液キットに関する。本開示に係る研磨液キットは、前記容器入りスラリーとは別の容器に収納されたpH6.0以下の分散媒をさらに含むことができる。本開示によれば、砥粒としてシリカ粒子を使用した場合でも、粗研磨における研磨速度を大きく損ねることなく、粗研磨後の基板表面の長波長うねりを低減できる研磨液組成物が得られうる研磨液キットを提供できる。
[Polishing liquid kit]
The present disclosure relates to a polishing liquid kit for manufacturing a polishing liquid composition, which includes a container-containing slurry in which a silica slurry containing the particles A is stored in a container. The polishing liquid kit according to the present disclosure may further include a dispersion medium having a pH of 6.0 or less housed in a container different from the container-containing slurry. According to the present disclosure, even when silica particles are used as abrasive grains, a polishing composition capable of obtaining a polishing liquid composition capable of reducing long-wave waviness on the substrate surface after rough polishing without greatly impairing the polishing rate in rough polishing. A liquid kit can be provided.
本開示に係る研磨液キットとしては、例えば、粒子Aを含有するシリカスラリー(第1液)と、被研磨物の研磨に用いる研磨液組成物に配合され得る他の成分を含む溶液(第2液)とが、相互に混合されていない状態で保存されており、これらが使用時に混合される研磨液キット(2液型研磨液組成物)が挙げられる。研磨液組成物に配合され得る他の成分としては、例えば、pH調整剤、酸化剤等が挙げられる。前記第1液には、粒子Bがさらに含まれていてもよい。前記第1液及び第2液には、各々必要に応じて任意成分が含まれていてもよい。該任意成分としては、例えば、増粘剤、分散剤、防錆剤、塩基性物質、研磨速度向上剤、界面活性剤、高分子化合物等が挙げられる。 As a polishing liquid kit according to the present disclosure, for example, a solution (second liquid) containing silica slurry (first liquid) containing particles A and other components that can be blended in a polishing liquid composition used for polishing an object to be polished. Liquid) are stored in a state where they are not mixed with each other, and a polishing liquid kit (two-component polishing liquid composition) in which these are mixed at the time of use is mentioned. Examples of other components that can be blended in the polishing liquid composition include a pH adjuster and an oxidizing agent. The first liquid may further contain particles B. The first liquid and the second liquid may each contain an optional component as necessary. Examples of the optional component include a thickener, a dispersant, a rust inhibitor, a basic substance, a polishing rate improver, a surfactant, and a polymer compound.
[被研磨基板]
本開示に係る研磨液組成物が研磨の対象とする被研磨基板は、磁気ディスク基板の製造に用いられる基板であり、例えば、Ni−Pメッキされたアルミニウム合金基板や、珪酸ガラス、アルミノ珪酸ガラス、結晶化ガラス、強化ガラス等のガラス基板が挙げられ、強度と扱いやすさの観点からNi−Pメッキされたアルミニウム合金基板が好ましい。本開示において「Ni−Pメッキされたアルミニウム合金基板」とは、アルミニウム合金基材の表面を研削後、無電解Ni−Pメッキ処理したものをいう。被研磨基板の表面を本開示に係る研磨液組成物を用いて研磨する工程の後、スパッタ等でその基板表面に磁性層を形成する工程を行うことにより、磁気ディスクを製造できうる。被研磨基板の形状には、例えば、ディスク状、プレート状、スラブ状、プリズム状等の平面部を有する形状や、レンズ等の曲面部を有する形状が挙げられ、好ましくはディスク状の被研磨基板である。ディスク状の被研磨基板の場合、その外径は、例えば10〜120mmであり、その厚みは、例えば0.5〜2mmである。
[Polished substrate]
The substrate to be polished by the polishing composition according to the present disclosure is a substrate used for manufacturing a magnetic disk substrate. For example, a Ni-P plated aluminum alloy substrate, silicate glass, aluminosilicate glass is used. In addition, glass substrates such as crystallized glass and tempered glass can be mentioned, and an aluminum alloy substrate plated with Ni—P is preferable from the viewpoint of strength and ease of handling. In the present disclosure, the “Ni—P plated aluminum alloy substrate” refers to a surface of an aluminum alloy base material that has been subjected to electroless Ni—P plating after being ground. A magnetic disk can be manufactured by performing a step of forming a magnetic layer on the surface of the substrate by sputtering or the like after the step of polishing the surface of the substrate to be polished using the polishing composition according to the present disclosure. Examples of the shape of the substrate to be polished include a shape having a flat portion such as a disk shape, a plate shape, a slab shape, and a prism shape, and a shape having a curved surface portion such as a lens, and preferably a disk-shaped substrate to be polished. It is. In the case of a disk-shaped substrate to be polished, the outer diameter is, for example, 10 to 120 mm, and the thickness is, for example, 0.5 to 2 mm.
一般に、磁気ディスクは、研削工程を経た被研磨基板が、粗研磨工程、仕上げ研磨工程を経て研磨され、磁性層形成工程を経て製造される。本開示に係る研磨液組成物は、粗研磨工程における研磨に使用されることが好ましい。 In general, a magnetic disk is manufactured through a magnetic layer forming process in which a substrate to be polished that has undergone a grinding process is polished through a rough polishing process and a final polishing process. The polishing composition according to the present disclosure is preferably used for polishing in the rough polishing step.
[磁気ディスク基板の製造方法]
本開示は、本開示に係る研磨液組成物を用いて被研磨基板を研磨する工程(以下、「本開示に係る研磨液組成物を用いた研磨工程」ともいう)を含む、磁気ディスク基板の製造方法(以下、「本開示に係る基板製造方法」ともいう。)に関する。
[Method of manufacturing magnetic disk substrate]
The present disclosure includes a step of polishing a substrate to be polished using the polishing liquid composition according to the present disclosure (hereinafter, also referred to as “polishing step using the polishing liquid composition according to the present disclosure”). The present invention relates to a manufacturing method (hereinafter also referred to as “substrate manufacturing method according to the present disclosure”).
本開示に係る研磨液組成物を用いた研磨工程では、例えば、研磨パッドを貼り付けた定盤で被研磨基板を挟み込み、本開示に係る研磨液組成物を研磨面に供給し、圧力を加えながら研磨パッドや被研磨基板を動かすことにより、被研磨基板を研磨する。 In the polishing process using the polishing liquid composition according to the present disclosure, for example, the substrate to be polished is sandwiched by a surface plate with a polishing pad attached thereto, the polishing liquid composition according to the present disclosure is supplied to the polishing surface, and pressure is applied. The substrate to be polished is polished by moving the polishing pad and the substrate to be polished.
本開示に係る研磨液組成物を用いた研磨工程における研磨荷重は、研磨速度向上及び長波長うねり低減の観点から、30kPa以下が好ましく、25kPa以下がより好ましく、20kPa以下が更に好ましく、そして、3kPa以上が好ましく、5kPa以上がより好ましく、7kPa以上が更に好ましい。本開示において「研磨荷重」とは、研磨時に被研磨基板の被研磨面に加えられる定盤の圧力をいう。研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。 The polishing load in the polishing step using the polishing liquid composition according to the present disclosure is preferably 30 kPa or less, more preferably 25 kPa or less, still more preferably 20 kPa or less, and further 3 kPa, from the viewpoints of improving the polishing rate and reducing long wavelength waviness. The above is preferable, 5 kPa or more is more preferable, and 7 kPa or more is still more preferable. In the present disclosure, “polishing load” refers to the pressure of the surface plate applied to the surface to be polished of the substrate to be polished during polishing. The polishing load can be adjusted by applying air pressure or weight to the surface plate or the substrate.
本開示に係る研磨液組成物を用いた研磨工程における、被研磨基板1cm2あたりの研磨量は、研磨速度向上及び長波長うねり低減の観点から、0.20mg以上が好ましく、0.30mg以上がより好ましく、0.40mg以上が更に好ましく、そして、同様の観点から、2.50mg以下が好ましく、2.00mg以下がより好ましく、1.60mg以下が更に好ましい。 In the polishing step using the polishing liquid composition according to the present disclosure, the polishing amount per 1 cm 2 of the substrate to be polished is preferably 0.20 mg or more, and preferably 0.30 mg or more from the viewpoint of improving the polishing rate and reducing long wavelength waviness. More preferably, 0.40 mg or more is more preferable, and from the same viewpoint, 2.50 mg or less is preferable, 2.00 mg or less is more preferable, and 1.60 mg or less is more preferable.
本開示に係る研磨液組成物を用いた研磨工程における被研磨基板1cm2あたりの研磨液組成物の供給速度は、経済性の観点から、2.5mL/分以下が好ましく、2.0mL/分以下がより好ましく、1.5mL/分以下が更に好ましく、そして、研磨速度の向上の観点から、被研磨基板1cm2あたり0.01mL/分以上が好ましく、0.03mL/分以上がより好ましく、0.05mL/分以上が更に好ましい。 The supply rate of the polishing liquid composition per 1 cm 2 of the substrate to be polished in the polishing step using the polishing liquid composition according to the present disclosure is preferably 2.5 mL / min or less from the viewpoint of economy, and is 2.0 mL / min. The following is more preferable, 1.5 mL / min or less is further preferable, and from the viewpoint of improving the polishing rate, 0.01 mL / min or more per 1 cm 2 of the substrate to be polished is preferable, 0.03 mL / min or more is more preferable, 0.05 mL / min or more is more preferable.
本開示に係る研磨液組成物を研磨機へ供給する方法としては、例えば、ポンプ等を用いて連続的に供給を行う方法が挙げられる。研磨液組成物を研磨機へ供給する際は、全ての成分を含んだ1液で供給する方法の他、研磨液組成物の保存安定性等を考慮して、複数の配合用成分液に分け、2液以上で供給することもできる。後者の場合、例えば供給配管中又は被研磨基板上で、上記複数の配合用成分液が混合され、本開示に係る研磨液組成物となる。 Examples of a method for supplying the polishing liquid composition according to the present disclosure to a polishing machine include a method of continuously supplying using a pump or the like. When supplying the polishing liquid composition to the polishing machine, in addition to the method of supplying it with one liquid containing all the components, considering the storage stability of the polishing liquid composition, etc., it is divided into a plurality of component liquids for blending. Two or more liquids can be supplied. In the latter case, for example, the plurality of compounding component liquids are mixed in the supply pipe or on the substrate to be polished to obtain the polishing liquid composition according to the present disclosure.
本開示に係る基板製造方法によれば、粗研磨における研磨速度を大幅に損なうことなく、粗研磨後の基板表面の長波長うねりを低減できるため、基板品質が向上した磁気ディスク基板を効率よく製造できるという効果が奏されうる。 According to the substrate manufacturing method according to the present disclosure, long wavelength waviness on the substrate surface after rough polishing can be reduced without significantly impairing the polishing rate in rough polishing, so that a magnetic disk substrate with improved substrate quality can be efficiently manufactured. The effect that it is possible can be produced.
[研磨方法]
本開示は、本開示に係る研磨液組成物を用いた研磨工程を含む、基板の研磨方法(以下、本開示に係る研磨方法ともいう)に関する。
[Polishing method]
The present disclosure relates to a substrate polishing method (hereinafter, also referred to as a polishing method according to the present disclosure) including a polishing step using the polishing composition according to the present disclosure.
本開示に係る研磨方法を使用することにより、粗研磨における研磨速度を大幅に損なうことなく、粗研磨後の基板表面の長波長うねりを低減できるため、基板品質が向上した磁気ディスク基板の生産性を向上できるという効果が奏されうる。具体的な研磨の方法及び条件は、上述した本開示に係る基板製造方法と同じようにすることができる。 By using the polishing method according to the present disclosure, it is possible to reduce long-wave waviness of the substrate surface after rough polishing without significantly impairing the polishing rate in rough polishing, and thus the productivity of a magnetic disk substrate with improved substrate quality. The effect that it can improve can be show | played. The specific polishing method and conditions can be the same as those of the substrate manufacturing method according to the present disclosure described above.
以下、実施例により本開示をさらに詳細に説明するが、これらは例示的なものであって、本開示はこれら実施例に制限されるものではない。 Hereinafter, the present disclosure will be described in more detail by way of examples. However, these examples are illustrative, and the present disclosure is not limited to these examples.
1.研磨液組成物の調製
表1及び表2に示す砥粒(非球状シリカ粒子A、球状シリカ粒子B)、pH調整剤(硫酸)、酸化剤(過酸化水素)、及び水を用い、実施例1〜11及び比較例1〜5の研磨液組成物を調製した(表3)。調製は、水とpH調整剤と酸化剤とを予め混合して分散媒を調製し、分散媒と砥粒を含むスラリーとを混合して行った。実施例1〜11及び比較例1〜5の研磨液組成物中の各成分の含有量は、砥粒:6.5質量%、硫酸:0.5質量%、過酸化水素:0.5質量%であった。実施例1〜11及び比較例1〜5の研磨液組成物は、アルミナ砥粒を含んでいない。粒子A及び粒子Bは、水ガラス法により製造されたコロイダルシリカ粒子である。実施例1〜11及び比較例1〜5の研磨液組成物のpHは1.4であった。pHは、pHメータ(東亜ディーケーケー社製)を用いて測定し、電極を研磨液組成物へ浸漬して2分後の数値を採用した(以下、同様)。
1. Preparation of polishing liquid composition Examples using the abrasive grains (non-spherical silica particles A, spherical silica particles B), pH adjusters (sulfuric acid), oxidizing agents (hydrogen peroxide), and water shown in Tables 1 and 2 1 to 11 and Comparative Examples 1 to 5 were prepared (Table 3). The preparation was performed by mixing water, a pH adjuster, and an oxidizing agent in advance to prepare a dispersion medium, and mixing the dispersion medium and a slurry containing abrasive grains. The content of each component in the polishing liquid compositions of Examples 1 to 11 and Comparative Examples 1 to 5 is: abrasive grains: 6.5 mass%, sulfuric acid: 0.5 mass%, hydrogen peroxide: 0.5 mass %Met. The polishing liquid compositions of Examples 1 to 11 and Comparative Examples 1 to 5 do not contain alumina abrasive grains. Particles A and B are colloidal silica particles produced by a water glass method. The pH of the polishing composition of Examples 1 to 11 and Comparative Examples 1 to 5 was 1.4. The pH was measured using a pH meter (manufactured by Toa DKK Co., Ltd.), and the value after 2 minutes after the electrode was immersed in the polishing composition was adopted (hereinafter the same).
2.各パラメータの測定方法
[シリカ粒子の平均一次粒子径、平均短径、及び平均球形度の測定方法]
シリカ粒子をTEM(日本電子社製「JEM−2000FX」、80kV、1〜5万倍)で観察した写真を、パーソナルコンピュータにスキャナで画像データとして取込み、解析ソフト(三谷商事「WinROOF(Ver.3.6)」)を用いて500個のシリカ粒子の投影画像について下記の通り解析した。
個々のシリカ粒子の円相当径として求められる粒子径の数平均を平均一次粒子径として得た。さらに、個々のシリカ粒子の短径を求め、短径の平均値(平均短径)を得た。さらに、個々のシリカ粒子の面積Sと周囲長Lとから、下記式により個々のシリカ粒子の球形度を算出し、球形度の平均値(平均球形度)を得た。
球形度=4π×S/L2
2. Measuring method of each parameter [Measuring method of average primary particle diameter, average minor diameter, and average sphericity of silica particles]
A photograph obtained by observing silica particles with a TEM (“JEM-2000FX” manufactured by JEOL Ltd., 80 kV, 1 to 50,000 times) is captured as image data with a scanner on a personal computer, and analyzed software (Mitani Corporation “WinROOF (Ver. 3) .6) ") and the projection image of 500 silica particles was analyzed as follows.
The number average of the particle diameters determined as the equivalent circle diameters of the individual silica particles was obtained as the average primary particle diameter. Furthermore, the short diameter of each silica particle was calculated | required and the average value (average short diameter) of the short diameter was obtained. Furthermore, from the area S and the perimeter length L of each silica particle, the sphericity of each silica particle was calculated by the following formula, and the average value of sphericity (average sphericity) was obtained.
Sphericality = 4π × S / L 2
[シリカ粒子のBET比表面積の測定方法]
BET比表面積Sは、下記の[前処理]をした後、測定サンプル約0.1gを測定セルに小数点以下4桁(0.1mgの桁)まで精量し、比表面積の測定直前に110℃の雰囲気下で30分間乾燥した後、比表面積測定装置(マイクロメリティック自動比表面積測定装置、フローソーブIII2305、島津製作所製)を用いてBET法により測定した。
<前処理>
スラリー状の粒子をシャーレにとり150℃の熱風乾燥機内で1時間乾燥させた。乾燥後の試料をメノウ乳鉢で細かく粉砕して測定サンプルを得た。
[Measurement method of BET specific surface area of silica particles]
The BET specific surface area S was subjected to the following [pre-treatment], then weighed about 0.1 g of the measurement sample into the measurement cell to 4 digits after the decimal point (0.1 mg digit), and 110 ° C. immediately before the measurement of the specific surface area. After being dried for 30 minutes under the above atmosphere, measurement was performed by the BET method using a specific surface area measuring device (Micromeritic automatic specific surface area measuring device, Flowsorb III2305, manufactured by Shimadzu Corporation).
<Pretreatment>
Slurry particles were placed in a petri dish and dried in a hot air dryer at 150 ° C. for 1 hour. The dried sample was finely pulverized in an agate mortar to obtain a measurement sample.
[シリカ粒子の平均二次粒子径、D10、及びD90の測定方法]
シリカ粒子をイオン交換水で希釈し、シリカ粒子を0.04〜0.4質量%含有する分散液を調製して試料とし、下記測定装置を用いて遠心沈降法による粒度分布を測定した。遠心沈降法により得られる重量換算での粒度分布において累積頻度が10%、50%、90%となる粒径をそれぞれD10、D50(平均二次粒子径)、D90とした。
<測定条件>
測定装置:CPS Instruments社製の「CPS DC24000 UHR」
測定範囲:0.02〜3μm
粒子の消衰係数:0.1
粒子の形状因子:1.2 or 1.0
回転数:18,000rpm〜22,000rpm
[Measuring method of average secondary particle diameter of silica particles, D10 and D90]
Silica particles were diluted with ion-exchanged water to prepare a dispersion containing 0.04 to 0.4% by mass of silica particles as a sample, and the particle size distribution was measured by centrifugal sedimentation using the following measuring device. In the particle size distribution in terms of weight obtained by the centrifugal sedimentation method, the particle diameters with cumulative frequencies of 10%, 50%, and 90% were defined as D10, D50 (average secondary particle diameter), and D90, respectively.
<Measurement conditions>
Measuring device: “CPS DC24000 UHR” manufactured by CPS Instruments
Measurement range: 0.02 to 3 μm
Particle extinction coefficient: 0.1
Particle shape factor: 1.2 or 1.0
Rotation speed: 18,000rpm-22,000rpm
3.基板の研磨
調製した実施例1〜11及び比較例1〜5の研磨液組成物を用いて、下記の研磨条件で被研磨基板を研磨した。
3. Polishing of Substrates Using the prepared polishing liquid compositions of Examples 1 to 11 and Comparative Examples 1 to 5, the substrate to be polished was polished under the following polishing conditions.
<研磨条件>
研磨機:両面研磨機(9B型両面研磨機、スピードファム社製)
被研磨基板:Ni−Pメッキされたアルミニウム合金基板、厚み:1.27mm、直径95mm、枚数:10枚
研磨液:研磨液組成物
研磨パッド:スエードタイプ(発泡層:ポリウレタンエラストマー)、厚み:1.0mm、平均気孔径:30μm、表面層の圧縮率:2.5%(Filwel社製)
定盤回転数:40rpm
研磨荷重:9.8kPa(設定値)
研磨液供給量:60mL/min
研磨時間:5分00秒
<Polishing conditions>
Polishing machine: Double-side polishing machine (9B-type double-side polishing machine, manufactured by Speed Fam Co.)
Substrate to be polished: Ni-P plated aluminum alloy substrate, thickness: 1.27 mm, diameter 95 mm, number of sheets: 10 polishing liquid: polishing composition polishing pad: suede type (foam layer: polyurethane elastomer), thickness: 1 0.0 mm, average pore diameter: 30 μm, compression ratio of surface layer: 2.5% (manufactured by Filwel)
Plate rotation speed: 40 rpm
Polishing load: 9.8 kPa (set value)
Polishing liquid supply amount: 60 mL / min
Polishing time: 5 minutes 00 seconds
4.評価方法
[研磨速度の評価]
実施例1〜11及び比較例1〜5の研磨液組成物の研磨速度は、以下のようにして評価した。まず、研磨前後の各基板1枚当たりの重さを計り(Sartorius社製、「BP−210S」)を用いて測定し、各基板の質量変化から質量減少量を求めた。全10枚の平均の質量減少量を研磨時間で割った値を研磨速度とし、下記式により算出した。
質量減少量(g)={研磨前の質量(g)−研磨後の質量(g)}
研磨速度(mg/min)=質量減少量(mg)/研磨時間(min)
4). Evaluation method [Evaluation of polishing rate]
The polishing rates of the polishing liquid compositions of Examples 1 to 11 and Comparative Examples 1 to 5 were evaluated as follows. First, the weight per substrate before and after polishing was measured (measured by Sartorius, “BP-210S”), and the amount of mass reduction was determined from the change in mass of each substrate. A value obtained by dividing the average mass reduction amount of all 10 sheets by the polishing time was defined as a polishing rate, and was calculated by the following formula.
Weight loss (g) = {mass before polishing (g) −mass after polishing (g)}
Polishing speed (mg / min) = mass reduction amount (mg) / polishing time (min)
[長波長うねりの評価]
研磨後の10枚の両面、計20面について、下記の条件で測定した。その20面の測定値の平均値を基板の長波長うねりとして算出した。本評価において、長波長うねりは、磁気ディスクの記録密度向上の観点から、3.0Å以下が好ましく、2.7Å以下がより好ましく、2.4Å以下が更に好ましく、2.1Å以下が更に好ましい。
<測定条件>
測定機器: KLA Tencor社製「OptiFLAT III」
Radius Inside/Out: 14.87mm/47.83mm
Center X/Y: 55.44mm/53.38mm
Low Cutoff: 2.5mm
Inner Mask: 18.50mm
Outer Mask: 45.5mm
Long Period: 2.5mm
Wa Correction: 0.9
Rn Correction: 1.0
No Zernike Terms: 8
[Evaluation of long wavelength swell]
Measurements were made on the following conditions for 10 surfaces after polishing, a total of 20 surfaces. The average value of the measured values on the 20 surfaces was calculated as the long wavelength waviness of the substrate. In this evaluation, the long wavelength waviness is preferably 3.0 mm or less, more preferably 2.7 mm or less, further preferably 2.4 mm or less, and further preferably 2.1 mm or less, from the viewpoint of improving the recording density of the magnetic disk.
<Measurement conditions>
Measuring equipment: “OptiFLAT III” manufactured by KLA Tencor
Radius Inside / Out: 14.87mm / 47.83mm
Center X / Y: 55.44mm / 53.38mm
Low Cutoff: 2.5mm
Inner Mask: 18.50mm
Outer Mask: 45.5mm
Long Period: 2.5mm
Wa Correction: 0.9
Rn Correction: 1.0
No Zernike Terms: 8
5.結果
各評価の結果を表3に示した。
5. Results The results of each evaluation are shown in Table 3.
表3に示されるように、所定の非球状シリカ粒子を含有する実施例1〜11は、所定の非球状シリカ粒子を含まない比較例1〜5に比べて、高い研磨速度を確保しつつ、研磨後の長波長うねりが低減された。 As shown in Table 3, Examples 1 to 11 containing predetermined non-spherical silica particles ensure a high polishing rate as compared with Comparative Examples 1 to 5 not including predetermined non-spherical silica particles. Long wavelength waviness after polishing was reduced.
本開示によれば、研磨速度を確保しつつ研磨後の長波長うねりを低減できるから、磁気ディスク基板の製造の生産性を向上できる。本開示は、磁気ディスク基板の製造に好適に用いることができる。 According to the present disclosure, it is possible to reduce the long-wave waviness after polishing while ensuring the polishing rate, so that the productivity of manufacturing the magnetic disk substrate can be improved. The present disclosure can be suitably used for manufacturing a magnetic disk substrate.
Claims (10)
pHが、0.5以上6.0以下であり、
遠心沈降法により得られる重量換算での粒度分布において累積頻度が10%、50%、90%となる粒径をそれぞれD10、D50、D90としたとき、前記非球状シリカ粒子Aは、式(D90−D10)で表されるスパンが180nm以上であり、D50が180nm以上である、磁気ディスク基板用研磨液組成物。 Comprising non-spherical silica particles A and water,
pH is 0.5 or more and 6.0 or less,
When the particle diameters with a cumulative frequency of 10%, 50%, and 90% in the particle size distribution in terms of weight obtained by the centrifugal sedimentation method are D10, D50, and D90, respectively, the non-spherical silica particles A are represented by the formula (D90 A polishing liquid composition for a magnetic disk substrate, wherein the span represented by -D10) is 180 nm or more and D50 is 180 nm or more.
前記球状シリカ粒子Bの平均球形度が0.85以上1.00以下である請求項1から3のいずれかに記載の磁気ディスク基板用研磨液組成物。 Further comprising spherical silica particles B;
The polishing composition for a magnetic disk substrate according to any one of claims 1 to 3, wherein the spherical silica particles B have an average sphericity of 0.85 or more and 1.00 or less.
遠心沈降法により得られる重量換算での粒度分布において累積頻度が10%、50%、90%となる粒径をそれぞれD10、D50、D90としたとき、前記非球状シリカ粒子Aは、式(D90−D10)で表されるスパンが180nm以上であり、D50が180nm以上である、磁気ディスク基板用研磨液組成物の製造に用いられるシリカスラリーの製造方法。 Having a step of blending at least non-spherical silica particles A and water,
When the particle diameters with a cumulative frequency of 10%, 50%, and 90% in the particle size distribution in terms of weight obtained by the centrifugal sedimentation method are D10, D50, and D90, respectively, the non-spherical silica particles A are represented by the formula (D90 A method for producing a silica slurry used for producing a polishing composition for a magnetic disk substrate, wherein the span represented by -D10) is 180 nm or more and D50 is 180 nm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016222412A JP6820723B2 (en) | 2016-11-15 | 2016-11-15 | Abrasive liquid composition for magnetic disk substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016222412A JP6820723B2 (en) | 2016-11-15 | 2016-11-15 | Abrasive liquid composition for magnetic disk substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018081733A true JP2018081733A (en) | 2018-05-24 |
JP6820723B2 JP6820723B2 (en) | 2021-01-27 |
Family
ID=62199055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016222412A Active JP6820723B2 (en) | 2016-11-15 | 2016-11-15 | Abrasive liquid composition for magnetic disk substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6820723B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020055914A (en) * | 2018-09-28 | 2020-04-09 | 株式会社フジミインコーポレーテッド | Polishing composition, polishing method of substrate, and manufacturing method of substrate |
JP2020055915A (en) * | 2018-09-28 | 2020-04-09 | 株式会社フジミインコーポレーテッド | Polishing composition, polishing method of substrate, and manufacturing method of substrate |
JP2020180010A (en) * | 2019-04-23 | 2020-11-05 | 三菱ケミカル株式会社 | Silica particle, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer and method for manufacturing semiconductor device |
JP2021175774A (en) * | 2020-05-01 | 2021-11-04 | 花王株式会社 | Polishing liquid composition |
WO2023229009A1 (en) * | 2022-05-26 | 2023-11-30 | 花王株式会社 | Grinding liquid composition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080006057A1 (en) * | 2006-07-05 | 2008-01-10 | Kao Corporation | Polishing composition for glass substrate |
JP2016015184A (en) * | 2014-06-30 | 2016-01-28 | 花王株式会社 | Magnetic disk substrate polishing liquid composition |
JP2016027517A (en) * | 2014-06-30 | 2016-02-18 | 花王株式会社 | Polishing liquid composition for magnetic disk substrate |
-
2016
- 2016-11-15 JP JP2016222412A patent/JP6820723B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080006057A1 (en) * | 2006-07-05 | 2008-01-10 | Kao Corporation | Polishing composition for glass substrate |
JP2016015184A (en) * | 2014-06-30 | 2016-01-28 | 花王株式会社 | Magnetic disk substrate polishing liquid composition |
JP2016027517A (en) * | 2014-06-30 | 2016-02-18 | 花王株式会社 | Polishing liquid composition for magnetic disk substrate |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020055914A (en) * | 2018-09-28 | 2020-04-09 | 株式会社フジミインコーポレーテッド | Polishing composition, polishing method of substrate, and manufacturing method of substrate |
JP2020055915A (en) * | 2018-09-28 | 2020-04-09 | 株式会社フジミインコーポレーテッド | Polishing composition, polishing method of substrate, and manufacturing method of substrate |
JP7186568B2 (en) | 2018-09-28 | 2022-12-09 | 株式会社フジミインコーポレーテッド | Polishing composition, method for polishing substrate, and method for producing substrate |
JP7292844B2 (en) | 2018-09-28 | 2023-06-19 | 株式会社フジミインコーポレーテッド | Polishing composition, method for polishing substrate, and method for producing substrate |
JP2020180010A (en) * | 2019-04-23 | 2020-11-05 | 三菱ケミカル株式会社 | Silica particle, silica sol, polishing composition, polishing method, method for manufacturing semiconductor wafer and method for manufacturing semiconductor device |
JP7331435B2 (en) | 2019-04-23 | 2023-08-23 | 三菱ケミカル株式会社 | Silica particles, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method |
JP2021175774A (en) * | 2020-05-01 | 2021-11-04 | 花王株式会社 | Polishing liquid composition |
WO2023229009A1 (en) * | 2022-05-26 | 2023-11-30 | 花王株式会社 | Grinding liquid composition |
Also Published As
Publication number | Publication date |
---|---|
JP6820723B2 (en) | 2021-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4231632B2 (en) | Polishing liquid composition | |
JP6820723B2 (en) | Abrasive liquid composition for magnetic disk substrate | |
JP5853117B1 (en) | Polishing liquid composition for magnetic disk substrate | |
WO2017094592A1 (en) | Polishing liquid composition for magnetic disk substrate | |
JP6138677B2 (en) | Polishing liquid composition for magnetic disk substrate | |
JP6584936B2 (en) | Polishing liquid composition for magnetic disk substrate | |
JP4462599B2 (en) | Polishing liquid composition | |
JP6584945B2 (en) | Polishing liquid composition for magnetic disk substrate | |
JP6982427B2 (en) | Silica slurry | |
JP7411498B2 (en) | polishing liquid composition | |
TWI731113B (en) | Manufacturing method of magnetic disk substrate | |
JP6584935B2 (en) | Polishing liquid composition for magnetic disk substrate | |
JP7460844B1 (en) | Polishing composition for magnetic disk substrates | |
JP7055695B2 (en) | Silica abrasive grains for polishing | |
JP7587661B2 (en) | Polishing composition | |
JP2025012312A (en) | Polishing composition | |
JP6959857B2 (en) | Abrasive liquid composition | |
JP2023169503A (en) | Silica-based particle dispersion, polishing slurries for polishing magnetic disk substrate, composition for polishing magnetic disk substrates, and method for manufacturing silica-based particle groups | |
WO2023229009A1 (en) | Grinding liquid composition | |
JP2022124318A (en) | Method for producing silica dispersion for magnetic disk | |
JP2023174608A (en) | polishing liquid composition | |
JP2010165420A (en) | Method of manufacturing ceria slurry, and method of polishing glass substrate for magnetic recording medium | |
JP2014194833A (en) | Manufacturing method of magnetic disk glass substrate, manufacturing method of magnetic disk, and polishing liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190906 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201217 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210105 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6820723 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |